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1  |  INTRODUC TION

The evolutionary and ecological consequences of specializa-
tion versus generalization have long been of interest (Brown & 
Pavlovic, 1992; Futuyma & Moreno, 1988; Jinks & Connolly, 1973; 

Kassen, 2002; Van Tienderen, 1991), but the boundaries between 
the two terms are often vague and complex. As typically defined, 
a specialist depends on a single kind of resource, while a generalist 
uses many. In terms of ecological niche breadth, a generalist has a 
broad niche, whereas a specialist has a narrow one. Importantly, a 
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Abstract
1.	 Generalization is difficult to quantify, and many classifications exist. A beta di-

versity framework can be used to establish a numeric measure of generalist ten-
dencies that jointly describes many important features of species interactions, 
namely spatiotemporal heterogeneity. This framework is promising for studying 
generalized symbiotic relationships of any form.

2.	 We formulated a novel index, turnover importance (T). T describes spatiotem-
poral heterogeneity in interactor assemblages, an inherent feature of general-
ist relationships that is not captured by available metrics. We simulated the 
behaviour of T relative to other available metrics, calculated T for native North 
American orchid-insect relationships, and tested correlations between T and eco-
geographic variables. We performed case studies to demonstrate applications of 
T for conservation and eco-evolutionary studies.

3.	 T behaves predictably across simulations, and dynamically interacts with site 
number, gamma diversity, and species range sizes. T is moderately sensitive to 
sampling depth. Orchids with higher T scores occupy larger ranges and broader 
climatic niches.

4.	 Alternative interactor-specific measures of generalism are best employed for 
local-level community networks over short timespans. While these interactor 
metrics can assess use versus availability in local communities, T can be used to 
measure spatiotemporal patterns of variation in interactor assemblages across a 
focal species' range. This study provides a roadmap for future work focused on 
better understanding the patterns and consequences of generalized relationships.
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species can be specialized in one niche dimension while being gen-
eralized in another. This complex nature of multidimensional niche 
space makes it difficult to classify species as strictly generalists or 
specialists (WallisDeVries, 2014). Indeed, putting species' ecological 
interactions and niche requirements into discrete categories is often 
based on qualitative or arbitrary criteria (Habel & Schmitt,  2012). 
Researchers often disagree over the number and kind of niche di-
mensions that should qualify species as generalists, and it may very 
well be the case that no species is a generalist in all niche dimensions. 
Because of this, using the specialist/generalist dichotomy ignores 
the fact that all species occupy unique ecological niches and are, in at 
least one dimension, specialized (Loxdale et al., 2019). Still, it remains 
an important task to understand how broadening or narrowing of 
particular niche dimensions might contribute to the persistence or 
extinction of lineages (Dapporto & Dennis, 2013). Accordingly, many 
authors have argued for abandoning discrete categories and using 
measures that place species along a continuum from specialism to 
generalism (WallisDeVries, 2014). Instead of asking: ‘Is this species a 
generalist or a specialist?’, we now ask: ‘To what degree is this spe-
cies a generalist versus a specialist?’.

We consider modern quantifications of generalism to fall into 
two basic categories: niche-specific and interactor-specific. Niche-
specific measures address the extent to which species' entire niches 
are generalized or specialized. They typically rely on weighted 
means or principal coordinates of many niche dimensions and can 
be used to quantify generalist tendencies across geographic and 
ecological space (Dapporto & Dennis, 2013; Habel & Schmitt, 2012; 
Wallis et al., 2016). Interactor-specific measures describe the extent 

to which particular relationships are specialized. Most interactor-
specific methods are descriptions of species diversity at the com-
munity level, where generalism of a focal species is measured with 
respect to the diversity of its interactors, or use versus availability 
of interactors (Blüthgen et  al.,  2006; Poisot et  al.,  2015; Sahli & 
Conner, 2006; Shefferson et  al., 2019). Regardless of category, all 
measures depend on species richness (e.g. the number of pollinators 
a plant has) to quantify generalism. That is, all these methods rely on 
the traditional ideation that a species is more of a generalist when 
they have more interactors, and less of a generalist when they have 
fewer.

We argue that modern methods ignore a critical feature of 
generalized relationships: that they are variably manifested in 
space and time. For example, we can infer that an orchid species 
specialized to one pollinator will only interact with that pollina-
tor throughout its range. However, an orchid species with two 
pollinators may interact with both species throughout its range 
(Figure 1a), or it could interact with one in one part, and the other 
elsewhere (Figure 1b). In the latter scenario, the orchid species is 
specialized in every part of its range, whereas in the former it is 
not. Further, a species may be equally specialized or generalized 
across its range, but the interactors that compose each community 
could be taxonomically distinct (Figure 1b). In this way, species in-
teractions can form spatial or temporal mosaics akin to the coevo-
lutionary mosaics proposed by Thompson (1994, 1997). Measures 
that only account for species richness at single sites, or total spe-
cies richness regardless of spatial structure, ignore these critical 
distinctions. Such spatiotemporal variation impacts evolutionary 

F I G U R E  1  Visualization of different scenarios of spatial manifestation of interactor species. In both (a) and (b), each species has a total 
interactor species richness of 2. In (a), both interactor species occur in each area of the focal species' range. In (b), only one species occurs in 
each area of the focal species' range. Additionally, while the focal species in (b) is locally functionally specialized across its entire range, the 
interactor species with which it associates are variable across its range, leading to homogeneity in local specialization, but heterogeneity in 
taxonomic composition.
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and ecological trajectories of focal species in ways that cannot 
be predicted by accounting for species richness alone. Neither 
interactor-specific nor niche-specific methods are designed to 
capture spatiotemporal variation in the identity of the interactors 
that comprise quantifications of generalism. This limits the appli-
cability of current methods to local-scale analyses of interactions 
within single populations. But interspecies interactions exist be-
yond a single population, and they persist over evolutionary time. 
A method that can account for changes in relationship dynamics 
between a focal species and its interactors across its entire range 
would allow us to better understand how species may withstand 
changes to available niche space over time, whether certain in-
teractors pose limiting factors on the ranges of focal species, and 
how variation in interactor community structure might contribute 
to population, and eventually species, divergence.

Shefferson et al. (2019) discuss the difference between apparent 
generalism and true generalism. In their schema, an apparent gener-
alist is one who associates with a core set of species, but may also 
add others, while the core assemblage remains unchanged. A true 
generalist is one whose interactors are relatively interchangeable 
and is prone to frequent host switching. While they consider this 
difference in the context of evolutionary time, we can also use this 
distinction to better understand how different generalist relation-
ships might manifest over space. In this context, a true generalist is a 
species with high turnover in its interactors over its range, while an 
apparent generalist is a species whose core interactors remain un-
changed throughout its range, but with some additional interactors 
in subsets of its range.

Beta diversity, a measure of compositional differentiation among 
sites within a region, is an integral aspect of species diversity. We 
argue that analysing interspecies associations broadly characterized 

as generalist is best accomplished under a beta diversity frame-
work because it enables us to account for spatiotemporal variation 
in those associations. However, there are myriad ways to calculate 
beta diversity, and different methods often yield contrasting results 
using identical data. Koleff et al. (2003) identified 24 beta diversity 
metrics applicable for presence-absence data, which they catego-
rize as either being sensitive to, or independent of, community-level 
differences in species richness. That is, some measures can disen-
tangle the contributions of changes in species richness (nestedness) 
versus compositional turnover to overall beta diversity, while others 
cannot. One of the most common ways to calculate beta diversity 
is to use the Betapart package (Baselga & Orme,  2012) for either 
multi-site or pairwise scenarios, which automatically partitions a 
total beta diversity score into its nestedness and turnover compo-
nents (Bevilacqua & Terlizzi, 2020; Gao et al., 2020; Legendre & De 
Cáceres, 2013; Mariani et al., 2019).

Compositional turnover and nestedness are critical components 
of beta diversity that individually contribute to our understanding of 
generalist versus specialist relationships. In the context of species 
interactions, compositional turnover indicates that species interact 
with distinct communities of symbionts across their range. When 
compositional turnover contributes to beta diversity, it means that 
differentiation between sites is attributable to unique species as-
semblages that are not shared among sites (Figure 2a). Species with 
high turnover in their interactions are likely to depend on unique 
sets of interactors in different parts of their range, and to engage in 
frequent host switching. Unlike compositional turnover, nestedness 
measures the progressive loss of species richness between sites 
(Figure  2b). Species with high nestedness in their interactions are 
likely to depend on a core set of interactors across their range, with 
additions to that core assemblage in some parts.

F I G U R E  2  Conceptual differences between nestedness and compositional turnover. (a) A situation in which differences between sites are 
entirely attributable to compositional turnover. Assemblages are unique with respect to each other. In this case, T = 1. (b) A situation in which 
one area is a perfect subset of another, that is perfect nestedness. Differences between sites are entirely attributable to progressive loss of 
species richness. In this case, T = −1.
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Whether total beta diversity is primarily attributable to com-
positional turnover among sites or progressive loss of species rich-
ness between sites is an important distinction. For example, orchids 
with strong compositional differences in pollinators are more likely 
to experience restrictions to gene flow between populations. They 
may also exhibit marked morphological variation in response to 
different selective pressures imposed by unique sets of pollinators 
throughout their range (Moeller, 2006). Orchids with significant pol-
linator richness losses between sites are likely to be more pollina-
tor limited in some parts of their range than others, and they may 
have an increased contribution of rare species to their interactors 
(Baselga, 2012).

Here, we introduce turnover importance (T), a novel interactor-
specific quantification of generalism that uses the beta diver-
sity framework developed by Baselga  (2010) to characterize the 
specialist-generalist continuum by explicitly accounting for the spa-
tial or temporal heterogeneity in ecological relationships and its un-
derlying components (compositional turnover vs. nestedness). We 
then perform simulations to assess its performance, interpretability, 
and sensitivity compared to other available interactor-specific meth-
ods (Table 1). Using a dataset on orchid pollinators, we (a) examine 
the relationships between range size, abiotic niche breadth, and T, 
(b) assess phylogenetic signal in T, and (c) detail taxonomic and geo-
graphic gaps in orchid floral visitor sampling effort and provide a 

roadmap for future studies. While pollinator relationships are merely 
one biotic factor out of many contributing to orchid range dynam-
ics, we choose to focus on it here to illuminate the utility of T for 
evaluating relationships on the generalist continuum. We finish by 
presenting case studies that characterize different degrees of T, and 
explicate its utility for eco-evolutionary studies and conservation 
endeavours.

2  |  MATERIAL S AND METHODS

2.1  |  Quantifying T and assessing its behaviour

We used the R package Betapart v.1.5.5 (Baselga & Orme, 2012) to 
calculate multi-site dissimilarity measures for focal species based on 
the composition of their interactor species across their total range 
for both simulated datasets and our orchid dataset. Three metrics 
were calculated and are symbolized in the style of Baselga  (2010) 
(Table 2; Figure S1):

1.	 BSOR: the Sorenson multi-site dissimilarity measure (which is 
equal to BNES + BSIM). BSOR was used to represent total beta 
diversity. BSOR can take any value from 0 to 1, where 0 = no 
site dissimilarity, and 1 = total site dissimilarity (Baselga,  2010).

2.	 BSIM: The turnover-resultant component of BSOR, calculated as the 
Simpson multi-site dissimilarity measure.

3.	 BNES: The nestedness-resultant component of total beta diversity.

To analyse the relative importance of compositional turnover, 
BSIM was modified to account for: (1) site-number dependence of 
BSOR, and (2) identical signals of zero generated by different under-
lying phenomena. Turnover and nestedness are both necessarily 
zero when total beta diversity is zero, but they can also take zero 
values when one or the other comprises 100% of the contribution 
to total beta diversity. For example, turnover is 0 when nestedness 
is 1. This means that the raw value of BSIM = 0 can either be caused 

TA B L E  1  Summary of available metrics for quantifying 
interactor-specific diversity and attributes of each measure (Y = yes; 
N = no).

Measure
Range-
wide

Data-
intensive

Abundance-
based

d' N Y Y

S N Y N

Simpson diversity index N Y Y

Species richness Y N N

Turnover importance Y N Y/N

TA B L E  2  Summary of all beta diversity metrics calculated, where: ‘Si is the total number of species in site i, ST is the total number of 
species in all sites considered together and bij, bji are the number of species exclusive to sites i and j, respectively, when compared by pairs’ 
(Baselga, 2010).

Functional name Term Formula References

Total beta diversity BSOR
�

∑

i < j

min(bij ,bji)

�

+

�

∑

i < j

max(bij ,bji)

�

2

�

∑

i

SiST

�

+

�

∑

i < j

min(bij ,bji)

�

+

�

∑

i < j

max(bij ,bji)

�

Baselga (2010)

Turnover-resultant component of total beta diversity BSIM
�

∑

i < j

min(bij ,bji)

�

�

∑

i

SiST

�

+

�

∑

i < j

min(bij ,bji)

�

Baselga (2010)

Nestedness-resultant component of total beta diversity BNES BNES = BSOR − BSIM Baselga (2010)

Turnover importance T T =
BSIM −BNES

BSOR

This paper

Interactor richness G Total number of interactors (count) This paper
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by complete spatial homogeneity or perfect nestedness. Thus, to 
accurately represent the difference between these cases, Turnover 
Importance, T, was calculated as:

4.	 T =
BSIM −BNES

BSOR

.

T can range from −1 to 1. When T = 1, this means that there is 
perfect compositional turnover in interactor species assemblages 
(Figure 2a). When T = −1, this means that there is perfect nestedness 
(Figure  2b). Effectively, T > 0 indicates increasingly higher relative 
importance of compositional turnover with respect to total beta di-
versity, while T < 0 indicates that nestedness is increasingly import-
ant. When T = 0, total beta diversity is also 0, indicating complete 
spatial homogeneity. Finally, T represents the proportional contri-
bution of compositional turnover to total beta diversity, but it is in-
dependent of the total beta diversity value. This allows the measure 
to represent the underlying drivers of beta diversity scores while 
mitigating site-number dependence (Baselga, 2010), thus allowing T 
to be used broadly for comparative purposes.

In terms of the specialism/generalism continuum, species with 
T > 0 are likely to depend on unique, separate sets of interactors in 
different parts of their ranges. They are likely to engage in frequent 
interactor switching. Species with T < 0, on the other hand, are more 
likely to depend on a single (or small set) of associates throughout 
their range, with some additions to that core assemblage in some 
parts of their range (Figure 2).

To better understand how T behaves relative to BSOR under dif-
ferent site-number conditions, we simulated random community ma-
trices consisting of 100, 30, 10 and 3 sites. Site number represents 
the total range size of a focal species, and each site represents an 
occurrence location. For each site-number category, we simulated 
1000 community matrices without spatial structure or limits to mi-
gration (i.e. each site had an equal chance of being occupied by any 
interactor species) with the R package prabclus (Hennig et al., 2015). 
We also stochastically varied the total number of interactor species 
(species richness), and the ranges of those species, resulting in a total 
of 4000 simulated community matrices with varying levels of spe-
cies richness and range sizes.

We then tested whether (a) the range of possible T and BSOR 
values were identical across site-number scenarios; (b) identical T 
values indicated the same interactor assemblage patterns across 
site-number scenarios; and (c) the relationship between species rich-
ness, T, and BSOR was preserved across site-number scenarios.

2.2  |  Comparing T to other measures of generalism

To understand (a) whether other metrics can capture the features of 
generalism described by T; (b) the extent to which metrics are sensi-
tive to sampling depth; and (c) how metrics correspond to interac-
tor species richness and focal species range size, we again simulated 
community matrices. Because the methods differ in their required 
input data, we simulated a single community matrix that represented 

the ranges of all interactor species (e.g. orchid pollinators) over a total 
area of 100 cells and used this as the basis for generating subsequent 
datasets. Within these cells, interactor species ranges were randomly 
varied between 1 and 100 without spatial structure. Then, we ran-
domly selected the ranges of 25 focal species (e.g. orchid species), 
again with range sizes randomly varied between 1 to 100 cells with-
out structure. Finally, we randomly selected interactor species for 
each focal species. This process was repeated 258 times for a total of 
6450 focal-interactor networks. From each focal-interactor network, 
we created the three community matrices variously required by the 
generalism metrics. Matrix 1: a presence-absence community matrix, 
where rows are focal species and columns are interactor species. 
In this case, 1 represents presence of an interaction, 0 represents 
absence of an interaction. This matrix is needed to calculate the S 
metric (Table S1). Matrix 2: an abundance-based community matrix, 
where rows are focal species and columns are interactor species. In 
this case, 0 still represents absence of an interaction, but values >0 
represent the number of times an interactor species and focal species 
co-occur across their respective ranges. This matrix is needed to cal-
culate D prime and the Simpson diversity index (Table S1). Matrices 
1 and 2 represent all interactions across focal species' ranges, that is 
there is no spatial partitioning. Matrix 3: a presence-absence com-
munity matrix, where rows are sites and columns are interactor spe-
cies. This matrix is identical in kind to the ones used in our first set of 
simulations, and is needed to calculate T, D diff, and D mean.

Using these matrices, we calculated six different metrics using 
the R packages bipartite (Dormann et al., 2008), vegan (Dixon, 2003), 
and betapart (Baselga & Orme, 2012):

1.	 T.
2.	 D prime, which measures interactor specificity relative to interac-

tor availability (Blüthgen et al., 2006). D prime is only calculated 
for a single community matrix at a single site or over all sites at 
once (e.g. a single community matrix representing the entire range 
of a focal species).

3.	 D diff, which is the mean difference in D prime scores among sites 
across a focal species range.

4.	 D mean, which is the mean d prime score among sites across a 
focal species range.

5.	 S, which measures the use of interactors relative to all available 
interactors (Poisot et al., 2015).

6.	 Simpson diversity index, which measures the frequency or 
strength of interactions relative to interactor species richness 
(Sahli & Conner, 2006). All metrics, required calculations, refer-
ences, and required matrices are summarized in Table S1.

To assess sensitivity to sampling depth, each of the 1650 focal-
interactor networks were randomly subsampled six times, and all 
metrics were re-calculated to represent 90%, 75%, and 50% interac-
tor sampling, and 90%, 75%, and 50% focal species range sampling. 
For example, we randomly sampled 90% of the interactor species 
from the original focal-interactor network, and re-calculated all 
metrics.
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To understand how metrics vary with respect to interactor spe-
cies richness and focal species range size in general, we calculated 
Pearson's correlation coefficients between calculated metrics and 
interactor species richness, and between calculated metrics and 
focal species range size.

2.3  |  Native North American orchids and their 
floral visitors

Our orchid insect dataset was created over the span of several years 
with the help of interns, students, and volunteers in the Spalink Lab, 
and researchers from the Smithsonian's North American Orchid 
Conservation Center and National Museum of Natural History. 
Published records from the last ~80 years were scored for any veri-
fied incidences of floral visitation or pollination by an animal for or-
chid species native to the continental United States and Canada. 
Pollinator identifications ranged from species to family-level. For the 
purposes of this investigation, only species-level interactor observa-
tions were retained. Taxonomic inconsistencies among publications 
and datasets were resolved for both orchids and their pollinators 
using the R package Taxize v.0.9.99 (Chamberlain & Szöcs, 2013).

The cleaned dataset was a presence-absence matrix with or-
chid species as rows, and pollinator species as columns (Morley 
et al., 2024). The matrix consisted of 110 out of 208 North American 
orchid species with known floral visitor observations, representing 
40 out of 66 total genera. Interactor observations totaled 442, span-
ning 272 (mostly insect) species.

Given the difficulty of distinguishing between floral visitors and 
pollinators, we included both verified pollinators and floral visitors. 
Thus, our matrix represents the maximal possible set of pollinators 
for an orchid based on available information. In this way, T describes 
the spatial patterns that underlie orchid-insect interactions, not nec-
essarily actual pollination. We note that this distinction between 
visitation and pollination is largely inconsequential for the main 
purpose of this paper—namely, to improve our understanding of the 
spatial and ecological structure of the generalist-specialist contin-
uum in biotic interactions—and we emphasize the importance of 
ongoing efforts to improve the density of confirmed pollinator rela-
tionships in this study system.

2.3.1  |  Distribution data and calculating T

Occurrence records for pollinators and orchids were collected 
from the Global Biodiversity Information Facility (GBIF) using the 
R package rgbif v.3.7.0 (Chamberlain et al., 2017), and cleaned with 
CoordinateCleaner v.2.0.20 (Zizka et al., 2019). Both datasets were 
also manually cleaned on a per-species basis to remove any occur-
rence points outside of species' accepted ranges. To minimize bias 
due to missing data, only orchids that co-occurred with a known in-
teractor species over at least 90% of their total range were retained; 
other species were discarded in downstream analyses.

A shapefile comprising 758 equal-area grid cells (area = 5733 km2) 
over North America was created following (Zizka, 2018) with rgdal 
v.1.5.29 (Bivand et  al.,  2015), magrittr v.2.0.2 (Bache et  al.,  2022), 
raster v.3.5.15 (Hijmans et  al.,  2015), and speciesgeocodeR v.2.0.10 
(Zizka, 2017). We used this coarse resolution to account for the bias 
and missingness in both orchid and pollinator distribution datasets. 
After binning, orchids and pollinator occurrence points were re-
duced to presence-absence within each grid cell and transformed to 
community matrices. Again, we treat co-occurrence records as the 
maximal possible set of pollinators based on available data. These 
data are considered estimates of the spatial heterogeneity underly-
ing orchid-insect interactions, and actual use of insects and pollina-
tors should be verified on a per-species and per-site basis.

2.3.2  |  Correlates of T

All WorldClim2 (Fick & Hijmans, 2017) variables plus elevation were 
retrieved with the R package Dismo v.1.3.5 (Hijmans et al., 2017). Point 
values were calculated for each occurrence record for each orchid spe-
cies. To reduce covariance among variables while retaining those of 
putative importance for orchid distributions, we performed Pearson's 
correlation tests in R, and retained only a subset for analysis (SI 1.1; 
Table S4). To represent niche breadth, we performed a PCA on retained 
environmental variables and used PC1 as the independent variable 
(SI 1.2; Table S4; Figure S4). Area of Occupancy (AOO) and Extent of 
Occurrence (EOO) were calculated as the number of cells an orchid oc-
cupies and the maximum haversine distance between two occurrence 
points, respectively. These were used to represent range size (SI 1.3).

2.3.3  |  Phylogenetic signal

Sequence data were gathered from GenBank (Sayers & Karsch-
Mizrachi, 2016) for all available native North American orchid spe-
cies. Representative non-North American taxa were chosen for 
genera that extended outside of our study region. Loci with <15% 
coverage were removed to minimize missing data while maximizing 
taxa present in the final tree. After filtering, 18S, ITS1, 5.8S, ITS2, 
26S, rbcL, Matk, trnK, PsaB and ycf1 were retained for alignment 
and concatenation (SI 2; Table S5). We constructed a maximum like-
lihood tree with 1000 ultrafast bootstrap replicates using the IQ 
Tree online portal (Nguyen et al., 2015). The full tree consists of 182 
orchid species, representing 59 out of 66 North American genera 
(Morley et al., 2024). To assess phylogenetic signal in T, we calculated 
Pagel's Lambda and Blomberg's K for the subset of orchids that also 
had adequate insect distribution data.

2.3.4  |  Phylogenetic and spatial sampling gaps

To assess the extent to which lineages are under-sampled with re-
spect to insect associations, we plotted data completeness along our 
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phylogeny. To identify geographic areas that are under sampled, we 
calculated the percentage of all orchids in an area for which their 
known insect associate(s) also occurred in that area. These data can 
serve as a roadmap for future orchid-insect work and provide critical 
information for the protection and restoration of endangered orchid 
species.

2.3.5  |  Case studies

To explicate the behaviour of T, we selected three orchid species 
from our above dataset that had similar values of beta diversity but 
contrasting T scores: Spiranthes casei (low T; −1), Spiranthes lacera 
(high T; 0.952) and Isotria verticillata (intermediate T; 0.01). Then, we 
created interactor richness gradients and assessed areas of taxo-
nomic compositional similarity. Richness gradients reflect changes 
in the number of co-occurring interactors across occupied cells for 
a focal orchid species. We assessed areas of taxonomic similarity by 
first calculating a Jaccard distance matrix for each community matrix 
using the R package Vegan (Dixon, 2003). Then, we implemented a 
UPGMA clustering algorithm using the R package clustsig (Whitaker 
et al., 2014), which groups areas by taxonomic similarity in interactor 
assemblage.

2.4  |  Limitations

Although our orchid-insect data was compiled from an extensive 
literature review, our dataset is likely incomplete. Thus, we empha-
size that this paper is intended to introduce T as a quantification of 
generalism, and we use orchid-insect associations to demonstrate 
that T can illuminate how variation among generalist relationships 
impact ecological, geographic, and evolutionary dynamics. We 
argue that our exploration of orchid-insect relationships in terms 
of T further supports the importance of increased efforts to ob-
serve and characterize orchid-insect interactions across focal spe-
cies' ranges.

3  |  RESULTS

3.1  |  Quantifying T and assessing its behaviour

The range of T scores was −1 to 1 for all simulated site-number sce-
narios. However, the distribution of non-zero BSOR values varied 
depending on the number of sites (Figure  S2). As site number in-
creased, BSOR also increased. At 100 sites, the minimum non-zero 
BSOR value was 0.5, and for 30 sites, it was 0.25. Despite disparity 
in value ranges, mean T (like BSOR) was significantly different across 
site-numbers (Table S2).

When plotted in space, we found that, despite variation in 
BSOR and site number, all four scenarios exhibited a spatial pattern 
of assembly such that 100% of the dissimilarity among sites was 

attributable to nestedness when T = −1. That is, cells with decreased 
diversity were proper subsets of more speciose cells (Figure S3).

The relationship between T and interactor species richness was 
preserved across site-number scenarios (Table  S3). As interactor 
species number increases, the total number of possible unique com-
binations also increases, and on average, a greater number of unique 
combinations of interactor species as interactor species number in-
creases. The relationship between BSOR and interactor species rich-
ness was inconstant between site-number scenarios, which should 
be expected (Table S3).

3.2  |  Comparing T to other measures of generalism

Changes in T are poorly tracked by other available metrics. While 
all other methods were significantly correlated with T, correlations 
were low, and scatterplots show substantial variation in other metric 
values as T increases and decreases (Figure 3).

T is moderately sensitive to interactor sampling depth, with only 
a 0.77 correlation between true T scores and observed T scores at 
50% interactor species sampling. Error was highest for extremely low 
or extremely high values of T, with nestedness tending to be over-
estimated as sampling depth decreased (Figure S5). Other available 
measures tended to be less sensitive to interactor sampling depth, 
with the Simpson diversity index performing the best (Table 3).

T is less sensitive to focal species range sampling depth than 
interactor sampling depth, with a correlation value of 0.89 at 50% 
depth. S, Simpson diversity, and D prime are also less sensitive to 
focal species range sampling depth, with very high fidelity at 50% 
depth. D mean and D diff, on the other hand, are substantially more 
sensitive to gaps in focal species range sampling, with correlation 
values of 0.72 and 0.52 at 50% sampling depth respectively (Table 3).

Changes in interactor species richness track changes in all gen-
eralism metrics. D prime and Simpson diversity index showed the 
strongest relationships, with interactor species richness explaining 
90% and 100% of variation in scores respectively. Interactor species 
richness explained 44% of variation in T (Table 4).

While all relationships were significant, focal species range size 
explained less variation in metric values than interactor species rich-
ness. D diff showed the strongest relationship with focal species 
range size, at a correlation value of −0.4 (Table 4).

3.3  |  Correlates of T

Niche breadth, AOO and EOO were significantly positively corre-
lated with T (R = 0.508, 0.59, 0.396 respectively; Figure S6) indicating 
that compositional turnover in floral visitor assemblages increases 
with the size of occupied geographic and ecological space. EOO and 
AOO were strongly positively correlated with niche breadth, indicat-
ing that orchids with larger ranges occupy broader niches. However, 
orchids with zero total beta diversity confounded the relationships 
between eco-geographic space occupancy and T (Figure S6).
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3.4  |  Phylogenetic signal

Pagel's Lambda and Blomberg's K were nearly zero and insignificant 
(Lambda <0.000006, p = 1; K < 0.004, p = 0.91). This indicates that 
differences in T cannot be attributed solely to phylogenetic struc-
ture. In other words, a Brownian model of evolution alone is insuf-
ficient to explain observed variation in T. Notably, values of T are 
diffuse across the phylogeny, indicating that position along the gen-
eralism continuum is phylogenetically labile (Figure S7).

3.5  |  Floral visitor sampling gaps

While most species across the phylogeny have some pollina-
tor data (89%), far fewer have sufficient species-level observa-
tions across their ranges (26%; Figure  S8). Epidendroideae is the 
most sparsely sampled: only 10% of all represented species have 

sufficient pollinator observations across their range. Members of the 
Orchidoideae outside of Spiranthes and Platanthera are also under 
sampled with respect to pollinator observations. Eastern North 

FI G U R E 3 Relationships between T and other metrics across all simulations. While some variation is shared, all metrics poorly track changes in T.

TA B L E  3  Summary of correlations between observed values at specified sampling depths and true values for all metrics across all 
simulations.

Measure
90% interactor 
sampling

75% interactor 
sampling

50% interactor 
sampling

90% focal range 
sampling

75% focal range 
sampling

50% focal range 
sampling

T 0.973 0.889 0.795 0.984 0.941 0.893

d' (D prime) 0.995 0.978 0.895 0.9998 0.999 0.997

D diff 0.971 0.867 0.707 0.974 0.606 0.524

D mean 0.963 0.898 0.782 0.977 0.839 0.724

S 0.9997 0.9996 0.999 0.9997 0.999 0.996

Simpson diversity 0.998 0.980 0.944 0.9997 0.998 0.997

Note: All correlations were significant at p < 0.0002.

TA B L E  4  Correlations between measures and interactor species 
richness, and measures and focal species range size across all 
simulations.

Measure
Interactor species 
richness

Focal species 
range size

T 0.44 0.37

d' −0.9 0.15

D diff −0.18 −0.4

D mean 0.2 0.37

S −1 −0.13

Simpson diversity 0.62 0.14

Note: All correlations are significant at p < 0.002.
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America and much of the south appear to be well sampled areas, 
while the west, intermountain west, and Florida are under sampled 
(Figure S9).

3.6  |  Case studies

Spiranthes casei (T = −1) displayed an insect richness gradient identi-
cal to its areas of taxonomic similarity (Figure 4a,b), exemplifying that 
compositional changes in insect assemblages are entirely attributable 
to progressive loss of species richness when T = −1. Spiranthes lacera 
(T = 0.952) exhibited somewhat of a latitudinal richness gradient in its 
interactor insect species (Figure  4c). Insect compositional patterns 
were not identical to richness gradients, and three significant interac-
tor taxonomic clusters were recovered, with distinct central, northern, 
and southern parts of its range (Figure 4d). Isotria verticillata (T = 0.01) 
exhibited a latitudinal insect richness gradient (Figure 4e). Four signifi-
cant interactor clusters were recovered. Taxonomic similarity mirrored 
richness changes for some clusters, but not others (Figure 4f).

4  |  DISCUSSION

4.1  |  Quantifying T and assessing its behaviour

Across site-number scenarios, T generates predictable and transfer-
rable patterns, allowing for biologically meaningful comparative analy-
ses. In general, site number, along with interactor species richness and 
focal species range sizes, should impact the distribution of T values 
due simply to the effects of random matrix filling. Through our analy-
ses of T, we can generate expectations for how it will behave under 
different conditions: (1) increases in site number and interactor spe-
cies richness should correspond to increases in mean T values; and (2) 
the probability that rare species will contribute to nestedness versus 
turnover depends on site number and interactor species richness.

The relative contribution of turnover in a landscape should be 
higher more often in larger areas because of increased opportunity 
for non-overlapping ranges when interactor species are randomly 
distributed. Thus, mean T values should increase with increasing 
site-number, but we should not expect the range of T values to 
change across site-number scenarios. In other words, independent 
of site number, 100% contribution of nestedness to interactor spe-
cies beta diversity should be possible, as well as 100% contribution 
of compositional turnover, and every value in between.

At the same time, as interactor species richness increases, the 
total number of possible unique combinations also increases. For 
example, for four interactor species, there are 15 possible combina-
tions that could be observed at any single site. If all sites are proper 
subsets of one most speciose site containing all four species, and all 
species have equal probability of occurring in any cell, then any site 
has a 1/196 chance of yielding an identical species combination to 
another site. For only three species, that chance increases to 1/36. 
Thus, higher interactor species richness increases the probability 

that two sites will have distinct species combinations under random 
matrix filling, decreasing the contribution of nestedness to overall 
dissimilarity, even when all sites are a proper subset of one site.

Baselga  (2012) demonstrated that the nestedness component 
of BSOR is highest when the most speciose region is composed of 
species with small ranges, and few species have larger ranges. We 
should expect that species' range sizes alone should differentially 
contribute to T depending on site-number under random matrix-
filling. Given that increases in site number should decrease the 
chances of range overlap, it follows that rare species should also be 
less likely to overlap. In this way, the likelihood that rarer species will 
increase the impact of nestedness depends on site number.

Importantly, we should not assume that our expectations for the 
behaviour of T under random matrix-filling will always hold true in 
real world scenarios. Species distributions are determined, in part, 
by the distributions of other species—either via mutualisms, compe-
tition, or common evolutionary descent (Štípková et al., 2020). Thus, 
the distribution of T values for any given study system will also de-
pend on the ecological, evolutionary, and historical context in which 
the system exists.

4.2  |  Comparing T to other metrics

We have shown that, while T is more sensitive to sampling depth than 
other available metrics, it captures a unique feature of generalism 
ignored by other metrics. Specifically, variation in available metrics 
is not interpretable in terms of interactor beta diversity. Even D diff, 
which is intended to measure variation in D prime scores, was a poor 
indicator of T. This is because D diff only indicates how different D 
prime is among sites across a focal species' range, and D prime only 
measures the extent to which a focal species is specialized within a 
community, not the uniqueness of that local community with respect 
to the rest of the focal species' range. In this way, T describes an inher-
ent feature of generalist relationships that is not captured by available 
metrics: spatiotemporal heterogeneity in interactor assemblages.

The strong relationship between the Simpson diversity index, 
D prime, S, and interactor species richness indicates that these 
methods primarily describe generalism as a feature of the number 
of interactors a focal species has, while T describes generalism as a 
feature of spatiotemporal variation in interactor species communi-
ties across a focal species' range. In addition, methods that depend 
on local community matrices and make use of both interactors and 
non-interactors (such as D prime and S) are uniquely vulnerable to 
the exclusion of non-interactors. That is, for any given focal species, 
metrics like D prime require knowledge of not only a focal species' 
interactors but also of the other species in the local (or global) com-
munity that the focal species does not interact with. Combined 
with dependence on abundance data for interactor species, these 
methods become increasingly data intensive—scaling up to the en-
tire range of a focal species would ideally require intimate ecological 
knowledge of every community of which the focal species is a part. 
At the same time, Blüthgen et al.  (2006) discourage using D prime 

 2041210x, 2024, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14324 by Texas A
&

M
 U

niversity Libraries Eric H
artnett, W

iley O
nline Library on [29/08/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



960  |    MORLEY et al.

F
IG

U
R

E
 4

 
(a

) I
nt

er
ac

to
r r

ic
hn

es
s 

gr
ad

ie
nt

 o
ve

r t
he

 ra
ng

e 
of

 S
pi

ra
nt

he
s c

as
ei

 (t
ot

al
 b

et
a 

di
ve

rs
ity

 =
 0

.7
19

; T
 =

 −1
). 

(b
) C

om
po

si
tio

na
l c

lu
st

er
s 

ac
ro

ss
 th

e 
ra

ng
e 

of
 S

pi
ra

nt
he

s c
as

ei
. L

et
te

re
d 

gr
ou

ps
 d

ef
in

e 
si

gn
ifi

ca
nt

ly
 s

im
ila

r p
ol

lin
at

or
 c

lu
st

er
s.

 A
s 

ex
pe

ct
ed

, c
om

po
si

tio
na

l d
iff

er
en

tia
tio

n 
ex

ac
tly

 m
irr

or
s 

ch
an

ge
s 

in
 ri

ch
ne

ss
. (

c)
 In

te
ra

ct
or

 ri
ch

ne
ss

 g
ra

di
en

t o
ve

r t
he

 ra
ng

e 
of

 S
pi

ra
nt

he
s 

la
ce

ra
 (t

ot
al

 b
et

a 
di

ve
rs

ity
 =

 0
.9

68
; T

 =
 0

.9
53

). 
Th

er
e 

ap
pe

ar
s 

to
 b

e 
a 

sl
ig

ht
 la

tit
ud

in
al

 ri
ch

ne
ss

 g
ra

di
en

t, 
as

 w
el

l a
s 

a 
lo

ng
itu

di
na

l r
ic

hn
es

s 
gr

ad
ie

nt
, w

ith
 in

te
ra

ct
or

s 
be

in
g 

th
e 

m
os

t s
pe

ci
os

e 
ne

ar
 th

e 
A

pp
al

ac
hi

an
 M

ou
nt

ai
ns

. (
d)

 In
te

ra
ct

or
 c

om
po

si
tio

na
l c

lu
st

er
s 

ac
ro

ss
 th

e 
ra

ng
e 

of
 S

pi
ra

nt
he

s l
ac

er
a.

 L
et

te
re

d 
gr

ou
ps

 d
ef

in
e 

si
gn

ifi
ca

nt
ly

 s
im

ila
r i

nt
er

ac
to

r c
lu

st
er

s.
 G

ro
up

 C
 o

cc
ur

s 
ov

er
 

m
uc

h 
of

 S
. l

ac
er

a'
s r

an
ge

, b
ut

 u
ni

qu
e 

cl
us

te
rs

 c
an

 b
e 

se
en

 in
 th

e 
no

rt
he

rn
 a

nd
 s

ou
th

er
n 

bo
rd

er
s 

of
 S

. l
ac

er
a'

s r
an

ge
. (

e)
 In

te
ra

ct
or

 ri
ch

ne
ss

 g
ra

di
en

t o
ve

r t
he

 ra
ng

e 
of

 Is
ot

ria
 v

er
tic

ill
at

e 
(to

ta
l 

be
ta

 d
iv

er
si

ty
 =

 0
.8

86
; T

 =
 0

.0
1)

. R
ic

hn
es

s 
ap

pe
ar

s 
to

 fo
llo

w
 a

 la
tit

ud
in

al
 g

ra
di

en
t. 

(f)
 In

te
ra

ct
or

 c
om

po
si

tio
na

l c
lu

st
er

s 
ac

ro
ss

 th
e 

ra
ng

e 
of

 Is
ot

ria
 v

er
tic

ill
at

a.
 L

et
te

re
d 

gr
ou

ps
 d

ef
in

e 
si

gn
ifi

ca
nt

ly
 

si
m

ila
r p

ol
lin

at
or

 c
lu

st
er

s.
 T

he
 la

rg
es

t c
om

po
si

tio
na

l c
lu

st
er

 m
irr

or
s 

ar
ea

s 
of

 lo
w

es
t s

pe
ci

es
 ri

ch
ne

ss
, b

ut
 s

om
e 

ot
he

rs
 o

cc
ur

 in
 a

re
as

 w
ith

 s
im

ila
r r

ic
hn

es
s,

 e
xe

m
pl

ify
in

g 
th

e 
fa

ct
 th

at
 b

ot
h 

ne
st

ed
ne

ss
 a

nd
 c

om
po

si
tio

na
l t

ur
no

ve
r c

on
tr

ib
ut

e 
to

 I.
 v

er
tic

ill
at

a'
s 

hi
gh

 b
et

a 
di

ve
rs

ity
 v

al
ue

.

 2041210x, 2024, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14324 by Texas A
&

M
 U

niversity Libraries Eric H
artnett, W

iley O
nline Library on [29/08/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    |  961MORLEY et al.

over large areas or over prolonged periods of time due to measures 
of specialization potentially being misled by phenomena other than 
resource preference. Considering these factors, available interactor-
specific measures of generalism are best employed for local-level 
community networks over short timespans. In this way, T is com-
plementary to these metrics: while available metrics can be used to 
assess use versus availability in local communities, T can be used 
to assess spatiotemporal patterns of variation in interactor assem-
blages across a focal species' range. Identifying a focal species with 
exceptionally low T could prove extremely useful in identifying areas 
of its range where they are already interactor limited, and therefore 
at greater risk of population loss upon habitat disturbance (climatic 
or physical) (Crain & Tremblay, 2014). On the other hand, discovering 
high T values can direct conservation strategies to identify poten-
tially different sets of interactors, and their needs, in different parts 
of an orchid's range. For restoration efforts, understanding whether 
a focal species is disposed more towards turnover or nestedness is 
essential: the choice of appropriate habitat depends largely on pre-
dicting where, and to what extent, certain interactors are active in 
the maintenance of healthy focal species populations.

However, T might only capture one axis of variation along the 
generalism continuum, and in many contexts other features of varia-
tion might be important to include. For example, differences in T val-
ues do not necessarily correspond to differences in local functional 
specialization. Both exceptionally high and low values of T can reflect 
local functional specialization. On one hand, high T values indicate a 
strong effect of compositional turnover in resource use/availability 
across a species' range. In this case, local functional specialization 
is possible, but not necessarily expected. This is because T is inde-
pendent of changes in species richness among sites. High T values 
mean that sites are compositionally different—those sites can have 
uniformly high or low richness, or richness can vary considerably 
among sites. Exceptionally low values of T imply higher rates of local 
functional specialization in some areas of a species' range compared 
to others. This is because low T values indicate a strong effect of 
nestedness, which necessitates progressive loss of richness among 
sites across a species' range. So, when local community assemblages 
are of interest, metrics like D prime can be used in concert with T to 
yield more holistic analyses of focal species' generalist tendencies.

4.3  |  Correlates of T

It appears that orchids occupying colder, more seasonal climates in 
higher altitudes tend to exhibit higher T than orchids that occupy only 
warmer, more stable climates (Figure S6). These results might point 
to the impact of historic glaciation events in shaping North American 
orchid pollinator strategies (Kennedy & Walker, 2007). It might have 
been advantageous to retain low specificity and a capacity for fre-
quent host switching (high T) in areas that were historically volatile 
(Saladin et al., 2020). Since many studies have demonstrated decreas-
ing species diversity in increasingly colder climates (Hillebrand, 2004; 
Sanbonmatsu & Spalink,  2022), one might assume that orchids in 

colder climates have access to fewer total insects and depend on 
small, nested subsets of insects throughout their range (Štípková 
et  al.,  2020; Sun et  al.,  2014). These results, however, suggest the 
opposite: orchids with smaller areas of occupancy in less seasonal, 
warmer areas exhibit increasingly lower T compared to orchids that 
occupy larger ranges in colder, more seasonally volatile areas.

Many researchers have shown that increased specialization 
corresponds with decreased niche and range sizes (Kolanowska 
et al., 2017; Phillips et al., 2020). It would therefore be reasonable 
to expect that specialized native North American orchids would ex-
hibit similar range sizes or abiotic niche breadths. But despite ad-
hering to the relationships observed between range size and niche 
breadth, species exhibiting zero total pollinator beta diversity con-
founded the relationships involving T (Figure S6), displaying no pat-
tern whatsoever. This could mean that the selective forces driving 
North American orchids to specialize on a single pollinator differ 
from those in other regions, where interspecific competition among 
sympatric orchid species plays a large role in determining not only 
insect associations, but also geographic and ecological space occu-
pancy (Baguette et al., 2020).

4.4  |  Phylogenetic signal

Generalist strategies are often considered a response to volatile or 
variable ecological conditions, and the climatic and geographic history 
of North America certainly fits this description (Fildani et al., 2018; 
Wallis et al., 2016). It is possible that such lability in generalist ten-
dencies could characterize temperate orchid evolution in general, but 
future work should determine whether temperate orchids outside 
of North America follow these same patterns. Interestingly, some 
groups displayed uniformly high T values (e.g. Cypripedium), while 
others displayed highly variable T values. It appears that many high 
T species are in close phylogenetic proximity to low T species (e.g. 
Platanthera). It may be that for some clades, high T species eventu-
ally lead to divergence events in which one taxon occupies a smaller 
subset of the ancestral pollinator niche than the other, leading to the 
observed pattern of high T paired with low T. With more phylogenetic 
and pollinator data, future work should explore the causes and corre-
lates of uniform vs variable T values within and between clades.

4.5  |  Floral visitor sampling gaps

Our results indicated that central eastern North America is the best 
represented with respect to insect observations. Approximately 
25% of native North American orchid species (n = 53) have a known 
floral visitor co-occurrence in at least half of their total range, while 
~50% of species lack any information about their floral visitors at 
the species level. Those 53 species with known pollinator obser-
vations are mostly in the Orchidoideae, while the North American 
Epidendroideae are under-sampled. Because the Orchidoideae 
were over-represented in our study, future work should focus 
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on increasing sampling effort among the epidendroids to verify 
whether the patterns we observed are common across native North 
American orchids or unique to terrestrial orchids. At the same time, 
and perhaps most importantly, it is clear that within-species sam-
pling is sparse across the board: orchid-insect studies that do exist 
often rely on observations that take place in a single location.

Further, many orchids that are globally secure are imperilled or 
vulnerable in some parts of their range (Crain & Tremblay, 2014), so 
future work should focus on understanding how pollinator assem-
blages vary among areas for which a focal orchid is secure versus 
threatened. We emphasize the lack of available insect data for glob-
ally threatened and Imperilled orchid species (SI 3). Without these 
crucial data, we can say very little about the relationships between 
T and global orchid rarity when it comes to insect associations.

Considering the prevalence of spatial heterogeneity in orchid-
insect associations, even orchids with known pollinators/insect as-
sociates do not have enough data for anyone to confidently assess 
insect/pollinator utility—merely insect/pollinator availability. To 
better understand true rates of T, and its causes and consequences, 
future work should be designed to explore insect associations and 
pollinator relationships across the ranges of individual orchids, 
rather than at single locations.

4.6  |  T in the real world

We can use our case studies to better understand the utility of 
T relative to common definitions of generalism, especially for 
focal species like I. verticillata (T = 0.01). Considering only T, we 
understand that the nature of its insect relationships is defined by 
a combination of compositional turnover and nestedness. Some 
areas are compositionally distinct from one another, but others 
contain nested subsets of more speciose locations. In this way, 
categorizing I. verticillata as a ‘true generalist’ or an ‘apparent 
generalist’ would ignore potentially important variation across its 
range. When intermediate values of T are common, simplifying 
a species' interactor relationships into discrete categories elimi-
nates observable variation that could play an important role in 
shaping ecological and evolutionary trajectories of focal species. 
At the same time, it is also clear that an index of generalization/
specialization that focuses on only a single part of a focal species' 
range cannot always be extrapolated to other parts of that same 
species' range. Our introduction of T operationalizes the beta di-
versity framework to capture key complexities of generalized rela-
tionships that will facilitate improved ecological, evolutionary and 
conservation assessments.
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