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Abstract— Most existing perception systems rely on sensory
data acquired from cameras, which perform poorly in low
light and adverse weather conditions. To resolve this limitation,
we have witnessed advanced LiDAR sensors become popular in
perception tasks in autonomous driving applications. Neverthe-
less, their usage in traffic monitoring systems is less ubiquitous.
We identify two significant obstacles in cost-effectively and
efficiently developing such a LiDAR-based traffic monitoring
system: (i) public LIDAR datasets are insufficient for supporting
perception tasks in infrastructure systems, and (ii) 3D annotations
on LiDAR point clouds are time-consuming and expensive. To fill
this gap, we present an efficient semi-automated annotation tool
that automatically annotates LiDAR sequences with tracking
algorithms while offering a fully annotated infrastructure LiDAR
dataset—FLORIDA (Florida LiDAR-based Object Recognition
and Intelligent Data Annotation)—which will be made publicly
available. Our advanced annotation tool seamlessly integrates
multi-object tracking (MOT), single-object tracking (SOT),
and suitable trajectory post-processing techniques. Specifically,
we introduce a human-in-the-loop schema in which annotators
recursively fix and refine annotations imperfectly predicted by
our tool and incrementally add them to the training dataset
to obtain better SOT and MOT models. By repeating the
process, we significantly increase the overall annotation speed by
3—4 times and obtain better qualitative annotations than a state-
of-the-art annotation tool. The human annotation experiments
verify the effectiveness of our annotation tool. In addition,
we provide detailed statistics and object detection evaluation
results for our dataset in serving as a benchmark for perception
tasks at traffic intersections.

Index Terms—Point cloud annotation tool, intelligent trans-
portation systems, LiDAR datasets, infrastructure, deep learning.

I. INTRODUCTION

URRENTLY, 55 percent of the global population lives
Cin urban areas or cities, which is estimated to increase
to 68 percent by 2050. As the world continues to urbanize,
we have seen increased investment in building smart traffic
infrastructure to achieve the goals of Vision Zero—zero deaths
and no serious injuries on roads and streets. For example, the
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Fig. 1. Overview of the semi-automated annotation pipeline.

Infrastructure Investment and Jobs Act passed in 2021 by the
U.S. government established the new Safe Streets and Roads
for All (SS4A) program with an annual budget of one billion
dollars from 2022 to 2026.

Solutions aimed at Vision Zero goals can be broadly divided
into two categories: (i) onboard solutions [e.g., advanced
driver assistance systems (ADAS) and autonomous vehicles]
that rely on onboard sensing units on vehicles and drones.
etc. and (ii) infrastructure solutions (e.g., traffic monitoring
systems, traffic lights, speed bumps, streetlamps) that deploy
a variety of sensors in transportation infrastructure. Most
existing perception systems begin with sensory data acquired
from cameras as they provide excellent image/video data
streams at an affordable price. However, these solutions suf-
fer from performance drops in low illumination or adverse
weather conditions. Moreover, the monocular camera lacks
depth information forcing object detection to be confined to
2D. Stereo cameras can obtain depth information via view
interpolation but fail to give accurate depth at a distance.
Considering the above limitations of cameras, LIDAR—a 3D
sensing technology—has received increased attention, espe-
cially in creating next-generation infrastructure. By capturing
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millions of points with precise 3D distance measurements
per second through emitting and receiving light pulses (in
wavelengths roughly ranging from 900 to 1500nm), LiDAR
can support long-range object detection and, in principle, can
perform well under various lighting and weather conditions.
Due to these characteristics, LiDAR has been widely used
in onboard solutions in autonomous driving applications.
However, LiDAR-based infrastructure solutions for traffic
monitoring systems are still in their infancy.

We identify several significant obstacles while exploring
LiDAR-based infrastructure solutions at traffic intersections.
To begin with, publicly available LiDAR datasets are, in the
main, insufficient for perception tasks in infrastructure sys-
tems. Most existing perception tasks in the LiDAR space have
relied on public datasets collected from autonomous vehicles
in their quest to develop deep learning models for onboard
solutions. Despite significant progress [1], these approaches
fail to analyze complex, crowded, and safety-critical scenarios,
such as at a busy intersection, due to a limited field of
view and heavy occlusion. For these and related reasons,
existing onboard solutions are inadequate for supporting the
detection of pedestrians, who are more likely to get injured
in a traffic accident: (i) popular autonomous driving datasets
such as Waymo [2], NuScenes [3], and KITTI [4] only provide
a limited set of pedestrians for training and evaluation of
pedestrian perception algorithms; (ii) pedestrians are small and
non-rigid with various poses, making it difficult for sensors to
capture; (iii) pedestrians tend to walk in groups, adjust their
speed and direction more frequently and unexpectedly (for a
safe interpersonal distance), which leads to complex pedestrian
behavior and often causing heavy sensor occlusion. On the
other hand, infrastructure solutions have an overhead view of
traffic and pedestrians with less occlusion. Perception systems
in this space offer the promise of a better understanding of
challenging and crowded traffic scenarios, leading to more
reliability in spotting safety threats.

A serious challenge for infrastructure LiDAR is that 3D
annotations of LiDAR point clouds are time-consuming and
expensive. In the course of our initial annotations of an
intersection LiDAR dataset, we discovered that annotating and
adjusting a single 3D Bounding Box (BBox) around an object
is challenging due to its seven degrees of freedom (DoF),
namely, the 3D location, 3D size, and heading orientation.
Although some annotation tools [5], [6] are equipped with
one-click auto-fitting functions, they fail to accurately annotate
under many circumstances, such as when the object is partially
occluded, or when the point cloud is sparse. As a result,
existing tools require significant effort in data annotation. For
example, as stated in a recent pedestrian dataset STCrowd [7],
it took 960 person-hours effort of 20 professional annotators
to annotate 219K bounding boxes in the point clouds.

To fill this gap, we present an efficient semi-automated
annotation tool that automatically annotates LiDAR sequences
with human-in-the-loop initialization and correction. In this
work, we construct a fully annotated infrastructure LiDAR
dataset that will be made publicly available. Our development
is motivated by several key observations. After annotating
an object, a common annotation strategy is to propagate
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the bounding box of the target object to subsequent frames,
thereby eliminating the need to label each frame. The strategy
is particularly advantageous for 3D data collected at traffic
intersections because the size of an object remains constant,
e.g., a parked car, or only varies slightly, e.g., a walking
pedestrian. Current annotation tools either track objects using
Kalman filter-based algorithms [5] or regress the target’s
movement between two consecutive frames using registration
algorithms [6]. The Kalman filter-based approach fails to
locate the object precisely and necessitates multiple manual
adjustment operations, thereby increasing annotation time.
Additionally, the registration algorithm is susceptible to tem-
porary occlusions and tends to lose track of an object after a
few frames. Therefore, we seek to use Single Object Tracking
(SOT)—a deep learning-based object tracking algorithm—for
annotation propagation. Given an object’s first-frame anno-
tation, our algorithm can track it robustly in the subsequent
frames while maintaining the flexibility of being trained on
autonomous driving LiDAR datasets or infrastructure LiDAR
datasets. Through extensive experiments, we find that it works
well in practice. Furthermore, inspired by the work [8],
we incorporated a Multi-Object Tracking (MOT) algorithm
into our annotation tool. Unlike the SOT, which focuses on
independently annotating and refining each object instance
via labeling the first frame of each object and propagat-
ing it to subsequent frames followed by refinements, the
MOT algorithm can automatically detect and track all object
instances of a scene in a single shot. Once it generates the
predicted annotation, human annotators may visually inspect
and adjust the results. In practice, initial annotations are
provided by a trained MOT model. If MOT fails to detect
objects, one can annotate its first appearance and utilize
an SOT model to propagate. Both SOT and MOT models
may not initially give desirable predictions for annotation.
Our human-in-the-loop schema allows us to fix and refine
imperfectly predicted annotations and improve upon them
to recursively obtain better annotations. We show through
experiments that the model prediction accuracy is consistently
enhanced by adding more qualitative annotations to the train-
ing set. As a result, our tool significantly accelerates the overall
annotation speed. To summarize, we make the following
contributions:

+ We develop a semi-automated annotation tool that applies
SOT and MOT models while using a human-in-the-loop
concept.

o« We obtain a large-scale fully-annotated infrastructure
LiDAR dataset containing a variety of traffic participants
and interesting scenarios.

« We provide baselines for 3D object detection, where
the 3D AP for vehicles and pedestrians are 90.66% and
87.44%, respectively.

« Human annotation experiments demonstrate that our pro-
posed annotation scheme and tool increase the annotation
speed of pedestrians and vehicles by approximately a
factor of three.

« We demonstrate the practical value of this approach and
suggest how downstream applications can take advantage
of the infrastructure dataset.
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II. BACKGROUND
A. 3D Single Object Tracking on Point Clouds

3D single object tracking on point clouds is a relatively
new research area. In 2019, SC3D [9] introduced the 3D SOT
problem and implemented a Siamese tracker that encodes the
target and candidates into embeddings, followed by the cosine
similarity measure to determine the best-matching candidate.
In addition, it regularized the target embedding by impos-
ing a shape completion loss. P2B [10] argued that SC3D’s
candidate generation is either time-consuming or performance-
degraded. It then proposed an end-to-end Siamese tracker.
Target and search areas are fed to a Pointnet backbone to
obtain seeds with features. Then, each seed is projected to a
potential target center using Deep Hough voting [11]. Finally,
P2B clusters the projected target centers and generates the
final proposals by choosing those with the highest targetness
scores. Multiple successive works [12], [13], [14], [15] are
built on top of P2B with additional innovations w.r.t. fea-
ture extraction, template and search area feature fusion, and
detector heads. BAT [12] proposed a BoxCloud representation
that captures the point-to-box relation between object points
and their BBoxes. In addition, BAT developed a box-aware
feature fusion module to aggregate the features of target
points into search area points. MLVSNet [13] finds that the
Hough voting in P2B generates very few vote centers for
sparse objects and then proposes multi-level Hough voting
as a remedy and a target-guided attention module for feature
fusion. In V2B [14], the authors proposed a new voxel-to-BEV
detection head. It regresses the target’s 3D location in BEV
feature maps. PTTR [15] tracks objects in a coarse-to-fine
manner with the help of transformers. It utilized self-attention
for template and search area features, respectively, followed by
cross-attention for feature fusion, and a generation of coarse
prediction builds upon those features. Another lightweight
Prediction Refinement Module generates the final predictions.
The trackers mentioned above all follow the Siamese paradigm
and are essentially doing appearance matching between the
target and search area. Recently, M>-track [16] proposed a
new paradigm, namely the motion-centric paradigm. First,
it predicts the relative target motion between two consecutive
frames. Then it refines the prediction by aggregating the two
point clouds with motion compensation to create a denser
point cloud. M2-track achieved state-of-the-art performance
on multiple benchmarks. In this paper, we adopt M2-track as
the SOT model in our annotation tool.

B. 3D Multi-Object Tracking on Point Clouds

The research community initially analyzed the MOT prob-
lem in 2D representations, where we track objects in a
sequence of images. For 2D MOT, the same objects across
frames are associated by appearance and motion cues. For
3D MOT in point clouds, appearance cues become less dis-
criminative because of the sparsity of point clouds and lack
of texture information. In contrast, motion cues become more
reliable because the scale of an object remains constant, and
there are no abrupt movements. Given these characteristics,
most of the 3D MOT work employs the tracking-by-detection
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paradigm and focus on motion modeling for data association.
Due to the rapid development of autonomous driving, a vari-
ety of LiDAR-based object detectors have been developed
and made available, including representative works such as
SECOND [17], PointPillars [18], PointRCNN [19], PartA?
Net [20], CenterNet3D [21], and PVRCNN [22]. For tracking,
AB3DMOT [23] proposed a baseline approach that adopts the
3D Kalman Filter as the motion model and uses the Hungarian
algorithm as the matching strategy. Follow-up work [24],
[25] mainly improves upon its data association method and
life cycle management strategy. SimpleTrack [26] encapsu-
lates multiple 3D MOT (following the tracking-by-detection
paradigm) into a unified framework with four configurable
modules, namely detection result pre-processing, data asso-
ciation, motion modeling, and life cycle management. Given
its flexibility and simplicity, we employ SimpleTrack as part
of our annotation pipeline.

C. Smart Annotation Tools for Point Clouds

3D BAT [27] is one of the earliest open-sourced point
cloud annotation tools—a web-based application with multi-
model data. The annotations for point clouds are automatically
projected to different camera views. It also supports interpo-
lation between keyframes to accelerate sequence annotation.
LATTE [5] further implemented sensor fusion, smart one-click
annotation, and integrated tracking into sequence annotation.
LATTE used a clustering algorithm to achieve the one-click
annotation to find all points for the target object, estimate the
2D bounding box (BBox), and convert to 3D BBox coordinates
based on camera-LIDAR calibration. In addition, LATTE
utilized the Kalman Filter algorithm for tracking objects.
SAnE [28] improves one-click annotation by employing a
denoising pointwise segmentation strategy that assigns a noise
penalty for all boundary locations to better separate nearby
objects. SAnE also proposed an improved tracking algorithm,
namely a guided tracking algorithm. It consists of 3 stages:
greedy search, backtracking, and refinement.

SUSTechPOINTS [6] is one of the best open-source point
cloud annotation tools to the best of our knowledge. It has
a handy interface for adjusting BBox in single frame or
batch mode. Moreover, it implements a collection of func-
tions, such as one-click annotation and annotation propagation.
It employs a heuristic registration algorithm that calculates the
relative geometric transformation between the target in con-
secutive frames to propagate the current BBox to subsequent
frames. Unfortunately, the registration performance is imper-
fect, requiring a certain amount of effort in label refinement
and correction. We built our work upon SUSTech POINTS
with an improved annotation propagation algorithm. In addi-
tion, we extend its functions to include auto-labeling using
an MOT tracker, orientation adjustment, trajectory smoothing,
etc.

D. Point Cloud Benchmark Datasets

Many point cloud benchmark datasets focus on autonomous
driving applications in which the LiDAR is mounted on
moving vehicles. For example, KITTI—a point cloud dataset
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TABLE I
COMPARISON OF FLORIDA WITH OTHER POPULAR INFRASTRUCTURE LIDAR BENCHMARKS

Number of With crowded  Include all traffic ~ Object detection .
Dataset . . - . Annotation method
annotations released  pedestrians participants evaluation
Ko-PER (2014) - X v X Not mentioned
3D model fitting for auto 3D labeling from 2D
PedX (2018) 1.4k v X X segmentation and joint location labels
IPS 300+ (2021) 23k v v v By Datatang Co. Ltd.
1) Foreground segmentation using DBSCAN algorithm
2) Annotation propagation using Kalman Filter
LUMPT (2022) ) v v X 3) 3D pose correction using ICP
4) Costly human refinement
1) Auto labeling using MOT
2) Missing object annotation using SOT
FLORIDA (Ours) 25k v v v 3) Pedestrian Orientation auto-correction from

moving direction
4) Human refinement in batch mode

* We could not find the number of annotations released for Ko-PER and LUMPI, thus remains unspecified.

released in 2013 and now a pioneering vision benchmark [4]—
is widely used for evaluating perception tasks. Later, more
autonomous driving datasets appeared, comprising more
diverse scenes, larger sizes, and more fine-grained annotations.
Argoverse [29], Nuscenes [3], and the Waymo Open Dataset
[2] are some of the most well-known datasets.

Infrastructure-side point cloud benchmarks, on the other
hand, are scarce. To our knowledge, the first infrastructure
LiDAR dataset was released in 2014 and is referred to as the
Ko-PER Intersection dataset [30]. It deploys 14 SICK LD-
MRS 8-layer research laser scanners to a four-way intersection
in Aschaffenburg, Germany. Later in 2021, IPS300+ [31]
released a high-density intersection dataset. It installs two 80-
beam Robosense Ruby-Lite LiDAR scanners at the diagonal of
a 4-way intersection. The two LIDAR cameras are calibrated
and cover the entire intersection. However, only a total of 600-
frame annotations are made available. Recently, LUMPI [32]
proposed a multi-perspective intersection dataset in Hanover,
Germany. It deployed three cameras and 5 LiDARs to cover
the intersection with dense point clouds. And a total of 90K
point clouds have been released. However, their labels are
unavailable as of November 21, 2022.

Our proposed dataset is collected at a busy intersection
near the University of Florida campus, comprising crowded
vehicles, pedestrians, and a parking lot. We captured sequences
covering diverse traffic behaviors such as pedestrian jaywalk-
ing, near-misses, vehicles lining up on the crosswalk, causing
pedestrians to take detours, and people exiting vehicles while
waiting at a red light. We demonstrated through our FLORIDA
dataset that a single LiDAR can sufficiently capture most of
the intersection traffic, except for a 5-meter blind spot beneath
the LiDAR. And our semi-automated annotation algorithm
performs well under the LiDAR-only setting.

It is worth noting that recent works [33], [34] have proposed
datasets for investigating the important research problems
in vehicle-infrastructure cooperative perception and forecast-
ing, which is orthogonal to our work focused on efficient
infrastructure LiDAR dataset annotation. However, leveraging
infrastructure-based datasets to further enhance autonomous
driving safety in the setting of cooperative perception and

forecasting is out of the scope of our paper and we decide
to leave it for future exploration.

III. METHODOLOGY

This section introduces the collected dataset, detailed statis-
tics regarding performance and a qualitative comparison with
other infrastructure LiDAR datasets. Then, we present an
overview of the proposed semi-automated annotation scheme,
followed by an explanation of the utilized deep-learning-
based models. Finally, we discuss the pre- and post-processing
algorithms designed to further improve annotation speed.

A. The FLORIDA Dataset

1) Data Collection: We collected the dataset at a busy
intersection—West University Avenue & Northwest 17th
Street, Gainesville, FL—near the campus of the University of
Florida. The LiDAR camera is mounted on a 5-meter post at
the intersection. We used a Velodyne VLP-32C LiDAR with
32 channels, a 200-meter range, +15A° to —25A° vertical
field of view (FOV), and 360A° horizontal FOV. We manually
selected 11 sequences, some of which included crowded
pedestrians, abnormal behaviors, or near-misses. Henceforth,
we refer to our dataset as FLORIDA—FIlorida LiDAR-based
Object Recognition and Intelligent Data Annotation.

2) Dataset Statistics and Characteristics: As shown in
Table II and Figure 2 (c), we first summarize the statistics for
all categories and display the orientation histogram of vehi-
cles and pedestrians, respectively. The orientation histogram
indicates that most vehicles move in a 45°/225° direction,
corresponding to West University Avenue. The 165° direction
comes from a parking lot where most vehicles park in parallel.
For pedestrians, most of them cross the streets in the zebra-
crossings, resulting in spikes in 45°, 225°, 135°, and 325°
directions. As it is difficult to determine the orientations of
pedestrians from the point cloud when they are waiting to
cross the intersection, we utilized a heuristic approach, which
we detail in Section III-E.l1. As depicted in Figure 3, the
FLORIDA dataset captures crowded pedestrians and vehi-
cles and several abnormal behaviors, which is beneficial for

Authorized licensed use limited to: University of Florida. Downloaded on July 25,2024 at 03:10:10 UTC from IEEE Xplore. Restrictions apply.



WU et al.: EFFICIENT SEMI-AUTOMATED SCHEME FOR INFRASTRUCTURE LiDAR ANNOTATION

(a) Google map of the intersection

(b) One annotated frame

8241

Vehicle

Pedestrian

EA 315
~ _

270°

(c) Orientation histogram

Fig. 2. We collect crowded pedestrian sequences from a LiDAR installed at a busy intersection—West University Avenue & Northwest 17th Street, Gainesville,
FL, near the campus of the University of Florida. (c) The orientation histogram of vehicles and pedestrians, and the count numbers in the images measured

in thousands.

TABLE II
THE STATISTICS OF FLORIDA
Class Vehicle Pedestrian  Cyclist ~ Motorcycle Bus  Truck
The total number of instances 143,941 80,220 999 17,397 4,170 2,640
The average number of instances per frame 21.81 12.15 0.15 2.64 0.63 0.40
The maximal number of instances per frame 38 34 2 7 3 3

Fig. 3.
and a pedestrian passing through a small gap between two cars.

training and evaluating object detectors and trackers under
challenging conditions, such as scenes with crowds with
numerous occlusions.

The comparisons with some of the popular infrastructure
LiDAR datasets are summarized in Table 1. In brief, previous
datasets either did not release the full dataset labels or did not
report the evaluation performance, such as object detection.
To the best of our knowledge, FLORIDA is the first dataset
to include crowded pedestrians and diverse traffic participants
which will be fully released and can be openly evaluated
for object detection. In addition, we compared the annota-
tion approaches of all datasets. LUMPI is most comparable
because they only annotate on LiDAR point clouds. Com-
pared to LUMPI, our annotation approach employs trained

(a) A sample of a crowded scene. (b) A vehicle stopped at a pedestrian crosswalk. (c) People exiting a vehicle stopped at a red light. (d) A cyclist

deep-learning models that improve the accuracy and robust-
ness of auto-labeling and provide more assistance to human
annotators for post-correction and refinement.

B. Overview of the Semi-Automated Annotation Algorithm

A common strategy for annotating a new dataset is to anno-
tate object instances one by one, from their first appearance
to their exit from the scene. Typically, an annotation tool
can leverage a tracking algorithm to track and annotate an
object across multiple frames. In a similar vein, we propose
to exploit a state-of-the-art deep-learning SOT tracker [16]
to propagate annotations: we begin by providing the initial
annotation of an object with a proper one-click function and
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then propagating the annotation across subsequent frames
(e.g., up to 100 frames) using the SOT tracker. Of course, the
auto-generated BBoxes might be imperfect; therefore, manual
annotator refinement is necessary. Following [6], we lever-
age the function of batch-mode editing in which adjusting
keyframes’ annotations could trigger the interpolation of inter-
mediate frames, which is proven to reduce refinement effort.

We further automate the annotation using a trained MOT,
which generates tracklets for all objects. In contrast to SOT,
MOT does not require first-frame annotation for each object.
The MOT is iteratively trained. In the beginning, it is trained
on one fully annotated sequence. As more sequences are
annotated, its training set is expanded such that the detection
and tracking accuracy improves accordingly. Nevertheless,
the MOT algorithm will still miss some objects or provide
imprecise annotations. The annotator will then check each
tracklet and make necessary adjustments. Additionally, the
SOT can be utilized as a remedy for objects missed by MOT.

We implemented our annotation tool on top of SUSTech-
POINTS, which includes box adjustment and batch-editing
functions. We integrate the SOT tracker, post-processing, and
trajectory-smoothing functions into SUSTechPOINTS as drop-
down menu options accessible via right-clicking a BBox. The
returned BBox predictions or corrections are then converted
into annotations and displayed on the front end. The MOT
predictions are made prior to using the annotation tool.
Specifically, we apply CenterPoint [21] and SimpleTrack [26]
for multi-object detection and tracking respectively; we then
convert the tracking results to SUSTechPOINT’s annotation
format. The annotation tool reads the MOT-predicted annota-
tions and displays them.

C. Annotation Propagation by Single Object Tracking

Given a point cloud sequence and a BBox of an object in the
first frame as the input of a 3D SOT tracker, we aim to locate
the same object in a sequence of frames. Specifically, given a
point cloud sequence {Pt}tT: | of frame length T and the 3D
BBox B! € R’ of one object, parameterized by its location in
3D coordinates, height, length, width, and heading direction,
at the first frame, a SOT tracker aims to find all 3D BBoxes
of the object in subsequent frames denoted as {Bt}ITZZ.

In our setting, the annotator provides the initial BBox anno-
tation, followed by the trained SOT tracker locating the object
frame-by-frame. Because objects move continuously in 3D,
their locations in two consecutive frames are close; therefore,
the search area can be K meters around the object’s last
location. K is a hyper-parameter determined by the object’s
velocity and the frame rate of the LiDAR data. Following [16]
and taking our static LIDAR setting into account, we empiri-
cally set K to 2 for vehicles and 0.5 for pedestrians.

To regress the position offset of the object between two
consecutive frames, we resort to the state-of-the-art 3D SOT
model—M?2-Track [16]. It proposes a two-stage motion-
centric paradigm in which the motion transformation between
the same objects in two frames is first regressed, followed by
a refinement based on the merged point cloud in two frames.
In detail, M>-Track initially segments the target points in
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two frames using a trained semantic segmentation network.
Then a motion vector M = (8x, 8y, 6z, 660) is regressed by
a motion estimation network, where 8x, §y, §z represent the
location offsets, and 36 represents the heading direction angle
offset. Adding the motion vector M to B'~! gives us a coarsely
predicted BBox B'. In the second stage, M2-Track refines B!
by regressing a small relative offset and producing the final
prediction B?. Specifically, M>-Track aggregates the previous
frame point clouds P'~! into the current point cloud P,
compensating motion using the predicted M, resulting in a
denser point cloud P’. Another regression network is applied
to P! to produce the refined BBox B'.

We integrate the SOT model into SUSTechPOINTS [6]—
a popular open-source annotation tool for point clouds—by
replacing the original auto-labeling function of SUSTech-
POINTS with M2-Track, resulting in a more robust function
for handling occlusion and sparsity and producing better accu-
racy for deformable objects like pedestrians. To achieve this,
we implemented a backend function that wraps the M2-Track
model. This function takes point clouds P'~!, P?, and the last
frame BBox B’~! as inputs and outputs the predicted current
frame BBox B’. This function is called N times, incrementing
the value of 7, to generate predictions for the next N frames.
Moreover, to reduce the overhead caused by passing point
clouds P~ and P, we instead pass the paths of point cloud
files.

The parameter N can be changed by the annotator, depend-
ing on the scenario. For example, more adjustments from the
annotator will be necessary when there is heavy occlusion or in
a crowded area. Therefore, a smaller value for N is more prac-
tical in such a situation. By default, we set it to a fixed number
(i.e., N = 100) for typical cases. The annotator can switch to
batch processing mode, where adjusting the keyframes will
trigger interpolation for middle frames, which is beneficial in
speeding up the annotation. Next, if the object is still visible
after N frames, one can adjust the last-frame annotation and
continue propagating the annotation to subsequent frames.
To harmonize the SOT algorithm and interpolation, we set
one annotation out of every ten as a keyframe such that
the annotator can quickly refine the annotation by adjusting
keyframes alone most of the time. Adjusting keyframes may
be insufficient for turning vehicles, as the orientation change
is non-linear. In this case, we can refine some annotations that
are not keyframes. Once refined, a non-keyframe will change
to a keyframe and accordingly trigger the interpolation.

D. Auto-Annotation by Multi-Object Tracker

Given a point cloud sequence, the goal of MOT is to localize
and identify all objects in the sequence. Formally, given point
cloud sequence {Pi}[TZI, the MOT finds the BBoxes of all
objects {{B;}le}?il, where N' is the number of objects in
frame P’. Note that N' varies over frames, as objects may
enter or exit the scene at different times.

In our annotation scheme, an MOT model automatically
generates tracklets for all objects in the scene. To achieve this,
we follow a tracking-by-detection paradigm, where we detect
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all objects via a detector frame-by-frame and then use the
tracker to associate boxes for the same object across frames.

We apply CenterPoint [21] for multi-object detection.
It detects objects as key points and then regresses their other
attributes, namely 3D location, 3D size, and 1D heading
orientation. CenterPoint consists of a standard 3D backbone,
a center heatmap head, and regression heads. The 3D backbone
extracts bird-eye-view (BEV) feature maps fed to the heads to
generate predictions. The head produces keypoint heatmaps,
where each heatmap peak corresponds to a predicted object
center. And another regression head regresses other properties
for predicted key points, such as BBox sizes and orientations.
We followed OpenPCDet’s CenterPoint implementation. The
readers can find more details about model architecture, training
strategy, and model implementation in CenterPoint [21].

Given predicted boxes in each frame, the next stage is asso-
ciating the BBox of the same object across frames, producing
tracklets of objects. To this end, we adopted SimpleTrack [26],
a top-performing multi-object tracking approach. Following
the “tracking-by-detection” paradigm, SimpleTrack unifies the
3D MOT methods into a general framework. The framework
consists of four main components: (i) detection pre-processing,
(i) BBox association across frames, (iii) object motion mod-
eling, and (iv) tracklet lifecycle management. Given multiple
options in each component, we adopted those matching our
dataset’s characteristics. The pre-processing module mainly
processes the raw detection predictions into a cleaner input
to the tracker. We follow SimpleTrack to apply a stricter non-
maximum suppression (NMS) to the raw detection predictions
to preserve recall while improving precision. It effectively
removes low-confidence detections that overlap with others
while preserving low-confidence detections likely from sparse
or occluded regions. For motion modeling, we adopted the
Kalman Filter, which predicts the location of an object with
increasing precision in the next frame. The Kalman Filter
performs exceptionally well on infrastructure datasets because
the LiDAR is stationary, resulting in longer tracklets and no
abrupt motions. The predicted location from the motion model
is then used as a proposal to associate with detections in
the next frame. Next, for BBoxes association across frames,
we view the problem as a bipartite matching problem and
employ the well-known Hungarian algorithm [35]. As objects
enter and exit the LiDAR’s field of view at different times,
the life cycle of tracklets needs to be carefully maintained.
Following SimpleTrack, we adopt the “two-stage association”
strategy. The detection score threshold is higher in the first
stage than in the second. The first stage ensures tracking
precision, while the second stage extends the life of tracklets
in occluded or sparse regions, thereby reducing the number of
ID switches.

We further post-process the generated tracks with heuristic
rules. First, we remove the tracklets that are too short because
they are likely to be false positives. Second, we filter the
tracklets whose speed is outside a reasonable range. For
instance, the typical walking speed of a pedestrian is less than
2 meters per second. Therefore, predicted pedestrian tracklets
with a higher average speed are more likely to be cyclists
or motorcycles. Finally, because our dataset contains many
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parked cars, the bounding boxes of such tracklets vary slightly
from frame to frame. Therefore, we average them to generate
more accurate annotations.

There are cases where the MOT model makes mistakes.
For instance, we notice missing detection, incorrect detection,
track ID switches, reversed orientation, etc. We further develop
functions to assist annotators in quickly correcting errors.
We leverage the SOT model for missing detection to propagate
annotations for completion. For incorrect detection, annotators
could delete all annotations for a given ID. To handle track
ID switches, annotators could correct the ID where the switch
happens and synchronize the change to the following frames.
Lastly, they could correct the reversed orientation via a single
one-click or batch correction in batch mode.

E. Pre-Processing and Post-Processing Algorithms

1) Trajectory Smoothing and Orientation Post-Processing:
When annotating pedestrians, we find it particularly chal-
lenging to determine their orientation from a single frame.
For example, the point cloud on a pedestrian could be very
sparse and incomplete. Often, the annotator has to examine
the sequence surrounding the current frame to determine the
orientation of a pedestrian based on movement. Therefore,
we developed an orientation post-processing algorithm that
imitates the annotator’s behavior and significantly reduces
the pedestrian annotation time. Specifically, after annotating
a sequence, we first smooth the trajectory using a cubic
smoothing spline algorithm [36] and then set the orientation
at each timestamp as the pedestrian’s moving direction. It is
more tricky to set the orientation for stationary pedestrians.
Therefore, we adopt a heuristic strategy: if the pedestrian starts
moving later in the sequence, we set the orientation to match
the direction of movement; otherwise, the orientation remains
the same as the pedestrian’s initial orientation.

2) Ground Height Estimation: For small objects (i.e.,
pedestrians and cyclists) that are too close or too far from
the LiDAR’s center, there are only a few points on each
object, and it is ambiguous to determine the object’s z value,
i.e., height. The ground height information is helpful in such
cases, as it allows us to better spot objects on the ground
using SOT and MOT algorithms. To obtain the ground height,
we manually segment the ground points using Point Cloud
Labeler [37]. Next, the ground points are interpolated into
grids using the LinearNDInterpolator from the python
SciPy library. However, interpolation does not work well for
distant regions with sparse data points. To cover these regions,
we estimate a ground plane given all segmented ground points
using the RANSAC algorithm [38]. The interpolation captures
subtle differences in ground height, such as the sidewalk being
slightly higher than the road. Additionally, the ground plane
captures the intersection’s general elevation or the LiDAR’s
slight tilt angle. Note that the ground height of an intersection
only needs to be estimated once.

IV. EXPERIMENTS

In this section, we conduct several experiments to demon-
strate the FLORIDA dataset’s quality and the annotation
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TABLE III
3D OBJECT DETECTION RESULT ON FLORIDA DATASET
Vehicle Pedestrian  Motorcycle  Bus
IoU=07 TIoU=0.5 1TIoU=0.5 IoU = 0.7
3D AP (%) 90.66 87.44 82.32 91.99
BEV AP (%) 96.62 87.76 96.96 95.17

scheme’s usefulness. We evaluate the speed and accuracy of
our developed annotation tool in Section IV-A. Section IV-B
presents baseline detection results with a study of the trade-
off between annotation quantity and detection accuracy.
Section IV-C illustrates the improvement in annotation speed
as more data is annotated. Finally, Section IV-E gives an
example of a downstream application based on this work.

A. Annotator Experiments

One straightforward way to evaluate the efficiency and accu-
racy of an annotation tool is to conduct a human annotation
experiment. Therefore, we record the annotation time of four
annotators and evaluate their annotation quality. As annotators’
annotation speed may vary, we conduct the experiment with
two trained and two untrained annotators and separately report
their average annotation times. Before the experiment, the two
trained annotators had already completed 2 hours of annotation
work, whereas the two untrained annotators had no prior expe-
rience in annotation. To familiarize the untrained annotators
with the annotation tool and its functionalities, they received
a 20-minute introduction session. Additionally, throughout the
experiment, they were assisted by an experienced annotator.

We select a 200-frame LiDAR sequence with crowded
vehicles and pedestrians and ask annotators to label the
same sequence using two different annotation tools—
SUSTechPOINTS and ours. Ground truth labels are annotated
and double-checked by an experienced annotator. When anno-
tating the ground truth, we verify the annotation by observing
a longer sequence. The annotation efficiency is measured by
the average annotation time, and the annotation accuracy is
measured by the average F) score. We consider an annotation
BBox to be accurate if the Intersection over Union (IoU) with
a ground truth BBox exceeds a threshold. As the tightness of
BBoxes differs between annotators, in the experiment, we set
the IoU threshold at 0.3. Table IV summarizes our tool’s
annotation efficiency and accuracy against SUSTechPOINTS.
It shows that our annotation tool nearly quadruples the speed
of annotation for both trained and untrained annotators. Mean-
while, our tool’s annotation quality is also better, especially
for pedestrians. The main reason is that the MOT algorithm
provides a template for the annotator, which largely improves
the recall for pedestrians. As shown in Figure 5, the annotator
using SUSTechPOINTS does not recognize the pedestrians
waiting to cross the street as human annotators recognize
objects primarily based on motion, whereas the pedestrians
in the blue box are stationary. On the other hand, our MOT
algorithm enables the annotator to recognize and accurately
annotate these pedestrians.

B. 3D Detection in the FLORIDA Dataset

In Table III, we show the 3D detection results using the
CenterPoint model for four categories on two 600-frame
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Fig. 4.  Annotation speed improvement as the MOT is trained on more

sequences. # training sequences = 0 means that we only use SOT for
annotation.

Fig. 5. Example of annotations from an untrained annotator using our tool
versus SUSTechPOINTS. The top one is annotated using our tool, while the
bottom is annotated using SUSTechPOINTS. The pedestrians within the blue
box are not recognized by the annotator.

validation sequences. The validation sequences are collected
on different days, without any days overlapping with the
training sequences. We use the 3D Average Precision (3D
AP) and Bird’s Eye View Average Precision (BEV AP) as
evaluation metrics, as defined by the KITTI benchmark [4].
We employ lower Intersection over Union (IoU) thresholds
for smaller objects, such as Pedestrian and Motorcycle, and
higher IoU thresholds for larger objects, such as Vehicle and
Bus. Truck and Cyclist are annotated, but there are insufficient
instances for evaluation, and therefore they are omitted from
the table. We investigate the improvement of the detector’s AP
as more training data is gradually added. As shown in Figure 6,
training on 3 600-frame sequences already gives a reasonably
good result, whereas the AP improvement from 3 to 6, and 6 to
9 are less significant. Therefore, given the detection accuracy
requirement for different downstream tasks, one can vary the
amount of annotation.

C. Annotation Time Reduction With Training on More Data

As shown in Figure 4, we record the annotation time for
Vehicle and Pedestrian in the FLORIDA dataset to demonstrate
the effectiveness of the human-in-the-loop concept. We train
a new model for every three 600-frame sequences and cal-
culate the average number of BBoxes per minute to measure
annotation speed. As object density and moving patterns vary
across different sequences (with the annotation of the crowded
scene being more challenging), the resulting data points are
fuzzy. However, we still observe a clear trend of increas-
ing annotation speed. For Vehicle, annotation propagation
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TABLE IV

3D AP VARYING THE AMOUNT OF TRAINING DATA. TRAINING ON 3 SEQUENCES ALREADY PRODUCES A DECENT RESULT. THE AP FURTHER IMPROVES
WHEN TRAINING ON MORE SEQUENCES

SUSTechPOINTS Ours Our Improvement
Car Pedestrian ~ Car  Pedestrian Car Pedestrian
Avg time-trained (min) 80.5 119.5 21.0 31.0 x3.8 x3.9
Avg time-untrained (min) 152.0 185.0 34.5 475 x4.4 x3.9
Avg F-1 score-trained (%) 91.0 80.6 97.8 96.4 +6.8 +15.8
Avg F-1 score-untrained (%) 92.5 68.0 97.6 96.8 +5.1 +28.8
TABLE V TABLE VI
TRANSFER LEARNING PERFORMANCE EVALUATION ANNOTATION TIME COMPARISON BETWEEN SUSTECHPOINTS AND OUR
B TooL ON TRANSFOR 24 AND LUMPI DATASETS
Car Pedestrian
TechPOINT s
Trained on on FLORIDA onl 3D AP (%) 67.78 i) DUSTechho ° o
Y BEV AP (%) 68.53 37.66 Vehicle  Pedestrian ~ Vehicle  Pedestrian
TRANSFOR (min) 31 18 15 10
ai 3D AP (%) 90.65 8641 LUMPI (mi 55 33 23 16
Trained on TRANSFOR only BEV AP (%) 96.18 86.50 (min)
. 3D AP (%) 95.52 87.21
Transfer learning from FLORIDA . . . . .
& BEV AP (%) 97.83 87.37 2) Annotation Time Reduction: The last section dis-

with SOT and batch-mode interpolation already provide high
annotation speed. For Pedestrian, MOT significantly increases
speed. Through the experiment, the MOT model trained on
three sequences increases the annotation speed from 27.05 to
72.13 BBoxes/min.

D. Experiments on Other Datasets

1) Transfer Learning: In this section, we aim to evaluate
the transfer learning ability from FLORIDA dataset to another
intersection LiDAR dataset. We chose the TRANSFOR 24!
dataset as our experiment target, given its provision of raw
LiDAR point clouds and similar sensor settings as FLORIDA.
The dataset is collected at the intersection of Central Ave
and MLK BIlvd in Chattanooga, Tennessee, USA. The LiDAR
sensor has 32 channels, a 200-meter range, +15 to —16 degree
vertical field of view (FOV), and 360-degree horizontal FOV.
Two sequences of raw LiDAR data are provided by in TRANS-
FOR 24, we use 600 frames in sequence 1 as the training set,
and 600 frames in sequence 2 as the validation set.

We present the detection accuracy for three settings: 1)
direct application of the model trained on FLORIDA to
TRANSFOR 24; 2) training a model from scratch on TRANS-
FOR 24; and 3) transfer learning from FLORIDA—training a
model using both FLORIDA and TRANSFOR 24 datasets.
The experiment results are detailed in Table V. Experiment
suggests that directly using models trained of FLORIDA
to other datasets gives reasonable but suboptimal results.
In addition, a simple transfer learning strategy improves the
detection accuracy, especially for vehicles. The 3D AP of
the TRANSFOR-only model is much lower than BEV AP,
indicating that the model can identify vehicles but struggles
to accurately regress their bounding boxes. Transfer learning
from FLORIDA dataset helps the model to regress vehicle
bounding boxes better, as it improves the 3D AP from 90.54%
to 95.52%.

1 https://challenge.utccuip.com/

cussed the potential usefulness of the FLORIDA dataset,
in this section, we opted to demonstrate the annotation
efficiency improvement using our annotation tool on other
dataset. We experimented on two intersection LiDAR datasets:
TRANSFOR and LUMPI. The TRANSFOR dataset provide
single-LiDAR point clouds, while the LUMPI dataset provides
mixture of multiple LiDAR point clouds. To set up the exper-
iment, for each dataset, we chose two nonadjacent sequences
as training and test sets, with 600 frames for training and
100 frames for testing. We trained a CenterPoint model on
the 600-frame training set and use it as the MOT component
of our annotation tool. Note that the tracking component
of the MOT model, namely SimpleTrack, does not require
training. As tested in practice, we observed that the SOT
model also produces reasonably good results without the need
for re-training. After setting up, we proceeded to compare
the annotation times between our tool and SUSTechPOINTS.
The experimental results for the 100-frame test sequence are
shown in Table VI. The experiment demonstrates that our
annotation tool improved the annotation speed by 2 — 3 times
on both datasets with only an additional 600-frame annotation,
regardless of whether a single or multi-sensor setup is used.

E. Application to Traffic Monitoring Systems

We demonstrate the effectiveness of the FLORIDA dataset
with our semi-automated annotation suite through a down-
stream use case. We integrate the predicted object trajectories
into a web-based visual analytics system, where one can check
all trajectories in a given time period, obtain count statistics
for traffic participants, observe abnormal behaviors, etc. Com-
pared with video sensors, LiDAR performs well regardless
of the lighting conditions, thereby showing its potential for
enhancing the safety of intersections.

V. DISCUSSION AND CONCLUSION
A. Limitations

Our work has a few limitations that will be summarized
in this section. Firstly, the proposed FLORIDA dataset has

Authorized licensed use limited to: University of Florida. Downloaded on July 25,2024 at 03:10:10 UTC from IEEE Xplore. Restrictions apply.



8246

8901 —— Pedestrian
o )
B —=— Vehicle
[a)]
m

3 4 5 6 7 8 9
# Training sequences

Fig. 6. 3D AP varying the amount of training data. Training on 3 sequences

already produces a decent result. The AP further improves when training on

more sequences.

P AR

Fig. 7. Application of our work on a web-based intersection traffic monitoring
system. The trajectories of different types of traffic participants are shown in
different colors. One can inspect all the trajectories and analytic statistics of
a given time period.

a single-LIDAR setup and most of our experiments are con-
ducted in this setting. In the case of intersections with multiple
LiDAR sensors and fused point cloud data, there may be
a large adaptation gap from FLORIDA due to differences
in point cloud densities. Secondly, directly applying models
trained on the FLORIDA dataset to other datasets yields
suboptimal results due to different perspectives and LiDAR
installation heights. We recommend starting with annotation
for a few hundred frames using our tool. If the detection
accuracy does not meet the requirement, one can follow our
human-in-the-loop scheme and select situations where the
detector fails as the additional training set. Lastly, our current
annotation scheme only supports LiDAR annotation, which
might be difficult for annotators with no prior experience with
LiDAR data.

B. Conclusions

In this paper, we have developed a semi-automated annota-
tion tool that applies SOT and MOT models integrated with
the human-in-the-loop schema for speeding up data annotation
of challenging intersection LiDAR datasets. We verify its
effectiveness via conducting human annotator experiments
and reporting qualitative and quantitative results on object
detection. Our developed tool supports the creation of achiev-
able and affordable LiDAR-based traffic monitoring systems.
Besides, we have introduced a fully-annotated infrastructure
LiDAR perception dataset—FLORIDA—consisting of diverse
and crowded traffic participants and exciting traffic scenarios,
to facilitate research on infrastructure-based object perception
and behavior analysis. In future work, we aim to enrich the
dataset with video cameras and reduce the annotation time
given the additional appearance information. We also want
to study how transfer learning from our dataset can benefit
training a model on new scenes, leading to an even faster
setup time for a new intersection or road segment.
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