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Abstract 

 The morphological evolution of organic crystals during crystallization depends on the face-

specific growth rates. Classical growth rate models relate the face-specific growth rates to the 

crystal lattice, energy of stable facets, growth mechanism, and supersaturation. The complexities 

of these models have increased over time to account accurately for solution conditions, the 

structure of growth units, and their attachment rates. Such advanced growth rate models require 

several layers of computations to obtain attachment energies of facets, nucleation rates, kink 

density, and attachment rates. Among these, the most intensive and time-consuming computation 

is for attachment rates, which require molecular dynamic simulations. This substantially increases 

the overall computation time to predict the absolute growth rate for even one crystallization 

condition. Since it is nearly impossible to iterate such a growth rate model, optimization schemes 

cannot be implemented to identify solution conditions that favor specific crystal growth. To reduce 

the computational time for attachment rate calculations, we implement a group contribution 

method (GCM) that relates the properties of functional groups in a molecule to their attachment 

rates to the crystal lattice, thereby rapidly estimating the growth rates of organic crystals. The 

process of molecular attachment involves partial desolvation of a solvated molecule, referred to as 

a transition state, followed by total desolvation via spontaneous attachment to a crystal facet. The 

first step in GCM is to identify the equilibrium states of fully solvated and partially desolvated 

solute molecules. The degree of supersaturation dictates the extent of this equilibrium and, thereby, 

the activation barrier for the growth of crystals, according to transition state theory. Identifying 

this equilibrium phenomenon allows for capturing the functional-group-specific interactions that 

depend on molecular motion, which could be related to operating conditions such as temperature 

and pressure. The stochastic optimization technique with Monte-Carlo sampling allows an 

efficient optimization problem solution to obtain the group interaction parameters. The GCM 

approach is first validated for the estimation of growth rates of glutamic acid and L-histidine, and 

then extended to predict growth rates of alanine and glycine rapidly.  The optimized parameters 

and GCM scheme can be used to estimate growth rates in other crystallization systems. 

 

  



1. Introduction 

 Physical properties of pharmaceutical organic crystals, such as dissolution, mechanical 

strength, and bioavailability, and the post-processibility during drying, filtration, and tableting, 

depend on the morphology of crystals.1,2 Morphology, in turn, depends upon the growth rates of 

various faces during the process of crystallization.3 The self-assembly of molecules affects the 

growth rates and is sensitive to the degree of supersaturation and the solvent environment.4-7 

Currently, there is no generalized method to estimate growth rates rapidly. The limited 

understanding of molecular self-assembly and the large number of molecules involved during the 

process of crystallization contributes to the complexity of the problem. Most commonly, 

crystallization is understood with the help of operating conditions, such as temperature, pressure, 

and supersaturation. Although controlling supersaturation is the most common and effective 

method to control crystal growth rates, a large number of experiments are required to estimate the 

growth rates of a single system. 

Estimating the absolute growth rates of small organic molecules using computational 

approaches is a common practice in the field of crystallization. In general, molecular simulations 

or empirical relations are used to determine the activation energy8 and this activation energy is 

used in the mechanistic growth rate model to determine the growth rate. In our previous work, a 

series of computational simulations were conducted to investigate the behavior of solid-liquid 

interfaces in supersaturated solutions.9,10 We employed a comprehensive computational approach 

that involved characterizing solvation dynamics, calculating binding energies, and determining 

activation barriers to model the crystal growth rates and shapes in supersaturated solutions. Tanaka 

et al.11 analyzed the crystal growth of urea with all-atom molecular dynamics (MD) simulation for 

the (001) and (110) faces. The number of atoms was several times larger in the MD of crystal 

growth than in the free-energy calculation with the energy-representation method. Accordingly, 

the computational load was less by 2−3 orders of magnitude for the adsorption free energy than 

for the growth rate. Kontkanen et al.12 used molecular-resolution cluster population simulations to 

determine growth rate of atmospheric particles involving sulfuric acid and organic vapors which 

result from the interplay of factors such as the concentration and evaporation rates, particle 

population dynamics, and stochastic fluctuations.  Li et al.13 have created detailed mechanistic 

models for crystal growth and introduced a prototype software tool named ADDICT (Advanced 

Design and Development of Industrial Crystallization Technology). ADDICT needs electron 

density calculations from Gaussian14 as an input. Although ADDICT methodology is applicable 

to any choice of forcefield, Generalized Amber Force Field (GAFF) parameter database is 

employed to assess intermolecular interactions within the supercell. Further with these 

intermolecular interactions ADDICT compiles a list of low Miller index planes based on the crystal 

space group, identifying the most stable slice for each one. Subsequently, it establishes periodic 

bond chains (PBCs) for each slice and compute energies, which are then used in the mechanistic 

growth model to determine the growth rate. ADDICT focuses only on implementing a model for 

spiral growth. These growth rates are crucial for understanding the kinetics and thermodynamics 

of chemical reactions, as well as for designing and optimizing chemical processes and materials. 

Tilbury et al.15 established a connection between pre-existing mechanistic expressions for spiral 

growth and two-dimensional nucleation growth regimes. They accomplished this by applying 



stationary nucleation rate theory to integrate insights from both spiral and two-dimensional 

nucleation growth regimes. This innovative approach serves to bridge various growth regimes, 

extending beyond the spiral growth model previously developed by Li et al.13 Han et al.16 

performed experiments and constant chemical potential molecular dynamics simulations to 

explore the solvent-mediated crystal morphology selection of the anti-tuberculosis drug isoniazid, 

revealing insights into the influence of solvent polarity on crystal aspect ratio and providing a 

mechanistic understanding of surface growth control. Piana and Gale17 performed dynamical 

atomistic simulation to investigate the dissolution and growth of urea crystals, revealing a 

nucleation and growth mechanism on the [001] face, with the removal of surface defects identified 

as the rate-limiting step, and the evolution of crystal growth characterized by a rough surface 

topography rather than a clean layer-by-layer mechanism. Turner et al.18  employed 

mechanistically based digital workflow for solvent-mediated crystal morphologies of the α and β 

polymorphic forms predictions. It involved the calculation of crystal lattice energy, intermolecular 

synthons, interaction energies, and their pivotal role in comprehending and predicting crystal 

morphology.  

The majority of research has primarily concentrated on straightforward organic compounds 

like urea and glycine, primarily due to the heightened computational demands associated with 

molecular dynamics (MD) simulations. To overcome some of the constraints of MD methods, 

researchers have turned to Kinetic Monte Carlo (kMC) techniques, allowing for simulations of 

crystal growth and dissolution processes at a closer approximation to the mesoscale.18 However, 

existing approaches do come with certain challenges and requirements like high computation 

power, knowledge of molecular topology, quantum mechanical calculations, appropriate force 

fields and appropriate computational methodology. Depending on the computational power 

available, computational time for these simulations vary accordingly. For example, MD 

simulations have typical computational times of around 0.3 hours per nanosecond for a system 

with 500 molecules on a laptop (quad-core 3.0 GHz processor).19 A summary of previous literature 

with simulation times and limitations is provided in Table S1 of the supplementary information.  

Since it is nearly impossible to iterate such a growth rate model, optimization schemes cannot be 

implemented to identify solution conditions that favor specific crystal growth. 

In this work, we extend the knowledge gained from such a computational approach to 

rapidly estimate crystal growth rates using the group contribution method (GCM) coupled with 

adsorbate solid-solution theory (ASST). GCM is used to estimate various properties or parameters 

of chemical compounds. In GCM molecular structure of a compound is broken down into groups 

(functional groups or fragments or building blocks or descriptors) and the property of a compound 

is estimated through the summation of the contributions of each group representing the molecule.20 

Property models operate under the assumption that the contribution of a specific group to a 

property remains consistent across all compounds containing that group. These models posit that 

a compound's property value is determined by the collective contributions of all the groups 

necessary to uniquely characterize its molecular structure. However, current GCM approaches 

used for crystallization hypothesize an equilibrium relationship between operating conditions 

(such as temperature, solvent concentration, and supersaturation) and the outcome of 

crystallization (such as crystalline yield or growth rates).21,22 This hypothesis is not valid since 



crystallization is known to be kinetically driven and the outcome of crystallization is determined 

by kinetics and not the thermodynamics alone.23-25 In this work, we identify the equilibrium 

between the bulk and transition phases of the small organic molecules, to effectively use GCM for 

the estimation of crystal growth rates. 

With the help of molecular dynamics (MD) simulations, the bulk and transition phases of 

organic molecules during the process of crystallization have been identified based on the number 

of solvent molecules around the solute molecules.9 In the bulk solvated phase, which is considered 

fully solvated, a solute molecule is surrounded by a large number of solvent molecules resulting 

in a thicker solvation shell compared to transition phase. At the transition phase, the number of 

solvent molecules around the solute molecules is lower, allowing higher solute-solute interactions 

and is considered partially desolvated. At or below supersaturation, the fully-solvated and 

partially-desolvated phases are in equilibrium. However, the extent of equilibrium shifts towards 

a partially desolvated phase in a supersaturated system. The formation of crystal from a partially 

desolvated state in a supersaturated system is instantaneous, and attaining the transition state is the 

rate-limiting step. Identification of such shift in equilibrium allows applying GCM to 

crystallization based on the molecular events. 

The significant difference between the fully solvated and partially desolvated state is the 

number of solvent molecules around the solute molecule. It was shown that the removal of solvent 

molecules in the solvation shell contributes to the activation barrier for the attachment.9 

Furthermore, the activation barrier and the change in the number of solvent molecules in the 

solvation shell follow a linear relationship.9 This knowledge allows the formulation of a central 

framework for the application of GCM to estimate crystal growth rates rapidly. The significant 

complexity of the crystallization process then boils down to estimating the number of solvent 

molecules removed from the solvation shell of the solute molecule. To estimate this number, we 

apply ASST, GCM, and modified UNIFAC model to relate the mole fraction of the solvent 

molecules to the group interaction parameters.26,27 We apply the GCM coupled with ASST to 

rapidly estimate growth rates of glutamic acid, histidine, glycine, and alanine. The molecular 

picture of the shift in equilibrium and the ASST framework is shown in Figure 1. 



 

Figure 1: Central framework for the GCM approach for crystallization for rapid estimation of 

growth rates of organic molecules. (a) Molecular picture of the process of crystallization. In bulk, 

the solute molecule (histidine) is surrounded by the solvent (water) and antisolvent (ethanol) 

molecules and is fully solvated. Supersaturation causes higher solute-solute interactions resulting 

in the depletion of the solvation shell resulting in a partially desolvated solute molecule. The 

supersaturation-driven growth process is an instantaneous step in supersaturated systems. The 

extent of equilibrium between fully solvated and partially desolvated systems governs the 

activation barrier. (b) Adsorbate solid-solution theory: Instead of looking at the non-equilibrium 

behavior of crystallization, ASST looks at the crystal growth where the reference phase (partially 

desolvated molecules) undergoes crystallization. It allows for building a thermodynamic 

framework in terms of excess Gibbs free energies and relates mole fractions to group interaction 

parameters. 

2. Theoretical Methods: 

2.1. Adsorbate Solid-Solution Theory (ASST): 

In the classical description of adsorption, molecules from the bulk (or fully solvated) phase 

get adsorbed onto the surface phase, dividing the system into two phases, as shown in Fig 1b (left). 

Similarly, in the case of crystallization, a solute molecule from the bulk is integrated into the 

nucleated crystal. The integration refers to the adsorption of the molecule onto the crystal surface 

and reorientation for the formation of periodic arrangement. The rate-limiting step of the 

integration is adsorption, which requires solute molecules to shed their solvation shell. This step 

of the crystallization process can be analyzed from the Adsorbate solid-solution theory perspective. 

ASST describes the behavior of fluid on a solid surface in a thermodynamic framework. In the 

case of crystallization, the fluid is the supersaturated solution, and the nucleated crystal is the solid. 



ASST treats the surface phase as a mixture of adsorbent and adsorbing species, and this is called 

as reference phase, as shown in Fig 1b (right). In this study, the reference phase is the partially 

desolvated solute molecules. Using this theory, mole fractions and activity coefficients of various 

components in the reference and bulk phases are related to the excess energies. These relations are 

given by Berti et al.,20 and the phase equilibrium between reference and bulk phases for each 

component is shown below: 

𝑥𝑖
𝑏𝛾𝑖

𝑏 = 𝑥𝑖
∗𝛾𝑖

∗𝑒𝑥𝑝 (
𝜑∗ − 𝜑𝑜,𝑖

∗

𝑅𝑇Γ𝑠
) (1) 

Where 𝑥𝑖 is the mole fraction of ith species, 𝛾𝑖
  is the activity coefficient, 𝜑 represents chemical 

potential, 𝑅 is the gas constant, 𝑇 is the temperature, Γ𝑠 is the adsorption capacity of the adsorbent. 

Superscript 𝑏 represents bulk phase, ∗ represents reference phase, and subscript 𝑜, 𝑖 represents pure 

phase component. The difference in chemical potentials between adsorbent before and after 

adsorption is given by  𝜑∗ − 𝜑𝑜,𝑖
∗ , and is further elaborated in terms of excess Gibbs energies as: 

𝜑∗ − 𝜑𝑜𝑖
∗ =

1

𝑚0

(𝐺𝐸∗ − 𝐺𝐸𝑠 − 𝐺𝑜𝑖
𝐸∗) (2) 

Where, 𝐺𝐸∗ represents excess Gibb’s free energy of the reference phase, 𝐺𝐸𝑠 is the excess Gibbs 

free energy of the surface phase, 𝐺𝑜𝑖
𝐸∗ refers the excess Gibbs free energy of component’s 

adsorption, and 𝑚0 is the molar mass of adsorbent. The excess Gibb’s free energy is then related 

to activity coefficient as follows: 

𝐺𝐸∗

𝑅𝑇
= ∑ 𝑛𝑖

∗𝑙𝑛𝛾𝑖
∗

𝑘

𝑖=0

(3) 

𝐺𝐸𝑠

𝑅𝑇
= ∑ 𝑛𝑖

𝑠𝑙𝑛𝛾𝑖(𝑥𝑖
𝑠)

𝑘

𝑖=1

(4) 

Where, index zero is the adsorbent and 𝑛𝑖, molar quantity of component 𝑖, is calculated as: 

𝑛𝑖
𝑠 = 𝑥𝑖

𝑠𝑛𝑇
∗ (1 − 𝑥𝑜

∗) (5) 

The mole fractions of component 𝑖 in the surface phase are calculated as follows: 

𝑥𝑖
𝑠 =

𝑥𝑖
∗

1 − 𝑥𝑜
∗

(6) 

𝛾𝑜,𝑖
∗ = 1 +

1

Γ 
𝑠𝑀𝑜

(7) 

2.2. Group Contribution Method (GCM): 

While pure component activity coefficient is calculated as shown in Equation 7 (where 𝑀𝑜 

is the molecular weight of the adsorbent), group contribution method can be used to obtain the 

activity coefficients of various components in the mixture.28 In the GCM, components are divided 



into groups of atoms and the parameters are calculated based on the frequency of that group times 

its contribution. These parameters can then be used to estimate the interaction parameters and 

thereby activity coefficients, even when there is no experimental data. GCM combined with 

modified UNIFAC as GE model can be used to calculate the excess Gibbs energy of the reference 

phase.20 For this the activity coefficient of the reference phase is divided to two parts: a pure 

component part and concentration dependent part as shown: 

𝑙𝑛𝛾𝑖
∗ = 𝑙𝑛𝛾𝑜,𝑖

∗ + 𝑙𝑛𝛾𝐺𝐸,𝑖
∗ (8) 

Where 𝛾𝐺𝐸,𝑖
∗  is the concentration dependent activity coefficient given by the UNIFAC model. It is 

then further broken down into combinatorial (superscript 𝐶)and residual (superscript 𝑅) parts: 

𝑙𝑛𝛾𝐺𝐸,𝑖
∗ = 𝑙𝑛𝛾𝑖

𝐶∗ + 𝑙𝑛𝛾𝑖
𝑅∗ (9) 

Similarly, activity coefficient for the bulk phase is given by: 

𝑙𝑛𝛾𝑖
𝑏 = 𝑙𝑛𝛾𝑖

𝐶𝑏 + 𝑙𝑛𝛾𝑖
𝑅𝑏 (10) 

Residual part of the above equation for bulk phase (𝛾𝑖
𝑅𝑏) could be calculated as: 

𝑙𝑛𝛾𝑖
𝑅𝑏 = 𝒬𝑔 [1 − 𝑙𝑛 (∑ 𝜃𝑚𝜓𝑚𝑔

𝑚

1

) − (∑
𝜃𝑚𝜓𝑔𝑚

∑ 𝜃𝑛𝜓𝑛𝑚
𝑛
1

𝑚

1

)] (11) 

ψ𝑛𝑚 = 𝑒𝑥𝑝 (
−𝑎𝑛𝑚

𝑇
) (12) 

Where 𝒬𝑔 represents van der Waals surface area, 𝜃𝑚 is the surface area fraction, and  ψ𝑛𝑚 is the 

temperature-dependent parameter, which further depends on the group interaction parameter 𝑎𝑛𝑚 

between the groups of type 𝑛 and 𝑚, respectively. Further elaborations for 𝛾𝑖
𝐶∗, 𝛾𝑖

𝑅∗, 𝛾𝑖
𝐶𝑏, and 𝜃𝑚 

are given in Section S3 of the supplementary information. 

3. Computational Approach:  

3.1. Sequence of theoretical calculations:  

In brief, the method is divided into three stages: gathering data from literature, performing 

optimization to get missing group interaction parameter values, and estimating growth rates. The 

initial two stages are dedicated to estimating the missing group interaction parameter values, 

employing the methods and data already published in our previous works. The final stage involves 

the computation of growth rates, utilizing either the interaction parameters derived from the 

preceding stages or those extracted from existing literature. 



 

Figure 2: Flowchart of the overall approach, with references to the locations pertaining to the 

manuscript’s information (Content in Supplementary information is denoted with prefix “S”) 

3.2. Gather Experimental Data: 

In this stage, growth rate data obtained from literature or experiments is used to estimate 

the activation energy. Additionally, solvation number is obtained from the literature or 

experiments, which is then related to the activation energy. Solvation number is the number of 

solvent molecules that remain associated with the solute during its movement through the solution. 

(It is called hydration number when the solvent is water.) The change in the number of water 

molecules (hydration number) during the cooling crystallization of glutamic acid and antisolvent 

crystallization of histidine has been reported in the literature.9,10 Hydration numbers for fully 

solvated and partially desolvated phases were obtained from the MD simulations, and the 

activation barrier was calculated from the Double-Well approach for both works. Activation 

energy here is the energy required for a fully solvated state to become a partially desolvated state 

or transition state. After the transition state, it is a downhill process where the molecules readily 

integrate into the kink sites on the crystal surface. Additional information regarding solvation 

number and Double-Well approach (Figure S1) are provided in Section S1 of the supplementary 

information.   

Furthermore, it was shown that the relationship between the change in hydration number 

and the activation barrier for crystal growth rates is linear and follows an Evans-Polanyi 

relationship, as shown in Figure 3. Apart from this, it should be noted that while the change in 

hydration number from fully solvated to partially desolvated phases affects the growth rates, 

functional group specific solvation shells result in polymorph selection.29  In short,  

 

𝑔̇ = 𝑓1(∆𝐸𝑎𝑐𝑡) (13) 



∆𝐸𝑎𝑐𝑡 = 𝑓2(𝑁𝑏,𝑤 − 𝑁𝑤
∗ ) (14) 

where, 𝑔̇ is the growth rate and ∆𝐸𝑎𝑐𝑡 is the activation barrier. 𝑁𝑏,𝑤 is the number of water (solvent) 

molecules in the solvation shell of the fully solvated molecule (bulk solvated phase), and 𝑁𝑤
∗  is the 

number of water molecules in the solvation shell of the partially desolvated molecule (reference 

phase). Further details about equation (13) are given in Section S2 of the supplementary 

information. The relationship shown in equation (14) and the data obtained from computations is 

depicted in Figure 3.  

 

Figure 3: The relationship between activation barrier and change in the number of water molecules 

(hydration number) obtained from the literature.9,10 The scatter points are data points obtained from 

literature, and the solid red line is the linear fit.  

 The mole fraction of water in the solvation shell of the solute molecules in the bulk and 

reference phase is given by: 

𝑥𝑏,𝑤 =
𝑁𝑏,𝑤

𝑁𝑇,𝑏,𝑤

(15) 

𝑥𝑤
∗ =

𝑁𝑤

𝑁𝑇,𝑤
∗ (16) 

where, 𝑥 refers to mole fraction, 𝑁 refers to the number of molecules, subscript 𝑏 refers to bulk 

solvated phase, subscript 𝑤 refers to water, and subscript 𝑇 refers to the total number.  

3.3. Optimization: 

In the second stage, we perform optimization to estimate the unknown group interaction 

parameters for glutamic acid and histidine (Functional groups for the solute molecules are shown 

in Figure S2 of the supplementary information). ASST relates the mole fraction to the activity 

coefficient, as shown in equations 1-7. GCM and modified UNIFAC model relate the activity 



coefficient to group interaction parameters (equations 8-12). The optimization problem to obtain 

the unknown interaction parameters is then formulated as: 

𝑚𝑖𝑛𝐸𝑟𝑟 = [(𝑥𝑏,𝑤 − 𝑥𝑤
∗ )

𝑐𝑎𝑙𝑐
− (𝑥𝑏,𝑤 − 𝑥𝑤

∗ )
𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒

]
2

(17) 

where, superscript 𝑐𝑎𝑙𝑐 represents the values calculated with the help of ASST and GCM and 

superscript 𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒 represents values obtained from literature. The efficient Ant Colony 

Optimization (EACO) technique with Monte-Carlo sampling was used to solve the optimization 

problem.30,31 The Monte-Carlo method operates by randomly sampling parameter values from the 

input probability distribution, computing the corresponding output. This process is repeated 

multiple times to generate multiple output values. A significant advantage of this method is that 

the precision of the output distribution can be estimated using conventional statistical techniques. 

However, it should be noted that the pseudorandom number generator may produce samples that 

are clustered in specific regions of the population, resulting in non-uniform samples. 

3.4. Growth Rate Estimation: 

In the final stage, the optimized interaction parameters obtained from analyzing glutamic acid 

and histidine growth rates were used to estimate glycine and alanine crystal growth rates.32,33 Once 

the face specific growth rates are known, they are normalized to obtain the relative growth rates. 

These relative growth rates and space group are provided as input to the WinXMorph package34 

which gives morphology as the output. Additional details regarding growth rate calculations are 

provided in Section S2 of the supplementary information. The growth rates are then compared to 

the literature values. Furthermore, the group interactions are analyzed to understand which 

interaction contributes the most to the crystal growth rates. 

4. Results and Discussion 

The solution technique for the optimization problem begins with UNIFAC group 

interaction parameters. The interaction parameter table allows visualizing the interaction 

parameters that need to be optimized. Glutamic acid, histidine, glycine, and alanine are the 

molecules used in this study. Optimized interaction parameters for the cooling crystallization of 

glutamic acid are shown in Table 1. 

Table 1: Optimized interaction parameters for the case of glutamic acid cooling crystallization. 

Groups COOH(b) CH2(b) CHNH2(b) H2O(sol,b) H2O(sol,s) COOH(s) CH2(s) CHNH2(s) 

COOH(b) 0 315.30 -330.48 -66.17 0 1.09 0.47 -0.14 

CH2(b) 663.50 0 391.50 1318 0 1.35 -0.59 -0.75 

CHNH2(b) 202.50 -30.48 0 -330.48 0 0.23 0.67 1.34 

H2O(sol.b) -14.09 300 48.89 0 0 0 0 0 

H2O(sol,s) 0 0 0 0 0 0.49 0.60 -0.38 

COOH(s) -0.25 -0.18 1.86 0 -0.28 0 0.54 2.26 

CH2(s) -0.06 -0.07 -1.14 0 -0.10 -1.54 0 0.31 

CHNH2(s) 0.67 1.71 -0.64 0 0.51 0.13 -0.85 0 

 



In Table 1, the rows and columns represent the functional groups on the molecule. The 

letter in the brackets is to distinguish different phases. The letter b represents the bulk solvated 

phase, s represents the surface (reference) phase, and sol represents solvent. The interaction 

parameters for the bulk solvated phase are directly obtained from the literature.35 The values 

highlighted are the optimized values obtained from ASST coupled with GCM in this study. Solvent 

molecules in the solvation shell do not interact with the solvent molecules in the solvation shell of 

the alternate phase. Hence all such interaction parameters are set to zero. All the interaction 

parameters are non-dimensional.  

 

Figure 4: Activation barrier and growth rates of glutamic acid cooling crystallization calculated 

using GCM and ASST are compared with growth rates obtained from the literature.9 (a) 

Comparison of activation barrier and (b) comparison of growth rates. The dashed black line in 

both panels represents the reference where values match exactly.  

The interaction parameters for the glutamic acid cooling crystallization case were used to 

solve the reverse problem where mole fractions are obtained from the optimized interaction 

parameters. For this case, the activation barrier values calculated using the relationship shown in 

Figure 3 are compared with the literature values in Figure 4a. Variable “s” in Figure 4a refers to 

supersaturation (ratio of solute concentration to solubility at equilibrium). The growth rates 

calculated using the activation barrier values obtained from the GCM method are compared with 

the literature values of growth rates in Figure 4b. The concentration, hydration number, and 

volume values are obtained from the literature9 that allows converting mole fractions from the 

GCM approach to the change in hydration number. The activation barrier values match closely 

with the literature.9 However, since the relationship between activation barrier and growth rate is 

exponential, the minor difference in the prediction is amplified exponentially during the 

calculation of growth rates. The morphology obtained from these growth rate values is validated 

in the literature and hence the average growth rate values are shown.9  

 The interaction parameter table for the case of antisolvent crystallization is more complex 

as the antisolvent (ethanol) adds more functional groups. The interaction parameters for this case 

are shown in Table S2Error! Reference source not found. of the supplementary information. 



The role of antisolvent in crystallization is to reduce solubility by reducing the interaction of solute 

molecules with the solvent. The energy required to replace the antisolvent molecules is 

significantly lower; hence, the reference phase is based on the number of water molecules in the 

solvation shell. Hence, all the interaction parameters between antisolvent and surface phase are 

also set to zero.10 Glutamic acid and histidine have some of the common functional groups. All of 

the common interaction parameter values in Table S3 are obtained from Table 1. The values that 

are not common with glutamic acid and optimized using GCM and ASST approach are 

highlighted. 

With the help of optimized interaction parameters, the activation barrier for the growth of 

histidine crystal was predicted and compared with literature values.10 Since the activation barrier 

values for various mole fractions of ethanol are reported in the literature, the growth rates at various 

mole fractions were calculated. The comparison is shown in Figure 4. 

 

Figure 5: Comparison of activation barrier and growth rate values calculated from the GCM 

approach with the values reported in the literature10 for the case of histidine antisolvent 

crystallization. (a) Comparison of activation barrier and (b) comparison of growth rates. The solid 

line represents the reference where the values match exactly. 

 For the case of antisolvent crystallization, the activation barrier values show a slightly 

higher mismatch than in the case of glutamic acid. The mismatch can be attributed to the added 

complexity due to the addition of antisolvent functional groups. The mismatch is similarly 

amplified in the growth rate calculations. However, with only a few interaction parameters, GCM 

predicted growth rates from 24 antisolvent crystallization experiments. Performing and controlling 

such experiments is not trivial, as it requires equipment like DLS (Dynamic Light Scattering) or 

FBRM (Focused Beam Reflectance Measurement) probe36 where the particle chord length can be 

measured every 2 seconds. But depending on orientation and aspect ratio the predictions might 

differ. Further, in our previous work,10,37 we calculated growth rate experimentally by  capturing 

time-lapse images (every 3 mins) of the crystallization compartment using a built-in color camera 

(LC 30, Olympus America Inc.) of the optical microscope under the reflected light mode which 

were processed using MATLAB. 



 The optimized interaction parameters can be used for other systems as well. Glycine and 

alanine are the two molecules that have similar functional groups, have growth rate values reported 

in the literature, and have important applications.32,33 For glycine, the face-specific growth rates 

are reported allowing the prediction of morphology based on the growth rates obtained from GCM 

and ASST. Since the hydration number for glycine and alanine is not reported in the literature, the 

reverse problem needs to be solved twice: for the bulk solvated phase and then for the reference 

phase. In the case of glutamic acid and histidine, solving for the bulk solvated phase mole fraction 

was not necessary as the values were already reported in the literature.9,10 The interaction 

parameters for glycine and alanine are shown in Table S3 and Table S4 of the supplementary 

information, respectively. 

The interaction parameters for alanine are exactly the same as glutamic acid. The only 

difference between glutamic acid and alanine is the CH3 functional group. According to the 

UNIFAC group interaction parameter database, the simple alkane functional groups are similar. 

Hence the interaction parameter values do not change. However, the group-specific van der Waals 

radius and volume fraction are different for alanine, resulting in variation in the prediction of mole 

fraction from the same interaction parameters. 



 

Figure 6: Growth rates of glycine and alanine crystals calculated using GCM and ASST and 

compared with literature.32,33 Face-specific growth rates of glycine allow predicting and comparing 

the morphology as well. (a) Glycine face-specific growth rates, (b) alanine growth rates (dominant 

face), (c) Glycine morphology obtained from growth rates calculated from GCM and ASST and 

compared with experimental morphology. 

The growth rates obtained from the GCM and ASST approach for glycine and alanine 

crystals with the help of optimized interaction parameters and the glycine crystal morphology are 

shown in Figure 6. GCM and ASST reproduce the experimental growth rates reasonably. The 

critical length of h-vectors of glycine and alanine required to obtain face-specific parameters for 

the calculation of growth rates are given in Figure S3 of the supplementary information. Although 

the plots show greater mismatch at high supersaturations, the morphology predicted from these 

growth rates is not significantly different from the experimental morphology. This phenomenon is 

shown in glycine crystals.33 The mismatch is only due to the relative area of the {011} face. The 

{111} family of faces were assumed to have similar growth rates to the {011} family to complete 



the crystal hull of glycine crystal. Growth rates of {111} family of faces are not explicitly reported 

in the literature. 

 

Figure 7: Effect of solvent composition and group interactions on the crystal growth rates. 

 The approach described in this article can also be used to understand the effect of solvent 

composition and group interactions on the crystal growth rates, as shown in Figure 7. The effect 

of 0.5 mole fraction of methanol, ethanol, and propanol on the growth rates of glutamic acid and 

histidine molecules was analyzed using GCM and ASST approaches, as shown in Figure 7a. For 

both molecules, GCM predicts the highest growth rate in water. For glutamic acid, the growth rate 

goes down as higher molecular weight antisolvent is used. However, the growth rate for histidine 

is higher for ethanol as an antisolvent than methanol and propanol. Such behavior can be directly 

attributed to solubility. Glutamic acid has the highest solubility in water, and the solubility reduces 

as antisolvent with higher molecular weight is used. For histidine, the solubility is higher when 

ethanol is used as antisolvent than methanol or propanol as antisolvents. This result shows that 

GCM and ASST effectively capture the equilibrium properties even when crystallization is 

inherently a non-equilibrium process. The effect of group interaction parameters is shown in 

Figure 7b. Error in estimating GCM parameters would propagate to the absolute growth rates 

prediction, as shown in Figure S4 of supplementary information. Since the errors are propagated 

proportionally, morphology predictions will not be affected. Certain pairs of interactions were 

removed from the interaction parameter table to analyze which interactions contribute most to the 

growth rates. As expected, the charged functional groups such as carboxylic acid and quaternary 

amine have the most effect on the growth rates. It further corroborates the GCM and ASST 

approach. 

5. Conclusion 

 The article presents a newer approach to understanding crystallization and studying crystal 

growth kinetics.38 Crystallization is inherently stochastic, involves a large number of molecules, 

and is difficult to control. However, understanding the dynamics of fully solvated and partially 

desolvated molecules reduces the degree of freedom required to apply known thermodynamic 



models. More importantly, understanding the change in the number of solvent molecules in the 

solvation shell and its effect on the activation barrier allows for forming an optimization problem 

to predict the change in the number of solvent molecules. This optimization problem can be solved 

in different ways, and the solution to this optimization problem using GCM and ASST is shown 

in this manuscript. 

 The rapid estimation of growth rates using this procedure exhibits certain limitations. It 

may not yield accurate results in cases of poor mixing, while the spiral growth model offers 

reasonable estimations under low supersaturation conditions. Additionally, the Group 

Contribution Method (GCM) approximation is worth noting, as interactions of a specific group 

within one molecule may not necessarily mirror those in another molecule. Apart from these 

limitations, the growth rates obtained from GCM and ASST match reasonably with the growth 

rates reported in the literature based on the predicted morphology. The computational approach 

described in this manuscript is also significantly resource inexpensive compared to estimating 

growth rates using molecular simulation techniques. The efficient Ant Colony optimization 

coupled with an effective sampling method allows finding minimum error in a large solution space.  

 The prediction of morphology is particularly important in pharmaceutical crystallization to 

reduce the costs of post-processing the crystals after the purification steps. The functional groups 

studied in this manuscript are most commonly seen on active pharmaceutical ingredient (API), as 

well as in the solvents used for crystallization of such APIs. Applying GCM and ASST to 

understand the effect of the solvent environment and predict the morphology can significantly 

reduce the costs involved in performing large-scale high throughput crystallization experiments. 

Furthermore, the GCM and ASST can be used to design the solvents for crystallization using 

Computer Aided Molecular Design (CAMD) approach. 

Nomenclature: 

𝑥𝑖 –  Mole fraction of 𝑖𝑡ℎ species (obtained from previous literature MD simulations) 

𝛾𝑖 –  Activity coefficient of 𝑖𝑡ℎ species (estimated using ASST and GCM) 

𝜑 –  Chemical Potential (estimated using ASST) 

𝑅 –  Gas Constant  

𝑇 –  Temperature (operating condition) 

Γ𝑠 –  Adsorption capacity of the adsorbent (parameter) 

𝐺𝐸 –  Excess Gibb’s free energy (estimated using ASST) 

𝑚𝑜 –  Molar mass of adsorbent (parameter) 

𝑛𝑖 –  Molar quantity of component 𝑖 (estimated using MD simulations) 

𝑀𝑜 –  Molecular weight of the adsorbent (parameter) 

𝒬𝑔 –  van der Waals surface area (parameter) 



𝜃𝑚 –  Surface area fraction (estimated as a part of GCM) 

Ψ𝑛𝑚 –  Temperature-dependent parameter (estimated as a part of GCM) 

𝑎𝑛𝑚 –  Group interaction parameter between the groups of type 𝑛 and 𝑚 (estimated with   

optimization) 

Subscript: 

𝑖 –  component 𝑖 

𝑜, 𝑖 –  pure phase component 

Superscript: 

𝑏 –  bulk phase 

𝑠 –  surface phase 

∗ –  reference phase 

Supporting Information 

Details of the double well approach, group contribution methods, overall calculation schemes, and 

interaction parameters are provided in the supporting information.  
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