
BOLA360: Near-optimal View and Bitrate Adaptation for
360-degree Video Streaming

Ali Zeynali
azeynali@cs.umass.edu

University of Massachusetts Amherst

Mohammad H. Hajiesmaili
hajiesmaili@cs.umass.edu

University of Massachusetts Amherst

Ramesh K. Sitaraman
ramesh@cs.umass.edu

University of Massachusetts Amherst
& Akamai Technologies

ABSTRACT
Recent advances in omnidirectional cameras and AR/VR headsets
have spurred the adoption of 360° videos, which are widely believed
to be the future of online video streaming. 360° videos allow users
to wear a head-mounted display (HMD) and experience the video as
if they are physically present in the scene. Streaming high-quality
360° videos at scale is an unsolved problem that is more challeng-
ing than traditional (2D) video delivery. The data rate required to
stream 360° videos is an order of magnitude more than traditional
videos. Further, the penalty for rebu�ering events where the video
freezes or displays a blank screen is more severe as it may cause cy-
bersickness. We propose an online adaptive bitrate (ABR) algorithm
for 360° videos called BOLA360 that runs inside the client’s video
player and orchestrates the download of video tiles from the server
to maximize the quality-of-experience (QoE) of the user. BOLA360
conserves bandwidth by downloading only those video tiles that are
likely to fall within the �eld-of-view (FOV) of the user. In addition,
BOLA360 continually adapts the bitrate of the downloaded video
tiles so as to enable a smooth playback without rebu�ering. We
prove that BOLA360 is near-optimal with respect to an optimal of-
�ine algorithm that maximizes QoE. Further, we evaluate BOLA360
on a wide range of network and user head movement pro�les and
show that it provides 6% to 110% improvements to the QoE of state-
of-the-art algorithms. While ABR algorithms for traditional (2D)
videos have been well-studied over the last decade, our work is
the �rst ABR algorithm for 360° videos with both theoretical and
empirical guarantees on its performance.

CCS CONCEPTS
• Information systems ! Multimedia streaming; • Theory of
computation ! Stochastic control and optimization.

KEYWORDS
Online video streaming, quality of experience, bitrate selection,
view adaptation, 360-degree video streaming
ACM Reference Format:
Ali Zeynali, Mohammad H. Hajiesmaili, and Ramesh K. Sitaraman. 2024.
BOLA360: Near-optimal View and Bitrate Adaptation for 360-degree Video

This work is licensed under a Creative Commons Attribution International 4.0
License.
MMSys ’24, April 15–18, 2024, Bari, Italy
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0412-3/24/04
https://doi.org/10.1145/3625468.3647607

Figure 1: (a) Users watch 360° videos bymoving their viewport
to point to any direction in the enclosing sphere (b) each
frame of the 360° video is broken up into tile frames [63].

Streaming. In ACM Multimedia Systems Conference 2024 (MMSys ’24), April
15–18, 2024, Bari, Italy. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3625468.3647607

1 INTRODUCTION
With recent advancements in omnidirectional cameras and AR/VR
headsets, users can enjoy 360° media like YouTube 360 [58], virtual
and augmented reality applications [45, 25].Users either wear a
head-mounted display (HMD) or use a device that allows them to
change their viewport and �eld-of-view (FOV)1 when watching a
360° video (see Figure 1). For instance, a user watching World Cup
soccer as a 360° video can wear an HMD and watch the game by
changing their head position as if they were actually in the stadium.

The rapid increase in the popularity of 360° videos is partly
driven by the wide availability of VR headsets that has grown more
than �ve-fold in the past �ve years to reach nearly 100 million units
in use [6]. A second trend driving the popularity of 360° videos is
the wide availability of omnidirectional cameras that make it easy
to create 360° video content. While the promise of providing an
immersive experience hasmade 360° videos the holy grail of internet
video streaming [63], providing a high quality-of-experience to
users while delivering those videos at scale over the internet is a
major unsolved problem and is the main motivation of our work.

Tiled video delivery. A common approach to deliver 360°
video from server to users (i.e., client) is to divide the entire 360°
video into same duration chunks of length X . Then, each chunk is
spatially split into a set of tiles to fully cover the viewing sphere
of the user (see Figure 1). Each tile is encoded in multiple bitrates
(i.e., resolutions) so that the quality of the tiles sent to the user can
be adapted to the available bandwidth between the server and the
client, a feature known as “adaptive bitrate streaming”. Video tiles
are streamed ahead of time and bu�ered at the client before they
can be rendered to the user. As the user changes their viewportthe

1Field of view is the spatial area that falls within the viewport of the user’s device. A
user sees only the portion of the 360° video that is within the FOV.

12

https://doi.org/10.1145/3625468.3647607
https://doi.org/10.1145/3625468.3647607
https://doi.org/10.1145/3625468.3647607
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625468.3647607&domain=pdf&date_stamp=2024-04-17

MMSys ’24, April 15–18, 2024, Bari, Italy Ali Zeynali et al.

appropriate tiles within the user’s FOV is extracted from the client’s
bu�er and rendered on the user’s display.

Challenges of 360° video delivery. A key challenge in deliver-
ing 360° videos is that they are an order of magnitude larger in size
than traditional (2D) videos [32, 27, 7]. 360° videos require multiple
tiles to cover the entire viewing sphere, each encoded in multiple
bitrates akin to 2D videos. Further, a high resolution of 4K to 8K
is recommended for viewing AR/VR media [27]. Thus, the data
rate of a 360° video that delivers a 4K stream for eight tiles and
allows the user to watch the full 360° viewing sphere is 200 Mbps,
compared to about 25 Mbps for a traditional 4K video. In fact, the
data rate of such a 360° video is an order of magnitude larger than
the US’s average last-mile bandwidth [1, 8]. Additionally, when
the user’s viewport changes, say due to a head movement, the new
tiles that fall within the user’s new FOV must be rendered within a
latency of a few tens of milliseconds so as to not cause a rebu�er-
ing event that results in showing either an incorrect/stale tile or
no tile at all (i.e., blank screen). If the “motion-to-photon” latency
exceeds a few tens of milliseconds, the user experiences a degraded
quality-of-experience, or even cybersickness [63].

Adaptive Bitrate (ABR) for 360° Videos. We investigate ABR
algorithms for handling the challenges posed by the large size
of 360° videos. While ABR algorithms for traditional 2D videos
have been extensively studied over the past decade [23, 15, 28,
57, 61, 46, 22], ABR algorithms for 360° videos are notably more
complex. They must perform both "view adaptation" by predicting
the user’s head position and potential future tile views, and "bitrate
adaptation" by determining appropriate bitrates for downloading
tiles. Importantly, these two adaptations are jointly optimized to
prioritize higher bitrates for tiles more likely to be in the user’s
viewport. Note that this challenge is di�erent from tile scheduling
problem which determines the download ordering of tiles [13].

Challenges of Naive ABR Solutions. Naive ABR algorithms
equally distribute the available bandwidth among all tiles, resulting
in downloading the sametiles for each chunk. While this approach
prevents rebu�ering by having the entire tiles of a chunk, it leads to
suboptimal video quality. An alternative approach predicts the tiles
the user is likely to watch and downloads only those tiles, reducing
the number of downloaded tiles and allowing for higher quality.
However, this approach is susceptible to rebu�ering if the user
unexpectedly switches to unpredicted tiles[24, 9, 55, 54, 2, 56, 10,
11]. Our proposed approach o�ers a provably near-optimal solution
by striking a balance between these naive extremes, achieving both
high quality and reduced rebu�ering.

Our Contributions. We leverage Lyapunov optimization tech-
niques to achieve both high bitrates and low rebu�ering by judi-
ciously downloading higher-quality tiles for tiles that are more
likely to be in the FOV of the users, while using lower-quality tiles
for the rest of the tiles as a hedge against rebu�ering. Our algorithm,
BOLA360, is a near-optimal ABR algorithm for 360° videos that also
empirically performs better than state-of-the-art algorithms. We
make the following speci�c contributions.

1) We frame the optimization of quality-of-experience (QoE) for
360° videos as the ABR360 problem. We model QoE as a weighted
sum of two terms, one term relates to the quality (i.e., bitrate) of
the video tiles viewed by the user, and the other term relates to
continuous video playback without rebu�ers.

2)We present BOLA360, an algorithm that �nds a near-optimal
solution for ABR360 in an online manner without the future knowl-
edge of inputs. In each round, BOLA360 selects a suitable bitrate for
each tile based on the current bu�er utilization. Further, there are
multiple parameters in BOLA360 that could be tuned to improve the
performance under di�erent conditions and environments.

3) We analyze BOLA360’s performance, demonstrating that (i)
it never exceeds the client’s bu�er capacity (Theorem 4.1) and (ii)
its average QoE is within a small additive constant factor of the
o�ine optimum of ABR360 (Theorem 4.2), the additive factor goes
to zero when the bu�er size goes to in�nity. Additionally, consid-
ering the playback delay – the time between tiled download and
rendering, our analysis reveals a tradeo� between playback delay
and BOLA360’s QoE, i.e., one needs to tolerate a longer playback
delay to achieve better QoE (Remark 1).

4) We implement BOLA360 on a simulation testbed and evaluate
its performance using both real and synthetic data traces. Using
trace-based simulations, we compare BOLA360 with state-of-the-art
algorithms used in VA-360 [33], ProbDASH [52], Salient-VR [50],
Flare [39], Pano [14], and Mosaic [37]. Our results show that in
comparison with QoE of the best alternative ABR algorithm, on
average BOLA360 provides 6% improvements over 14 real network
pro�les (Figure 6) and 9% improvements over 12 di�erent head
position probability distributions (Figure 8).

5) Finally, we explore two extensions to BOLA360, addressing spe-
ci�c real-world scenarios [47].While BOLA360 already demonstrates
impressive QoE, average bitrate, and rebu�ering performance, fur-
ther enhancements can be achieved by introducing heuristics on
top of its core design. We introduce BOLA360-PL and BOLA360-REP,
each targeting speci�c limitations of the original algorithm. Our ex-
periments showBOLA360-PL reduces reaction time by up to 67.8%,
while BOLA360-REP enhances both playing bitrate and reaction time
by 91.2% and 80.0%, particularly when combined with short-term
head position predictions. These heuristics o�er e�cient and prac-
tical solutions, surpassing the original algorithm’s performance.

Roadmap. The paper is structured as follows: First, we inves-
tigate the background of 360° video streaming in Section 2. Then,
we present the system model and formulate the ABR360 problem
in Section 3. In Section 4, we develop BOLA360 using a Lyapunov
optimization approach, proving its near-optimality. Section 5 eval-
uates the performance BOLA360 against state-of-the-art algorithms.
In Section 6, we introduce two enhancements for BOLA360 which
practically improves its performance. The related work is discussed
in Section 7, and we conclude in Section 8.

2 BACKGROUND
ABR Algorithm for 360° Videos. Tile-based 360° videos tempo-
rally slice the video into chunks. Each chunk is split into multiple
tiles to cover the entire 360° spatial area. Usually, each tile is en-
coded in multiple quality levels or bitrates for video streaming. The
ABR algorithm for 360° video has to select the bitrate of a tile before
downloading it. So, the action of the online ABR algorithm for each
chunk is a list of selected bitrates for each tile.

Field of View [FOV]. A 360° video is encoded in the full 360°
visual sphere. However, the human eye’s �eld of vision covers about
130°[41]. Therefore, the user interacting with the 360° video cannot
see the entire spatial area of the presented video. The part of the

13

BOLA360 MMSys ’24, April 15–18, 2024, Bari, Italy

Figure 2: One shot from the entire spatial area of 360° video
and FOV of user in that
360° video inside the user’s visible region is called Field of View
or FOV. Figure 2 shows an example of a FOV that consists a subset
of tiles of the full sphere of the 360° video seen by the user. We use
the term view to refer to the group of tiles inside the FOV. When
the user interacts with 360° video with a VR headset, the user can
arbitrarily change the FOV and view by moving their head.

Bu�er Occupancy based Lyapunov Algorithm. BOLA [47]
is an ABR algorithm optimized for single-tile 2D video streaming,
using bu�er occupancy in bitrate selection. In 360° video streaming,
besides bandwidth uncertainty, additional factors like user head
direction and FOV introduce complexity. Due to these added chal-
lenges and uncertainties unique to ABR360, traditional 2D ABR
algorithms cannot be directly applied to e�ectively solve ABR360.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

The 360° Video Model. We consider a 360° video as a sequence of
 chunks, where each chunk represents X seconds of the playback
time. Each chunk is further partitioned into ⇡ tiles to cover the
entire 360° spatial area. Each tile is encoded in" di�erent bitrates,
all of which are available at the server; the higher the bitrate, the
larger the size in bits. Let (< denote the size (bits) of a tile with
bitrate index <. We de�ne E< as the utility value the user gets
by watching a tile with bitrate index <. Therefore, we have the
following inequality.

(1  (2  ...  (" , E1  E2  ...  E" .

During the playback time of each chunk, the user views only tiles
inside their FOV. The bitrate of tiles inside the FOV directly impacts
the QoE. Downloading tiles which falls out of FOV wastes the band-
width capacity. A key challenge is that the FOV is unknown to the
bitrate selection algorithm at download time. As a result, the online
bitrate selection algorithm must predict the FOV and download tiles
based on its prediction. Let ?:,3 denote the probability of the tile3 is
inside FOV while playing :C⌘ chunk. We assume that these probabil-
ity values are given from a prediction based on the previous user’s
watching the video [3, 24, 5, 50, 34], or from a chunk analysis of the
content combined with points probability analysis of 360° sphere
[52, 40, 53]. For simplicity, we assume that the probability values
of tiles within a chunk are normalized, such that P⇡3=1 ?:,3 = 1.

Problem Formulation. In what follows, we formulate ABR360, an
online optimization problem for the bitrate and view adaptation
of 360° video streaming. In ABR360, the objective is to maximize
the expected QoE of the user, including two terms: 1) the utility
term that is related to quality of the video watched by the user,
and 2) the smoothness of streaming term that captures continuous
playback without rebu�ering. The �rst term directly depends on the
bitrate downloaded by the streaming algorithm, i.e., the higher the

bitrate, the higher the utility. The second term captures the expected
smoothness of video streaming. Rebu�ering happens when at least
one of the tiles inside FOV is not completely downloaded during
playback time. Note that the above two terms con�ict with each
other. Tomaximize the utility, an ABR algorithmmust download the
highest possible bitrate tiles. However, to maximize the expected
continuous smooth playback, the ABR algorithm must download
low-bitrate tiles. Thus, to maximize the sum of both terms, the ABR
algorithm must balance the two con�icting requirements.

We now formulate QoE mathematically to capture the utility
as the sum of the two terms * and ' . The �rst term * repre-
sents the time-average expected playback utility the video player
prepares for the user over the sequence of chunks and is de�ned as

* =
P
:=1

P⇡
3=1

P"
<=1 E{0:,3,< · ?:,3 · E<}
E{)end}

, (1)

where)end is the time the video player �nishes playback of the last
chunk, and 0:,3,< is a binary optimization variable in the ABR360
problem: 0:,3,< = 1 if bitrate index< is selected for tile 3 of chunk
: ; 0, otherwise. The second QoE term is denoted by ' , which
targets the playback smoothness as follows.

' =
P
:=1

P⇡
3=1

P"
<=1 E{0:,3,<X}

E{)end}
. (2)

That is, ' represents the ratio of the expected playback duration
of downloaded tiles to the streaming duration. A low ': when)end
greatly exceeds tiles playback duration (numerator) can lead to
rebu�ering, making a high ': indicative of continuous playback.
Unlike*: , ' inversely correlates with download time (or bitrate),
decreasing with higher bitrates. Expectations in Equation (1) and
Equation (2) are computed over the possible randomized decisions
or outcomes of the ABR algorithm solving ABR360.

Let C: denotes the time the video player completes the download
of tiles that belong to chunk : � 1 and decides about the bitrate
of tiles for :C⌘ chunk. And): shows the time interval between
�nishing downloading chunks : � 1 and : , i.e.,): = C:+1 � C: . We
use the coe�cient W > 0 to set the relative importance of the two
terms in the user’s �nal QoE, i.e., W provides an opportunity to
tune the relative importance of high-bitrate streaming with respect
to a continuous streaming experience. We formulate the ABR360
problem as follows.

[ABR360] max * + W' (3a)

s.t.,
"X
<=1

0:,3,<  1, 83,:, (3b)

&(C:)  &max, 8:, (3c)
vars., 0:,3,< 2 {0, 1}. (3d)

Constraint (3b) limits to select at most one bitrate for each tile
of a chunk. The second constraint (3c) enforces the bu�er capacity
limit, where &(C:) is the bu�er level at time C: and shows the
aggregate length of tiles available in the bu�er at time C: . &max is
bu�er capacity and depicts the maximum aggregate length of tiles
stored in the bu�er. Since the number of tiles downloaded for each
chunk is not �xed, the actual number of tiles that drain out from the
bu�er when a chunk is played can vary from chunk to chunk. To
capture this, let =: be the average number of tiles downloaded for

14

MMSys ’24, April 15–18, 2024, Bari, Italy Ali Zeynali et al.

chunks played during the downloading of chunk : . The evolution
of the bu�er level is characterized as

&(C:+1) = max[&(C:) � =:): , 0] +
⇡X
3=1

"X
<=1

0:,3,<X, (4)

where the �rst term refers to the length of tiles removed from the
bu�er during the download time of chunk : and the second term
shows the length of tiles recently downloaded.

4 BOLA360: AN ONLINE 360° ABR ALGORITHM
In this section, we propose BOLA360, a Lyapunov-based algorithm
that �nds a near-optimal solution to ABR360. BOLA360 is an online
algorithm whose decisions do not require the knowledge of future
bandwidth values.

4.1 Design and Analysis of BOLA360
The design of BOLA360 is based on three key ideas. First, BOLA360
�nds a solution for a single-slot maximization problem that leads
to a near-optimal solution for the original long-term problem over
 chunks. Note that, solving the long-term optimization problem
is not possible for the online algorithm since there is uncertainty
about the future input. Second, the single-slot decision of BOLA360
is based on the bu�er level; the higher the current bu�er level, the
higher the selected bitrate for download. This is intuitive since a
high bu�er level indicates that the input rate into the bu�er was
higher than the output rate from the bu�er, so the algorithm has
more freedom to download high-quality tiles. Third, BOLA360 uses a
threshold as the indicator of high bu�er utilization, and by reaching
the threshold, it moves to an idle state and waits until the bu�er
level decreases again. This approach limits the bu�er utilization
of BOLA360. It is worth noting that at the beginning and with an
empty bu�er, BOLA360 starts downloading low bitrates. With the
above three key ideas, we now explain the technical details of
BOLA360. The pseudocode for action taken by BOLA360 for chunk
: is described in Algorithm 1.

BOLA360 uses an input parameter + that controls the trade-o�
between the performance of the algorithm and themaximum accept-
able bu�er utilization of the algorithm. Note that parameter + also
plays a critical role in the playback delay, i.e., for real-time stream-
ing, smaller values of + are preferable, while in an on-demand
streaming application, the larger values of + are acceptable. At the
decision time C: for chunk : , the bu�er level&(C:) and head position
probability values encoded in ?:,3 are given. BOLA360 selects the
bitrates for tiles of chunk : by solving the maximization problem
described in the following.

argmax
0(:)

[(:,0(:)) =
⇡X
3=1

"X
<=1

0:,3,< (+ (E< . ?:,3 + WX) �&(C:)/X)
(<

(5a)

s.t.,
"X
<=1

0:,3,<  1, 8:,3, (5b)

vars., 0:,3,< 2 {0, 1}, (5c)

where 0(:) is a decision vector of BOLA360 and

0 < +  &max/X � ⇡
E" + WX

,

is a control parameter bounded by the R.H.S term to guarantee
that the required bu�er level for BOLA360 is less than &max. Con-
straint (5b) limits BOLA360 to select at most one bitrate for each tile.
BOLA360 selects the near-optimal bitrates of chunk : by �nding a
decision vector a(:) = [0:,1,1,0:,1,2, ...,0:,1," ,0:,2,1, ...,0:,⇡,"] that
maximizes the value of [(:,0(:)) in Equation (5a). When the bu�er
level exceeds +X(E" + WX), the algorithm enters the idle state and
downloads nothing. In this situation, BOLA360 waits for ∆ seconds
and repeats the bitrate selection for that chunk again. The selection
of ∆ could be dynamic as suggested in [46], the algorithm waits
until the bu�er level reaches&(C0)  +X(E" +WX). We note that our
theoretical analysis is valid even with a dynamic waiting time.
Algorithm 1: BOLA360 (:)
1 a(:): solution of optimization problem (5);
2 if number of non-zero elements in a(:) > 0 then
3 download bitrates for chunk : according to a(:);
4 end
5 else
6 wait for ∆ seconds and repeat the bitrate selection for

this chunk again;
7 end

4.2 Theoretical Analysis of BOLA360
We �rst provide an upper bound for the bu�er level of BOLA360 in
Theorem 4.1. Second, in Theorem 4.2, we show the QoE of BOLA360
is within a constant term of the optimal QoE of ABR360. The theo-
retical results reveal an interesting trade-o� between the QoE and
the playback delay of the BOLA360, which is discussed in Remark 1.

T������ 4.1. Under bitrate control of BOLA360, the bu�er level
never exceeds +X(E" + WX) + ⇡X .

Proof. The proof of this theorem is inspired by the proof of Theo-
rem 1 in [46]. However, for BOLA360, one has to deal with another
challenge originated by adding head position probabilities into the
control plane of BOLA360. The high-level idea is BOLA360 select
bitrates if the bu�er level is at most+X(E" +WX), otherwise it enters
the idle states. Therefore, the maximum possible value of bu�er
level after download of new tiles would be +X(E" + WX) + ⇡X .

Now, we proceed to analyze the QoE of BOLA360. With large ,
the ABR360 problem with rate stability constraint [30] is equivalent
to the relaxed version of ABR360 with limited bu�er capacity, i.e.,

&(C:) &max

) lim
 !1

1

E

⇢ X
:=1

⇡X
3=1

"X
<=1

0:,3,<X

�
 lim
 !1

1

E

⇢ X
:=1

=:):

�
.

In addressing the ABR360 problem with limited bu�er capacity, it’s
essential to ensure that the expected input rate into the bu�er re-
mains below the bu�er’s output rate. Failing to do so could lead to a
bu�er capacity breach, especially as approaches in�nity. Notably,
solutions that accommodate limited bu�er capacity inherently sat-
isfy the rate stability constraint, though the reverse may not always
hold. In addition, in the limited bu�er capacity setting, the di�er-
ence between E{)end} and E{

P
:=1): } is bounded by a �nite value

of &max. Consequently, for the large videos, Equations (1) and (2)
allow the substitution of E{)end} with E{

P
:=1): }.

15

BOLA360 MMSys ’24, April 15–18, 2024, Bari, Italy

The stationary algorithm. In the context of ABR360 problem,
we de�ne stationary algorithm as an ABR algorithm that uses a
�xed set of bitrates, A⇤, with size ⇡ (|A⇤ |= ⇡), and for each chunk
: , the set of selected bitrates for all ⇡ tiles are the same as the
A⇤. Note that the selected bitrate for each tile may vary over time
depending on the head position probability values, while the set of
bitrates selected for all tiles of the chunk remains �xed.

O�ine ABR360 problem �ts in the notation of optimization for
renewal frames [29]. Precisely, by setting renewal frame duration
the same as chunk download times and letting the achieved QoE of
downloading each chunk represent penalty values in the notation
of [29], the o�ine ABR360 problem can convert into an optimization
problem over renewal frames. Then, following Lemma 1 in [29], we
prove the existence of a stationary algorithm with optimal QoE of
* ⇤
 + W'⇤ .

L���� 1. For the ABR360 with a large video, i.e., ! 1, there
exists a stationary algorithm that satis�es the rate stability constraint
and achieves the optimal expected QoE of* ⇤

 + W'⇤ .

Proof Sketch. The proof of this lemma follows from Lemma 1 in
[29] and continues with the approach taken for proof of Lemma 1
in [46]. Based on the de�nition of a stationary algorithm for the
ABR360 problem, the expected QoE of the stationary algorithm is
the same as expected, achieving QoE on each slot, which satis�es
the criteria of Lemma 1 in [29].

T������ 4.2 (���� �������). Let OBJ be the expected QoE
achieved by BOLA360. For a large video, i.e., ! 1,

OBJ⇤ � ⇡X2 + Ψ
2+X2

f  OBJ, (7)

where OBJ⇤ = * ⇤
 + W'⇤ is expected QoE of the o�ine optimal algo-

rithm, and f = 1/E{): } and Ψ  E{⇡) 2
: }. That is, BOLA360 achieves

a QoE that is within an additive factor of the o�ine optimal.

Proof. Let’s de�ne the Lyapunov function !(&(C:)), and per-slot
conditional Lyapunov drift Φ(C:) as below

!(&(C:)) =
1
2X2

&2(C:),

Φ(C:) = E{∆ !(&(C:)) | &(C:)} = E{!(&(C:+1)) � !(&(C:))|&(C:)}.
Regardless of the bu�er level, there would be an upper bound

for the value of Φ(C:) using the bu�er level evolution described in
Equation (4).

Φ(C:) 
⇡X2 + Ψ
2X2

� &(C:)
X
E

⇢
=:):
X

�
⇡X
3=1

"X
<=1

0:,3,<}|&(C:)
�
,

) Φ(C:)�+E
⇢ ⇡X
3=1

"X
<=1

0:,3,<(?:,3E< + WX)|&(C:)
�

⇡X
2 + Ψ
2X2

� &(C:)
X
E

⇢
=:):
X

�
⇡X
3=1

"X
<=1

0:,3,< |&(C:)
�

�+E
⇢ ⇡X
3=1

"X
<=1

0:,3,<(?:,3E< + WX)|&(C:)
�

⇡X
2 + Ψ
2X2

� &(C:)
X
E

⇢
=:):
X

�
⇡X
3=1

"X
<=1

0:,3,< |&(C:)
�

�+ (* ⇤
 + W'⇤)E{): |&(C:)}.

The previous equation holds since the decision of BOLA360 at
time C: is a solution of the maximization equation detailed in Equa-
tion (5). Then, we have

Φ(C:)�+E
⇢ ⇡X
3=1

"X
<=1

0:,3,<(?:,3E< + WX)|&(C:)
�

⇡X
2 + Ψ
2X2

� &(C:)
X

✓
E{=: }
X

�
E{P⇡3=1P"<=1 0

⇤
:,3,<}

E{) ⇤
:
}

◆
E{): }

�+ (* ⇤
 + W'⇤)E{): },

where 0⇤:,3,< is the action of stationary algorithm for tile 3 and
bitrate index< of chunk : which satis�es the rate stability con-
straint.) ⇤

: shows the length of download time for chunk : while the
stationary algorithm is taking action. Based on rate stability con-
straint, the second term in the equation above is always negative,

 X
:=1

Φ(C:) �
 X
:=1

+E

⇢ ⇡X
3=1

"X
<=1

0:,3,<(?:,3E< + WX)|&(C:)
�

⇡X
2 + Ψ
2X2

 �+ (* ⇤
 + W'⇤)E{): } .

By dividing all terms by + ⇥ ⇥ E{): } and taking the limit
 ! +1, the proof completes.

R����� 1 (O� ��� �������� ������� ��� �������� �����
��� Q�E �� ���������). Theorem 4.2 states as the value of + in-
creases, the performance of BOLA360 gets closer to the optimal QoE.
However, Theorem 4.1 reveals that the upper bound on the playback
delay increases with higher values of + . Comparing these results, we
observe a trade-o� between minimizing playback delay and maxi-
mizing QoE in BOLA360. As the playback delay increases, the QoE
performance of BOLA360 approaches the o�ine optimum.

4.3 Understanding the Behavior of BOLA360
We demonstrate the functionality of BOLA360 through a straight-
forward test. Our test utilizes a 250-second video, segmented into
5-second chunks. Each chunk further divides into six tiles, each
encoded at distinct bitrates: 2Mbps, 4Mbps, 6Mbps, 8Mbps, 10Mbps,
and 15Mbps. To represent utility values, we employed a logarithmic
function E< = log(2(</(1), similar to previous works such as [42,
46, 18]. While our theoretical results only require a non-decreasing
utility function, we opted for a concave function that better re�ects
real-world utility functions. The concave utility function exhibits a
diminishing return property, meaning that increasing the bitrate
from 1 Mbps to 2 Mbps provides more utility than increasing it
from 10 Mbps to 11 Mbps, even though the bitrate di�erence is the
same in both cases. For this simple test, we set W = 0.1 and + = 5.5.
We note that * assesses the expected utility across various tiles
within a chunk, while ' quanti�es the aggregate length of down-
loaded tiles. Setting W = 1/⇡ equalizes the signi�cance of utility
and smoothness concerning a single tile.

The head position of the useris represented by a probability dis-
tribution that is critical for guiding the actions of BOLA360. For
this test, we evaluate the performance of BOLA360 using two di�er-
ent head position probability distributions. The �rst distribution
is homogeneous, where each tile is assigned a uniform probabil-
ity, resulting in an equal likelihood of the user watching any tile

16

MMSys ’24, April 15–18, 2024, Bari, Italy Ali Zeynali et al.

Figure 3: The selected bitrate of BOLA360 for tiles with highest and lowest probability and average selected bitrate as a function
of bu�er level for homogeneous (leftmost) and heterogeneous (second left) distributions, and bu�er level variation over time
for homogeneous (third left) and heterogeneous (rightmost) distributions.

(?:,3 = 1/⇡ for all tiles). The second distribution is heterogeneous,
with a linear increase in probability from the minimum to the maxi-
mum. Speci�cally, we set the maximum and minimum probabilities
as 0.317 and 0.017, respectively. Note that these values are chosen
arbitrarily to elucidate BOLA360’s behavior clearly.

Figure 3 shows the maximum, minimum, and average bitrates of
downloaded tiles for each chunk of the video. For the homogeneous
distribution, the selected bitrate for all tiles of a chunk is the same.
The results in Figure 3 show that the average download bitrate
growswith an increase in bu�er level.We show the threshold values
for the bu�er level where the action for the tile with the highest
probability changes. In addition, we show the variations of bu�er
level over time for both homogeneous and heterogeneous head
position probability distributions in Figure 3. When the bu�er level
is higher than +X(E" · ?:,3 + WX), BOLA360 downloads nothing for
that tile. Note that increasing the value ofW increases the importance
of continuous playback. Increasing the value of W by n is similar
to reducing the bu�er level by nX2+ , resulting in BOLA360 using
correspondingly higher threshold values for the bu�er levels for
bitrate switches. Therefore, increasing the value of W shifts the
bitrate curves in Figure 3 to the right and vice versa. Lastly, Figure 4
shows the average bitrates of tiles downloaded across the time and
the bitrate of the tiles that user actually sees (playing bitrate) in
their FOV. One can see that BOLA360 responds to the bandwidth
change by increasing/decreasing selected bitrates.

5 COMPARISON ALGORITHMS
We compare BOLA360with VA-360 [33], ProbDASH [52], Flare [39],
Salient-VR [50], Pano [14], and Mosaic [37], the leading ABR algo-
rithms for ABR360. Our analysis showcases the advancements our
approach brings over the state-of-the-art. While some of these algo-
rithms like Pano, Flare, and ProbDASH consider additional factors
such as minimizing bitrate variance among tiles within a chunk,
they rely on an MPC algorithm [57] to select the aggregate bitrate
for each chunk. This method’s reliance on estimated bandwidth
throughput poses challenges, potentially hindering their ability to
achieve near-optimal QoE, a limitation shared by algorithms like
VA-360 and Mosaic. We used the suggested hyper-parameters from
each algorithm’s respective literature.

5.1 Experimental Setup
We conduct multiple experiments to demonstrate the algorithms’
performance under di�erent settings. We use a 500-second video,
split into chunks of 2 seconds and 8 tiles. Also, each tile is encoded
in seven di�erent bitrates - 440Kbps, 700Kbps, 1.35Mbps, 2.14Mbps,

4.1Mbps, 8.2Mbps, and 16.5Mbps. Similar to Section 4.3, we use
a logarithmic utility function. Although BOLA360 performs better
using larger bu�ers, we limit the bu�er capacity to &max = 128X ,
which is equivalent to 32 seconds of 360° playback time, that falls
within the range of suggested bu�er capacity for VOD streaming
[19, 16] to ensure fairness. We employ dynamic value selection for
∆, as proposed in [46], and empirically determine + = 24.0. Also,
we set W = 0.2 using the parameter selection methodology for W
and+ outlined in Section VI of [46]. Consequently, in this scenario,
the smoothness term of QoE is equivalent to the utility derived
from downloading tiles at a bitrate of 2.1Mbps (equivalent to 480p
resolution). We use 4G bandwidth traces from [4] and 4G/LTE
bandwidth trace dataset [48] collected by IDLAB [49] to simulate
the network condition. We select 14 di�erent traces (network trace
index 1 to 14 of the dataset) from 4G/LTE dataset to evaluate the
performance of BOLA360 under di�erent network conditions. The
video is stored on an Apache server. Both server and client use
Microsoft Windows, 24GB of RAM, and an 8-core 3Ghz Intel Core-
i7 CPU. We use Chrome DevTools API [26] to transfer the video
between server and client and emulate the network condition. We
fetch the bandwidth capacity from the 4G/LTE dataset and inject it
into the Chrome DevTools to limit the download capacity between
the server and the client. In our experiments, FOV includes a single
tile and unless otherwise mentioned, to capture the actual FOV of
the head position probability values, we generate the navigation
graph [34] for 360° video using public VR head traces [51].

5.2 Performance Evaluation using Real
Network and Head Movement Traces

First, we compare the performance of BOLA360 with others using
real network and head movement traces. We use a representative
real 4G bandwidth trace from [4] for this comparison. We report
playing bitrate, the rebu�ering ratio (percentage of length of video
considered as a rebu�ering), and QoE of BOLA360, and state-of-the-
art algorithms. Note that the average playing bitrate reported in
Figure 5 is calculated over the tiles the user has seen inside FOV.
We report the results of 100 di�erent trials, where for each trial, we
sample the user’s head direction from the head position probability
distribution and use the same network traces and algorithm param-
eters. The CDF plot of average playing bitrates, rebu�ering ratio,
and QoE values of 100 di�erent trials is reported in Figure 5.

The results in Figure 5 show that BOLA360 outperforms other
comparison algorithms in QoE, and its playing bitrate was slightly
less than the playing bitrate of VA-360, which prepares the highest
playing bitrates among comparison algorithms. VA-360 selects rela-
tively high bitrates for all tiles of a chunk while BOLA360 e�ciently

17

BOLA360 MMSys ’24, April 15–18, 2024, Bari, Italy

Figure 4: Variation of average downloaded bitrates and playing bitrate over time under bitrate selection of BOLA360 for the
homogeneous (left most and second left), and heterogeneous (third left and right most) head position probability distribution.

Figure 5: Average playing bitrate vs. rebu�ering ratio (leftmost), the CDF of playing bitrate (second left), rebu�ering ratio
(third left), and QoE (rightmost) of BOLA360 and comparison algorithms using real network and head movement traces. The
average playing bitrate of BOLA360 is 3.34"1?B, while this value for Salient-VR, and Mosaic and VA-360 are 3.07"1?B, 2.72"1?B,
and 3.35"1?B. The average rebu�ering for BOLA360, Salient-VR, Mosaic, and VA-360 were 0.12%, 0.13%, 0.63% and 0.83%.

distributes the available bitrates among di�erent tiles such that
BOLA360 can achieve a lower rebu�ering ratio.

Key takeaway. BOLA360 outperforms comparison algorithms in
terms of QoE as it is designed to maximize it. Besides, no algorithm
outperforms BOLA360 on both playing bitrate and rebu�ering ratio
at the same time.

5.3 Impact of Network Bandwidth
In this experiment, we investigate the impact of di�erent net-
work pro�les on the performance of ABR algorithms. We use net-
work traces index 1 to 14 from the 4G/LTE dataset [48] to gener-
ate the bandwidth throughput. We use the same video and algo-
rithm/problem parameters (details in Section 5.1) for all algorithms
to capture the impact of the network capacity on their performance.

Figure 6 shows the average QoE, playback delay, rebu�ering
ratio, and average playing bitrate of BOLA360 and �ve comparison
algorithms over 100 trials for 14 network pro�les. BOLA360 stands as
the best algorithm in all 14 experiments. In this experiment, VA-360
selects relatively higher bitrates compared to other algorithms,
while its high rebu�ering, shown in Figure 7, lowers the QoE of
this algorithm. In addition, the playback delay of BOLA360 and
comparison algorithms are shown in Figure 7. The playback delay
of VA-360 was the lowest in all experiments. That clearly shows
the trade-o� between having low rebu�ering or low playback delay.
The results show that BOLA360 keeps the playback delay under 14.9
seconds with an average rebu�ering ratio of less than 0.4%. This
playback delay is consisent with the result of Theorem 4.1 and the
fact that BOLA360 tries to keep the bu�er level high.

Key takeaway. Networks with high �uctuations (e.g., pro�le
indexes 2 and 7) cause a higher rebu�ering ratio; nevertheless,
BOLA360 keeps QoE and playing bitrate relatively high in all pro�les
and outperforms all alternatives.

5.4 Impact of Head Position Probabilities
The head position probability values directly impact the QoE char-
acterized in Equations (1) and (2); hence, the performance of al-
gorithms varies depending on these probabilities. To observe the
impact of head position probabilities on the performance of ABR
algorithms, we de�ne 12 probability distributions and evaluate the
performance of BOLA360 and other algorithms against them while
the rest of the setting is similar to the experiment in Section 5.2.
Speci�cally, for each chunk : , we replace the set of probabilities
with the probabilities calculated from Equation (11).

We generate the head position probability distributions based
on three parameters ⇡pos(:), A (:), and U? (:). Parameter ⇡pos(:)
shows the number of tiles that there is a chance to be inside FOV
for chunk : ; A (:) represents the ratio between the minimum and
maximum probabilities among probabilities of tiles for chunk : .
Last, parameter U? (:) determines the heterogeneity of the head
position probability values for chunk : . We de�ne the probability
of 8C⌘ highest probable tile as a function of U? (:) as follows.

?8 (:) =
1 � U? (:)
⇡pos(:)

+ U? (:)?
(!)
8

✓
:, A (:)

◆
, (11)

where ?(!)8 (:, A (:)) shows the probability of 8C⌘ highest probable
tile assuming a �xed step between probabilities in ascending or-
der. With the above de�nition in Equation (11), U? (:) determines
the range of probabilities where U? (:) = 0 signi�es uniform tile
probabilities, while U? (:) = 1 indicates a wider probability range, re-
�ecting diverse head position probability values. A justi�cation for
this model as a representative of real-world head direction predic-
tion is that (⇡ �⇡pos) shows the number of tiles the FOV prediction
model is con�dent that they will be out of FOV. On the other hand,
U? (:) shows how concentrated the FOV prediction model is. We use

18

MMSys ’24, April 15–18, 2024, Bari, Italy Ali Zeynali et al.

Figure 6: The average QoE (left) and average playing bitrate (right) over the bitrate selection of BOLA360 and other comparison
algorithms for 14 di�erent network pro�les and 100 trials. In terms of QoE, BOLA360 outperforms others in all pro�les. On
average, BOLA360 provides about 6% improvement to the QoE of Salient-VR, and 110% to QoE of Flare.

Figure 7: The average rebu�ering ratio (left) and average playback delay (right) over the bitrate selection of BOLA360 and
comparison algorithms for 14 di�erent network pro�les and 100 trials. Pano and Flare usually show higher rebu�ering than
the other algorithms, while their playback delay is shorter. The average playback delay for BOLA360 is 14.9 seconds.

A (:) = 0.05 for all distributions. Although it’s impractical to cover
every possible distribution, our selection involves a low value for
A (:), and wide range of values for⇡pos and U? (:) to achieve broader
representation. Details of the 12 probability distributions used in
this section are outlined in Table 1.

We report the average QoE, playback delay, rebu�ering ratio,
and average playing bitrate of 100 trials of BOLA360 and compari-
son algorithms using each head position probability distribution
pro�le in Figures 8 (average QoE and playing bitrate), and 9 (av-
erage rebu�ering ratio and playback delay). Figure 8 shows that
BOLA360 achieves slightly higher QoE when the prediction of FOV
is concentrated on fewer number of tiles. A notable observation
demonstrates that BOLA360 kept the QoE at a high value for every
probability pro�le, while the achieved playing bitrate is promising,
and kept rebu�ering ratio close to the lowest among all algorithms.

Key takeway. The playing bitrate of BOLA360 and most com-
parison algorithms improves when the head position prediction
is concentrated on fewer tiles. Meanwhile, BOLA360 improves the
playing bitrate more than other comparison algorithms as the head
position values concentrate on fewer tiles.

6 BOLA360 ENHANCEMENTS
BOLA360 is meticulously designed to excel under all conceivable
network conditions, including the most challenging worst-case-like
scenarios. The aim to achieve a satisfactory performance across
all input, however, makes BOLA360 often operate conservatively,
refraining from switching to higher bitrates in many real-world
situations where worst-case conditions fail to materialize. In this
section, we propose BOLA360-REP and BOLA360-PL, two heuristic
algorithms to improve the practical performance of BOLA360 could
be improved from two perspectives. First, we introduce BOLA360-PL
to address the common drawback of bu�er-based ABR algorithms

in fetching low-quality bitrates during start or seek time or high
oscillations time intervals. Secondly, we propose BOLA360-REP to
add the tile upgrade into the BOLA360. The basic BOLA360 algorithm
is not designed to replace previously downloaded tiles with higher
bitrates, further restricting its adaptability.

BOLA360-PL is a generalized version of BOLA-PL introduced
in [47]. It aims to reduce the reaction time of the BOLA360 dur-
ing start and seek times by virtually increasing the bu�er level
at the start or seek time. The reaction time is the duration from
when the �rst tile is fetched (during start time) or the �rst seek
tile is fetched (during seek time) until bitrate of selected tiles sta-
bilizes. BOLA360-PL estimates the bandwidth and multiplies it by
50% to establish a safe expected bandwidth. To prevent rebu�ering,
BOLA360-PL limits the bitrate of each tile based on the estimated
bandwidth throughput. More speci�cally, it restricts the size of the
entire chunk to (;8< = &(C)F? (C)/2⇡ , whereF? (C) denotes the pre-
dicted bandwidth capacity at time C . BOLA360-PL virtually inserts
a proportional number of tiles into the bu�er such that the size of
the new downloading chunk does not exceed (;8< .

The second heuristic, BOLA360-REP, allows for upgrading of
previously downloaded tiles. BOLA360-REP determines whether it
is better to download a new tile for the next chunk or to improve the
quality of previously downloaded tiles based on the length of video
available in the bu�er. BOLA360-REP identi�es a tile in the bu�er
where there is at least a two-level di�erence between the bitrate of
downloaded tiles for that tile and the bitrate that BOLA360 would
select for that tile at the current time. If such a tile is identi�ed,
then the decision of BOLA360-REP is to upgrade the bitrate of those
low-quality tiles. Otherwise, it downloads tiles for the next chunk
according to the decision of BOLA360. To prevent upgrading tiles
about to be played shortly, BOLA360-REP selectively upgrades tiles
set to render at least 2X seconds later.

19

BOLA360 MMSys ’24, April 15–18, 2024, Bari, Italy

Table 1: The details of the probability distributions used in the experiment of Section 5.4

Probability pro�le index 1 2 3 4 5 6 7 8 9 10 11 12
⇡pos(:) 8 8 8 8 8 4 4 4 4 4 2 2
U? (:) 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.5

Figure 8: The average QoE (left) and average playing bitrate (right) over the bitrate selection of BOLA360 and comparison algo-
rithms using 12 di�erent head position probability distributions over 100 trials. On average, BOLA360 provides 9% improvement
to the QoE of Salient-VR, and 31% to QoE of Pano.

Figure 9: The average rebu�ering ratio (left) and average playback delay (right) over the bitrate selection of BOLA360 and
comparison algorithms using 12 di�erent head position probability distributions over 100 trials. VA-360 usually results in a
high rebu�ering ratio and short playback delay. Meanwhile, the rebu�ering ratio of BOLA360 is slightly more than the lowest in
all experiments. The average playback delay for BOLA360 is 11.1 seconds.

6.1 Experimental Setup
We choose the parameters used in Section 5.4 and the head position
probability pro�le 2 de�ned in that section to evaluate the perfor-
mance of heuristic extensions BOLA360-PL and BOLA360-REP. We
evaluate the performance of these algorithms against two scenar-
ios: 1) accurate head position probability prediction; and 2) noisy
prediction for future chunks. In the �rst scenario, the head posi-
tion probabilities provided to the ABR algorithms are identical to
the user’s actual head position distribution. This means that the
algorithm knows the user’s head position distribution, even for
tiles of chunks that will be played far in the future. In contrast, the
second scenario assumes that there will be a 10% error added to the
prediction of head position probabilities for every X seconds di�er-
ence between the chunk the user is watching and the chunk the
ABR is seeking to obtain head position probabilities for. Note that
if the error is greater than 100%, the prediction of head position is
considered unavailable, and the head position probabilities passed
to the ABR algorithms are uniform distributions, where ?:,3 = 1/⇡ .

6.2 Experimental Results
Figure 10 shows the CDF plots of the average tiles’ bitrate (left), the
reaction time (middle), and oscillation (right, the average di�erence
between the bitrate of two consecutive chunk for each tile) of
100 trials for accurate head position probability predictions. The
results show that BOLA360-PL signi�cantly reduces the oscillation
and reaction time of BOLA360. Since the BOLA360-PL improves the

bitrate of tiles during start and seek time, and these tiles are a
low fraction of the entire video, the average bitrate of tiles that
BOLA360-PL prepared for the user is slightly better than the average
bitrate of tiles BOLA360 downloads.

In Figure 11, we report the result of the evaluation of BOLA360
and heuristic versions against the noisy prediction of head po-
sitions. Speci�cally, we report the CDF plot of the average tiles’
bitrate, reaction time, and the oscillation of BOLA360, BOLA360-PL,
and BOLA360-REP. The results show that the average bitrate of
BOLA360 and BOLA360-PL reduced compared to the case where ac-
curate head position probabilities were available. On the other hand,
BOLA360-REP improves the average bitrate of BOLA360 up to near
97.6% and reduces the reaction time of BOLA360 by 80.0%. Although
BOLA360-REP could improve the average bitrate and the reaction
time, it increases the oscillation. The average oscillation time for
BOLA360 was 1.6 seconds, while this value for BOLA360-REP was
4.5 seconds. Meanwhile, all two heuristic versions could keep the
rebu�ering as low as the rebu�ering of BOLA360.

Key takeaway. Each extension of BOLA360 improves the perfor-
mance in certain aspects, such as bitrate or reaction time. However,
each version has drawbacks that may result in lower performance
in other aspects. Therefore, no version outperforms the others in all
aspects, and depending on the application and user requirements,
di�erent versions may be suitable.

20

MMSys ’24, April 15–18, 2024, Bari, Italy Ali Zeynali et al.

Figure 10: The CDF of the average bitrate of any downloaded tile (left), reaction time (middle), and oscillation (right) of basic
BOLA360 and BOLA360-PL using real network and head movement traces. BOLA360-PL reduces the oscillation and reaction time
by 70.9% and 67.8% respectively.

Figure 11: The CDF of average bitrate of downloaded tiles (left), reaction time (middle), and oscillation (right) of basic BOLA360,
BOLA360-PL, and BOLA360-REP using real network and head movement traces while the prediction of the head position dynami-
cally got updated. BOLA360-REP improves the average bitrate of downloaded tiles up to 91.2% compared to BOLA360 BASIC, and
reduces the reaction time by 80.0%.

7 RELATEDWORK
The prior literature extensively addresses the problem of bitrate
and view adaptation in 360° video streaming. Previous works com-
monly employ various machine learning techniques to predict user
head movements and incorporate them into existing ABR algo-
rithms. For example, [39] proposes a prediction-based approach
and designs an ABR algorithm using historical data from 360° video
streaming sessions. The focus of their work is on head movement
prediction, while the ABR algorithm itself is a heuristic approach
lacking rigorous optimization-based mechanisms.

Authors in [60] propose a Lyapunov-based model to solve the
ABR360 problem, also utilized in [44]. They employ Lyapunov opti-
mization for selecting and adjusting the bitrate of tiles, resulting in
a nearly optimal ABR algorithm achieved through iterative updates
to the tiles of a chunk. However, despite its near-optimality, this
technique may su�er from a long reaction time and high wasted
bandwidth due to iterative bitrate adjustment. In another work, [20]
proposes a di�erent approach by constructing a two-layered hier-
archical bu�er-based algorithm with short and long bu�er layers.
The prediction of FOV is used to perform short-term improvement.
The long bu�er layer tries to download the new tiles that are not
available in the short bu�er layer and will be played later. In an-
other work, [36] predicts the head movement by using a saliency
map, tile probability heat map, and LSTM models and gives ABR360
algorithm based on that.

In another category of work [62, 35, 12, 21, 22], deep RL-based al-
gorithms are developed for solving ABR360. They also use a dataset
of the user’s head position to train the model and �nd the optimal
bitrate selection according to the predicted FOV.

In [59], FOV prediction is used to select proper bitrates for tiles
in a predicted FOV, with the accuracy of prediction impacting the
�nal bitrate selection. Other works such as [31, 50, 53, 38, 52] also
focus on FOV prediction. The main idea is that users have similar

region-of-interest when watching the same video. They divide the
users into clusters such that users inside each cluster have similar
region-of-interest in most videos. Then they give FOV prediction
based on the cluster of a given user and the historical head direction
traces of users in a predicted cluster. While these approaches help
reduce bandwidth waste, they still require an ABR algorithm to
select bitrates within the predicted region. In contrast, BOLA360 is an
online algorithmwith rigorous performance guarantees, solving the
ABR360 problem optimally. Guan et al. [14] employModel Predictive
Control (MPC) to select the aggregate bitrate for a chunk, allocating
it among tiles to maintain quality within the limited bitrate. In
another category of research [17, 43], an optimized coding/encoding
algorithm minimizes bandwidth usage for 360° videos, evaluated
using real 4K and 8K videos from YouTube. Their experiments use
a straightforward ABR algorithm resembling ProbDASH (Section 5).

8 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we formulated an optimization problem to maxi-
mize users’ QoE in 360° video streaming applications. We proposed
BOLA360, an online algorithm that achieves a provably near-optimal
solution by selecting a proper bitrate for each tile of a 360° video
to maximize quality while minimizing rebu�ering rate. Our ex-
perimental results demonstrate that BOLA360 outperforms several
alternative algorithms across various network and head movement
pro�les. In future work, we aim to develop a data-driven and ro-
bust version of BOLA360 that explicitly uses future predictions in
decision-making while maintaining the algorithm’s theoretical per-
formance guarantees.

ACKNOWLEDGMENTS
This work is supported by the U.S. National Science Foundation
(NSF) under grant numbers CAREER-2045641, CPS-2136199, CNS-
2106299, CNS-2102963, CNS-1763617, CNS-1901137, andCNS-2106463.

21

BOLA360 MMSys ’24, April 15–18, 2024, Bari, Italy

REFERENCES
[1] Akamai. 2017. Akamai’s [state of the internet]. https://tinyurl.com/Akmai-inte

rnet-connectivity. Accessed: 2022-07. (2017).
[2] Yixuan Ban et al. 2018. Cub360: Exploiting cross-users behaviors for viewport

prediction in 360 video adaptive streaming. In IEEE ICME. IEEE, 1–6.
[3] Yanan Bao et al. 2016. Shooting a moving target: motion-prediction-based

transmission for 360-degree videos. In 2016 IEEE International Conference on
Big Data (Big Data). IEEE, 1161–1170.

[4] A Bokani et al. 2016. Comprehensive mobile bandwidth traces from vehicular
networks. In Proceedings of the 7th ACM MMSys, 1–6.

[5] Jinyu Chen et al. 2020. Sparkle: user-aware viewport prediction in 360-degree
video streaming. IEEE Transactions on Multimedia, 23, 3853–3866.

[6] CISCO. 2017. Cisco mobile visual networking index (vni) forecast projects
7-fold increase in global mobile data tra�c from 2016-2021. https://tinyurl.co
m/CICSO-netwok. Accessed: 2022-08. (2017).

[7] MalleshamDasari et al. 2020. Streaming 360-degree videos using super-resolution.
In IEEE INFOCOM. IEEE, 1977–1986.

[8] EtiSoftware. 2021. Internet speed and subscriber dissatisfaction. https://tinyurl
.com/network-speed. Accessed: 2022-07. (2021).

[9] Ching-Ling Fan et al. 2017. Fixation prediction for 360 video streaming in
head-mounted virtual reality. In Proceedings of the 27th NOSSDAV, 67–72.

[10] Xianglong Feng et al. 2020. Livedeep: online viewport prediction for live virtual
reality streaming using lifelong deep learning. In IEEE Conference on Virtual
Reality and 3D User Interfaces (VR). IEEE, 800–808.

[11] Xianglong Feng et al. 2021. Liveroi: region of interest analysis for viewport
prediction in live mobile virtual reality streaming. In Proceedings of the 12th
ACM MMSys, 132–145.

[12] Jun Fu et al. 2021. 360hrl: Hierarchical Reinforcement Learning Based Rate
Adaptation for 360-Degree Video Streaming. In IEEE VCIP. IEEE, 1–5.

[13] Ehab Ghabashneh et al. 2023. Dragon�y: higher perceptual quality for continu-
ous 360 video playback. In Proceedings of the ACM SIGCOMM 2023 Conference,
516–532.

[14] Yu Guan et al. 2019. Pano: Optimizing 360 video streaming with a better
understanding of quality perception. In Proceedings of the ACM SIGCOMM,
394–407.

[15] Bo Han et al. 2020. ViVo: Visibility-aware mobile volumetric video streaming.
In Proceedings of the 26th MobiCom, 1–13.

[16] Mingyue Hao et al. 2021. Bu�er Displacement Based Online Learning Algo-
rithm For Low Latency HTTP Adaptive Streaming. In 2021 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE.

[17] Jian He et al. 2018. Rubiks: Practical 360-degree streaming for smartphones. In
Proceedings of the 16th ACM MobiSys, 482–494.

[18] Han Hu et al. 2019. Optimization for HTTP adaptive video streaming in UAV-
enabled relaying system. In ACM ICC. IEEE, 1–6.

[19] Te-YuanHuang et al. 2014. A bu�er-based approach to rate adaptation: evidence
from a large video streaming service. In Proceedings of the 2014 ACM conference
on SIGCOMM, 187–198.

[20] Zhiqian Jiang et al. 2019. A hierarchical bu�er management approach to rate
adaptation for 360-degree video streaming. IEEE Transactions on Vehicular
Technology, 69, 2, 2157–2170.

[21] Nuowen Kan et al. 2021. RAPT360: Reinforcement learning-based rate adapta-
tion for 360-degree video streaming with adaptive prediction and tiling. IEEE
Transactions on Circuits and Systems for Video Technology, 32, 3, 1607–1623.

[22] Jaehong Kim et al. 2020. Neural-enhanced live streaming: improving live video
ingest via online learning. In Proceedings of ACM SIGCOMM, 107–125.

[23] Jonathan Kua et al. 2017. A Survey of Rate Adaptation Techniques for Dynamic
Adaptive Streaming Over HTTP. IEEE Communications Surveys & Tutorials, 19,
3, 1842–1866. ���: 10.1109/COMST.2017.2685630.

[24] Chenge Li et al. 2019. Very long term �eld of view prediction for 360-degree
video streaming. In IEEE MIPR. IEEE, 297–302.

[25] Google LLC. 2022. Google ar/vr. https://arvr.google.com/ar/. Accessed: 2022-03.
(2022).

[26] Google LLC. 2023. Google-chrome: chrome devtools protocol. https://chromed
evtools.github.io/devtools-protocol/tot/Network/. Accessed: 2023-01. (2023).

[27] Simone Mangiante et al. 2017. Vr is on the edge: how to deliver 360 videos
in mobile networks. In Proceedings of the Workshop on Virtual Reality and
Augmented Reality Network, 30–35.

[28] Hongzi Mao et al. 2017. Neural adaptive video streaming with pensieve. In
Proceedings of ACM SIGCOMM, 197–210.

[29] Michael J Neely. 2012. Dynamic optimization and learning for renewal systems.
IEEE Transactions on Automatic Control, 58, 1, 32–46.

[30] Michael J Neely. 2010. Stochastic network optimization with application to
communication and queueing systems. Synthesis Lectures on Communication
Networks, 3, 1, 1–211.

[31] Anh Nguyen et al. 2018. Your attention is unique: detecting 360-degree video
saliency in head-mounted display for head movement prediction. In Proceedings
of the 26th ACM MM, 1190–1198.

[32] Thanh Cong Nguyen and Ji-Hoon Yun. 2018. Predictive tile selection for 360-
degree vr video streaming in bandwidth-limited networks. IEEE Communica-
tions Letters, 22, 9, 1858–1861.

[33] Cagri Ozcinar et al. 2017. Viewport-aware adaptive 360 video streaming using
tiles for virtual reality. In IEEE ICIP. IEEE, 2174–2178.

[34] Jounsup Park and Klara Nahrstedt. 2019. Navigation graph for tiled media
streaming. In Proceedings of the 27th ACM MM, 447–455.

[35] Sohee Park et al. 2021. Adaptive streaming of 360-degree videos with reinforce-
ment learning. In Proceedings of the IEEE/CVFWinter Conference on Applications
of Computer Vision, 1839–1848.

[36] Sohee Park et al. 2019. Advancing user quality of experience in 360-degree
video streaming. In IFIP Networking. IEEE.

[37] Sohee Park et al. 2021. Mosaic: advancing user quality of experience in 360-
degree video streaming with machine learning. IEEE Transactions on Network
and Service Management, 18, 1, 1000–1015.

[38] Stefano Petrangeli et al. 2017. An HTTP/2-based adaptive streaming framework
for 360 virtual reality videos. In Proceedings of ACM MM, 306–314.

[39] Feng Qian et al. 2018. Flare: practical viewport-adaptive 360-degree video
streaming for mobile devices. In Proceedings of ACM MobiCom, 99–114.

[40] Feng Qian et al. 2016. Optimizing 360 video delivery over cellular networks. In
Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications
and Challenges, 1–6.

[41] Joshua Ratcli� et al. 2020. ThinVR: Heterogeneous microlens arrays for com-
pact, 180 degree FOV VR near-eye displays. IEEE transactions on visualization
and computer graphics, 26, 5, 1981–1990.

[42] Peter Reichl et al. 2013. Logarithmic laws in service quality perception: where
microeconomics meets psychophysics and quality of experience. Telecommuni-
cation Systems, 52, 2, 587–600.

[43] Michael Rudow et al. 2023. Tambur: e�cient loss recovery for videoconferenc-
ing via streaming codes. In NSDI, 953–971.

[44] Wang Shen et al. 2019. A QoE-oriented saliency-aware approach for 360-degree
video transmission. In IEEE VCIP. IEEE, 1–4.

[45] Sony. 2022. Sony playstaion vr. https://www.playstation.com/en-us/ps-vr2/.
Accessed: 2022-03. (2022).

[46] Kevin Spiteri et al. 2020. BOLA: Near-optimal bitrate adaptation for online
videos. IEEE/ACM Transactions on Networking, 28, 4, 1698–1711.

[47] Kevin Spiteri et al. 2019. From theory to practice: improving bitrate adaptation
in the dash reference player. ACM Transactions on Multimedia Computing,
Communications, and Applications, 15, 2s, 1–29.

[48] Ghent University. 2019. 4G/LTE Bandwidth Logs. https://users.ugent.be/~jvdr
hoof/dataset-4g/. Accessed: 2022-06. (2019).

[49] J. van der Hooft et al. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video
Over 4G/LTE Networks. IEEE Communications Letters, 20, 11, 2177–2180.

[50] Shibo Wang et al. 2022. SalientVR: saliency-driven mobile 360-degree video
streaming with gaze information. In Proceedings of MobiCom, 542–555.

[51] Chenglei Wu et al. 2017. A dataset for exploring user behaviors in VR spherical
video streaming. In MMSys, 193–198.

[52] Lan Xie et al. 2017. 360probdash: Improving qoe of 360 video streaming using
tile-based HTTP adaptive streaming. In Proceedings of the 25th ACM MM, 315–
323.

[53] Lan Xie et al. 2018. Cls: A cross-user learning based system for improving qoe
in 360-degree video adaptive streaming. In Proceedings of the 26th ACM MM,
564–572.

[54] Mai Xu et al. 2018. Predicting head movement in panoramic video: a deep
reinforcement learning approach. IEEE transactions on pattern analysis and
machine intelligence, 41, 11, 2693–2708.

[55] Yanyu Xu et al. 2018. Gaze prediction in dynamic 360 immersive videos. In
proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
5333–5342.

[56] Zhimin Xu et al. 2018. Tile-based QoE-driven HTTP/2 streaming system for
360 video. In ICMEW. IEEE, 1–4.

[57] Xiaoqi Yin et al. 2015. A control-theoretic approach for dynamic adaptive video
streaming over HTTP. In Proceedings of ACM SIGCOMM, 325–338.

[58] Youtube. 2022. Youtube360. https://www.youtube.com/360. Accessed: 2022-03.
(2022).

[59] Hui Yuan et al. 2019. Spatial and temporal consistency-aware dynamic adap-
tive streaming for 360-degree videos. IEEE Journal of Selected Topics in Signal
Processing, 14, 1, 177–193.

[60] Haodan Zhang et al. 2023. RAM360: Robust Adaptive Multi-layer 360 Video
Streaming with Lyapunov Optimization. IEEE Transactions on Multimedia.

[61] Xu Zhang et al. 2021. SENSEI: Aligning Video Streaming Quality with Dynamic
User Sensitivity. In NSDI, 303–320.

[62] Yuanxing Zhang et al. 2019. DRL360: 360-degree video streaming with deep
reinforcement learning. In IEEE INFOCOM. IEEE, 1252–1260.

[63] Michael Zink et al. 2019. Scalable 360° video stream delivery: challenges, solu-
tions, and opportunities. Proceedings of the IEEE, 107, 4, 639–650.

22

https://tinyurl.com/Akmai-internet-connectivity
https://tinyurl.com/Akmai-internet-connectivity
https://tinyurl.com/CICSO-netwok
https://tinyurl.com/CICSO-netwok
https://tinyurl.com/network-speed
https://tinyurl.com/network-speed
https://doi.org/10.1109/COMST.2017.2685630
https://arvr.google.com/ar/
https://chromedevtools.github.io/devtools-protocol/tot/Network/
https://chromedevtools.github.io/devtools-protocol/tot/Network/
https://www.playstation.com/en-us/ps-vr2/
https://users.ugent.be/~jvdrhoof/dataset-4g/
https://users.ugent.be/~jvdrhoof/dataset-4g/
https://www.youtube.com/360

	Abstract
	1 Introduction
	2 Background
	3 System Model and Problem Formulation
	4 BOLA360: An Online 360° ABR Algorithm
	4.1 Design and Analysis of BOLA360
	4.2 Theoretical Analysis of BOLA360
	4.3 Understanding the Behavior of BOLA360

	5 Comparison Algorithms
	5.1 Experimental Setup
	5.2 Performance Evaluation using Real Network and Head Movement Traces
	5.3 Impact of Network Bandwidth
	5.4 Impact of Head Position Probabilities

	6 BOLA360 Enhancements
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion and Future Directions
	Acknowledgments

