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Abstract. Quantifying continuous discharge can be diffi-

cult, especially for nascent monitoring efforts, due to the

challenges of establishing gauging locations, sensor proto-

cols, and installations. Some continuous discharge series

generated by the National Ecological Observatory Network

(NEON) during its pre- and early-operational phases (2015–

present) are marked by anomalies related to sensor drift,

gauge movement, and incomplete rating curves. Here, we in-

vestigate the potential to estimate continuous discharge when

discrete streamflow measurements are available at the site

of interest. Using field-measured discharge as truth, we re-

constructed continuous discharge for all 27 NEON stream

gauges via linear regression on nearby donor gauges and/or

prediction from neural networks trained on a large corpus of

established gauge data. Reconstructions achieved median ef-

ficiencies of 0.83 (Nash–Sutcliffe, or NSE) and 0.81 (Kling–

Gupta, or KGE) across all sites and improved KGE at 11 sites

versus published data, with linear regression generally out-

performing deep learning approaches due to the use of target

site data for model fitting rather than evaluation only. Esti-

mates from this analysis inform ∼ 199 site-months of miss-

ing data in the official record, and can be used jointly with

NEON data to enhance the descriptive and predictive value of

NEON’s stream data products. We provide 5 min composite

discharge series for each site that combine the best estimates

across modeling approaches and NEON’s published data.

The success of this effort demonstrates the potential to estab-

lish “virtual gauges”, sites at which continuous streamflow

can be accurately estimated from discrete measurements, by

transferring information from nearby donor gauges and/or

large collections of training data.

1 Introduction

Discharge, or streamflow, is a fundamental measure in hy-

drology, biogeochemistry, and river science more broadly. A

measure of water volume over time, discharge is used to infer

the theoretical watershed runoff (the depth of water “blanket-

ing” the land surface, or depth over time), which in turn is

integral to understanding watershed processes such as chem-

ical weathering (White and Blum, 1995). Accurate, and at

least daily, discharge estimates are essential components of

nearly any quantitative study of physical or chemical water-

shed or river processes at the ecosystem scale. Determina-

tions of solute fluxes (Bukaveckas et al. 1998), gas exchange

rates (Hall, 2016), ecosystem metabolism (Odum, 1956), and

sediment transport (Graf, 1984) all require well-constrained

estimates of discharge.

Despite its centrality to so many fields of study, dis-

charge is a notoriously difficult metric to capture on a reg-

ular basis, especially in free-flowing systems, as it may vary

greatly with annual cycles and weather events (Turnipseed

and Sauer, 2010). Established institutions like the United

States Geologic Survey (USGS), Environment and Climate

Change Canada (ECCC), and the National Water and Sanita-

tion Agency (ANA) in Brazil have honed their instrumen-

tation, methods, and monitoring locations over decades to

generate reasonable discharge estimates, even under extreme

conditions (Benson and Dalrymple, 1967; Hirsch and Costa,

2004); however, nascent and/or small-budget monitoring ef-

forts face several challenges. Critically, hundreds of these

efforts are constantly occurring within academic research

groups, municipalities, counties, and other entities building

smaller gauge networks with much less expertise and sup-
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port and smaller budgets than gauging programs supported

by dedicated national programs.

Not including purely model-based methods for discharge

prediction (Manning, 1891; Hsu et al., 1995; Durand et al.,

2023), automated discharge estimation requires the careful

construction of an empirical “rating curve” by which dis-

charge can be continuously inferred from the water level or

“stage” (but see Shen, 1981). To build such a relationship,

technicians must sample discharge and stage at points cov-

ering the range of observable flow, ideally including flood

stage. In dynamic systems, this rating curve must be regu-

larly updated. Point estimates of discharge can be collected

using acoustic Doppler current profiling (Moore et al., 2017),

manual flow meter profiling, or light-based methods (Wang,

1988) to determine the average cross-sectional velocity, or

via conservative tracer injections (Tazioli, 2011). In many

streams, two or more of these methods must be employed,

depending on the conditions (Turnipseed and Sauer, 2010).

During 10-year or 100-year floods, no method may be viable

or safe. Even under regular storm conditions, a technician

may be unable to mount a sampling effort quickly enough to

capture peak flow, or they may produce an inaccurate mea-

surement. As a result, rating curves may remain in a state

of insufficiency for years, during which time high discharge

estimates are unreliable, especially where they are made by

extrapolating beyond the observed maximum flow.

Gauge placement presents another obstacle to the rapid

deployment of discharge monitoring stations (Isaacson and

Coonrod, 2011). Stage measured via pressure transduction is

susceptible to bias and nonlinearity under turbulent flow con-

ditions (Horner et al., 2018). Sensors placed in a depositional

area may be buried by sediment, and installations in forested

watersheds or debris flow regions may be destroyed during

floods. Often, equipment must be relocated at least once be-

fore a new gauge site can be properly established. Even an es-

tablished stage–discharge rating curve must be regularly up-

dated and maintained because the bed of the river can change

as sediment is deposited or excavated, altering the relation-

ship between stage and flow.

For some studies aiming to quantify stream or watershed

processes that require continuous discharge time series, the

establishment of a high-quality monitoring station may be

infeasible. Where co-location of the site of interest with an

existing stream gauge is also infeasible, record-extension

(Hirsch, 1982; Nalley et al., 2020) and gap-filling (Harvey

et al., 2012; Arriagada et al., 2021) techniques cannot be

employed, as these rely on prior knowledge of the statisti-

cal properties of the discharge time series being augmented.

In such scenarios, streamflow reconstruction or prediction

techniques are suitable, as these may proceed a priori or

from minimal observation. Reconstruction typically involves

methods that leverage the correlation between a partially

measured target site and nearby “donor” (predictor) gauges.

Discharge may also be quantified in the absence of direct

measurements at the target location via statistical (Chokmani

and Ouarda, 2004), mechanistic (Regan et al., 2019), or ma-

chine learning (Kratzert et al., 2022) modeling techniques.

Here, we use both linear regression (ordinary least squares

(OLS), L2/ridge, segmented) and deep learning (long short-

term memory recurrent neural network, or LSTM-RNN)

approaches to reconstruct discharge from the early opera-

tional phase (2015–2022) of the National Ecological Ob-

servatory Network (NEON), a time during which site se-

lection issues and rating curve development rendered many

site-months of discharge estimates potentially unreliable

(Rhea et al., 2023a). Our goal was to achieve Kling–

Gupta efficiency (KGE) scores greater than those of the

official NEON continuous discharge product at as many

sites as possible. A secondary goal was to improve tempo-

ral coverage of the official record where it contains gaps.

For researchers intending to use NEON continuous dis-

charge data between 2015 and 2022, the results of this ef-

fort, as well as efforts by Rhea et al. (2023a), can en-

sure that data gaps and questionable periods in the offi-

cial record are replaced by high-quality estimates wherever

possible. We provide composite discharge series for all 27

NEON stream gauge locations, built from the best NEON-

published estimates and the best estimates generated by this

study (https://doi.org/10.6084/m9.figshare.c.6488065, Vlah

et al., 2023c). Composite series can be visualized at https:

//macrosheds.org/data/vlah_etal_2023_composites/ (last ac-

cess: 3 February 2024).

The success of this effort demonstrates the viability of

“virtual gauges” (sensu Philip and McLaughlin, 2018; not

to be confused with the “virtual staff gauges” of Seibert et

al., 2019). In this study, we use the term to describe sites at

which discrete discharge observations can be used to fit or

evaluate models that generate continuous flow. For accurate

results, field measurement campaigns should prioritize char-

acterizing the distribution of possible flow conditions, rather

than achieving any particular threshold number of observa-

tions. Methods like those presented could be used to reduce

the cost and simplify the process of establishing streamflow

monitoring sites, especially in river networks that are already

partially gauged.

2 Methods

2.1 Data selection, acquisition, and processing

We used the “neonUtilities” package (Lunch et al., 2022)

in R to retrieve NEON discharge data. Officially released

(NEON, 2023c) and provisional (NEON, 2023b) field mea-

surements were used to fit linear regression models and

evaluate all models, as these data were collected directly

by NEON technicians using a combination of state-of-the-

art methods, including acoustic Doppler current profiling

(ADCP; Moore et al., 2017), conservative salt tracer releases

(Tazioli, 2011), and flow meter measurements (Pantelakis et
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al., 2022). We used quality-controlled “finalQ” values where

available, or “totalQ” values (taken directly from the flowme-

ter) in their absence. We refer to NEON’s discharge field

measurements hereafter as, e.g., “the response variable” or

“response discharge time series” in the context of linear re-

gression or as the “target” variable in the context of machine

learning. In either context, we refer to the 27 NEON sites for

which discharge predictions were generated as “target sites”

or “target gauges” (Table 1).

Continuous discharge data (NEON, 2023a) were also re-

trieved via neonUtilities. We used RELEASE-2023 and not

provisional data in this case. These data were used to fine-

tune a subset of site-specific neural network models and to

construct composite discharge series. Provisional continuous

discharge data were not used. Evaluation results used to dis-

tinguish likely reliable vs. potentially unreliable subsets of

NEON’s RELEASE-2023 continuous discharge time series

per site-month were provided by Rhea et al. (2023a) and ac-

cessed through HydroShare (Rhea, 2023). Continuous ele-

vation of surface water data are available, but approximately

one-third of all site-months are marked by a disagreement be-

tween the reported surface elevation and the measured stage

or by likely sensor drift (Rhea et al. 2023a). We therefore

chose not to use surface elevation to inform our models,

though it no doubt contains predictive value.

Donor gauge data for linear regression analysis were

acquired primarily from the US Geological Survey’s Na-

tional Water Information System (NWIS), using the “dataRe-

trieval” package (DeCicco et al., 2022) in R. NWIS gauge

ID numbers are provided in cfg/donor_gauges.yml at the

GitHub and Zenodo links below. Additional donor gauge

data from Niwot Ridge LTER and Andrews Forest LTER

were retrieved from the MacroSheds dataset (Vlah et al.,

2023a) via the package “macrosheds” (Rhea et al., 2023b)

and from the EDI data portal (Johnson et al., 2020), respec-

tively.

We used the original CAMELS dataset (Newman et al.,

2014; Addor et al., 2017), the USGS National Hydro-

logic Model with Precipitation-Runoff Modeling System

(NHM-PRMS; hereafter NHM; Regan et al., 2019) and the

MacroSheds dataset as training data for neural network sim-

ulations of discharge data at each target site. CAMELS

watershed attributes were generated for MacroSheds and

NHM sites using the code provided at https://github.com/

naddor/camels (last access: 12 April 2023), except where

otherwise indicated in Table 2, and daily Daymet me-

teorological forcings (Thornton et al., 2022; sensu New-

man et al., 2015) were retrieved via Google Earth Engine

(Gorelick et al., 2017). All code for this project can be

found on GitHub at https://github.com/vlahm/neon_q_sim

(last access: 3 February 2024) or in the Zenodo archive at

https://doi.org/10.5281/zenodo.10067683 (Vlah, 2023). All

data sources and links are provided in Table A2.

2.2 Donor gauge selection

Candidate donor gauges were identified by visually exam-

ining an interactive map of NEON gauges, USGS gauges,

and MacroSheds gauges (https://macrosheds.org/ms_usgs_

etc_reference_map/megamap.html, last access: 3 Febru-

ary 2024), generated with the package “mapview” (Appel-

hans et al., 2022) in R. We also used the National Water

Dashboard of the USGS (https://dashboard.waterdata.usgs.

gov/app/nwd/en/?aoi=default, last access: 11 April 2023) to

identify active gauges in Alaska, USA. For each target site,

up to four donor gauge candidates were selected on the ba-

sis of spatial proximity and geographic similarity to the target

site (Fig. 1). Generally, no greater than this number of gauges

were even remotely reasonable candidates (i.e., within 50 km

of the target site; not in an urban area; not downstream of a

reservoir), but for one target site (MCRA) we had 10 nearby

candidate gauges to select from – all associated with the An-

drews Experimental Forest in western Oregon State, USA. In

this case, we chose three candidate sites representing catch-

ments upstream of the target site (GSWS08), downstream

of the target site on the MCRA mainstem (GSLOOK), and

downstream on a tributary of MCRA (GSWS01).

Barring gauges on reaches that are subject to overt human

influence, the exact methods used to choose donor gauges are

of little consequence so long as informative donor gauges are

not overlooked. In practice, there will usually be just a few, if

any, potential donor gauges available for a given location. If

multiple donor gauges are included in a regression, L2 reg-

ularization (ridge regression) should be used to account for

their covariance (see Sect. 2.4)

2.3 Target sites

All 27 lotic (flowing) aquatic sites associated with NEON

were included as target sites for discharge prediction in this

study (Fig. 1). The sites TOMB, BLWA, and FLNT are in-

stalled on major rivers, downstream of hydropower dams.

All other sites have been free of any dam influence since

2012 at the latest, and are designated “wadeable streams”

by NEON. In addition to the three sites above, hydrology at

BLUE, GUIL, KING, MCDI, and ARIK may be influenced

by agricultural activity, especially in the relatively arid Mid-

west (i.e., the states KS, CO, and OK). Continuous discharge

data for TOMB are provided by a nearby gauge of the US Ge-

ological Survey’s National Water Information System, and

are given at hourly intervals, rather than at NEON’s custom-

ary 1 min intervals.

2.4 Linear regression and model selection

All donor and response discharge time series were neglog

transformed (Eq. 1; Whittaker et al., 2005) before fitting lin-

ear regression models.

xneglog = sign(x) log(|x| + 1) (1)
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Figure 1. Map of target sites (NEON) and donor gauge candidates for three target sites: MCRA (McRae Creek, state of Oregon), REDB

(Red Butte Creek, state of Utah), and GUIL (Rio Guilarte, Puerto Rico). © OpenStreetMap contributors 2023. Distributed under the Open

Data Commons Open Database License (ODbL) v1.0.

Series were scaled by 1000 before transformation, in order

to reduce the disproportionate impact of adding one to every

value. Response observations were synchronized to the in-

terval of the predictor series by approximate datetime join,

allowing forward or backward timeshifts of up to 12 h if nec-

essary.

One of three forms of linear regression was employed at

each site, depending on the number and location of donor

gauges and the donor–target gauge relationships. For sites

with a single donor gauge (REDB, HOPB, BLUE, SYCA,

LECO), the considered predictors were discharge from the

donor gauge, a four-season categorical variable, and their in-

teraction. Additionally, an intercept parameter could be esti-

mated, or not, for each specification. Thus, up to six models

were fitted using OLS regression (Galton, 1886), ensuring

at least 15 observations per model parameter. At LECO, an

additional dummy variable was included to address an inter-

cept change due to a wildfire in November 2016. The best

model was selected via 10-fold cross-validation, minimizing

the mean squared error (MSE). MSE, being a squared-error

term, disproportionately penalizes the inaccurate prediction

of high discharge values and helps to balance against the rel-

ative rarity of high discharge measurements in the field data.

At site SYCA, the log-log relationship between discharge at

the target gauge and a single donor gauge exhibited a dis-

tinct breakpoint, and segmented least-squares regression was

used (R package “segmented”; Muggeo, 2008). At all other

sites (19 in total), predictors included discharge series from

2–4 donor gauges, season, and all interactions. To control

overfitting and shrink covarying coefficients toward zero, we

used L2 regularization (ridge regression; Gruber, 2017) via

the R package “glmnet” (Friedman et al., 2010). As with

the other regression approaches, 10-fold cross-validation and

MSE loss were used for model parameter selection – in this

case for the value of the penalty hyperparameter λ, which

was set to the mean across folds of λ producing the mini-

mum cross-validated error. Unlike OLS and segmented re-

gression, ridge regression uses biased estimators that com-

plicate the calculation of prediction intervals. We generated

95 % prediction intervals for ridge regression discharge es-

timates using the 95th percentiles of 1000 bootstrap predic-

tions at each prediction point, which were generated from

1000 resamples of the fitting data stratified by season. We

emphasize that these prediction intervals should be conser-

vative estimates of the true uncertainty, as they do not fully

account for uncertainty due to bias (Goeman et al., 2012).

For each site, we fitted two sets of models as described

above, one with discharge scaled by watershed area (i.e.,

“specific discharge” in the surface water hydrology sense)

prior to transformation and one without areal scaling. Only

one model from each set was ultimately selected for each

target site; this was done on the basis of the Kling–Gupta ef-

ficiency (KGE; Gupta et al., 2009), a composite model effi-

ciency metric that incorporates measures of correlation, vari-
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Table 1. Target sites for discharge prediction. See https://www.neonscience.org/field-sites (last access: 15 Julu 2023) for more information.

Site code Full name State (USA) Watershed area (km2) Mean watershed elevation (m)

TOMB Lower Tombigbee River AL 47085.3 20

BLWA Black Warrior River AL 16159.4 22

FLNT Flint River GA 14999.4 30

ARIK Arikaree River CO 2631.8 1179

BLUE Blue River OK 322.2 289

SYCA Sycamore Creek AZ 280.3 645

OKSR Oksrukuyik Creek AK 57.8 766

PRIN Pringle Creek TX 48.9 253

BLDE Blacktail Deer Creek WY 37.8 2053

CARI Caribou Creek AK 31.0 225

MCDI McDiffett Creek KS 22.6 396

REDB Red Butte Creek UT 16.7 1694

MAYF Mayfield Creek AL 14.4 77

KING Kings Creek KS 13.0 324

HOPB Lower Hop Brook MA 11.9 203

LEWI Lewis Run VA 11.9 152

BIGC Upper Big Creek CA 10.9 1197

GUIL Rio Guilarte PR 9.6 551

LECO LeConte Creek TN 9.1 579

MART Martha Creek WA 6.3 337

WLOU West St Louis Creek CO 4.9 2908

CUPE Rio Cupeyes PR 4.3 157

MCRA McRae Creek OR 3.9 876

COMO Como Creek CO 3.6 3021

TECR Teakettle Creek – Watershed 2 CA 3.0 2011

POSE Posey Creek VA 2.0 276

WALK Walker Branch TN 1.1 264

ance, and bias. We also report the percent bias and Nash–

Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970), a mea-

sure of predictive accuracy that implicitly compares predic-

tions to a mean-only reference model.

Predictions were generated for all time points during

which data were available at the selected donor gauges. At

target site COMO, a secondary model omitting one donor

gauge was able to produce 36 % more predictions than the

selected model, so our predicted discharge at COMO is a

composite of both models, with the better model’s predic-

tions preferred where available. We were unable to locate

sub-daily donor gauge data near COMO, so regression pre-

dictions for this site were generated at daily intervals. Re-

gression predictions for all other sites were generated at sub-

daily intervals matching the coarsest interval across predictor

gauges – generally 15 min, though it should be noted that in

most cases these predictions were interpolated to 5 min for

our composite discharge product.

2.5 Neural network setup and operation

Supplementing the linear regression methods described

above, we simulated discharge data at all 27 target sites using

long short-term memory recurrent neural networks (LSTM-

RNNs; hereafter “LSTMs”; Hochreiter and Schmidhuber,

1997). Four LSTM strategies were employed, all of which

involved training on a large and diverse corpus of stream

discharge data (Table 3). Two of these strategies included

further finetuning to the time-series dynamics of each tar-

get site in turn. Due to the relative scarcity of field-measured

discharge observations (between 39 and 213 per site; mean

122), none were used in LSTM training. Instead, these mea-

surements were used only to evaluate predictions. LSTMs

trained in this study are intended only for discharge predic-

tion within the temporal and spatial bounds of NEON’s early

operational phase, not for forecasting or application to other

sites. Therefore, all available daily training data were used as

such; no validation set was kept for hyperparameter tuning,

and no holdout set of daily estimates was kept for evalua-

tion (note that split-sample designs may be undesirable more

generally: Arsenault et al., 2018; Guo et al., 2018; Shen et

al., 2022). See Kratzert et al. (2019b) and Read et al. (2019)

for split-sample considerations in the context of a generalist

and process-guided generalist LSTM, respectively.

After a hyperparameter search routine, described below,

potentially skilled models were identified as those achieving

at least 0.5 KGE and 0.4 NSE. The best-performing poten-

tially skilled LSTM for each site (if applicable) was then

https://doi.org/10.5194/hess-28-545-2024 Hydrol. Earth Syst. Sci., 28, 545–573, 2024
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re-trained 30 times, forming an ensemble. Ensembles were

trained for 18 of 27 sites. LSTM predictions included in our

composite discharge product are means taken across the dis-

tributions of ensemble point predictions. Uncertainty bounds

were computed as the 2.5 % and 97.5 % quantiles of these

distributions. LSTM skill was evaluated on the basis of mean

ensemble efficiency (KGE) with respect to field-measured

discharge (Table A1).

Daily discharge time series (training data) and field-

measured discharge were scaled by watershed area. For each

predicted day, LSTMs received five dynamic Daymet mete-

orological forcing variables and 11 static watershed attribute

summary statistics (Table 2). Multitask learning (Caruana,

1998; Sadler et al., 2022) was found to improve discharge

prediction broadly in a preliminary analysis, so Daymet min-

imum air temperature was used as a secondary target vari-

able. Kratzert et al. (2019a) found that a maximum of about

150 preceding days were able to influence the LSTM output

in a similar prediction problem, so we set the input sequence

length to 200 d to ensure full utilization of available informa-

tion. In other words, for each day of prediction, the model

was able to leverage information from the preceding 200 d.

We employed the four different training pipelines de-

scribed in Table 3. Of the 671 CAMELS watersheds (i.e.,

basins), we used a subset of 531 with undisputed areas of

less than 2000 km2 (Newman et al., 2017). For finetuning

data, we used version 1 of the MacroSheds dataset (Vlah

et al., 2023a). We excluded MacroSheds sites outside North

America and those with a coastal or urban hydrological in-

fluence, for a total of 133 sites out of the 169 that are cur-

rently available. We chose MacroSheds sites for finetuning

because the MacroSheds and NEON datasets focus primarily

on small watersheds, often smaller than 10 km2 in area, while

only eight CAMELS watersheds are smaller than 10 km2

and most are larger than 100 km2 (Vlah et al., 2023a). The

daily mean discharge computed from NEON’s continuous

discharge product was used, but only for those site-months

deemed Tier 1 or Tier 2 by Rhea et al. (2023a), alongside

MacroSheds data for finetuning.

For the process-guided strategies, we used NHM estimates

for all reaches coinciding with a CAMELS or MacroSheds

gauge, for a total of 551 reaches. Only nine target sites on

relatively high-order streams were amenable to the process-

guided specialist approach, as these sites are on reaches large

enough to be modeled by the NHM. The most recent version

of the NHM at the time of this writing provides discharge

estimates beginning in 1980 and ending in 2016, just before

the installation of most NEON target sites.

LSTMs were configured in R and trained using v1.3.0 of

the NeuralHydrology library in Python (Kratzert et al., 2022;

Van Rossum and Drake, 2009) on the Duke Compute Cluster

at Duke University, Durham, NC, USA. All trained models

used the Adam optimizer (Kingma and Ba, 2014) and Neu-

ralHydrology’s “NSE loss” function after an initial evalua-

tion in which we compared it to the MSE and root mean

squared error (Table 4). Learning was annealed using a se-

ries of three fixed rates for pretraining and for round one of

finetuning according to Eq. (2):

r =







a, eε{0, . . ., [E
3
]}

a
10

, eε{[E
3
], . . ., [ 2E

3
]}

a
100

, eε{[ 2E
3

], . . .,E},

(2)

where r is the learning rate, a is any power of 10 between 0.1

and 10−7, and E is the number of training epochs. Learning

rate was annealed using a series of two fixed rates for round

two of finetuning according to Eq. (3):

r =

{

a
10

, eε{0, . . ., [E
2
]}

a
100

, eε{[E
2
], . . .,E}.

(3)

Learning rate and other hyperparameters were selected via

an inexhaustive (pseudo) grid search (Table 4), i.e., we spec-

ified a sequence of possible values for each hyperparame-

ter and randomly selected from them to specify 30 models

for each generalist. For each site, one specialist model was

then configured to further finetune each of the 30 generalists,

again using a partial grid search to define any mutable hyper-

parameters. Otherwise, hyperparameters were inherited from

the previous training period (Table 4). Due to our incomplete

hyperparameter search procedure, better combinations prob-

ably exist. We elected not to exhaustively pursue optimal hy-

perparameter combinations due to the computational demand

of a full grid search and a lack of access via NeuralHydrol-

ogy to callback methods necessary for implementation of a

true random search (Bergstra and Bengio, 2012).

All LSTM models were outfitted with fully connected,

single-layer embedding networks to efficiently encode in-

puts as fixed-length numerical vectors (Arsov and Mirceva,

2019). Separate embedding networks were used for static and

dynamic inputs, with 20 neurons for static inputs and 200

neurons for dynamic inputs. All embedding neurons used the

hyperbolic tangent activation function. Another advantage of

embedding networks in the context of the NeuralHydrology

library is that they provide one of few opportunities to in-

troduce dropout, which can improve training efficiency and

reduce overfitting (Srivastava et al., 2014).

2.6 Composite discharge data product

This study generated time-series predictions of discharge for

each lotic NEON site using up to three distinct processes:

linear regression on absolute discharge, linear regression on

specific discharge, and one of four LSTM strategies. We pro-

vide regression predictions wherever applicable (24 of 27

sites). LSTM predictions are provided only for sites that had

promising model performance after a hyperparameter search

and for which ensemble models were therefore trained (18

of 27). All model outputs and results from this study are

archived at https://doi.org/10.6084/m9.figshare.c.6488065

(Vlah et al., 2023c).
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Table 2. LSTM input data. ∗Attribute tested as an afterthought but not included in this study due to a negligible improvement in the trial

parameter search.

Meteorological forcing data (watershed-average time series)

Maximum air temp 2 m daily maximum air temperature (◦C)

Precipitation Mean daily precipitation (mm d−1)

Solar radiation Daily surface-incident solar radiation (W m−2)

Vapor pressure Near-surface daily average vapor pressure (Pa)

PET Potential evapotranspiration (mm); estimated using Priestley–Taylor

formulation with gridded alpha product (Aschonitis et al., 2017)

Watershed attributes (statistics computed over full record)

Precipitation mean Mean daily precipitation (mm d−1)

PET mean Mean daily potential evapotranspiration (mm d−1); estimated using

Priestley–Taylor formulation with gridded alpha product (Aschonitis et

al., 2017)

Aridity index Ratio of PET mean to Precipitation mean

Precip seasonality Seasonality of precipitation; estimated by representing annual precipi-

tation and temperature as sine waves. Positive values indicate summer

peaks, while negative values indicate winter peaks. Values near 0 indi-

cate uniform precipitation throughout the year.

Snow fraction Fraction of precipitation falling on days with temp < 0 ◦C

High precipitation fre-

quency

Frequency of high-precipitation days (days with ≥ 5× mean daily pre-

cipitation)

High precip duration Average duration of high precipitation events (number of consecutive

days ≥ 5× mean daily precipitation)

Low precip frequency Frequency of dry days (days with precipitation < 1 mm d−1)

Low precip duration Average duration of dry periods (number of consecutive days with pre-

cipitation < 1 mm d−1)

Elevation Catchment mean elevation (m)

Slope Catchment mean slope (m km−1)

Area Catchment area (km2)

Source∗ Binary indicator for NHM estimates – process-guided LSTMs only.

Target data (time series)

Discharge Specific discharge, or discharge normalized by watershed area. The

same quantity may be referred to as “runoff” in other studies (mm d−1).

Minimum air temp 2 m daily minimum air temperature (◦C)

In addition to predictions from individual model-

ing strategies, we provide an analysis-ready discharge

dataset for all 27 sites that splices the best avail-

able predictions across methods – including published

NEON estimates (NEON, 2023a) – into composite se-

ries (https://doi.org/10.6084/m9.figshare.c.6488065, Vlah et

al., 2023c), which can be visualized interactively at https:

//macrosheds.org/data/vlah_etal_2023_composites/ (last ac-

cess: 3 February 2024). Composite series for each NEON

site begin at the start of site operation and extend to at most

30 September 2021, the last date included in the 2023 re-

lease of NEON’s continuous discharge product. We also pro-

vide individual model predictions extending through 2022. A
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Table 3. LSTM model training pipelines used in the simulation of discharge at target sites. Here, “NEON” refers to NEON’s continuous

discharge product, RELEASE-2023, with quality-flagged estimates and < Tier-2 site-months (according to Rhea et al., 2023a) removed. n/a

– not applicable.

Model type Phase 1 Phase 2 Phase 3

Generalist Pretrain on CAMELS Finetune on

MacroSheds + NEON

n/a

Specialist Pretrain on CAMELS Finetune on

MacroSheds + NEON

Finetune on NEON tar-

get site

Process-guided

generalist

Pretrain on CAMELS

+ CAMELS-NHM

Finetune on

MacroSheds +

MacroSheds-NHM +

NEON + NEON-NHM

n/a

Process-guided

specialist

Pretrain on CAMELS

+ CAMELS-NHM

Finetune on

MacroSheds +

MacroSheds-NHM +

NEON + NEON-NHM

Finetune on NHM esti-

mates for target site

Table 4. LSTM hyperparameter search space for all model types, and the selected values (bold) used for pretraining. These were observed

to allow for both malleability and high performance of subsequent finetuning iterations over nearly 2000 exploratory LSTM trials. The

relationship of a to learning_rate is defined in Eqs. (2) and (3). See the NeuralHydrology documentation for parameter definitions: https:

//neuralhydrology.readthedocs.io/en/latest/usage/config.html (last access: 25 May 2023).

LSTM parameter Pretrain Finetune 1 Finetune 2 (specialists only)

hidden_size 20, 30, 40, 50 20, 30, 40, 50 20, 30, 40, 50

output_dropout 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 0.2, 0.3, 0.4, 0.5 0.2, 0.3, 0.4, 0.5

learning_rate a 10−2, 10−3, 10−4, 10−5 10−2, 10−3, 10−4, 10−5 10−2, 10−3, 10−4, 10−5

batch_size 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512 32, 64, 128, 256, 512

epochs 20, 30, 40, 50, 60 20, 30, 40 10, 20, 30

finetune_modules N/A head, lstm, head & lstm head, lstm

target_variables discharge, discharge & min air temp discharge, discharge & min air temp discharge, discharge & min air temp

loss NSE, MSE, RMSE NSE, MSE, RMSE NSE, MSE, RMSE

complete list of products from this study, and their links, can

be found in Table A3.

To construct composite series, we first distinguished

“good” site-months of NEON discharge estimates as those

categorized as Tier 1 or Tier 2 by Rhea et al. (2023a). For a

NEON site-month to meet the requirements for at least Tier

2, four requirements must be met. The linear relationship be-

tween stage, determined from pressure transducer readings,

and field-measured gauge height must score at least 0.9 NSE.

The transducer-derived stage series must also pass a drift test

relative to gauge height, but only if sufficient data exist to

perform such a test. The rating curve used to relate stage

to discharge must score at least 0.75 NSE, and fewer than

30 % of predicted discharge values may exceed the range

of measured discharge used to build the curve. See Rhea et

al. (2023a) for further details.

Although only 50 % of NEON’s RELEASE-2023 esti-

mates are classified as Tier 1 or Tier 2, the remainder may

still be of high analytical value if NEON’s quality control in-

dicators and uncertainty bounds are observed. We also stress

that NEON rating curves and protocols improved over the

course of its early operational phase and continue to do so.

We then ranked the available predictions for each site, as-

signing a rank of 1 either to predictions from linear regres-

sion or to NEON’s continuous data product, depending on

the overall KGE and NSE against the field-measured dis-

charge. KGE was considered first and used to determine pref-

erence, except in cases where the difference between NSE

scores was greater than that between KGE scores and oppo-

site in sign. Rank 2 predictions were then used to fill gaps

of 12 or more hours in the rank 1 series, but only “good”

NEON site-months were included. Only after this first round

of gap-filling were the remaining NEON data incorporated,

with site-years achieving at least 0.5 KGE and 0.5 NSE

against the field-measured discharge being used to fill still-

remaining gaps. Finally, daily LSTM predictions (placed at

12:00:00 UTC on the day of prediction) were used to fill any

recalcitrant gaps, but only if produced by an ensemble model

achieving at least 0.5 KGE and 0.5 NSE across all field dis-

charge observations. Note that while such benchmarks are in
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common use (Moriasi et al., 2015), the efficiency that any

model can or should achieve varies substantially with the

hydroclimate and watershed characteristics of a given site

(Seibert et al., 2018). We provide all data and code for mod-

ifying the composite discharge product in accordance with

alternative benchmarks as users see fit. After visual examina-

tion of composite series plots, we chose to prefer NEON pre-

dictions to linear regression predictions at site ARIK, “good”

or not, due to frequent sharp discontinuities between the two

predicted series. See Table A1 for an account of the linear

regression and LSTM methods used in the construction of

ensemble series.

The prevailing interval varies across data sources used

to assemble our composite discharge product from 1 min

(NEON) to 1 d (LSTM predictions; regression predictions

at site COMO). Regression predictions were primarily gen-

erated at 15 min intervals, and their timestamps are always

divisible by 15 min. Around the prevailing NEON interval

there is considerable variation due to data gaps and sen-

sor reconfigurations, both across sites and across the tem-

poral ranges of each site’s record. To reduce the complexity

associated with irregular time-series analysis, we synchro-

nized the interval across data sources to 5 min. Regression

estimates were linearly interpolated to 5 min, though gaps

larger than 15 min were not interpolated. NEON estimates

were first smoothed with a triangular moving average win-

dow of 15 min to remove unrealistic minute-to-minute noise

associated with Bayesian error propagation. They were then

interpolated the same way as the regression estimates and

finally downsampled to 5 min, with some timestamps being

shifted by up to 2 min. For example, for a sampling duration

of 30 min, a sample taken at 00:03:00 would be shifted by

2 min by rounding each timestamp up to the nearest minute

divisible by 5.

3 Results

A performance comparison of linear regression on discharge

from donor gauges and four LSTM strategies is shown in

Figs. 2 and A1 and detailed in Table A1. Via linear regres-

sion, we were able to produce 15 min discharge estimates at

11 sites with overall KGE scores higher than those of pub-

lished series (Fig. 2). At four of the same sites, we achieved

a higher KGE via LSTM methods, which generated daily

discharge series. Of the 10 sites at which the published dis-

charge KGE was less than 0.8, we improved five sites to

above that mark (mean 0.932, n = 5).

For 12 of 27 sites, linear regression on specific discharge

(i.e., scaled by watershed area) provided the most accurate

discharge predictions, while linear regression on absolute

discharge performed better at the other 12 sites with donor

gauges. LSTM models (as proper ensembles) outperformed

linear regression at only two sites. In general, linear re-

gression provided more accurate predictions than all LSTM

methods. Linear regression on absolute discharge produced

estimates with a median NSE of 0.848 and a median KGE

of 0.806 across sites (n = 24; Table 5). Linear regression on

specific discharge produced similar median scores (Table 5),

but with deviations of up to 0.05 NSE and 0.08 KGE at indi-

vidual sites.

Linear regression was not applicable at sites TECR, BIGC,

or WLOU due to the lack of donor gauges contemporary

with target gauge data. Donor gauges associated with Kings

River Experimental Watersheds exist within close proximity

to TECR and BIGC, but we were unable to access up-to-date

discharge records for these gauges.

The process-guided specialist LSTM yielded predictions

on par with those of the other LSTM strategies in terms of

KGE (median 0.652; n = 9), but performed worst of the four

in terms of NSE (median 0.329; n = 9). Conversely, the spe-

cialist performed better than the generalist in terms of NSE

but not KGE. The process-guided specialist LSTM strategy

was viable at nine sites for which discharge estimates were

available from the National Hydrologic Model.

In addition to improvements in accuracy, estimates from

this study inform ∼ 5981 site-days (75 %) of missing data

in the official discharge record (Fig. 3), though it should be

noted that they also omit ∼ 4486 site-days otherwise present

in NEON’s official record. Omissions occur wherever obser-

vations are missing from the records of one or more donor

gauges, and LSTM methods did not achieve the desired effi-

ciencies. Approximately 1221 site-days are missing from the

official record and from our reconstructions.

Estimated discharge time series from this study are of

practical value for any researcher using NEON continuous

discharge data, especially for those sites and site-months at

which published data from NEON’s early operational phase

may be unreliable (Rhea et al., 2023a). Figure 4 shows that

official records at sites REDB and LEWI are compromised

by disagreements (erratic sections of gray lines) between

pressure transducer stage readings and manual gauge height

recordings, as discussed in Rhea et al. (2023a). Red lines

show improved estimates via linear regression on discharge

from donor gauges. Sites FLNT and WALK show generally

close agreement between NEON discharge and our regres-

sion estimates, but the uncertainty associated with high dis-

charge values should be noted.

4 Discussion

This study was designed to produce high-quality estimates of

continuous discharge for NEON stream gauges, especially at

10 gauges for which the KGE of published continuous dis-

charge was lower than 0.8, over the full record, when com-

pared to field-measured discharge. A secondary goal was to

improve temporal coverage of the official discharge record

where possible.
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Figure 2. Efficiency of five stream discharge prediction methods and NEON’s published continuous discharge product at 27 NEON gauge

locations versus field-measured discharge. Small, white triangles represent the max/min KGE of the published discharge by water year

(1 October through 30 September) with at least five field measurements (or two for site OKSR). KGE was computed on all available

observation–estimate pairs except those with quality flags (dischargeFinalQF or dischargeFinalQFSciRvw of 1). For the best-performing

LSTM method at all sites except TECR, FLNT, REDB, WALK, POSE, and KING, the displayed KGE is averaged over 30 ensemble runs

with identical hyperparameters. For the sites just named, the performance of a chosen method after ensembling dropped below that of at

least one other method’s optimal KGE from the parameter search. For all other LSTM site–method pairs, which were not ensembled, the

displayed performance is that of the best model trained during the parameter search phase. Sites are ordered by the KGE of the NEON

continuous discharge. See Table 3 for LSTM model definitions. A KGE of 1 is a perfect prediction, while a KGE of −0.41 is similar in skill

to prediction from the mean. Negative values are truncated at −0.05 in this plot to improve visualization.

Table 5. Performance of five stream discharge prediction methods, and the official continuous discharge time-series data, across n of 27

NEON gauge locations (final column). For both the Nash–Sutcliffe and Kling–Gupta efficiency coefficients, a value of 1 indicates perfect

prediction. A value of 0 NSE indicates that the predictive skill is equivalent to prediction from the mean, while a negative NSE is worse than

mean prediction. This threshold lies at approximately −0.41 for KGE (Knoben et al., 2019). “Linreg” is linear regression on the donor gauge

discharge series, and “scaled” means that the predictor and response discharge were scaled by their respective watershed areas.

NSE KGE

Model/data Median Mean Min Max Median Mean Min Max n

Official record 0.880 0.417 −9.95 0.989 0.839 0.711 −1.50 0.964 27

Linreg 0.848 0.760 −0.038 0.993 0.806 0.746 −0.697 0.988 24

Linreg scaled 0.847 0.757 −0.037 0.993 0.807 0.743 −0.695 0.989 24

Generalist LSTM 0.473 −18.8 −498 0.904 0.634 −0.220 −20.2 0.852 26

Specialist LSTM 0.477 −12.6 −307 0.920 0.556 −0.256 −15.7 0.895 25

Process-guided generalist LSTM 0.434 −31.3 −824 0.848 0.618 −0.453 −26.4 0.869 26

Process-guided specialist LSTM 0.329 −92.0 −831 0.749 0.652 −2.40 −26.5 0.866 9

We treat NEON field-measured discharge as truth, which

means there are 39–213 observations for each target site. Al-

though these numbers represent a tremendous investment of

time and technical effort, they do not meet the high data vol-

ume requirements for most machine learning approaches, so

we used field discharge only to evaluate, rather than train,

LSTM models. By contrast, in linear regression, regardless

of the details of any particular method, we ultimately fit a

line to the relationship between donor gauge data and field

measurements at each target site. Because the linear regres-

sion models are allowed to “see” all of the target site data

(after a model is selected via cross-validation), they have a

powerful advantage over the LSTM approaches, which in

this context must essentially treat target watersheds as if they

are ungauged. Furthermore, whereas the LSTM models must

parameterize each day of prediction individually, the regres-

sion models need only parameterize relationships between

flow regimes. Still, if given enough training data, including

examples of watersheds and streams similar to each of those

modeled in this study, the LSTM approaches would eventu-

ally close the performance gap. See Figs. A2, A3, A4, A5,

A7, and A8 for linear regression diagnostics.

In this study, discharge estimates produced by linear re-

gression were more accurate than those generated by LSTM
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Figure 3. Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time series, illustrating gaps filled or informed

by estimates from this analysis. All officially published values are shown, including those with quality control flags. Sites are ordered as in

Fig. 2. Gaps smaller than 6 h are not indicated. Figure A10 is the same, but with a fixed and labeled x axis.

models in 21 of 23 comparisons (Fig. 2). This demonstrates

the value of existing gauge networks in advancing discharge

estimation at newly or partially gauged locations; however,

there is a limit to the predictive potential of linear regres-

sion methods, as they depend on a strong correlation between

streamflow at target and donor gauges. In principle, there is

no such limit for machine learning approaches, which are in-

stead limited by the quality and quantity of training data.

The process-guided specialist LSTM yielded predictions

on par with those of the other LSTM strategies in terms

of KGE, but performed worst of the four in terms of NSE,

possibly indicating that information gleaned from NHM es-

timates helped this strategy to accurately capture discharge

variance and reduce prediction bias without ultimately im-

proving the correlation between predictions and observa-

tions. Unlike KGE, NSE only explicitly captures this latter

metric (Nash and Sutcliffe, 1970; Gupta et al., 2009). Con-

versely, the specialist performed better than the generalist in

terms of NSE but not KGE, suggesting that information con-

tained in NEON’s continuous discharge product was of dis-
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Figure 4. Best linear regression predictions of continuous discharge for four NEON gauge-years compared with official NEON discharge

data. All officially published values are shown, including those with quality control flags, indicated by black marks on the lower border. Light

red bands represent 95 % prediction intervals. NEON uncertainty is not shown.

proportionate predictive value relative to each of correlation,

variance, and bias, favoring correlation.

The specialist may have been affected by data filtering

choices. After filtering NEON continuous discharge for rat-

ing curve issues, drift, and quality flags, relatively few daily

estimates were available for some sites (47–1642). Annual

and seasonal variation in meteorological forcings and dis-

charge in NEON sites’ generally small, often mountainous

watersheds may be large enough that finetuning a pretrained

LSTM on a few hundred days of site-specific data reduces its

ability to generalize at that site. Our specialist LSTM strat-

egy in particular might be improved with a broader hyper-

parameter search, especially one that explores smaller learn-

ing rates. Ideally, site-specific finetuning should enable bet-

ter prediction by allowing the network to assimilate informa-

tion unique to the target site without corrupting previously

learned generalities. For validation plots of all ensembled

LSTMs, see Fig. A6.

The process-guided specialist LSTM strategy was viable

at nine sites for which discharge estimates were available

from the National Hydrologic Model. By using a mecha-

nistic (i.e., process-based) model with higher spatial reso-

lution than the NHM, it should be possible to apply this

process-guided approach at more of the NEON sites. A po-

tentially stronger process-guided approach would use mech-

anistic model predictions as features (predictors), rather than

training targets, but that would require mechanistic model

predictions concurrent with discharge series at target sites,

whereas NHM predictions at the time of this writing are

available only through the year 2016. For a summary of

process-guided deep learning strategies, see the “Integrating

Design” subsection of Appling et al. (2022).

We caution that evaluation scores for both NEON’s pub-

lished estimates and ours are computed on a small fraction

of each series for which both an estimate and a direct field

measurement are available (39–213 per site), and that mea-

surements tend to be collected disproportionately at low flow.

This often occurs for practical reasons such as site access and

technician safety, but may also reflect a need to characterize

the low-flow variability of the stage–discharge relationship

in streams with unstable low-flow hydrologic controls, such

as unconsolidated bed material.

Whatever the reason for less sampling at high flow, any

model attempting to use field measurements to reconstruct

continuous discharge will estimate with greater uncertainty

at high flow than at low, and users of our composite dis-

charge product should observe uncertainties associated with

estimates from all methods. Mechanistic models that proceed

from physical principles, or data-driven approaches that can

generalize from prior observations, do not in principle suf-

fer this disadvantage, as they do not depend on observations

from a target site. However, these approaches may not reli-

ably generate strong predictions at all sites or under all con-

ditions (Razavi and Coulibaly, 2013; Kratzert et al., 2019b),

and may produce erratic point estimates where conditions di-

verge from past observations. Hybrid approaches that suc-

cessfully leverage field measurements, as well as physical

principles or learned relationships, are likely to yield well-

constrained predictions where our efforts did not.
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This study demonstrates that, in proximity to established

streamflow gauges, even simple statistical methods can be

used to generate accurate, continuous discharge at “virtual

gauges” where discrete discharge has been measured. The

number of field measurements across sites in this study varies

from 39 to 213, but the number required for virtual gaug-

ing may be substantially smaller than even the minimum

of this range. If the discharge relationships between a tar-

get site and all donor gauges were perfectly linear or log-

linear, they could in principle be established with only two

precise measurements at the target site. More important than

the quantity is the distribution of measurements across flow

conditions, which should be sufficient to fully characterize

all modeled discharge relationships and their linearity or lack

thereof (Sauer, 2002; Zakwan et al., 2017). Concretely, we

advocate for “storm chasing”, or disproportionately seeking

to sample discharge under high-flow conditions and during

both rising and falling limbs of storm events, rather than rou-

tine sampling. Observed NEON flow conditions relative to

predicted discharge can be seen in Fig. A9. See Philip and

McLaughlin (2018) for further commentary on establishing

a virtual gauge network, and see Seibert and Beven (2009)

and Pool and Seibert (2021) for information on the number

and statistical properties of discharge samples required to es-

tablish strong stage–discharge or discharge–discharge rela-

tionships.

5 Conclusions

Using linear regression on donor gauge data and LSTM-

RNNs, we reconstructed continuous discharge at 5 min

and/or daily frequency for the 27 stream and river mon-

itoring locations of the National Ecological Observatory

Network (NEON) over the water years 2015–2022. Rel-

ative to field-measured discharge used as ground truth,

our estimates achieve higher Kling–Gupta efficiency than

NEON’s official continuous discharge at 11 sites. We also

provide continuous discharge estimates for ∼ 199 site-

months for which no official values have been published.

Estimates from this study can be used in conjunction

with officially released NEON continuous discharge data

to enhance the analytical potential of NEON’s river and

stream data products during its early operational phase.

Toward that end, we provide composite discharge series

for each site, incorporating the best available estimates

across all methods used in this study and NEON’s published

estimates. Considering the lag of up to 2.5 years before

provisional discharge data become fully quality controlled

and officially released by NEON, our methods may also

be used to increase the rate at which discharge-associated

stream chemistry, dissolved gas, and water quality products

become fully usable by the community. All data and results

from this study can be downloaded from the Figshare collec-

tion at https://doi.org/10.6084/m9.figshare.c.6488065.

Composite series can be visualized interactively at

https://macrosheds.org/data/vlah_etal_2023_composites/

(last access: 3 February 2024). All code nec-

essary to reproduce this analysis is archived at

https://doi.org/10.5281/zenodo.10067683 (Vlah, 2023b).

A complete list of products and URLs can be found in

Table A3.

In general, linear regression methods produced more accu-

rate discharge estimates (median KGE: 0.79; median NSE:

0.81; n = 24 sites) than LSTM approaches due to the fact

that regression models were able to fully leverage avail-

able field measurements as well as highly informative donor

gauge data. Nonetheless, LSTM methods achieved a me-

dian ensemble KGE of 0.71 and an NSE of 0.56 across

18 sites, making their estimates a valuable supplement. Al-

though LSTM-generated discharge series are of daily fre-

quency, some users will prefer them to higher-resolution re-

gression estimates, as the latter may be subject to error in the

event of highly localized precipitation events affecting either

donor or target gauges, but not both.

Improvements to our design could be made in several

ways. LSTM models could be exposed to additional training

data, such as the recently published Caravan compendium

of CAMELS offshoots (Kratzert et al., 2023) or future ex-

pansions of the MacroSheds dataset (Vlah et al., 2023a).

Neural networks trained on sub-daily inputs might be better

equipped to exploit atmospheric–hydrological dynamics that

respond to both daily and annual cycles. Linear regression

methods too might be improved with the use of additional

predictors, such as continuous water level or precipitation.

The success of simple statistical methods in generating

high-quality continuous discharge time series demonstrates

the viability of “virtual gauges”, or locations at which a

small number of field discharge measurements in proximity

to one or more established gauges provide a basis for contin-

uous discharge estimation in lieu of a gauging station. Virtual

gauges have the potential to greatly expand the spatial cov-

erage of continuous discharge data throughout the USA and

any richly gauged region of the world.
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Appendix A

Table A1. Methods from this study used in the construction of composite discharge series. Composite series also incorporate the NEON

continuous discharge product DP4.00130.001 (NEON, 2023a). “linreg” is linear regression, “glmnet” is ridge regression, “lm” is OLS

regression, “segmented” is segmented regression, “abs” is absolute discharge, “spec” is specific discharge, and “pgdl” is process-guided

deep learning.

Site Linreg KGE Linreg NSE Linreg method LSTM KGE LSTM NSE LSTM method

FLNT 0.989 0.980 glmnet_spec 0.664 0.507 generalist

TOMB 0.970 0.993 glmnet_abs

HOPB 0.966 0.937 lm_abs 0.852 0.704 generalist

BLUE 0.962 0.932 lm_spec 0.746 0.567 specialist

REDB 0.946 0.973 lm_abs 0.511 0.551 generalist_pgdl

KING 0.935 0.888 glmnet_abs

LEWI 0.929 0.875 glmnet_abs 0.848 0.724 specialist

SYCA 0.919 0.938 segmented_spec

MCDI 0.912 0.897 glmnet_spec

LECO 0.877 0.833 lm_spec

MCRA 0.868 0.866 glmnet_spec 0.723 0.531 generalist

MART 0.811 0.706 glmnet_spec 0.779 0.566 generalist

POSE 0.803 0.648 glmnet_spec

MAYF 0.787 0.806 glmnet_abs 0.586 0.666 generalist

BLWA 0.779 0.892 glmnet_abs

COMO 0.771 0.806 glmnet_composite_spec

BLDE 0.744 0.863 glmnet_abs 0.744 0.687 generalist

CARI 0.721 0.637 glmnet_abs

GUIL 0.692 0.653 glmnet_abs

ARIK 0.674 0.596 glmnet_abs

CUPE 0.663 0.728 glmnet_spec

WALK 0.607 0.532 glmnet_spec

BIGC 0.895 0.827 specialist

WLOU 0.778 0.596 generalist_pgdl

TECR 0.711 0.904 generalist

PRIN

OKSR
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Table A2. Model input data used in this study.

Resource Description Source/link

NEON discharge field

collection

Discharge measurements from

field-based surveys

NEON (2023b, c)

NEON continuous dis-

charge

Discharge calculated from a rat-

ing curve and sensor measure-

ments of water level

NEON (2023a)

User-focused eval-

uation of NEON

streamflow estimates

Three-tier classification of the

reliability of NEON continuous

discharge by site-month

https://www.nature.com/articles/s41597-023-01983-w (Rhea et al.,

2023b)

CAMELS-US dataset Catchment Attributes, Meteo-

rology (and streamflow) for

Large-sample Studies

https://gdex.ucar.edu/dataset/camels.html (Newman et al., 2022)

National Hydrologic

Model (NHM)

USGS infrastructure that, when

coupled with the Precipitation-

Runoff Modeling System, can

produce streamflow simulations

at local to national scale

https://www.usgs.gov/mission-areas/water-resources/science/

national-hydrologic-model-infrastructure (Regan et al., 2019)

MacroSheds A synthesis of long-term bio-

geochemical, hydroclimatic,

and geospatial data from small

watershed ecosystem studies

https://doi.org/

10.6073/pasta/c8d6d29703f14735bf24cd8cebe91f24 (Vlah et al.,

2023b)

Daymet Gridded estimates of daily

weather parameters

https://doi.org/

10.3334/ORNLDAAC/2129 (Thornton et al., 2022)

HJ Andrews Experi-

mental Forest stream

discharge

Stream discharge in gauged wa-

tersheds, 1949 to present

https://doi.org/

10.6073/PASTA/0066D6B04E736AF5F234D95D97EE84F3 (Johnson

et al., 2020)

USGS National Water

Information System

Streamflow and associated

data for thousands of gauged

streams and rivers within the

USA

https://waterdata.usgs.gov/nwis, e.g., https://waterdata.usgs.gov/

monitoring-location/06879100/ (U.S. Geological Survey, 2016)
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Table A3. Products of this study.

Product Description Link

Composite dis-

charge time se-

ries

Analysis-ready CSVs combin-

ing the best available discharge

estimates across linear regres-

sion and LSTM approaches

from this study, and NEON’s

published data

https://doi.org/

10.6084/m9.figshare.c.6488065 (Vlah et al., 2023c)

Composite dis-

charge plots

Interactive plots of our compos-

ite discharge product

https://macrosheds.org/data/vlah_etal_2023_composites (Vlah,

2023a)

All model out-

puts and results

Complete predictions from all

linear regression and LSTM

models, run results, and diag-

nostics

https://doi.org/

10.6084/m9.figshare.c.6488065 (Vlah et al., 2023c)

All model input

data

Donor gauge streamflow, train-

ing data for LSTMs, model con-

figurations, etc.

https://doi.org/

10.6084/m9.figshare.c.6488065 (Vlah et al., 2023c)

All code asso-

ciated with this

paper

Zenodo archive of GitHub

repository

https://doi.org/

10.5281/zenodo.10067683 (Vlah, 2023)

All figures

associated with

this paper

High-resolution images of all

figures from the main body and

appendix

https://doi.org/

10.6084/m9.figshare.c.6488065 (Vlah et al., 2023c)

Figure A1. Efficiency of five stream discharge prediction methods and NEON’s published continuous discharge product at 27 NEON gauge

locations versus field-measured discharge. Small, white triangles represent the max/min NSE of the published discharge by water year (1 Oc-

tober through 30 September) with at least five field measurements (or two for site OKSR). NSE was computed on all available observation–

estimate pairs except those with quality flags (dischargeFinalQF or dischargeFinalQFSciRvw of 1). For the best-performing LSTM method,

at all sites except TECR, FLNT, REDB, WALK, POSE, and KING, displayed NSE is averaged over 30 ensemble runs with identical hyper-

parameters. For the sites just named, the performance of a chosen method after ensembling dropped below that of at least one other method’s

optimal NSE from the parameter search. For all other LSTM site–method pairs, which were not ensembled, the displayed performance is that

of the best model trained during the parameter search phase. Sites are ordered by the NSE of NEON continuous discharge. See Table 3 for

LSTM model definitions. An NSE of 1 is a perfect prediction, while an NSE of 0 is equivalent in skill to prediction from the mean. Negative

values are truncated at −0.05 in this plot to improve visualization.
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Figure A2. Observed (field) discharge vs. predictions from linear regression on specific discharge (i.e., scaled by watershed area).
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Figure A3. Observed (field) discharge vs. predictions from linear regression on absolute discharge (i.e., not scaled by watershed area).
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Figure A4. Marginal relationships between donor and target gauges for regression on specific discharge. Regression lines are shown only

for single-donor regressions fitted via OLS. Site SYCA, here exhibiting a breakpoint, was modeled with segmented regression, and thus the

regression line shown has no relevance.

https://doi.org/10.5194/hess-28-545-2024 Hydrol. Earth Syst. Sci., 28, 545–573, 2024



564 M. J. Vlah et al.: Leveraging gauge networks and strategic discharge measurements

Figure A5. Marginal relationships between donor and target gauges for regression on absolute discharge. Regression lines are shown only

for single-donor regressions fitted via OLS. Site SYCA, here exhibiting a breakpoint, could not be fitted via segmented regression in the

context of absolute discharge.
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Figure A6. Observed (field) discharge vs. ensembled LSTM predictions.
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Figure A7. Diagnostic plots for the four sites modeled by OLS regression on specific discharge.
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Figure A8. Diagnostic plots for the four sites modeled by OLS regression on absolute discharge.
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Figure A9. Density of NEON-estimated discharge (blue) relative to field-measured discharge observations (red marks).
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Figure A10. Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time series, illustrating gaps filled or

informed by estimates from this analysis. All officially published values are shown, including those with quality control flags. Sites are

ordered as in Fig. 2. Gaps smaller than 6 h are not indicated.
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Code availability. All project code is on GitHub at https://github.

com/vlahm/neon_q_sim (last access: 6 February 2024).

The code repository is archived on Zenodo:

https://doi.org/10.5281/zenodo.10067683 (Vlah, 2023b).

Data availability. All model input, output,

and diagnostics are archived on Figshare:

https://doi.org/10.6084/m9.figshare.c.6488065.v1 (Vlah et al.,

2023c). See Tables A2 and A3 for details.
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