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Abstract 

The induction time for the onset of nucleation is known to decrease with increasing 

solution supersaturation. A large variation in induction time is experimentally observed for 

various organic crystals, whose origin is often associated with the stochastic nature of the 

nucleation process. Although several empirical models for induction time and nucleation rate 

have been developed, they remained highly unreliable, with model predictions differing by 

orders of magnitude from experimental measurements. A satisfactory explanation for the 

induction time variation has not been developed yet. We report here that the variations in 

induction times can be attributed to a previously unrecognized consequence of the phase-

separation or emulsification of supersaturated solution, in addition to the effect of stochastic 

nucleation. A large-scale Brownian dynamics simulation of antisolvent crystallization of 

histidine in a water-ethanol mixture is performed to demonstrate the mechanism of 

microphase/emulsion formation in supersaturated solutions and its consequence on induction 

time variation. Furthermore, we show that the average induction time depends on 

supersaturation, and the supersaturation-dependent diffusion of histidine molecules governs the 

stochastic nature of the induction time. Moreover, at varying supersaturations, the likelihood of 

forming stable and metastable polymorphs of histidine was estimated. This approach provides 

valuable insights into the crystallization behavior of histidine and predicted induction time 

reasonably matches the experimentally observed induction time.   

1. Introduction 

Understanding the role of the solvent environment and dynamics of solute-solvent 

interactions enable efficient synthesis of crystalline materials using the process of 

crystallization.1 The process of crystallization is versatile and is applied to synthesize diverse 

types of materials.2-5 However, the underlying stochastic nature of the intricacies involved in the 

process results in variation in the induction time of crystallization and, in turn, affects the 

outcome of crystallization.6, 7 This variation at the same operating conditions is commonly 

observed for crystallization processes that involve the non-covalent self-assembly of molecules.8 

Furthermore, the stochastic nature of the nucleation also leads to variations in induction times for 

the formation of crystal nuclei.9, 10 The relationship between induction time, solute-solvent 

interactions, and the local solvent environment is not fully understood. 

The change in the induction time of the crystallization process is attributed to the changes 

in local supersaturation. Variations in local supersaturation, caused by the Brownian motion-

driven local fluctuations of solute concentrations and temperature11, affect the nucleation and 

growth rates of crystals.12 The empirical correlations of the inherent rates and the supersaturation 

are commonly used to control the crystallization process.13 However, such an approach relies on 

average properties and does not account for deviations due to local density differences. 

Previously, it has been shown that local density and temperature fluctuations affect the growth 

rates of crystals.11 The effect of diffusion on the local density of solute molecules has also been 

previously considered. Such studies rely on the assumption that growth units are spherical, which 

is most commonly a case for the crystallization of nanocrystalline materials.14, 15 None of the 

studies have predicted the induction time. Furthermore, a large number of molecules involved in 



the formation of the critical nucleus and their non-equilibrium behavior add more complexity to 

the problem. Hence, it is necessary to build a computational framework that considers the 

underlying molecular attachment events that lead to nucleation (referred to as “events” from here 

on) and gain mechanistic insights into such events that occur over longer timescales. 

The theoretical and experimental methods to understand the induction time and its 

relationship to supersaturation are motivated based on empirical correlations and classical 

nucleation theory.16, 17 Most commonly, a large number of experiments are performed, and the 

experimental results are fitted to the empirical model to obtain the values of the parameters 

involved. In the case of limited experimental data, a large-scale parameter search is performed to 

determine the values of the parameters involved.18 Furthermore, experimental methods have 

evolved that allow continuous crystallization at constant supersaturations using microfluidic 

devices.19-21 Although such methods have allowed greater control over the crystallization 

process, the mechanistic details are still unknown. 

The computational approaches aimed at understanding the non-covalent self-assembly of 

relatively larger molecules rely on coarse-graining approaches.22-24 Colloidal or polymeric 

particles are coarse-grained into simpler geometric shapes that reduce the number of degrees of 

freedom.25-29 Such reduction in the degrees of freedom coupled with the use of scaled variables 

allows large-scale simulations that can simulate crystallization using techniques such as 

Molecular Dynamics (MD), Brownian dynamics (BD), and kinetic Monte-Carlo techniques.30-32 

However, the parameterization of the force fields and the validation of the results obtained from 

such simulations is not trivial. Such explicit molecular simulations of inorganic and small 

organic molecules have also been performed. These simulations have estimated the energy 

change required for the formation of crystals but are limited to smaller timescales and a lower 

number of molecules in the simulation box.33, 34 

We use a coupled approach of molecular dynamics and Brownian dynamics to gain 

mechanistic insights over longer timescales and maintain the information obtained from smaller 

timescale events. The molecular dynamics simulations of histidine antisolvent crystallization 

were performed at various mole fractions of ethanol (xeth) (in the ethanol-water mixture) and 

supersaturation ratios (σ) with water and ethanol as solvent and antisolvent, respectively. 

Histidine has two polymorphs – stable polymorph A and metastable polymorph B.16 With the 

help of a semi-classical double-well approach, the activation energy of histidine molecules at the 

transition state was calculated. The configuration at the transition state was also used to explore 

the energy landscape at various supersaturations to understand the probability of forming stable 

and metastable polymorphs. The MD simulation details and the details of the calculation of the 

energy landscape are given in Sections S1 and S2 of the supporting information, respectively. 

Furthermore, the position and velocity of histidine molecules were analyzed, and the information 

was then used to obtain drift and diffusion terms for the Brownian dynamics simulations scheme. 

The histidine molecule was coarse-grained into two beads connected for the BD simulation 

framework. The BD simulation was performed to calculate the position of the center of mass of 

the beads as a function of time.35 The BD simulation details are given in Section S3 of the 

supporting information. The trajectories of BD simulations were then analyzed to calculate the 



local fluctuations in the supersaturation, understand the timescale of polymorph-specific events, 

and calculate the induction time. Figure 1 summarizes the work performed in this article. 

 

Figure 1: Overview of the method used to relate molecular events to the induction time of 

histidine antisolvent crystallization. Molecular dynamics simulations were performed to 

understand the dynamics of solute-solvent-antisolvent interactions and to calculate the activation 

barrier for the growth of crystals. Histidine molecules were coarse-grained into two beads 

connected to each other. The position and velocity obtained from MD simulations were used to 

simulate the center of mass of coarse-grained Histidine molecules using BD simulations. The BD 

simulation reveals the monophasic and biphasic behavior of molecular self-assembly, which is 

then related to the fluctuations in the induction time. 
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2. Methods 

Molecular Dynamic (MD) simulations of histidine in solvent/antisolvent mixture were performed 

using GROMACS36, a high-performance molecular dynamics package.  We performed 24 

simulations, that included ethanol mole fractions of 0 to 0.5 and the corresponding 

supersaturation values of 1.2, 1.5, 2 and 2.5. Supersaturation ratio is defined as the ratio of the 

concentration of solute in the solvent/antisolvent mixture to the saturation concentration of solute 

in the solvent/antisolvent mixture at a given temperature. Additional information about these MD 

simulations, the theoretical and experimental solubilities (Table S1 of the supplementary 

information), as well as information on trajectory analysis, is provided in Section S1 of the 

supplementary information. Secondly, the transition state and the energy of transition were 

calculated based on the double-well approach, which was further used to calculate the interaction 

energy landscapes as explained in Section S2 of the supporting information. Finally, the mean 

square displacement and velocity correlation functions were analyzed from the MD simulations 

and further used to develop a Brownian Dynamics simulation scheme as described in Section S3. 

The output from the MD simulations was used to develop the coarse-grained model for BD 

analysis. The overall flowchart of the method is shown in Figure S1.   

3. Results and Discussion 

Molecular dynamics simulations at different mole fractions and supersaturations were 

performed. The activation energies for the attachment of histidine molecules were calculated. 

The polymorph-specific events were identified with the help of MD simulations. Histidine 

molecules were classified into two states – (i) fully solvated and (ii) partially desolvated. The 

classification into either of the thermodynamic states of the histidine molecule (fully solvated or 

partially desolvated) was based on the number of solvent (water) molecules in the solvation shell 

of histidine and the pairwise distance between solute molecules. The solvation shell thickness of 

histidine was found to be 0.63 nm.37 The transition state and the activation barrier required to 

achieve the transition state is calculated using the semi-classical double-well approach (Figure 

S2). The transition state is the step before the integration of molecules into crystal surface. To 

understand the most likely polymorph obtained after transition, we plotted the interaction energy 

landscapes. The interaction energy landscape is obtained by calculating energy of all possible 

configurations of transition state. The interaction energy is the total contribution of van der 

Waals and electrostatic energies. Such an approach has been previously used for cooling 

crystallization of glutamic acid molecules34, 38 and antisolvent crystallization of histidine 

molecules. However, the interaction energy landscape of histidine is not yet reported in the 

literature. Figure 2 shows the interaction energy landscape of histidine molecules. The 

interaction energy landscape shows the most likely configuration of histidine molecules after the 

transition state is achieved. The color map represents the energy values at every rotation of the 

histidine molecules. The x- and y- axes are chosen so that every configuration will has a unique 

position on the energy surface. 

The structural similarity region, shown by dashed curves on the energy landscape, is 

calculated by comparing the all-atom theoretical structures with the experimentally obtained 

crystal structures of the two polymorphs of histidine.39 Further details of such calculations are 



given in Section S2 of the supplementary information. In the energy landscapes of low 

supersaturations (σ) of 1.2 and 1.5, shown in Figure 2a-2b, the global minimum in the energy 

landscape is enveloped by the similarity region of stable polymorph A. Arrows indicate the 

locations of the global minimum. It agrees with the experimental evidence that at low 

supersaturations, stable polymorph is obtained as the crystallization outcome. The global 

minimum is enveloped by the metastable polymorph B at high supersaturations of 2 and 2.5, 

shown in Figure 2c-2d. These computational calculations agree with the experimental 

observation that the metastable polymorph B is crystallized at high supersaturation values. The 

interaction energy landscapes allow the calculation of polymorph-specific probability as a 

function of supersaturation. The probability was calculated based on the ratio of the weighted 

average of the number of low-energy regions enveloped by the similarity region of the specific 

polymorph and the weighted average of all the low-energy regions. The polymorph-specific 

probability as a function of supersaturation is shown in Figure S3 of the supporting information. 

The interaction energy landscape yields configuration-specific information that leads to 

either histidine polymorph. The brownian dynamics simulation method was used to understand 

the dynamics of histidine molecules at a longer timescale using a higher volume of the 

simulation box. Traditionally, the drift and diffusion terms of the Brownian dynamics equation 

are calculated by coarse-graining the molecule under consideration and then applying the force 

balance to derive a Fokker-Planck-like diffusion equation. In this case, based on the geometry of 

the individual histidine molecule, the histidine molecule is coarse-grained into two spherical 

beads joined together. The Brownian dynamics simulation scheme is then derived using the 

trajectories of the MD simulation to solve for the center of mass of the coarse-grained histidine 

molecule. The validation against MD trajectories is performed by analyzing mean squared 

displacement (MSD) and velocity autocorrelation (VAC) functions. 



 

Figure 2: Interaction energy landscape of histidine as a function of supersaturation (σ). (a) σ = 

1.2, (b) σ = 1.5, (c) σ = 2, and (d) σ = 2.5. Distances are given in nm, and the scale bars show the 

energy of interaction between the configurations at the transition state. Regions inside the dashed 

curve have theoretical crystal structures similar to that of the experimentally observed ones. The 

dashed brown curve shows the similarity region of the stable polymorph A, and the dashed violet 

curve represents the similarity region of the metastable polymorph B. Arrows point to the global 

minima of the energy landscape.   

The validation of BD simulation against MD simulation trajectories is shown in Figure 

3a-c. The analysis simulations performed at xeth = 0.5 and σ = 1.2 are shown here as it effectively 

captures the effect of antisolvent. The change in the MSD of the histidine molecule as a function 

of time is linear, as shown in Figure 3a, indicating that the histidine molecule is undergoing pure 

diffusion. This result is significant because it validates the most common experimental 

observation that solute molecules mostly undergo pure diffusion during crystallization regardless 

of supersaturation. Furthermore, based on the fitting of the diffusion coefficient as a function of 



xeth and σ shown in Figure 3c, the local solvent-antisolvent environment changes the effective 

diffusion coefficient. 

Simulating the diffusion of the particles using the Brownian dynamics simulation scheme 

also requires that the Gaussian random process effectively captures the effect of the solvent 

environment. The impact of the solvent environment on the velocity of histidine molecules is 

understood with the help of velocity autocorrelation (VAC) functions. VAC is calculated by 

averaging the velocity at different time step values and yields insights into the average motion of 

molecules over time scales (Section S3).36 VAC is shown in Figure 3b for xeth = 0.5 and σ = 1.2. 

The average of VAC, regardless of the timestep given on the x-axis, is around zero. It implies 

that the drift function is equal to zero, and the diffusion function of the Brownian dynamics 

simulation scheme should be a local supersaturation-dependent diffusion coefficient. Also, this 

result indicates that the velocity of histidine molecules does not depend on the previous timestep 

and the effect of forces can be modeled with the help of a Gaussian random process with a mean 

of zero. The MSD analysis and VAC analysis together suggest that the motion of histidine is 

Brownian motion. Hence, the Brownian dynamics simulation scheme can be effectively applied 

to understand the dynamics of histidine crystallization at longer timescales. 

 

Figure 3: Validation of the BD simulation against mean squared displacement (MSD) and 

velocity autocorrelation (VAC) function obtained from the MD simulation trajectories and the 

theoretical diffusion coefficient. (a) MSD Validation, xeth = 0.5, and σ = 1.2, (b) VAC 

Validation, xeth = 0.5, and σ = 1.2, and (d) Theoretical effective diffusion coefficient. In panels 

(a) and (b), the solid black line represents the results obtained from the BD simulation, the 

dashed red line represents the results obtained from the MD simulations, and the shaded portion 

represents the standard deviation of BD simulation results. 

The Brownian dynamics simulation scheme was used to simulate the motion of histidine 

molecules with higher box volume and a greater number of molecules in the simulation box as 

per the desired concentration. The number of molecules in the BD simulations is scaled based on 

previously reported values.37 Higher box volume allows dividing the simulation box into smaller 

bins to effectively analyze the local concentration experienced by each histidine molecule. Such 

analysis yields the local distribution of the supersaturation. This analysis is shown in Figure 4. 

The supersaturation distributions yield mechanistic insights into the process of antisolvent 

crystallization. Increasing xeth at constant σ, as shown in Figure 4a, or increasing σ at constant 

xeth as shown in Figure 4b, depicts the variations in frequency (of events leading to 



crystallization) caused by the effect of decreasing diffusion coefficient. However, the distribution 

of local supersaturation is significantly different. In all the cases, the distribution average is the 

supersaturation value the simulation box represents. It can be seen that, even in the extreme case 

of xeth = 0.5 and σ = 2.5 considered in this article, some of the histidine molecules experience an 

undersaturated local environment. At xeth = 0 and σ = 1.2, the distribution of the supersaturation 

has two peaks. The initial peak represents the molecules that are undersaturated. Although the 

overall box is supersaturated, the solute molecules are experiencing two distinct thermodynamic 

states locally. Such biphasic behavior is experimentally observed for some crystallization 

systems.40, 41 As xeth increases, the distribution becomes wider such that two distinct peaks 

disappear, indicating that the number of events where molecules experience an undersaturated 

local environment has decreased. In Figure 4a, the case of xeth = 0.5 has the widest distribution. 

However, as supersaturation increases, as shown in Figure 4b, the two peaks reappear, 

indicating that the effect of an increase in supersaturation is not uniform across the simulation 

box. Such observation also explains the empirical statement that it is difficult to control the 

process of crystallization at high supersaturations42. Although the average supersaturation of the 

box is around 2.5, there are a significant number of events (> 45%) where histidine molecules do 

not experience the local environment of supersaturation is 2.5. 

The emulsification or biphasic behavior, elucidated in Figure 4c, is more pronounced at 

lower mole fractions and supersaturations. As the mole fraction of ethanol increases, the solute 

molecules experience more uniform supersaturation across the simulation box. Such transitions 

from biphasic to monophasic behavior, as shown in Figure 4a, explain the experimentally 

observed exponential changes in the induction times at the same supersaturation but varying 

mole fractions.9 Particularly, for histidine, the induction time is around a few hours at low mole 

fraction values. However, induction time reduces to a few seconds as the mole fraction increases. 

This biphasic behavior can be attributed to the concentration-dependent diffusion coefficient of 

the histidine molecules. Higher concentration reduces the effective diffusion coefficient, which 

in turn results in higher time required to achieve local supersaturation equal to the bulk 

supersaturation. If the simulations where the local supersaturation distribution has two peaks are 

performed for much longer times, then the peak farther away from the bulk supersaturation value 

would vanish and make the distribution of local supersaturation sharper. 

 

Figure 4: Analysis of local fluctuations in supersaturation and time span of the events leading to 

polymorph formation. (a) Local fluctuations in supersaturation as a function of xeth at constant 



bulk supersaturation ratio σ = 1.2, (b) local fluctuations in supersaturation at various bulk 

supersaturation ratios (σ) at constant xeth = 0.5, and (c) elucidation of biphasic behavior due to 

local fluctuations. 

The formation probability obtained from the interaction energy landscape analysis can be used to 

apply boundary conditions in the BD simulation. At any event, when two molecules are in a 

favorable configuration for the formation of either polymorph, a random number is generated 

and compared to that of formation probability to check if the event leads to crystal formation. 

Without such boundary conditions, results are purely based on kinetics (motion). The boundary 

conditions based on the probability allow consideration of crystal structure formation energetics 

during the BD simulation. The results for both cases are shown in Figure S4 of the 

supplementary information. In both cases, the number of kinetic events leading to stable 

polymorph A formation is the highest. However, energetics play an essential role- as the 

supersaturation increases, the energetic contribution required for the formation of the stable 

polymorph A increases, thus leading to a lower number of events of polymorph A at higher 

supersaturation. A transition point where the number of events leading to the formation of both 

polymorphs is almost equal occurs at the supersaturation value of 1.6. The results depicted in 

these figures are obtained from BD simulation of up to 0.1 μs and with a timestep of 1 ns. 

The Brownian dynamics simulations also allow calculating the timespan of each event 

that the histidine molecule is experiencing. For the formation of a crystal, it is necessary that the 

histidine molecules experience a local environment favorable for crystallization for a time 

greater than the characteristic time. The characteristic time is the inverse of the rate constant of 

the molecular attachment. The rate constant values were calculated with the help of the transition 

state theory, and the activation barrier was calculated from the semi-classical double-well 

approach. The details of these calculations are given in Section S4 of the supplementary 

information. At every time step during the simulation, the local supersaturation values and the 

lifespan (retention time) of each local supersaturation event is stored. The lifespan of each event 

is then compared with the characteristic obtained from the rate constant values. The 

configuration information leading to specific polymorphs obtained from energy landscape 

(Figure 2) analysis coupled with the characteristic time required for the formation of polymorph 

allows counting the events feasible for the formation of crystal. Figure 5a-5b show the events 

leading to metastable polymorph B at low (σ = 1.2) and high (σ = 2.5) supersaturations. The pink 

shaded represents the characteristic time of formation of polymorph B at σ = 1.2 and is given as 

a reference. As supersaturation increases, the characteristic time decreases. The curves show the 

distribution of the lifetime of the events that represent the formation of polymorph B. At xeth = 0, 

the characteristic timescale is significantly higher, indicating that it is difficult to crystallize 

polymorph B at low supersaturation. As the supersaturation increases, the number of events and 

their lifetime also increases. In the case of xeth = 0.5, the characteristic time is lower, indicating 

that achieving the transition state is the only rate-limiting step, and the energetics of the crystal 

structure formation will most likely govern the crystallization outcome. It also further indicates 

that the induction time is lower when histidine is crystallized at higher values of xeth. The 

empirical observation validates this result that induction time for crystallization of histidine at 

lower xeth (~0.1) is reported to be in hours, and at higher xeth (~0.1) is reported to be in minutes. 



 

Figure 5: Frequency of events leading to crystallization based on kinetics and energetics of the 

histidine molecules and predicted induction times plotted against the experimentally observed 

induction times. (a) frequency of events leading to crystallization at xeth = 0, (b) frequency of 

events leading to crystallization at xeth = 0.5, and (c) predicted vs. experimentally observed 

induction times. The solid black line in panel (c) is the reference line where the predicted 

induction time equals the experimentally observed induction time. 

Experimental induction times and critical nuclei sizes were obtained from the literature.9, 

43 In the literature, the critical nuclei sizes are reported as the thickness (in nm) of growth units 

based on the unit cell of histidine.37 These thickness values are used to calculate the volume of 

growth unit at each supersaturation, which in turn denotes the number of histidine molecules 

required to form the critical nucleus. The induction time is then calculated as the time needed to 

achieve the number of attachment events leading to crystal structure formation equal to the 

number of histidine molecules in the critical nucleus. The predicted induction time is higher than 

the experimentally observed induction time. One of the reasons could be the under prediction of 

the rate of attachment. When two monomers surrounded by a solvation shell interact 

substantially, a more significant number of solvent molecules must be removed from the shell 

than when a monomer interacts with a crystal nucleus containing a smaller number of solvent 

molecules. The present work is limited to the combination of two monomers, which has 

relatively higher energy than a monomer attaching to a crystal nucleus and is, therefore the 

reason for the longer estimated induction time. Additional discrepancies can occur due to 

numerical error from multiple sources: (i) MD simulation trajectory fluctuations, (ii) coarse-

graining for BD simulations, or (iii) critical nuclei size calculations. However, the timescale of 

the crystallization of histidine is effectively captured in this approach.  

The information about induction time from previous results is summarized in Figure 6. 

Empirically, supersaturation is a measure of the chemical potential of the solution.44 However, 

for the formation of crystal nuclei, it is also necessary for histidine molecules to diffuse, form a 

dense phase, and nucleate into crystals. As the mole fraction of ethanol increases, the number of 

solute molecules in the simulation box also decreases (Table S2). It results in solute molecules 

having a higher effective diffusion coefficient (De). Hence, at high mole fraction and low 

supersaturation, the number of molecules experiencing local supersaturation closer to bulk 

supersaturation is higher. At constant mole fraction, as supersaturation raises, it again increases 

the De of histidine molecules resulting in a broad distribution of local supersaturation centered 

around the bulk supersaturation value (Figure 4). The change in the diffusion coefficient affects 



the lifespan of the histidine molecule clusters that are necessary to form crystal nuclei (Figure 

5). The diffusion coefficient dictates the uncertainty in the induction time (Figure 6a), while the 

bulk supersaturation dictates the average induction time (Figure 6b).  

 

Figure 6: Molecular origins of the induction time. (a) Stochastic nature of crystallization arising 

due to the diffusion of molecules during the crystallization process and (b) Effect of 

supersaturation on induction time.  

4. Conclusion 

The results presented connect the variations in local concentration to the measurable 

quantities such as supersaturation and induction time. We have shown that the emulsification, the 

formation dense microphases that are distinct from average bulk phase during crystallization 

affect the crystallization outcome. The study presented in the article uncovers the relationship 

between the inherently stochastic nature of nucleation and the kinetics and energetics of 

molecular motion during the self-assembly process. The diffusion of molecules and the local and 

bulk supersaturation values affect the self-assembly of molecules during the process of 

crystallization. The diffusion coefficient dictates the distribution of local supersaturation, which 

in turn impacts the lifespan of the events leading to the formation of crystals. The bulk 

supersaturation dictates the chemical potential of the solution, which affects the average 

induction time of crystallization. 

The critical information from each step of the method is captured and implemented in the 

further stages to retain the necessary features. In the initial step, the semi-classical double-well 

approach captures the transition state, and the interaction energy landscape yields polymorph-

specific configuration information. In the final step, BD captures the local variations in 

supersaturation and the probable crystallization outcome based on the energy landscape from the 

previous step. Importantly, it is shown that the molecules with lower molecular weight can be 

simulated using the BD simulation approach. The position and velocity fluctuations are essential 

to understand if the BD simulation approach is valid. 



The longer timescale simulations yield mechanistic insights into the local environment 

experienced by the solute molecule. The volume of the simulation box considered in this study is 

much smaller than that of a real crystallizer. Yet, it is seen that a significant fraction of molecules 

does not experience the local environment with supersaturation equal to or higher than the 

average supersaturation represented by the concentration of the simulation box. The lower 

supersaturation results attachment events that occur at timescale smaller than the characteristic 

time for the formation of crystals. The addition of antisolvent helps reduce the characteristic time 

required for crystal formation. However, a higher concentration of antisolvent and higher 

supersaturation leads to broad asymmetric distribution of local supersaturation. All of the 

observations together explain the inherently stochastic nature of the process of crystallization. 

The energetic contribution incorporated into the BD simulation framework uncovers the 

transition point near the supersaturation value of 1.6. Furthermore, such BD simulation coupled 

with classical nucleation theory allows the calculation of induction times using only computer 

simulation. The predicted induction time reasonably matches the experimental induction time, 

given the numerical errors arising from various steps in the simulation framework. The 

conclusions stated in the article together point to the necessity of crystallization control strategies 

that take into account the local fluctuations in the concentration of the crystallizer. 

 

Supporting Information 

Details of the molecular dynamics simulation results, double-well potential and energy landscape 

calculations, velocity autocorrelation and Brownian dynamics (BD) simulation details, and 

calculation of characteristic time are provided in the supporting information.  
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Synopsis: A mechanism of microphase or emulsion formation in supersaturated solutions is 

identified. A large variation in induction time is experimentally observed for various organic 

crystals, whose origin is often associated with the stochastic nature of the nucleation process. 

Here we reveal that such variations in induction times can be attributed to a previously 

unrecognized consequence of emulsification in supersaturated solution.  

 


