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Abstract

1. Generalization is difficult to quantify, and many classifications exist. A beta di-

versity framework can be used to establish a numeric measure of generalist ten-
dencies that jointly describes many important features of species interactions,
namely spatiotemporal heterogeneity. This framework is promising for studying

generalized symbiotic relationships of any form.

. We formulated a novel index, turnover importance (T). T describes spatiotem-

poral heterogeneity in interactor assemblages, an inherent feature of general-
ist relationships that is not captured by available metrics. We simulated the
behaviour of T relative to other available metrics, calculated T for native North
American orchid-insect relationships, and tested correlations between T and eco-
geographic variables. We performed case studies to demonstrate applications of

T for conservation and eco-evolutionary studies.

. T behaves predictably across simulations, and dynamically interacts with site

number, gamma diversity, and species range sizes. T is moderately sensitive to

Handling Editor: Tiago Quental sampling depth. Orchids with higher T scores occupy larger ranges and broader
climatic niches.

4. Alternative interactor-specific measures of generalism are best employed for
local-level community networks over short timespans. While these interactor
metrics can assess use versus availability in local communities, T can be used to
measure spatiotemporal patterns of variation in interactor assemblages across a
focal species' range. This study provides a roadmap for future work focused on

better understanding the patterns and consequences of generalized relationships.

KEYWORDS
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1 | INTRODUCTION Kassen, 2002; Van Tienderen, 1991), but the boundaries between

the two terms are often vague and complex. As typically defined,
The evolutionary and ecological consequences of specializa- a specialist depends on a single kind of resource, while a generalist
tion versus generalization have long been of interest (Brown &

Pavlovic, 1992; Futuyma & Moreno, 1988; Jinks & Connolly, 1973;
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uses many. In terms of ecological niche breadth, a generalist has a

broad niche, whereas a specialist has a narrow one. Importantly, a
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species can be specialized in one niche dimension while being gen-
eralized in another. This complex nature of multidimensional niche
space makes it difficult to classify species as strictly generalists or
specialists (WallisDeVries, 2014). Indeed, putting species' ecological
interactions and niche requirements into discrete categories is often
based on qualitative or arbitrary criteria (Habel & Schmitt, 2012).
Researchers often disagree over the number and kind of niche di-
mensions that should qualify species as generalists, and it may very
well be the case that no species is a generalist in all niche dimensions.
Because of this, using the specialist/generalist dichotomy ignores
the fact that all species occupy unique ecological niches and are, in at
least one dimension, specialized (Loxdale et al., 2019). Still, it remains
an important task to understand how broadening or narrowing of
particular niche dimensions might contribute to the persistence or
extinction of lineages (Dapporto & Dennis, 2013). Accordingly, many
authors have argued for abandoning discrete categories and using
measures that place species along a continuum from specialism to
generalism (WallisDeVries, 2014). Instead of asking: ‘Is this species a
generalist or a specialist?’, we now ask: ‘To what degree is this spe-
cies a generalist versus a specialist?’.

We consider modern quantifications of generalism to fall into
two basic categories: niche-specific and interactor-specific. Niche-
specific measures address the extent to which species' entire niches
are generalized or specialized. They typically rely on weighted
means or principal coordinates of many niche dimensions and can
be used to quantify generalist tendencies across geographic and
ecological space (Dapporto & Dennis, 2013; Habel & Schmitt, 2012;
Wallis et al., 2016). Interactor-specific measures describe the extent

to which particular relationships are specialized. Most interactor-
specific methods are descriptions of species diversity at the com-
munity level, where generalism of a focal species is measured with
respect to the diversity of its interactors, or use versus availability
of interactors (Blithgen et al., 2006; Poisot et al., 2015; Sahli &
Conner, 2006; Shefferson et al., 2019). Regardless of category, all
measures depend on species richness (e.g. the number of pollinators
a plant has) to quantify generalism. That is, all these methods rely on
the traditional ideation that a species is more of a generalist when
they have more interactors, and less of a generalist when they have
fewer.

We argue that modern methods ignore a critical feature of
generalized relationships: that they are variably manifested in
space and time. For example, we can infer that an orchid species
specialized to one pollinator will only interact with that pollina-
tor throughout its range. However, an orchid species with two
pollinators may interact with both species throughout its range
(Figure 1a), or it could interact with one in one part, and the other
elsewhere (Figure 1b). In the latter scenario, the orchid species is
specialized in every part of its range, whereas in the former it is
not. Further, a species may be equally specialized or generalized
across its range, but the interactors that compose each community
could be taxonomically distinct (Figure 1b). In this way, species in-
teractions can form spatial or temporal mosaics akin to the coevo-
lutionary mosaics proposed by Thompson (1994, 1997). Measures
that only account for species richness at single sites, or total spe-
cies richness regardless of spatial structure, ignore these critical

distinctions. Such spatiotemporal variation impacts evolutionary

FIGURE 1 Visualization of different scenarios of spatial manifestation of interactor species. In both (a) and (b), each species has a total
interactor species richness of 2. In (a), both interactor species occur in each area of the focal species' range. In (b), only one species occurs in
each area of the focal species' range. Additionally, while the focal species in (b) is locally functionally specialized across its entire range, the
interactor species with which it associates are variable across its range, leading to homogeneity in local specialization, but heterogeneity in

taxonomic composition.
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and ecological trajectories of focal species in ways that cannot
be predicted by accounting for species richness alone. Neither
interactor-specific nor niche-specific methods are designed to
capture spatiotemporal variation in the identity of the interactors
that comprise quantifications of generalism. This limits the appli-
cability of current methods to local-scale analyses of interactions
within single populations. But interspecies interactions exist be-
yond a single population, and they persist over evolutionary time.
A method that can account for changes in relationship dynamics
between a focal species and its interactors across its entire range
would allow us to better understand how species may withstand
changes to available niche space over time, whether certain in-
teractors pose limiting factors on the ranges of focal species, and
how variation in interactor community structure might contribute
to population, and eventually species, divergence.

Shefferson et al. (2019) discuss the difference between apparent
generalism and true generalism. In their schema, an apparent gener-
alist is one who associates with a core set of species, but may also
add others, while the core assemblage remains unchanged. A true
generalist is one whose interactors are relatively interchangeable
and is prone to frequent host switching. While they consider this
difference in the context of evolutionary time, we can also use this
distinction to better understand how different generalist relation-
ships might manifest over space. In this context, a true generalistis a
species with high turnover in its interactors over its range, while an
apparent generalist is a species whose core interactors remain un-
changed throughout its range, but with some additional interactors
in subsets of its range.

Beta diversity, a measure of compositional differentiation among
sites within a region, is an integral aspect of species diversity. We

argue that analysing interspecies associations broadly characterized
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as generalist is best accomplished under a beta diversity frame-
work because it enables us to account for spatiotemporal variation
in those associations. However, there are myriad ways to calculate
beta diversity, and different methods often yield contrasting results
using identical data. Koleff et al. (2003) identified 24 beta diversity
metrics applicable for presence-absence data, which they catego-
rize as either being sensitive to, or independent of, community-level
differences in species richness. That is, some measures can disen-
tangle the contributions of changes in species richness (nestedness)
versus compositional turnover to overall beta diversity, while others
cannot. One of the most common ways to calculate beta diversity
is to use the Betapart package (Baselga & Orme, 2012) for either
multi-site or pairwise scenarios, which automatically partitions a
total beta diversity score into its nestedness and turnover compo-
nents (Bevilacqua & Terlizzi, 2020; Gao et al., 2020; Legendre & De
Caceres, 2013; Mariani et al., 2019).

Compositional turnover and nestedness are critical components
of beta diversity that individually contribute to our understanding of
generalist versus specialist relationships. In the context of species
interactions, compositional turnover indicates that species interact
with distinct communities of symbionts across their range. When
compositional turnover contributes to beta diversity, it means that
differentiation between sites is attributable to unique species as-
semblages that are not shared among sites (Figure 2a). Species with
high turnover in their interactions are likely to depend on unique
sets of interactors in different parts of their range, and to engage in
frequent host switching. Unlike compositional turnover, nestedness
measures the progressive loss of species richness between sites
(Figure 2b). Species with high nestedness in their interactions are
likely to depend on a core set of interactors across their range, with

additions to that core assemblage in some parts.

T = 1 (Perfect Compositional Turnover)

(b)

T = -1 (Perfect Nestedness)

FIGURE 2 Conceptual differences between nestedness and compositional turnover. (a) A situation in which differences between sites are
entirely attributable to compositional turnover. Assemblages are unique with respect to each other. In this case, T=1. (b) A situation in which
one area is a perfect subset of another, that is perfect nestedness. Differences between sites are entirely attributable to progressive loss of

species richness. In this case, T=-1.
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Whether total beta diversity is primarily attributable to com-
positional turnover among sites or progressive loss of species rich-
ness between sites is an important distinction. For example, orchids
with strong compositional differences in pollinators are more likely
to experience restrictions to gene flow between populations. They
may also exhibit marked morphological variation in response to
different selective pressures imposed by unique sets of pollinators
throughout their range (Moeller, 2006). Orchids with significant pol-
linator richness losses between sites are likely to be more pollina-
tor limited in some parts of their range than others, and they may
have an increased contribution of rare species to their interactors
(Baselga, 2012).

Here, we introduce turnover importance (T), a novel interactor-
specific quantification of generalism that uses the beta diver-
sity framework developed by Baselga (2010) to characterize the
specialist-generalist continuum by explicitly accounting for the spa-
tial or temporal heterogeneity in ecological relationships and its un-
derlying components (compositional turnover vs. nestedness). We
then perform simulations to assess its performance, interpretability,
and sensitivity compared to other available interactor-specific meth-
ods (Table 1). Using a dataset on orchid pollinators, we (a) examine
the relationships between range size, abiotic niche breadth, and T,
(b) assess phylogenetic signal in T, and (c) detail taxonomic and geo-
graphic gaps in orchid floral visitor sampling effort and provide a

TABLE 1 Summary of available metrics for quantifying
interactor-specific diversity and attributes of each measure (Y =yes;
N=no).

Range- Data- Abundance-

Measure wide intensive based
d' N Y Y

S N Y N
Simpson diversity index N Y Y
Species richness Y N N
Turnover importance Y N Y/N

roadmap for future studies. While pollinator relationships are merely
one biotic factor out of many contributing to orchid range dynam-
ics, we choose to focus on it here to illuminate the utility of T for
evaluating relationships on the generalist continuum. We finish by
presenting case studies that characterize different degrees of T, and
explicate its utility for eco-evolutionary studies and conservation
endeavours.

2 | MATERIALS AND METHODS
2.1 | Quantifying T and assessing its behaviour

We used the R package Betapart v.1.5.5 (Baselga & Orme, 2012) to
calculate multi-site dissimilarity measures for focal species based on
the composition of their interactor species across their total range
for both simulated datasets and our orchid dataset. Three metrics
were calculated and are symbolized in the style of Baselga (2010)
(Table 2; Figure S1):

1. Bsog: the Sorenson multi-site dissimilarity measure (which is
equal to Bygs+Bgy,). Bsor Was used to represent total beta
diversity. By, can take any value from O to 1, where O=no
site dissimilarity, and 1=total site dissimilarity (Baselga, 2010).

2. Bg,: The turnover-resultant component of By, calculated as the
Simpson multi-site dissimilarity measure.

3. Bygs: The nestedness-resultant component of total beta diversity.

To analyse the relative importance of compositional turnover,
By was modified to account for: (1) site-number dependence of
B,og. and (2) identical signals of zero generated by different under-
lying phenomena. Turnover and nestedness are both necessarily
zero when total beta diversity is zero, but they can also take zero
values when one or the other comprises 100% of the contribution
to total beta diversity. For example, turnover is O when nestedness
is 1. This means that the raw value of Bg,,=0 can either be caused

TABLE 2 Summary of all beta diversity metrics calculated, where: ‘S, is the total number of species in site i, S; is the total number of

species in all sites considered together and b, b.. are the number of species exclusive to sites i and j, respectively, when compared by pairs

i Oji

(Baselga, 2010).

Functional name Term
Total beta diversity Bsor
Turnover-resultant component of total beta diversity B
Nestedness-resultant component of total beta diversity Byes
Turnover importance T
Interactor richness G

)

Formula References

[ > min(bi]-,bﬁ)] + [ Zmax(bﬁ,b,-,v)] Baselga (2010)
i< i<j

2[ ZS,»ST] + [_Z_min(bﬁ,bﬁ ] + [_Z_max(bﬂ»,bﬂ)]

[ s min(bij,b,-,-)] Baselga (2010)
i<j

[ ‘ZSiST] + [igmin(bv,bﬁ)]

Bnes = Bsor — Bsim Baselga (2010)
T= Bsim — Bues This paper

BSOR

Total number of interactors (count) This paper
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by complete spatial homogeneity or perfect nestedness. Thus, to
accurately represent the difference between these cases, Turnover

Importance, T, was calculated as:

4. T = BB
Bsor

T can range from -1 to 1. When T=1, this means that there is
perfect compositional turnover in interactor species assemblages
(Figure 2a). When T=-1, this means that there is perfect nestedness
(Figure 2b). Effectively, T>0 indicates increasingly higher relative
importance of compositional turnover with respect to total beta di-
versity, while T<O0 indicates that nestedness is increasingly import-
ant. When T=0, total beta diversity is also O, indicating complete
spatial homogeneity. Finally, T represents the proportional contri-
bution of compositional turnover to total beta diversity, but it is in-
dependent of the total beta diversity value. This allows the measure
to represent the underlying drivers of beta diversity scores while
mitigating site-number dependence (Baselga, 2010), thus allowing T
to be used broadly for comparative purposes.

In terms of the specialism/generalism continuum, species with
T>0 are likely to depend on unique, separate sets of interactors in
different parts of their ranges. They are likely to engage in frequent
interactor switching. Species with T<0, on the other hand, are more
likely to depend on a single (or small set) of associates throughout
their range, with some additions to that core assemblage in some
parts of their range (Figure 2).

To better understand how T behaves relative to B, under dif-
ferent site-number conditions, we simulated random community ma-
trices consisting of 100, 30, 10 and 3 sites. Site number represents
the total range size of a focal species, and each site represents an
occurrence location. For each site-number category, we simulated
1000 community matrices without spatial structure or limits to mi-
gration (i.e. each site had an equal chance of being occupied by any
interactor species) with the R package prabclus (Hennig et al., 2015).
We also stochastically varied the total number of interactor species
(species richness), and the ranges of those species, resulting in a total
of 4000 simulated community matrices with varying levels of spe-
cies richness and range sizes.

We then tested whether (a) the range of possible T and B,
values were identical across site-number scenarios; (b) identical T
values indicated the same interactor assemblage patterns across
site-number scenarios; and (c) the relationship between species rich-

ness, T, and Bsog Was preserved across site-number scenarios.

2.2 | Comparing T to other measures of generalism

To understand (a) whether other metrics can capture the features of
generalism described by T; (b) the extent to which metrics are sensi-
tive to sampling depth; and (c) how metrics correspond to interac-
tor species richness and focal species range size, we again simulated
community matrices. Because the methods differ in their required
input data, we simulated a single community matrix that represented

Methods in Ecology and Evoluti EES&'E!m
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the ranges of all interactor species (e.g. orchid pollinators) over a total
area of 100 cells and used this as the basis for generating subsequent
datasets. Within these cells, interactor species ranges were randomly
varied between 1 and 100 without spatial structure. Then, we ran-
domly selected the ranges of 25 focal species (e.g. orchid species),
again with range sizes randomly varied between 1 to 100 cells with-
out structure. Finally, we randomly selected interactor species for
each focal species. This process was repeated 258 times for a total of
6450 focal-interactor networks. From each focal-interactor network,
we created the three community matrices variously required by the
generalism metrics. Matrix 1: a presence-absence community matrix,
where rows are focal species and columns are interactor species.
In this case, 1 represents presence of an interaction, O represents
absence of an interaction. This matrix is needed to calculate the S
metric (Table S1). Matrix 2: an abundance-based community matrix,
where rows are focal species and columns are interactor species. In
this case, O still represents absence of an interaction, but values >0
represent the number of times an interactor species and focal species
co-occur across their respective ranges. This matrix is needed to cal-
culate D prime and the Simpson diversity index (Table S1). Matrices
1 and 2 represent all interactions across focal species' ranges, that is
there is no spatial partitioning. Matrix 3: a presence-absence com-
munity matrix, where rows are sites and columns are interactor spe-
cies. This matrix is identical in kind to the ones used in our first set of
simulations, and is needed to calculate T, D diff, and D mean.

Using these matrices, we calculated six different metrics using
the R packages bipartite (Dormann et al., 2008), vegan (Dixon, 2003),
and betapart (Baselga & Orme, 2012):

1. T

D prime, which measures interactor specificity relative to interac-

A

tor availability (Blithgen et al., 2006). D prime is only calculated
for a single community matrix at a single site or over all sites at
once (e.g. a single community matrix representing the entire range
of a focal species).

3. D diff, which is the mean difference in D prime scores among sites
across a focal species range.

4. D mean, which is the mean d prime score among sites across a
focal species range.

5. S, which measures the use of interactors relative to all available
interactors (Poisot et al., 2015).

6. Simpson diversity index, which measures the frequency or
strength of interactions relative to interactor species richness
(Sahli & Conner, 2006). All metrics, required calculations, refer-

ences, and required matrices are summarized in Table S1.

To assess sensitivity to sampling depth, each of the 1650 focal-
interactor networks were randomly subsampled six times, and all
metrics were re-calculated to represent 90%, 75%, and 50% interac-
tor sampling, and 90%, 75%, and 50% focal species range sampling.
For example, we randomly sampled 90% of the interactor species
from the original focal-interactor network, and re-calculated all
metrics.
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To understand how metrics vary with respect to interactor spe-
cies richness and focal species range size in general, we calculated
Pearson's correlation coefficients between calculated metrics and
interactor species richness, and between calculated metrics and
focal species range size.

2.3 | Native North American orchids and their
floral visitors

Our orchid insect dataset was created over the span of several years
with the help of interns, students, and volunteers in the Spalink Lab,
and researchers from the Smithsonian's North American Orchid
Conservation Center and National Museum of Natural History.
Published records from the last ~80years were scored for any veri-
fied incidences of floral visitation or pollination by an animal for or-
chid species native to the continental United States and Canada.
Pollinator identifications ranged from species to family-level. For the
purposes of this investigation, only species-level interactor observa-
tions were retained. Taxonomic inconsistencies among publications
and datasets were resolved for both orchids and their pollinators
using the R package Taxize v.0.9.99 (Chamberlain & Szdcs, 2013).

The cleaned dataset was a presence-absence matrix with or-
chid species as rows, and pollinator species as columns (Morley
et al., 2024). The matrix consisted of 110 out of 208 North American
orchid species with known floral visitor observations, representing
40 out of 66 total genera. Interactor observations totaled 442, span-
ning 272 (mostly insect) species.

Given the difficulty of distinguishing between floral visitors and
pollinators, we included both verified pollinators and floral visitors.
Thus, our matrix represents the maximal possible set of pollinators
for an orchid based on available information. In this way, T describes
the spatial patterns that underlie orchid-insect interactions, not nec-
essarily actual pollination. We note that this distinction between
visitation and pollination is largely inconsequential for the main
purpose of this paper—namely, to improve our understanding of the
spatial and ecological structure of the generalist-specialist contin-
uum in biotic interactions—and we emphasize the importance of
ongoing efforts to improve the density of confirmed pollinator rela-

tionships in this study system.

2.3.1 | Distribution data and calculating T

Occurrence records for pollinators and orchids were collected
from the Global Biodiversity Information Facility (GBIF) using the
R package rgbif v.3.7.0 (Chamberlain et al., 2017), and cleaned with
CoordinateCleaner v.2.0.20 (Zizka et al., 2019). Both datasets were
also manually cleaned on a per-species basis to remove any occur-
rence points outside of species' accepted ranges. To minimize bias
due to missing data, only orchids that co-occurred with a known in-
teractor species over at least 90% of their total range were retained;
other species were discarded in downstream analyses.

A shapefile comprising 758 equal-area grid cells (area=5733km?)
over North America was created following (Zizka, 2018) with rgdal
v.1.5.29 (Bivand et al., 2015), magrittr v.2.0.2 (Bache et al., 2022),
raster v.3.5.15 (Hijmans et al., 2015), and speciesgeocodeR v.2.0.10
(Zizka, 2017). We used this coarse resolution to account for the bias
and missingness in both orchid and pollinator distribution datasets.
After binning, orchids and pollinator occurrence points were re-
duced to presence-absence within each grid cell and transformed to
community matrices. Again, we treat co-occurrence records as the
maximal possible set of pollinators based on available data. These
data are considered estimates of the spatial heterogeneity underly-
ing orchid-insect interactions, and actual use of insects and pollina-

tors should be verified on a per-species and per-site basis.

2.3.2 | Correlatesof T

All WorldClim2 (Fick & Hijmans, 2017) variables plus elevation were
retrieved with the R package Dismo v.1.3.5 (Hijmans et al., 2017). Point
values were calculated for each occurrence record for each orchid spe-
cies. To reduce covariance among variables while retaining those of
putative importance for orchid distributions, we performed Pearson's
correlation tests in R, and retained only a subset for analysis (SI 1.1;
Table S4). To represent niche breadth, we performed a PCA on retained
environmental variables and used PC1 as the independent variable
(Sl 1.2; Table S4; Figure S4). Area of Occupancy (AOO) and Extent of
Occurrence (EOO) were calculated as the number of cells an orchid oc-
cupies and the maximum haversine distance between two occurrence

points, respectively. These were used to represent range size (SI 1.3).

2.3.3 | Phylogenetic signal

Sequence data were gathered from GenBank (Sayers & Karsch-
Mizrachi, 2016) for all available native North American orchid spe-
cies. Representative non-North American taxa were chosen for
genera that extended outside of our study region. Loci with <15%
coverage were removed to minimize missing data while maximizing
taxa present in the final tree. After filtering, 18S, ITS1, 5.8S, ITS2,
26S, rbcl, Matk, trnK, PsaB and ycfl were retained for alignment
and concatenation (S| 2; Table S5). We constructed a maximum like-
lihood tree with 1000 ultrafast bootstrap replicates using the 1Q
Tree online portal (Nguyen et al., 2015). The full tree consists of 182
orchid species, representing 59 out of 66 North American genera
(Morley et al., 2024). To assess phylogenetic signal in T, we calculated
Pagel's Lambda and Blomberg's K for the subset of orchids that also
had adequate insect distribution data.

2.3.4 | Phylogenetic and spatial sampling gaps

To assess the extent to which lineages are under-sampled with re-
spect to insect associations, we plotted data completeness along our
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phylogeny. To identify geographic areas that are under sampled, we
calculated the percentage of all orchids in an area for which their
known insect associate(s) also occurred in that area. These data can
serve as a roadmap for future orchid-insect work and provide critical
information for the protection and restoration of endangered orchid
species.

2.3.5 | Case studies

To explicate the behaviour of T, we selected three orchid species
from our above dataset that had similar values of beta diversity but
contrasting T scores: Spiranthes casei (low T; 1), Spiranthes lacera
(high T; 0.952) and Isotria verticillata (intermediate T; 0.01). Then, we
created interactor richness gradients and assessed areas of taxo-
nomic compositional similarity. Richness gradients reflect changes
in the number of co-occurring interactors across occupied cells for
a focal orchid species. We assessed areas of taxonomic similarity by
first calculating a Jaccard distance matrix for each community matrix
using the R package Vegan (Dixon, 2003). Then, we implemented a
UPGMA clustering algorithm using the R package clustsig (Whitaker
et al., 2014), which groups areas by taxonomic similarity in interactor
assemblage.

2.4 | Limitations

Although our orchid-insect data was compiled from an extensive
literature review, our dataset is likely incomplete. Thus, we empha-
size that this paperisintended to introduce T as a quantification of
generalism, and we use orchid-insect associations to demonstrate
that T can illuminate how variation among generalist relationships
impact ecological, geographic, and evolutionary dynamics. We
argue that our exploration of orchid-insect relationships in terms
of T further supports the importance of increased efforts to ob-
serve and characterize orchid-insect interactions across focal spe-

cies' ranges.

3 | RESULTS
3.1 | Quantifying T and assessing its behaviour

The range of T scores was -1 to 1 for all simulated site-number sce-
narios. However, the distribution of non-zero B, values varied
depending on the number of sites (Figure S2). As site number in-
creased, Bgy, also increased. At 100 sites, the minimum non-zero
Bgog value was 0.5, and for 30 sites, it was 0.25. Despite disparity
in value ranges, mean T (like B¢,.) was significantly different across
site-numbers (Table S2).

When plotted in space, we found that, despite variation in
B, and site number, all four scenarios exhibited a spatial pattern
of assembly such that 100% of the dissimilarity among sites was

Methods in Ecology and Evolution Eggléﬂ{ﬁ:ﬁ"m
attributable to nestedness when T=-1. That is, cells with decreased
diversity were proper subsets of more speciose cells (Figure S3).

The relationship between T and interactor species richness was
preserved across site-number scenarios (Table S3). As interactor
species number increases, the total number of possible unique com-
binations also increases, and on average, a greater number of unique
combinations of interactor species as interactor species number in-
creases. The relationship between B, and interactor species rich-
ness was inconstant between site-number scenarios, which should
be expected (Table S3).

3.2 | Comparing T to other measures of generalism

Changes in T are poorly tracked by other available metrics. While
all other methods were significantly correlated with T, correlations
were low, and scatterplots show substantial variation in other metric
values as T increases and decreases (Figure 3).

T is moderately sensitive to interactor sampling depth, with only
a 0.77 correlation between true T scores and observed T scores at
50% interactor species sampling. Error was highest for extremely low
or extremely high values of T, with nestedness tending to be over-
estimated as sampling depth decreased (Figure S5). Other available
measures tended to be less sensitive to interactor sampling depth,
with the Simpson diversity index performing the best (Table 3).

T is less sensitive to focal species range sampling depth than
interactor sampling depth, with a correlation value of 0.89 at 50%
depth. S, Simpson diversity, and D prime are also less sensitive to
focal species range sampling depth, with very high fidelity at 50%
depth. D mean and D diff, on the other hand, are substantially more
sensitive to gaps in focal species range sampling, with correlation
values of 0.72 and 0.52 at 50% sampling depth respectively (Table 3).

Changes in interactor species richness track changes in all gen-
eralism metrics. D prime and Simpson diversity index showed the
strongest relationships, with interactor species richness explaining
90% and 100% of variation in scores respectively. Interactor species
richness explained 44% of variation in T (Table 4).

While all relationships were significant, focal species range size
explained less variation in metric values than interactor species rich-
ness. D diff showed the strongest relationship with focal species
range size, at a correlation value of -0.4 (Table 4).

3.3 | Correlatesof T

Niche breadth, AOO and EOO were significantly positively corre-
lated with T(R=0.508, 0.59, 0.396 respectively; Figure Sé) indicating
that compositional turnover in floral visitor assemblages increases
with the size of occupied geographic and ecological space. EOO and
AOO were strongly positively correlated with niche breadth, indicat-
ing that orchids with larger ranges occupy broader niches. However,
orchids with zero total beta diversity confounded the relationships
between eco-geographic space occupancy and T (Figure Sé).
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FIGURE 3 Relationships between T and other metrics across all simulations. While some variation is shared, all metrics poorly track changesin T.

TABLE 3 Summary of correlations between observed values at specified sampling depths and true values for all metrics across all

simulations.
90% interactor 75% interactor 50% interactor 90% focal range 75% focal range 50% focal range
Measure sampling sampling sampling sampling sampling sampling
T 0.973 0.889 0.795 0.984 0.941 0.893
d' (D prime) 0.995 0.978 0.895 0.9998 0.999 0.997
D diff 0.971 0.867 0.707 0.974 0.606 0.524
D mean 0.963 0.898 0.782 0.977 0.839 0.724
S 0.9997 0.9996 0.999 0.9997 0.999 0.996
Simpson diversity 0.998 0.980 0.944 0.9997 0.998 0.997

Note: All correlations were significant at p<0.0002.

3.4 | Phylogenetic signal

Pagel's Lambda and Blomberg's K were nearly zero and insignificant
(Lambda <0.000006, p=1; K<0.004, p=0.91). This indicates that
differences in T cannot be attributed solely to phylogenetic struc-
ture. In other words, a Brownian model of evolution alone is insuf-
ficient to explain observed variation in T. Notably, values of T are
diffuse across the phylogeny, indicating that position along the gen-

eralism continuum is phylogenetically labile (Figure S7).

3.5 | Floral visitor sampling gaps

While most species across the phylogeny have some pollina-
tor data (89%), far fewer have sufficient species-level observa-
tions across their ranges (26%; Figure S8). Epidendroideae is the
most sparsely sampled: only 10% of all represented species have

TABLE 4 Correlations between measures and interactor species
richness, and measures and focal species range size across all
simulations.

Interactor species Focal species

Measure richness range size
T 0.44 0.37

d' -0.9 0.15

D diff -0.18 -0.4

D mean 0.2 0.37

S -1 -0.13
Simpson diversity 0.62 0.14

Note: All correlations are significant at p <0.002.

sufficient pollinator observations across their range. Members of the
Orchidoideae outside of Spiranthes and Platanthera are also under
sampled with respect to pollinator observations. Eastern North
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America and much of the south appear to be well sampled areas,
while the west, intermountain west, and Florida are under sampled
(Figure S9).

3.6 | Case studies

Spiranthes casei (T=-1) displayed an insect richness gradient identi-
cal to its areas of taxonomic similarity (Figure 4a,b), exemplifying that
compositional changes in insect assemblages are entirely attributable
to progressive loss of species richness when T=-1. Spiranthes lacera
(T=0.952) exhibited somewhat of a latitudinal richness gradient in its
interactor insect species (Figure 4c). Insect compositional patterns
were not identical to richness gradients, and three significant interac-
tor taxonomic clusters were recovered, with distinct central, northern,
and southern parts of its range (Figure 4d). Isotria verticillata (T=0.01)
exhibited a latitudinal insect richness gradient (Figure 4e). Four signifi-
cant interactor clusters were recovered. Taxonomic similarity mirrored

richness changes for some clusters, but not others (Figure 4f).

4 | DISCUSSION
4.1 | Quantifying T and assessing its behaviour

Across site-number scenarios, T generates predictable and transfer-
rable patterns, allowing for biologically meaningful comparative analy-
ses. In general, site number, along with interactor species richness and
focal species range sizes, should impact the distribution of T values
due simply to the effects of random matrix filling. Through our analy-
ses of T, we can generate expectations for how it will behave under
different conditions: (1) increases in site number and interactor spe-
cies richness should correspond to increases in mean T values; and (2)
the probability that rare species will contribute to nestedness versus
turnover depends on site number and interactor species richness.

The relative contribution of turnover in a landscape should be
higher more often in larger areas because of increased opportunity
for non-overlapping ranges when interactor species are randomly
distributed. Thus, mean T values should increase with increasing
site-number, but we should not expect the range of T values to
change across site-number scenarios. In other words, independent
of site number, 100% contribution of nestedness to interactor spe-
cies beta diversity should be possible, as well as 100% contribution
of compositional turnover, and every value in between.

At the same time, as interactor species richness increases, the
total number of possible unique combinations also increases. For
example, for four interactor species, there are 15 possible combina-
tions that could be observed at any single site. If all sites are proper
subsets of one most speciose site containing all four species, and all
species have equal probability of occurring in any cell, then any site
has a 1/196 chance of yielding an identical species combination to
another site. For only three species, that chance increases to 1/36.
Thus, higher interactor species richness increases the probability
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that two sites will have distinct species combinations under random
matrix filling, decreasing the contribution of nestedness to overall
dissimilarity, even when all sites are a proper subset of one site.
Baselga (2012) demonstrated that the nestedness component
of Bgpg is highest when the most speciose region is composed of
species with small ranges, and few species have larger ranges. We
should expect that species' range sizes alone should differentially
contribute to T depending on site-number under random matrix-
filling. Given that increases in site number should decrease the
chances of range overlap, it follows that rare species should also be
less likely to overlap. In this way, the likelihood that rarer species will
increase the impact of nestedness depends on site number.
Importantly, we should not assume that our expectations for the
behaviour of T under random matrix-filling will always hold true in
real world scenarios. Species distributions are determined, in part,
by the distributions of other species—either via mutualisms, compe-
tition, or common evolutionary descent (Stipkova et al., 2020). Thus,
the distribution of T values for any given study system will also de-
pend on the ecological, evolutionary, and historical context in which

the system exists.

4.2 | Comparing T to other metrics

We have shown that, while T is more sensitive to sampling depth than
other available metrics, it captures a unique feature of generalism
ignored by other metrics. Specifically, variation in available metrics
is not interpretable in terms of interactor beta diversity. Even D diff,
which is intended to measure variation in D prime scores, was a poor
indicator of T. This is because D diff only indicates how different D
prime is among sites across a focal species' range, and D prime only
measures the extent to which a focal species is specialized within a
community, not the uniqueness of that local community with respect
to the rest of the focal species' range. In this way, T describes an inher-
ent feature of generalist relationships that is not captured by available
metrics: spatiotemporal heterogeneity in interactor assemblages.
The strong relationship between the Simpson diversity index,
D prime, S, and interactor species richness indicates that these
methods primarily describe generalism as a feature of the number
of interactors a focal species has, while T describes generalism as a
feature of spatiotemporal variation in interactor species communi-
ties across a focal species' range. In addition, methods that depend
on local community matrices and make use of both interactors and
non-interactors (such as D prime and S) are uniquely vulnerable to
the exclusion of non-interactors. That is, for any given focal species,
metrics like D prime require knowledge of not only a focal species'
interactors but also of the other species in the local (or global) com-
munity that the focal species does not interact with. Combined
with dependence on abundance data for interactor species, these
methods become increasingly data intensive—scaling up to the en-
tire range of a focal species would ideally require intimate ecological
knowledge of every community of which the focal species is a part.
At the same time, Bliithgen et al. (2006) discourage using D prime
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over large areas or over prolonged periods of time due to measures
of specialization potentially being misled by phenomena other than
resource preference. Considering these factors, available interactor-
specific measures of generalism are best employed for local-level
community networks over short timespans. In this way, T is com-
plementary to these metrics: while available metrics can be used to
assess use versus availability in local communities, T can be used
to assess spatiotemporal patterns of variation in interactor assem-
blages across a focal species' range. Identifying a focal species with
exceptionally low T could prove extremely useful in identifying areas
of its range where they are already interactor limited, and therefore
at greater risk of population loss upon habitat disturbance (climatic
or physical) (Crain & Tremblay, 2014). On the other hand, discovering
high T values can direct conservation strategies to identify poten-
tially different sets of interactors, and their needs, in different parts
of an orchid's range. For restoration efforts, understanding whether
a focal species is disposed more towards turnover or nestedness is
essential: the choice of appropriate habitat depends largely on pre-
dicting where, and to what extent, certain interactors are active in
the maintenance of healthy focal species populations.

However, T might only capture one axis of variation along the
generalism continuum, and in many contexts other features of varia-
tion might be important to include. For example, differences in T val-
ues do not necessarily correspond to differences in local functional
specialization. Both exceptionally high and low values of T can reflect
local functional specialization. On one hand, high T values indicate a
strong effect of compositional turnover in resource use/availability
across a species' range. In this case, local functional specialization
is possible, but not necessarily expected. This is because T is inde-
pendent of changes in species richness among sites. High T values
mean that sites are compositionally different—those sites can have
uniformly high or low richness, or richness can vary considerably
among sites. Exceptionally low values of T imply higher rates of local
functional specialization in some areas of a species' range compared
to others. This is because low T values indicate a strong effect of
nestedness, which necessitates progressive loss of richness among
sites across a species' range. So, when local community assemblages
are of interest, metrics like D prime can be used in concert with T to

yield more holistic analyses of focal species' generalist tendencies.

4.3 | Correlatesof T

It appears that orchids occupying colder, more seasonal climates in
higher altitudes tend to exhibit higher T than orchids that occupy only
warmer, more stable climates (Figure S6). These results might point
to the impact of historic glaciation events in shaping North American
orchid pollinator strategies (Kennedy & Walker, 2007). It might have
been advantageous to retain low specificity and a capacity for fre-
quent host switching (high T) in areas that were historically volatile
(Saladin et al., 2020). Since many studies have demonstrated decreas-
ing species diversity in increasingly colder climates (Hillebrand, 2004;
Sanbonmatsu & Spalink, 2022), one might assume that orchids in
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colder climates have access to fewer total insects and depend on
small, nested subsets of insects throughout their range (Stipkova
et al., 2020; Sun et al., 2014). These results, however, suggest the
opposite: orchids with smaller areas of occupancy in less seasonal,
warmer areas exhibit increasingly lower T compared to orchids that
occupy larger ranges in colder, more seasonally volatile areas.

Many researchers have shown that increased specialization
corresponds with decreased niche and range sizes (Kolanowska
et al., 2017; Phillips et al., 2020). It would therefore be reasonable
to expect that specialized native North American orchids would ex-
hibit similar range sizes or abiotic niche breadths. But despite ad-
hering to the relationships observed between range size and niche
breadth, species exhibiting zero total pollinator beta diversity con-
founded the relationships involving T (Figure Sé), displaying no pat-
tern whatsoever. This could mean that the selective forces driving
North American orchids to specialize on a single pollinator differ
from those in other regions, where interspecific competition among
sympatric orchid species plays a large role in determining not only
insect associations, but also geographic and ecological space occu-

pancy (Baguette et al., 2020).

4.4 | Phylogenetic signal

Generalist strategies are often considered a response to volatile or
variable ecological conditions, and the climatic and geographic history
of North America certainly fits this description (Fildani et al., 2018;
Wallis et al., 2016). It is possible that such lability in generalist ten-
dencies could characterize temperate orchid evolution in general, but
future work should determine whether temperate orchids outside
of North America follow these same patterns. Interestingly, some
groups displayed uniformly high T values (e.g. Cypripedium), while
others displayed highly variable T values. It appears that many high
T species are in close phylogenetic proximity to low T species (e.g.
Platanthera). It may be that for some clades, high T species eventu-
ally lead to divergence events in which one taxon occupies a smaller
subset of the ancestral pollinator niche than the other, leading to the
observed pattern of high T paired with low T. With more phylogenetic
and pollinator data, future work should explore the causes and corre-

lates of uniform vs variable T values within and between clades.

4.5 | Floral visitor sampling gaps

Our results indicated that central eastern North America is the best
represented with respect to insect observations. Approximately
25% of native North American orchid species (n=53) have a known
floral visitor co-occurrence in at least half of their total range, while
~50% of species lack any information about their floral visitors at
the species level. Those 53 species with known pollinator obser-
vations are mostly in the Orchidoideae, while the North American
Epidendroideae are under-sampled. Because the Orchidoideae
were over-represented in our study, future work should focus
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on increasing sampling effort among the epidendroids to verify
whether the patterns we observed are common across native North
American orchids or unique to terrestrial orchids. At the same time,
and perhaps most importantly, it is clear that within-species sam-
pling is sparse across the board: orchid-insect studies that do exist
often rely on observations that take place in a single location.
Further, many orchids that are globally secure are imperilled or
vulnerable in some parts of their range (Crain & Tremblay, 2014), so
future work should focus on understanding how pollinator assem-
blages vary among areas for which a focal orchid is secure versus
threatened. We emphasize the lack of available insect data for glob-
ally threatened and Imperilled orchid species (Sl 3). Without these
crucial data, we can say very little about the relationships between
T and global orchid rarity when it comes to insect associations.
Considering the prevalence of spatial heterogeneity in orchid-
insect associations, even orchids with known pollinators/insect as-
sociates do not have enough data for anyone to confidently assess
insect/pollinator utility—merely insect/pollinator availability. To
better understand true rates of T, and its causes and consequences,
future work should be designed to explore insect associations and
pollinator relationships across the ranges of individual orchids,

rather than at single locations.

4.6 | Tinthe real world

We can use our case studies to better understand the utility of
T relative to common definitions of generalism, especially for
focal species like I. verticillata (T=0.01). Considering only T, we
understand that the nature of its insect relationships is defined by
a combination of compositional turnover and nestedness. Some
areas are compositionally distinct from one another, but others
contain nested subsets of more speciose locations. In this way,
categorizing I. verticillata as a ‘true generalist’ or an ‘apparent
generalist’ would ignore potentially important variation across its
range. When intermediate values of T are common, simplifying
a species' interactor relationships into discrete categories elimi-
nates observable variation that could play an important role in
shaping ecological and evolutionary trajectories of focal species.
At the same time, it is also clear that an index of generalization/
specialization that focuses on only a single part of a focal species'
range cannot always be extrapolated to other parts of that same
species' range. Our introduction of T operationalizes the beta di-
versity framework to capture key complexities of generalized rela-
tionships that will facilitate improved ecological, evolutionary and

conservation assessments.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Table S1: All metrics used in this paper.

Table S2: p values for pairwise Wilcoxon tests of mean T values
between site number scenarios.

Table S3: Correlations between total number of species (Gamma
diversity) and T, and Gamma diversity and Bgqp.

Table S4: Loadings for all retained ecological variables along PC1.
Table S5: Best fit models of nucleotide evolution, number parsimony
informative characters, and total characters for each gene used to

construct the orchid phylogeny.
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Figure S1: Typical workflow for compiling interspecies co-occurrence
data and calculating T.

Figure S2: Differences in value range between T and By, among
site-number scenarios.

Figure S3: patterns of assembly across site-number scenarios for
identical T values.

Figure S4: PCA of climatic niche variables for all orchids with
available occurrence data.

Figure S5: Distribution of error in T (measured as observed value-
true value) in different sampling depth scenarios.

Figure Sé6: Correlations between T, climatic niche breadth, area of
occupancy, and extent of occurrence.

Figure S7: Phylogenetic signal and patterns of T across the native

North American orchid phylogeny.

Figure S8: Sampling effort across the native North American orchid
phylogeny.
Figure S9: Proportion of orchids for which there is a known insect

associate occurrence in that same cell.
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