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Abstract— Estimating Arterial Travel Time distributions from
high-resolution loop detector data (signal events and vehicle
detection events) is a challenging task. Even though high-
resolution loop detector data for several years may be available,
the lack of other data modes and ground-truth labels, hin-
ders approaches that rely on additional information. Among
the approaches relying exclusively on loop detector data, are
deterministic physics-based approaches (which use the mechanics
of a virtual probe moving down a signalized arterial) and
cost-minimization approaches (which estimate travel times from
detector counts directly). In this work, we propose and evaluate
a hybrid model that uses virtual probe trajectories to indicate
probable arrival and departure windows, within which we apply
a sequence alignment algorithm on high-resolution loop detector
data to match platoons. We generate a broad range of traffic
conditions and signal timing plans using SUMO traffic simulator
and evaluate our approaches. We also verify our approach
using real-world data collected along a 5-intersection signalized
corridor. We show that virtual probe trajectories can be replaced
by data collected from real probes (when available), thereby
improving accuracy. Results show that our approaches enable us
to calculate a good estimate of the arterial travel time distribution
and are robust to noise. Thus, our methods can be used both with
standalone archived loop detector data and in conjunction with
data from connected vehicles.

Index Terms— Connected vehicles, traffic control, detector,
data-driven modeling, trajectory, estimation.

I. INTRODUCTION

MITIGATING traffic congestion and improving safety
are the important cornerstones of transportation for

smart cities. With growing urbanization around the world, traf-
fic congestion along high-volume signalized traffic corridors
(arterials) is a major concern [1]. Congestion negatively affects
productivity, leading to loss of work-hours, thus impacting
the economy. Congestion also impacts the well-being of the
society and the environment [2], [3]. One of the important
measures of congestion is Arterial Travel Time [4]. This value
is the expected travel time that a vehicle will take to complete
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its journey along a signalized traffic corridor and is affected
by many factors including traffic conditions, departure time
etc. This quantity is easy to interpret, by traffic engineers, city
authorities as well as the general public. Current performance
evaluations include a limited comparison of before and after
travel-time data to demonstrate the effectiveness of signal re-
timing efforts [5]. However, traffic patterns vary dynamically
during a day as well as globally within the network and
there is a need for continuous monitoring and evaluation of
signal timing parameters, based on performance and demand
fluctuations. To achieve this, travel times have to be calculated
at regular intervals. In addition, it is important to understand
the distribution of travel times rather than just average travel
times, as it gives traffic engineers richer information about the
tail of the distribution. Actual travel time often has a multi-
modal distribution and the expected (mean) values are not
always sufficient.

While the availability of high-resolution (10 Hz) loop detec-
tor logs opens a broader range of possibilities, a fundamental
problem of re-identifying the same vehicle at entry and exit
points in the arterial network, still remains. To overcome this,
the literature has introduced “Virtual Probes” [6], a kinematic
model wherein vehicle locations and velocities are estimated
using simplified physics and signal phase information. The first
question asked and answered (to some extent) in this paper is
the extent to which virtual probes with sequence matching, are
useful in estimating travel times of vehicles. The approach we
take is to infer vehicular movement given coarse virtual probe
information. This is achieved by pairing virtual probe data with
a bioinformatics-based sequence matching algorithm (hence-
forth referred to as Platoon Matching Algorithm). We denote
this style of approach as unsupervised travel time estimation,
since the only loop detectors and signal state information is
used.

We next move to semi-supervised travel time estimation.
Here, a small fraction of actual “labelled” ground-truth vehic-
ular movements are fed to the Platoon Matching Algorithm,
instead of virtual probe trajectories. Since no kinematic model
is assumed here, it is the job of the sequence alignment-based
inference engine to propagate the labeled vehicular matches to
the rest of the vehicles, in the quest of obtaining an improved
travel time estimation.

Our work has these main contributions:
1) We develop a hybrid method that combines a deter-

ministic physics-based virtual probe model with a cost-
minimization sequence alignment algorithm. This allows
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it to compute distributions of travel times rather than
only expected values.

2) We focus on using primarily loop detector and signal
state data, as these are usually available to public
traffic authorities. Our methods do not rely on vehicle
re-identification methods like BlueTooth, GPS, Video
tracking etc., though they can be used to boost accuracy
of our method.

3) We show that our method is robust to a variety of traffic
scenarios (variable amount of congestion, variable signal
timing patterns, variable amounts of traffic entering
and exiting the corridor). This is shown in simulation
where ground-truth is available for comparison. Further,
we also verify our approach using real-world data col-
lected along a signalized urban corridor.

4) We show that the accuracy of our method can be
improved when trajectory information (or generally, re-
identification information) for a small number (1%-4%
percent) of vehicles is available. We expect this data to
be collected in real-time by the state agencies in the near
future using road-side units and on-board units (installed
in transit buses or other vehicles).

Given the above, the stage is set for a clear-cut compar-
ison of real and virtual probes, corresponding to the semi-
supervised and unsupervised situations respectively, coupled
with platoon matching. In the rest of the paper, we flesh
out these approaches and empirically compare the travel time
distribution estimation by simulating low, medium and high
traffic volumes. We also describe the verification of our
approaches using real-world data. Previous work on this topic
is first reviewed in Section II, followed by a description of
the methodology in Section III, and simulation and real-world
evaluation results in Section IV. We conclude in Section V
and speculate on possible future trajectories of this work.

II. BACKGROUND AND RELATED WORK

We briefly review other related work in estimating travel
times, with a focus on using loop detector data.

An analytical model based on kinematic wave theory [7]
is developed in [8], based on loop detector readings and
signal plans. Extensions of this work include [9], [10] which
account for long queues and spillovers. Similarly, [6] and
[11] introduce the Virtual Probe method and its extension.
Reference [12] uses cumulative plots of vehicles crossing loop
detectors with sparse probe trajectories, to estimate travel time
statistics. [13] estimates average link travel time of signalized
arterials with loop detectors, using a platoon dispersion model
to project downstream arrivals. Reference [14] uses Particle
Filter-based approach to reconstruct vehicle trajectories for
signalized arterials using sparse probe data, and estimate
travel times. Reference [15] uses K-nearest neighbor and
Least Squares Support Vector Regression model. Neural Net-
works [16] too have been used for imputing urban arterial
travel time: [17] uses loop detector data with State-Space Neu-
ral Networks and Kalman Filters; [18] presents a hybrid model
coupling the deep learning model and quantile regression using
data from microwave sensors and loop detectors. A prob-
abilistic modeling framework [19] is developed, estimating

arterial travel time distributions from sparsely observed probe
vehicles (a fleet of 500 taxis). A platoon-matching algorithm
using vehicle flow densities over loop detectors, to first detect
platoons, and then using exponential smoothing to find average
arterial travel time is mentioned in [20]. Reference [21] fuses
loop detector and probe data with Recursive Least Square filter
coupled with Maximum A Posteriori interpolation, to impute
truck travel times. Reference [22] details a comparison study
using the fusion of bus-based GPS, loop detectors and mobile
phone data for urban travel time estimation. Reference [23]
uses vehicle color from video data coupled with loop detector
data to estimate travel times of platoons. Reference [24]
introduces a framework for vehicle re-identification via sig-
nature matching using signal processing techniques and a
travel time estimation algorithm, based on microloop detectors.
Reference [25] uses a kinematic wave model to estimate travel
time distributions for arterials in undersaturated conditions
with known fixed-time traffic signals, with respect to departure
and traffic flow information. An approach fusing the theory
of traffic flow through signalized intersections with machine
learning (Expectation Maximization algorithm) to estimate
travel times using GPS data is presented in [26].

In our work, we have extended the key ideas in the physics-
based Virtual Probe Model described in [6], paired with the
Needleman-Wunsch Sequence Alignment algorithm [27]. The
Needleman-Wunsch algorithm was originally developed to
align amino acid sequences. Recently, a similar approach was
used to analyze dedicated short-range communication (DSRC)
data [28], and BlueTooth data [29] to identify road user
classes.

III. INTEGRATION OF PLATOON MATCHING WITH
VIRTUAL AND REAL PROBES

In this section, we describe our novel hybrid approach
to estimating arterial travel time distributions. Our objective
is to analyze loop detector data for travel times, with and
without actual trajectory data (from GPS, BlueTooth or Video
etc.). Loop detector data is usually readily available in large
quantities to public agencies [30]. As (sparse) trajectory data
also becomes available, we show how to incorporate it to
further improve the algorithm and quantify the impact.

A. Intuition Behind the Method

Let us consider a platoon (i.e. a cohort) of vehicles that
exit the first intersection together. Due to platoon dispersion
and other effects, these vehicles may not cross the second
intersection’s stop-bar together as a cohort. A portion of the
original cohort may go through, leaving the remaining to exit
in the next upcoming green phase at the second intersection.
This pattern of platoon break-up and the collapse of the “Green
Wave” is likely to repeat in subsequent intersections of the
corridor. This leads to the original cohort of vehicles, exiting
the last intersection at different times.

It is important to note that the vehicles on the corridor are
being captured by two distinct sensor modes:

• Inductive Loop Detector Data at Intersection Stop-Bars:
These fixed sensors count the number of vehicles that pass
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over them. Such sensors are capable of capturing the bulk
of the traffic that flows across the corridor. However, it is
not possible to re-identify a vehicle across the various
loop detectors along the length of the corridor. Thus,
this mode provides bulk non-re-identifiable vehicle data.
Consequently, it is not possible to accurately estimate an
individual vehicle’s travel time with this mode.

• Probe Vehicle Trajectory Data (such as from GPS): This
mode of data can re-identify the same vehicle as it crosses
the co-ordinates of the stop-bars of successive intersec-
tions. However, such data is usually sparsely available
with penetration rates of a few percent of the overall traf-
fic flow. Thus, this mode provides sparse re-identifiable
vehicle data. This mode allows us to accurately determine
a vehicle’s corridor travel time but it is too sparse to
get the complete travel time distribution. While GPS data
can be used, even intersection-mounted video data (with
manual visual tracking or computer vision-based track-
ing [31]) can be used to ascertain the timestamps when
a sample of vehicles crosses the intersection stop-bars.

In order to estimate the distribution of travel time of the bulk
of the corridor traffic, we want to use the sparse re-identifiable
vehicle data to enrich the bulk non-re-identifiable vehicle data.

We use the following insights:
• Corridor-traveling vehicles that are close to probe vehicle

at the start, are likely to exit the corridor either in the
same cycle as the probe vehicle, or a couple of cycles
before/after. In the real-world settings, care is generally
taken to ensure a “Green Wave”.

• The relative order of these vehicles near the probe is
likely to remain the same for the most part. It is highly
unlikely that most vehicles behind the probe would pass
it and move ahead, or the other way around.

• All these vehicles (probe as well as non-probe) will be
captured by the loop detectors, though we do not know
which vehicle is mapped to which loop detector actuation.

• These vehicles (by and large) will only cross the intersec-
tion stop-bar during a green (or yellow) phase, and not
break the red light. While crossing, the vehicle may first
have stopped at the intersection (due to a red light and/or
a queue) or the vehicle may have passed through without
stopping.

• For the probe vehicles, we know the timestamps
when they cleared the stop-bars of the first and last
intersections.

Using the above insights, we can first find out which time
windows of green phases of the signal cycles (i.e. Green
Phase Time Windows) the probe vehicles crossed the first and
last intersections. Specifically, when using ATSPM Data [32],
we can look up the ATSPM codes that indicate the start of
“Phase Begin Green” and “Phase End Yellow Clearance” for
the phase that serves the corridor-through traffic at the first
and last intersections. These give us the timestamps of the
start and end of the green times. We just need to see which
window (time interval) the probe’s crossing timestamp falls in.

Secondly, we can use this time window to slice out the loop
detector actuation data for the detectors serving the corridor-
through phase. Specifically, when using ATSPM Data, we can

look up the ATSPM codes for “Detector On”. Often there
are multiple detectors serving the phase; we can add them up
to get a single time series that indicates the total number of
vehicles in that time bucket.

As an illustrative example, suppose the green times (plus
yellow) at an intersection occur from timestamps 0s-60s,
120s-200s, 240s-300s. From the probe’s trajectory data,
we know the probe exited an intersection at 130s. We can
infer that the probe exited the intersection in the second Green
Phase Time Window spanning 120s-200s. We can use this
interval to slice out the relevant portion of the loop detector
actuation data. Notice that the Green Phase Time Windows
need not necessarily be of the same length, nor necessarily
be periodic. Figure 1 shows this visually and describes it as
well.

We can do the above process separately for the probe’s
crossing of the first and last intersections. We now get two
time series sequences of detector actuations, one from the first
and the other from the last intersection. It is these two that we
will compare and align to calculate their probable travel times.
Note that we already know the probe’s own travel time. The
slicing and alignment procedure is for the loop detector data.
Thus, we have used the sparse re-identifiable vehicle data to
extract the most useful portions of the bulk non-re-identifiable
vehicle data for alignment.

It is possible that the sparse re-identifiable vehicle data
(GPS/ Video tracking) is not available at all, and only the
loop detector and signal state data are available. Using the
Virtual Probe Model [6], trajectories of virtual probe vehicles
can be computed. The pre-existing Virtual Probe Model and
our novel Platoon Matching Algorithm (described in the next
section), both use only the loop detector data, but in different
ways. The former uses it to estimate the growth and discharge
of queues at various intersections (and thus estimate the virtual
probe’s trajectory) while the latter uses it to match probable
platoons as they enter and exit the corridor. While Virtual
Probe Model has been used here due to its popularity in the
literature and because it exclusively uses loop detector data,
any algorithm/sensor modality that can yield reconstructed
trajectories (e.g. [14]) for probes, can be used with our Platoon
Matching Algorithm. We now describe our novel algorithm for
Platoon Matching.

B. Novel Platoon Matching Algorithm Using Windowed
Sequence Alignment

The Needleman-Wunsch (NW) algorithm [27] is a dynamic
programming algorithm, widely used in the field of bioin-
formatics to align nucleotide sequences. The NW algorithm
takes two sequences of alphabets which are to be aligned.
It also takes a “Similarity Matrix”, which is an array of
scores associated with matching (or mis-matching) various
component alphabets with each other. It can also introduce
“gaps”, and there is a penalty for opening a gap, and for
extending them. Thus, a potential alignment has a total score
associated with it which depends on:

• Sum of scores of matches and mismatches
• Sum of scores of starting and extending gaps
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Fig. 1. Time-Space Diagram showing the selection of the Green Phase Time Windows. Thanks to the ATSPM data, we have the signal state data at the
first (F) and last (L) intersections. In this above example, we can see our probe vehicle (blue car) exited F in cycle 2, and L in cycle 3. We know this by
looking at the trajectory data of this probe, and noting the time duration when it cleared the intersection. This time would be during a Green Phase at the
intersection, or just after the end of one. These Green Phase Time Windows (F-2 at the first and L-3 at the last intersections) tell us the portions of the loop
detector actuations we must look at, and match them. The matching is done using Needleman-Wunsch Algorithm. Note that while both the windows (F-2
and L-3) contain 4 actuations each in their loop detector traces, the same 4 vehicles did not induce them. The last vehicle of F-2 passes in L-4, while the
first actuation in L-3 is by vehicle that came from F-1. When the Platoon Matching occurs, the first actuation of F-2 will get matched to the first actuation of
L-3. This is for just one probe vehicle and the windows F-2 and L-3 it identified. Hence, having more probe vehicles will identify more probable windows
for the Platoon Matching Algorithm.

The NW algorithm scores such possible alignments and
finds the one with the best score using dynamic programming.
It is thus imperative that we (1) slice and (2) re-cast our
detector actuation data in an appropriate format and (3)
provide an appropriate “Similarity Matrix”. The next three
subsections discuss (1), (2) and (3).

1) Slicing and Identifying Green Phase Time Windows: As
described in Section III-A for all probe vehicles, we identify
the first and last Green Time Phase Windows, corresponding
to the crossing times of the first and last intersections of the
corridor. The vehicle is said to have crossed the stop-bar when
it is 5 m or more after the stop-bar location. This way, we can
be sure that the vehicle has decisively crossed the stop-bar.

We use these Green Time Phase Windows (timestamps) to
slice out the relevant detector actuation time series. In the
case of multiple detectors serving the corridor-through phase at
an intersection, we aggregate by summing multiple detectors’
time series to form a single time series.

Each of these two sequences is at 10 Hz resolution if
ATSPM data is used. The lengths of the two sequences will
be the length of the Green Phase Time Windows at the first
and last intersections when the probe crossed them.

2) Re-Casting Detector Actuation Data: Before aligning,
pre-processing is first performed on both strings:

• The loop detector actuation strings are re-sampled and
bucketed at 1-second resolution with symbol “V” to
indicate the time bucket when at least one vehicle crossed
over it, or “S” to indicate a space between vehicles.

• Vehicles passing within 5 seconds of each other are
assumed to be in the same platoon. Such “V”s in the
string are replaced with “P”. The remaining “V”s can be
thought of as “noise” vehicles, that may not be a part

TABLE I
SCORE MATRIX FOR MATCHING DETECTOR STRINGS

of the platoon, as they could be entering or exiting the
corridor, midway.

The main reason for performing the above transformation is
that we would like the sequence matching algorithm to treat
isolated vehicles and platoon vehicles differently.

3) Providing a Similarity Matrix: The score matrix for the
same is shown in Table I. In addition to matching scores,
we account for spaces, by allowing for the introduction of
gaps i.e. extra “|”. These are functionally same as spaces
“S”. However, to limit the number of such insertions to a
minimum, we impose a gap start penalty of −1 and gap
extension penalty of −0.5. This allows us to match more
vehicles (“P”s and “V”s) in the sequences without greatly
distorting the sequences.

C. Applying Needleman-Wunsch Algorithm

With these steps (1), (2), (3) done, the Needleman-Wunsch
algorithm is applied to match the detector actuation sequences
of the first and last intersections.

For example, let us say we wish to align two sequences,
V V V SSS and V SV . One such candidate alignment as
returned by NW algorithm is shown in Equation (1). Note
the gaps introduced in the second sequence to make them the
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TABLE II
TOTAL SCORE CALCULATION

same length.

Sequence 1 : V V V SSS

Sequence 2 : V | | | SV (1)

The total score for this alignment is calculated as shown in
Table II. The NW algorithm searches through such candidate
alignments and finds a matching with the optimal score; one
that maximizes matching of “similar” alphabets and minimizes
the matching of “dissimilar” alphabets. This example only had
V and S; similarly sequences including P also, can be handled
by the NW algorithm.

Once matched, we find the difference in the indices, and
add the time difference between the two matching windows.

Let WF be the start time of the Green Phase at the first
intersection during which the probe crosses the first intersec-
tion of the corridor. Similarly, let WL be the start time of the
Green Phase at the last intersection during which the probe
crosses the last intersection.

The Needleman-Wunsch algorithm returns a pair of aligned
sequence arrays. Let AF and AL be the returned arrays. Let
the first vehicle be matched in AF at index j , and at k in AL .
The travel time T can be estimated using Equation (2)

T = (WL − WF ) + (k − j) (2)

We similarly find the travel times for all matched vehicles
(“P”s and “V”s) in the aligned sequences. We repeat the
process for all probes’ trajectories.

D. Virtual Probe Model for Arterial Travel Time Estimation

We briefly describe the pre-existing Virtual Probe
Model [6]. It is assumed that loop detector data, along with
signal state data across the corridor is available. An imaginary
probe vehicle traces a path across the corridor, governed by
kinematics-based equations to calculate its trajectory from
given acceleration and deceleration parameters. The maneuver
decision tree of the virtual probe is shown in Figure 3. For
detailed mathematical description, please refer to Section III
of [6].

An important property of the Virtual Probe is its ability
to self-correct to a limited extent. Whenever the probe stops
(virtually) at a red light, the error in the distance with respect to
an actual vehicle (which also started around the same time and
place as the virtual probe) decreases. A vital component of the
Virtual Probe Model is the queue length estimation algorithm.
The method outlined in [6] is not effective for queues that spill
beyond the advance loop detector, common during congested

traffic scenarios. Hence, we use [11] that is more effective
for congested scenarios. The vehicle actuation pattern at the
stop-bar detector is analytically analyzed from archived loop
detector and signal state data, and key breakpoints are identi-
fied. From this, the build-up and discharge of vehicles at the
approach is estimated. By using an assumed average vehicle
length, queue length as a function of time, is calculated. This
is used to select the appropriate maneuver decision for the
virtual probe, as it interacts with the queue.

E. Platoon of Virtual Probes

A natural way to use the Virtual Probe method to generate a
travel time distribution is to simply run it multiple times with
different arrival times.

While developing our approach, we found that as the
number of intersections in the corridor grew, the estimate
by just a single Virtual Probe grew worse, often leading to
large errors in the order of the cycle length. This was due
to the platoon breaking up, with the Virtual Probe either
narrowly crossing (or missing) a green light, and thus getting
significantly ahead (or left behind) with respect to the bulk
of the actual vehicles that had started alongside the Virtual
Probe. Even with short road links, (∼200-250m), not being
a part of the “Green Wave” which crosses the entire corridor
uninterrupted, can add to travel time delays in the order of the
cycle length, as those left behind must wait at an intersection
for the next cycle. This is pronounced due to ill-timed signal
coordination and platoon dispersion due to driving behav-
iors of vehicles, especially those wishing to enter/exit the
corridor.

Running the Virtual Probe algorithm multiple times allevi-
ates this limitation somewhat. The start times of these multiple
virtual probes are interspersed throughout the cycle, broadly
based on observed arrival patterns. We assume that the end
users of this travel time algorithm are not very particular
about when exactly during the cycle the vehicle arrived at the
intersection, but rather are interested in the general distribution
of travel times for a particular traffic scenario as a whole.

In summary, the Virtual Platoon Model allows us to include
the physics of vehicles by tracing the space-time trajectory of
several virtual vehicles. Though the equations developed by
Liu et al. [6] are relatively simple, they do broadly capture
the macroscopic behaviors of the vehicles. But they can’t
effectively capture the behaviors such as lane-changing, over-
taking etc. We thus create a platoon of virtual probe arriving
at different points during the traffic signal cycle. We then
use these estimated trajectories to match probable green time
windows at the stop-bar of the first and last intersections of
our corridor of interest. To do this, we pre-process the detector
time series data and represent them in terms of sequences of
vehicle actuations and interleaving gaps. These sequences are
then matched based on an input score matrix. Figure 2 shows
a visual overview of the efficacy of the Platoon Matching
algorithm. The algorithm is broadly summarized in Figure 4.
In the next subsections, we describe various combinations
of the above methods, with and without sparse actual probe
trajectory data.
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Fig. 2. Visual overview of the Platoon Matching algorithm. Stop-bar loop detectors along the length of a signalized corridor capture vehicle actuation
waveforms. However, it is not possible to identify which vehicle actuation at the first intersection matches with its counterpart at the last intersection, when
the vehicle exits the corridor. However, with the introduction of probe vehicle data (either Virtual Probe estimated trajectories or connected vehicle “Real
Probe” trajectories), we can use the Needleman-Wunsch based Platoon Matching algorithm to match vehicles around the probe vehicle in its crossing green
time windows at the first and last intersections. The key assumption is that most vehicles that were near the probe vehicle at the first intersection, are likely
to stay that way when the probe crosses the final intersection. This allows us to match vehicle actuations at the first and last intersections, and compute the
distribution of corridor travel times.

Fig. 3. Maneuver decision tree of the virtual probe. As much as possible,
the probe attempts to move at the posted speed limit. However, it slows down
when it sees a queue ahead or an (imminent) red light. Once the path is clear,
it speeds up to attain the posted speed limit. At every second of its virtual
journey, the probe must decide on a maneuver decision, whether to accelerate,
decelerate or to keep the same speed.

F. Inclusion of Real Probe Trajectory Data Using Additional
Sensor Modes

While other works (discussed in Section II. Background and
Related Work) focus on fusing loop detector data with probe
trajectory data to estimate travel time distribution, our primary
focus is to exclusively use only loop detector data as much
as possible. Virtual Probe method and our Platoon Matching

Fig. 4. Overall Algorithm Flowchart. The trajectories of sparse actual
connected vehicles and estimated trajectories of virtual probes are input to
the algorithm. Then, green phase windows corresponding to those trajectories
are identified at the first and the last intersections of the corridor. With the
appropriate stop-bar detector waveform slices identified, platoon matching is
applied to get corridor travel times.

Algorithm do just that, without the need for additional sensor
instrumentation.

However, with improvements in ITS, sparse data from other
sensor modes may be available, in addition to high resolution
loop detector data. Examples include:

• Floating Vehicle data from Global Positioning System
(GPS)

• Vehicle identification data from BlueTooth detection
systems
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• Dedicated Short Range Communications (DSRC) data
from on-board (OBU) and roadside (RSU) units

• Video data with vehicle tracking across the corridor

All such data sources/methods (such as [14]) that give a
good estimate of crossing times of probes at the first and
last intersections, can be used with our approach. Hence,
we explore the impact of fusing this sparse additional data (if
available) on our Platoon Matching Algorithm and quantify
the impact. We do this to show that our method is extensible.
Comparing our approach with other methods predicated on
using multiple sensor data sources is beyond the scope of this
paper.

Effectively, the virtual probes can be supplemented/replaced
by real probes depending on availability of requisite data.
While virtual probes are a rule-based vehicle trajectory recon-
struction method which “guess” the likely trajectory of a
phantom vehicle, these above-mentioned data sources can give
actual observed trajectory data of real vehicles. Given a more
accurate estimate of entry and exit times, estimates of travel
times can be improved using our Platoon Matching algorithm.
The availability of such data (like Video-based queue length
estimation) may also help in better modeling of queue build-
up and discharge, which improves the accuracy of the virtual
probe model. Thus, the methods outlined are not only useful
for analyzing historical high-resolution loop detector data but
are also extensible with new data modes which are becoming
prevalent.

G. Combination of Methods

For our experiments, we use combinations of the different
methods described above. The two methods “Virtual Platoon
(VP) with novel Platoon Matching (PM)” and “Real Probes
(RP) with novel Platoon Matching (PM)”, use our novel Pla-
toon Matching method. The other two methods “Only Virtual
Platoon (VP)” and “Virtual Platoon (VP) with Real Probes
(RP)” are logical benchmarks against which we compare the
efficacy of our Platoon Matching algorithm.

• Only Virtual Platoon (VP): We use Virtual Platoon
method by itself, in order to establish a baseline. We use
a virtual platoon of size 1 i.e. a single virtual probe,
as well virtual platoons of sizes 1%, 5% and 10% of the
number of vehicles passing through the corridor. Each
probe returns an estimated travel time. We found that
no incremental benefit was gained by using sizes beyond
10%.

• Virtual Platoon (VP) with novel Platoon Matching (PM)
algorithm: We use Virtual Platoon method in conjunction
with the Windowed Sequence Alignment for Platoon
Matching. We use a virtual platoon of size 1 i.e. a single
virtual probe, as well virtual platoons of sizes 1%, 5%
and 10% as before. Each probe’s trajectory is used
to get sequences for the Platoon Matching algorithm,
which then returns a collection of matched vehicle travel
times. Thus, each probe now returns several estimated
travel times based on matches by the Platoon Matching
algorithm.

• Virtual Platoon (VP) with Real Probes (RP): In case
sparse trajectory information from real probes is avail-
able, we use this along with estimated virtual platoon
trajectories. As before we use a virtual platoon of size
1 i.e. a single virtual probe, as well virtual platoons
of sizes 1%, 5% and 10%. We assume that real probe
trajectory data is available only for 1%, 2% and 4% of
the overall traffic volume across the corridor, which are
realistic percentages in present times. Each probe (virtual
or real) returns an estimated travel time.

• Real Probes (RP) with novel Platoon Matching (PM)
algorithm: As with above, in case sparse trajectory infor-
mation from real probes is available, we use this with
the Platoon Matching Algorithm. Once again, we assume
that real probe trajectory data is available only for 1%, 2%
and 4% of the overall traffic volume across the corridor,
Each real probe’s trajectory is used to get sequences for
the Platoon Matching algorithm, which then returns a
collection of matched vehicle travel times. Thus, each real
probe now returns several estimated travel times based on
matches by the Platoon Matching algorithm.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we describe our experiments and discuss the
results obtained.

A. Experimental Setup

For the purposes of evaluating our algorithm, we run the
Platoon Matching algorithm with trajectories from both virtual
probes as well as real probes, in SUMO [33] microscopic
traffic simulator. We compare the performance of these two
methods against the ground-truth corridor travel times reported
by the simulator.

We simulate an 8-intersection corridor as shown in Figure 5.
The vehicles of interest start from the left to the right (East-
bound), and cross 8 signalized intersections. The following
parameters are varied across each set of experiments:

• Deviation of Offsets in Signal Timing Plans: Offsets are
set based on the estimated travel times between the inter-
sections, to promote a “Green Wave” across the corridor.
We use a simple heuristic of staggering the offsets of
consecutive intersections based on the free-flow travel
time between the two intersections. To simulate a variety
of traffic scenarios, we perturb the set of offsets by
a maximum deviation amount, with a higher deviation
indicating ill-timed offsets. We test with offset deviations
in the order of 10%, 20% and 30% of the cycle time i.e.
12 seconds, 24 seconds and 36 seconds.

• Amount of end-to-end traffic flow: These vehicle flows
start at one end of the corridor and exit the corridor in
the Eastbound direction, and form the bulk of the vehicle
flows along the corridor. We simulate under varying
degrees of traffic flows, with low (450 veh/hr), medium
(750 veh/hr) and high (1050 veh/hr) flows. In addition to
these, there are “noise” vehicles on the corridor, described
below.

Authorized licensed use limited to: University of Florida. Downloaded on July 25,2024 at 03:12:47 UTC from IEEE Xplore.  Restrictions apply. 



11614 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2023

Fig. 5. 8-intersection corridor used for simulations. “A” and “S” refer to the advance and stop-bar detectors at the approaches of the intersections, as is
typically seen in urban arterials. We use data from only the first and last (i.e. ISC 1 and ISC 8) stop-bar detectors for the Platoon Matching algorithm. However,
the queue length estimation algorithm used by the Virtual Probe, does indeed use the intervening detector data. The vehicles of interest start from the left
to the right (Eastbound), and cross 8 signalized intersections. Each approach is 200 meters long, with the distance between stopbar and advance detectors
being 40 meters. We track the vehicles when they enter the approach of the first intersection (Intersection “1”) and cross the stopbar of the last intersection
(Intersection “8”).

• Amount of “noisy” traffic: To test the robustness of our
method, we add a percentage of vehicles which may
either turn-in into the corridor at a random intersection
or turn-out at a random intersection, at random times.
But they do not complete the full journey across the
corridor. We do not analyze these vehicles during our
travel time calculations. Nevertheless, these vehicles do
affect other vehicles on the corridor and are also captured
by the various detectors. We test with 10% and 20% extra
noisy traffic, above the end-to-end traffic flow. While we
do not explicitly model missed detections and detector
errors, these noise vehicle flows somewhat account for
vehicle flow mismatches at first and last intersections.

Cycle length at each signal is set to 120 seconds, with the main
corridor flow (Eastbound) having a Red time of 60 seconds,
followed by a Green time of 55 seconds and a Yellow time of
5 seconds. While using common cycle lengths is a standard
practice in urban corridors, our method does not rely on
it being enforced. It only requires the Green Phase Time
Windows (time slices) when the probe vehicles crossed the
first and last intersections of analysis. These green windows
need not occur in a cyclic manner, nor even be of the same
length.

All vehicles follow standard behaviors with respect to vehi-
cle safety, car-following, lane-changing etc. as implemented
in SUMO simulator. Further details can be found in [34].

We run each simulation for 30 minutes of simulated time.
We randomly sample 25 sets of offsets based on the allowed
degree of deviation. For every set of signal offsets, we run
the simulation twice with different random seeds i.e. 1 hour
of simulated time per set of signal offsets. Thus, each set of
experiments is run for 25 hours of simulated time.

The algorithms and the simulation control codes have
been implemented in the Python1 programming language.
Specifically, we use NumPy2 numerical computing library
for implementing the Virtual Probe Model and BioPython3

1docs.python.org
2www.numpy.org
3www.biopython.org

Fig. 6. Overall code flow for simulation experiments. The corridor scenario
is loaded into the simulator and traffic flows are generated. Detector and signal
logs are retrieved from the simulation engine, along with vehicle trajectories.
With the recorded logs, a platoon of Virtual Probes is run to get viable
trajectories. These are then used in conjunction with the sequence matching
algorithm to match probable platoons, yielding travel times. The resulting
distribution is compared against the ground-truth travel time distribution
calculated using the stored vehicle trajectory information.

bioinformatics library for the Needleman-Wunsch Sequence
Alignment algorithm.

The overall code flow has been described in Figure 6.
For processing the results to obtain metrics, we use Pandas4

data manipulation library, SciPy5 and Dictances6 computation
libraries.

B. Evaluation Metrics

Figure 7 qualitatively shows a plot of the travel time
distributions of only Virtual Probes (blue) and Virtual Probes
with Platoon Matching (orange). We can clearly see that the
orange distribution more closely matches the Ground-Truth
travel time distribution (green) of all vehicles. This shows

4pandas.pydata.org/
5www.scipy.org/
6github.com/LucaCappelletti94/dictances
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Fig. 7. Visualization of travel time distribution results from simulation
experiments. Three travel time distributions from a simulation run are plotted,
with their mean travel times and standard deviations mentioned in brackets.
The green distribution is the ground-truth corridor travel time distribution of
all vehicles. The blue distribution represents the corridor travel times estimated
using only virtual probes. When augmented with the Needleman-Wun-
sch based Platoon-Matching algorithm, the orange distribution is obtained.
As seen, the orange distribution more closely resembles the ground-truth and
even shows double peaks, unlike the flatter blue distribution. This shows the
boost in improvement that the Platoon-Matching algorithm provides. As real
probe trajectories are added to virtual probes with platoon-matching, the
orange distribution tends closer to the ground-truth green distribution.

the boost in improvement that the Needleman-Wunsch based
Platoon-Matching algorithm provides.

However, we wish to quantitatively measure the improve-
ment in performance. Thus, we use the following metrics for
evaluating the performance of our algorithm under different
traffic scenarios. Given n simulation runs, we calculate the
following metrics:

1) Average of Mean Absolute Percentage Error : For every
simulation run, we calculate the average predicted travel time
and find its absolute error (as a percentage) with respect to
the ground-truth travel time. We take an average of all such
errors across all simulation runs of that category.

1
n

n∑
i=1

∣∣ypred,i − ytruth,i
∣∣

ytruth,i

2) Average of Normalized Absolute Difference in Means
(or Standard Error Distance) : For every simulation run,
we calculate the average predicted travel time and find its
absolute error with respect to the ground-truth travel time.
We divide this by the square root of the sum of squares of
their respective standard deviations.

1
n

n∑
i=1

∣∣µpred,i − µtruth,i
∣∣√

σ 2
pred,i + σ 2

truth,i

We also see the difference in the distributions by computing
histograms of the predicted and actual results for a simulation.
We do so by taking the middle 80th percentile range of the
combined union of ranges of predicted and actual distributions.
We bin this range into 10 bins. The distributions are individu-
ally normalized and compared using the Hellinger Divergence.

3) Hellinger Divergence (HLD) : The Hellinger Diver-
gence [35] is a distance measure which calculates the overlap
between two distributions. Let p and q be the PMFs (Probabil-
ity Mass Functions) of the predicted and ground truth samples.

It ranges from 0 to 1. Then the Hellinger divergence is given
by

HLD(p, q) =

K∑
k=1

(√
pk −

√
qk

)2
. (3)

The primary advantage of the Hellinger divergence over the
Normalized Absolute Difference in Means mentioned above
(which only uses the mean and variance information of the
samples) is that it takes the entire distribution into account.
The primary disadvantage is that the PMF estimation (since
it’s based on picking the right number of bins in the histogram)
may be incorrect leading to downstream errors in the Hellinger
divergence. Other divergence measures (Kullback-Leibler [36]
etc.) have the same problem (and so in the future we may
turn to measures based on the sample Cumulative Density
Functions).

C. Simulation Results and Discussion

The results obtained for low, medium and high traffic
scenarios are tabulated in Table III. The results are also shown
according to the performance metrics (i) Average of Mean
Absolute Percentage Error (MAP) in Figure 8, Average of
Normalized Absolute Difference in Means (STD) in Figure 9,
and by Hellinger Divergence (HLD) in Figure 10.

We note the following trends in our evaluated results:
• With fewer Virtual Probes (Single\1% VP vs. Sin-

gle\1% VP with PM), the addition of Platoon Matching
Algorithm significantly boosts results. However, when
the number of Virtual Probes is higher (5%\10% VP vs.
5%\10% VP with PM) the addition of Platoon Matching
Algorithm doesn’t help much. This is due to the fact
that increasing the number of Virtual Probes gives as a
better representation of the distribution of travel times,
thus subsuming the boost given by the Platoon Matching
Algorithm. These two sets of results (VP, VP with PM)
are “unsupervised methods”, as they don’t use “labels”
(ground-truth trajectories).

• The algorithm seems quite robust to the effect of the
noise vehicles for different scenarios. This is likely due
to the efficacy of the Platoon Matching depends on how
the probes (Virtual or Real) are able to better identify
the crossing Green Time Phase windows at the first and
last intersections. Even if more noise vehicles join the
platoon exiting the corridor along the way, the algorithm
tries to only match the initial number of vehicles that
were detected at the first intersection (preferably of type
platoon “P” but also isolated vehicles “V”). Let’s say
10 vehicles grouped alongside the real probe at the first
intersection, 2 of them left the corridor in the mid-
dle, and 5 more joined the platoon by the end of the
corridor. At the last intersection, 13 vehicles would be
detected alongside the real probe. The Platoon Matching
algorithm will be constrained to match only 10 of those
13 vehicles, since only 10 vehicles are there in the first
intersection’s detector sequence. (If there happened to
be fewer than 10 vehicles in that Green Phase Time
Window (due to platoon break-up), the algorithm will try
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TABLE III
COMPARISON OF DIFFERENT METHODS FOR VARIABLE AMOUNTS OF TRAFFIC
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Fig. 8. Summarization of arterial travel times using the Mean Absolute Percentage Error (MAP) for various flow regimes. We see that the gradual addition
of real probe trajectories (VP and RP, RP with PM) greatly improves performance (vs. just VP, VP with PM), as seen with declining MAP going left to right.

Fig. 9. Summarization of arterial travel times using the Standard Error Distance (STD) for various flow regimes. We see that the gradual addition of real
probe trajectories (VP and RP, RP with PM) greatly improves performance (vs. just VP, VP with PM), as seen with declining STD going left to right.

Fig. 10. Summarization of arterial travel times using the Hellinger Divergence (HLD) for various flow regimes. We see that the gradual addition of real
probe trajectories (VP and RP, RP with PM) greatly improves performance (vs. just VP, VP with PM), as seen with declining HLD going left to right.

and match only that fewer number.) Further, due to the
intermediate traffic lights, the noise vehicles effectively
bunch up with the main platoon at stops, thus becoming
a part of the platoon. Travel times of only 10 matches
are calculated the Platoon Matching algorithm, but their
distribution would be indicative of a hypothetical platoon

of similar size, traversing the entire corridor without any
addition/removal from it. Thus, the end-to-end travel time
distribution estimate remains relatively unperturbed.

• While it was just a matter of additional computation to
increase the number of Virtual Probes, it is not easy to
greatly increase the number of real probes (i.e. connected
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Fig. 11. Corridor used for real-world data collection. The corridor runs from East to West, with 2 lanes dedicated for through traffic along the 5-intersection
stretch considered. Intersection 1 has two lanes for through traffic (along the Westbound approach) and one left-turning lane (along the Northbound approach),
feeding into the corridor. We ignore the Southbound right-turning lane as it is not possible to determine from the detector actuation stream which particular
vehicles took a right-turn into the corridor, and at what time. The traffic flow exiting the corridor varies between 600 to 800 vehicles per hour over the time
period. The cycle length varies between 120 seconds and 190 seconds, with an average of 150 seconds. Cameras are mounted at the intersections, and data
is collected for Westbound traffic. Vehicle tracking algorithms note the entry and exit times of vehicles, thus yielding the travel time distribution.

vehicles) in the real world. Thus, we restrict ourselves to
1%, 2% and 4% penetration of real probes.

• We see that the addition of real probe trajectories (VP and
RP, RP with PM) greatly improves performance. These
two sets of results (VP and RP, RP with PM) are “semi-
supervised methods”, as they use sparse “labels” (ground-
truth trajectories) to guide the algorithm.

• Overall, we find that using real probe trajectories with
platoon matching (RP with PM) gives us the best overall
results, across all scenarios. Within this set, increasing
the penetration of real probes, increases the accuracy.

D. Additional Simulation Results and Discussion

We also perform experiments investigating the effect of
turn-in vehicles completing their journey across the corridor
as well the effect of non-uniform cycle lengths. We present
the results and discussions below.

1) Effect of Turn-In Vehicles in the Corridor: In the earlier
section we assumed that the turn-in noise vehicles entered
the corridor and exited at a random intersections. This was
to simulate merging and lane-changing behaviors. A small
portion (<5%) of these vehicles do exit alongside the main
corridor flow, as the random vehicle trip generation algorithm
used for these noise vehicles, generates such traffic. We now
investigate the effect of the cases where a greater proportion
of noise vehicles exit the corridor, after having joined the
intersection in the middle. We test this for medium traffic flow
(750 veh/hr) with low noise (10% extra) and high noise (20%
extra) vehicles. We test the scenarios when <5%/40%/80%
of the noise vehicles exit the corridor along with the main
corridor flow. Note that the percentages (<5%/40%/80%) are
for the (10% extra and 20% extra) noise vehicles, and not for
the main corridor traffic flow (750 veh/hr).

We present the results in Table IV. We see that the error
metrics for the experiments with a platoon of Virtual Probes
with and without the Platoon Matching algorithm (10% VP
and 10% VP with PM) perform about the same. Thus, the
Platoon Matching algorithm does not seem to help in this case.
This is likely due to the fact that the reconstructed trajectories

are significantly erroneous, thus giving the Platoon Matching
algorithm incorrect time windows to do the matching. How-
ever, with increasing percentage of Real Probe trajectories
(1%/4%/10% RP with PM), the accuracy improves greatly
(as evidenced by the declining error metrics). As explained
earlier in subsection “Simulation Results and Discussion”, the
algorithm is robust to noise vehicles as it only tries to match
the initial number of vehicles alongside the probe vehicle.

2) Effect of Uneven Cycle Lengths: In the earlier section,
we assumed the cycle lengths and the green split for the cor-
ridor to be fixed to 120 seconds and 55 seconds respectively.
In this section, we vary the cycle lengths of the intersections
at random between 105 and 135 seconds, with green splits
varying between 40 seconds and 70 seconds respectively.
Thus, the intersections are no longer on a common cycle
period, though they each have fixed cycle lengths (between
105 and 135 seconds). We test this for medium traffic flow
(750 veh/hr) with low noise (10% extra) and high noise (20%
extra) vehicles. We also assume that 40% of the noise vehicles
exit the corridor along with the main corridor flow.

We present the results in Table V. We see that the error
metrics for the experiments with a platoon of Virtual Probes
with and without the Platoon Matching algorithm (10% VP
and 10% VP with PM) perform about the same. However, with
increasing percentage of Real Probe trajectories (1%/4%/10%
RP with PM), the accuracy improves greatly (as evidenced by
the declining error metrics). The algorithm seems quite robust
regardless of the uneven cycle lengths, under both high and
low noise scenarios when real probes are used. Here too, this
is likely due to the fact that the initial reconstructed trajectories
by the Virtual Probe method are significantly erroneous, thus
giving the Platoon Matching algorithm incorrect time windows
to do the matching. Whereas real probe trajectories are accu-
rate, along with the fact that only the initial number of vehicles
will be matched by the Platoon Matching algorithm, both of
which further constrain the potential for error.

3) Vehicle-Matching Accuracy of the Platoon Match-
ing Algorithm: We also conduct experiments assessing
the vehicle-matching accuracy of the Platoon Matching
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TABLE IV
RESULTS FOR THE EFFECT OF TURN-IN VEHICLES IN THE CORRIDOR

TABLE V
RESULTS FOR THE EFFECT OF UNEVEN CYCLE LENGTHS

Algorithm. Specifically, we want to know if the pairs of
loop detector actuations matched by the Needlman-Wunsch
Algorithm (in order to estimate individual travel times) indeed
belong to the same vehicle (or at least are close). Given that
loop detector data does not allow re-identification, it is not
possible to know which vehicle caused which actuation in the

loop detector data. However, in simulation, we can find this,
since we know the trajectories of all vehicles, not just the ones
we designate as probes.

Our Platoon Matching Algorithm does not use vehicle re-
identification information in any way. In the real world, some
vehicles may pass others, leave the corridor, and may be joined
by new vehicles coming onto the corridor. This information is
not available to the Platoon Matching Algorithm, which just
tries to match two sequences of loop detector actuations by
distorting them the least.

We conduct experiments investigating the vehicle matching
i.e. if the matches returned by the PM Algorithm capture the
presence of the same vehicle. Let us say a non-probe vehicle
crossed the first intersection at t = 52 and the last intersection
at t = 198. Hence, we expect actuations at the two stop-bars
loop detectors respectively. Since this is not a probe vehicle,
our algorithm does not know this information of the crossing
times i.e. (52, 198).

When the PM Algorithm matches the first and last inter-
section’s loop detector strings, it will return a collection of
purported crossing times. If these times are within a time
window of +/- k (where k = 5, 10, 20 seconds), we assume
it is a match, i.e. the vehicle was “re-identified” in a sense.
Hence, if among the times returned by the algorithm include
(49, 200), the above-mentioned non-probe vehicle of (52, 198)
would be considered a match. Given the simulation conditions,
it is near-impossible for the PM Algorithm to return a perfect
match i.e. k = 0.

Simulation was performed for medium traffic volume (750
veh/hr) with the same conditions mentioned in Section IV.
Offset Deviation (OD) and the amount of Noise vehicles were
varied, as mentioned in that section. 10% of the vehicles were
chosen as probe vehicles, and their trajectories were used along
with the Platoon Matching Algorithm. Since the travel times
seen are in the order of 250 seconds generally, we can express
the windows as 2%, 4%, 8% as well. We report the accuracy
of vehicle matching as the percentage of vehicles successfully
matched, given a certain allowable laxity of time window size.
Table VI shows the results for the Vehicle Matching metrics
of the Platoon Matching Algorithm.

We can see that as the window is increased, the accuracy of
vehicle-matching increases from around 14% to over 60%.
It must be remembered that vehicle-matching (vehicle re-
identification) is not the aim of this method, rather it is to
estimate travel time distributions.

E. Real-World Results and Discussion

The above experiments and results show the efficacy of the
methods presented using simulated data. We now verify our
approach on real-world data collected using high-resolution
loop detectors and video cameras along a busy 5-intersection
signalized urban corridor in Gainesville, Florida, USA. The
corridor starts at a major intersection (West University Avenue
and 13th Street), with the West-bound direction being con-
sidered for analysis. The corridor borders a large University
campus with dense residential areas surrounding it. The dura-
tion of analysis is between 11 am and 4 pm, with 600-800
vehicles per hour exiting the corridor along the West-bound
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Fig. 12. We can see 3 histograms showing distributions obtained when 1%/5%/10% Real Probe trajectories are used with Platoon Matching. The plots show
the Probability Density, with the area under the entire distribution summing to 17. The vertical dashed line at 75 seconds indicates the free-flow travel time.
As the percentage of real trajectories increases, there is greater overlap between the Ground Truth Distribution (green) and the distribution obtained by using
Real Probe trajectories with Platoon Matching (red).

TABLE VI
RESULTS FOR THE ACCURACY OF THE PLATOON-MATCHING ALGORITHM

direction. The two major contributing flows are the Through
traffic along West University Avenue (70%, including the
Right-turning traffic coming from the north), and the Left-
turning traffic (30%) approaching from the south on 13th

Street. The turn-in traffic from the other 4 intersections was
found to be about 10% of the flow volume. Detailed flow
volumes of the side streets are not available. We obtain high-
resolution loop detector data and signal state data at 10 Hz
resolution from deployed equipment at the first intersection
(West University Avenue and 13th Street). This data is then
aggregated at 1 Hz resolution. Video cameras along the West-
bound direction were used for re-identifying vehicles at the
first and last intersections (details below). Figure 11 shows
the diagram for the 5-intersection corridor considered.

An important aspect of the real-world data was that the left-
turning traffic accounted for over 30% of the traffic entering
the corridor (at the first intersection). In the simulations, where
over 80% of the traffic was through-traffic, we could ignore
the contribution of left-turning traffic feeding into the corridor.
In order to account for both the left-turning and through input
traffic components, the PM algorithm was run twice, once
for the left-turning traffic and once for the through-traffic.
This was done by using the different green-time windows at
the first intersection, once when the through-movement was
allowed and once when the left-turning movement. These were
matched with the green-time windows at the last intersection
where the vehicles exit. Travel times obtained from both were
combined to get the estimated travel time distribution.

For verification, ground-truth travel time distribution
was computed using intersection-mounted cameras paired
with an automated computer vision-based vehicle tracking

TABLE VII
RESULTS FOR REAL-WORLD TRAFFIC

algorithm [31]. Such vision-based methods can yield a rea-
sonable estimate of the actual travel time distribution, by re-
identifying the same vehicles at successive intersections and
calculating their time differences. Using methods outlined
in [31], we were able to obtain entry and exit times of vehicles
that were crossing the corridor for the duration of interest. This
travel time distribution was used as ground-truth to verify our
algorithm. “Real Probes” here refer to ground-truth entry-exit
times obtained that we give to our PM algorithm; e.g. 1% Real
Probes (RP) means we randomly sample 1% of all collected
ground-truth entry-exit times (at first and last intersections)
and use them with the PM algorithm.

A similar trend as seen in the simulation results (Table III)
is seen for the real-world verification results presented in
Table VII. As the percentage penetration of real probes
increases from 1% to 10%, the accuracy of the algorithm
increases, as evidenced by decreasing distance measures,
left to right. We can see this visually in Figure 12.
We can see 3 histograms showing distributions obtained when
1%/5%/10% Real Probe trajectories are used with Platoon
Matching. The plots show the Probability Density, with the
area under the entire distribution summing to 18. The vertical
dashed line at 75 seconds indicates the free-flow travel time.
As the percentage of real trajectories increases, there is greater
overlap between the Ground Truth Distribution (green) and
the distribution obtained by using Real Probe trajectories
with Platoon Matching (red). Thus, we have verified the
performance of our algorithm on both simulated data and real-
world data.

8matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html
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V. CONCLUSION AND FUTURE WORK

The goal of this work is the estimation travel time distribu-
tions in arterial roads using (i) High-resolution loop detector
data, (ii) Kinematics-based models of traffic movement (via
Virtual Probe model) and (iii) Connected Vehicle (Real Probe)
data (when available). Studying travel time distributions is
useful for improving traffic management policies for arterials
(such as signal re-timing efforts) etc. which can reduce overall
travel time in networks.

A causal survey of the literature would lead us to believe
(prior to any empirical evidence), that sound kinematic models
of traffic (in the form of virtual probes) would be sufficient
to estimate travel time distributions when only high-resolution
loop detector data is available. Instead, our results show that a
combination of virtual (reconstructed) or real probes (akin to
semi-supervised labels in machine learning, obtained from a
small subset of connected vehicles) trajectories, combined with
a sequence alignment algorithm for platoon matching, perform
the best. To reach this conclusion, we ran comprehensive
tests in different traffic situations on four different algorithm
scenarios: (i) Virtual Platoons alone, (ii) Virtual Platoons with
Platoon Matching, (iii) Virtual Platoons and Real Probes,
and (iv) Real Probes with Platoon Matching. While in some
situations the combination of virtual and real probes returned
promising results, it is the combination of a small number of
real probes (the semi-supervised situation referred to above)
and platoon matching that performed the best. We also verified
our algorithm using real-world data and obtained the same
conclusion.

Our results suggest:
• Introduction of trajectory information of even a small

number of “labeled” vehicles (i.e. real probes), greatly
improves the results obtained by methods relying on
loop detector data alone. As loop detectors are fairly
widespread in developed countries, this work provides
support for increased investment in obtaining a small
amount of “labels” from additional sensor modalities like
GPS, BlueTooth, DSRC, Computer-Vision based vehicle
tracking algorithms etc.

• Platoon Matching methods (such as using sequence align-
ment), which analyze loop detector data for platoon
movements, can greatly magnify sparse probe trajectory
data, yielding many more estimated travel times.

• Our method is tested both in simulation and using real-
world data and is robust to noisy traffic. It can also
be used when the left-turning traffic feeding into the
corridor is significant compared to the through-traffic by
running the algorithm twice and merging the travel time
distributions.

We also plan to conduct a more comprehensive three-way
comparison between virtual probes, real probes and platoon
matching, and use the “best of breed” methods in the creation
of better signal policies.

We intend to continue this line of research with more
emphasis on Connected Vehicles. In particular, we wish to
determine how to better fuse loop detector and Connected
Vehicle data from public transit buses for real-time dynamic

estimation of travel times, including during traffic incidents
and blockages. Also, since our techniques can output level
of service measures such as queue lengths at intersections,
number of stops etc., we hope to study them to guide signal
timing policies at a city-wide scale.
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