
Online Search with Predictions:
Pareto-optimal Algorithm and its Applications in Energy Markets

Russell Lee∗
University of Massachusetts Amherst

rclee@cs.umass.edu

Bo Sun∗
University of Waterloo
bo.sun@uwaterloo.ca

Mohammad Hajiesmaili
University of Massachusetts Amherst

hajiesmaili@cs.umass.edu

John C.S. Lui
The Chinese University of Hong Kong

cslui@cse.cuhk.edu.hk

ABSTRACT
This paper develops learning-augmented algorithms for energy
trading in volatile electricity markets. The basic problem is to sell
(or buy) : units of energy for the highest revenue (lowest cost) over
uncertain time-varying prices, which can framed as a classic online
search problem in the literature of competitive analysis. State-of-
the-art algorithms assume no knowledge about future market prices
when they make trading decisions in each time slot, and aim for
guaranteeing the performance for the worst-case price sequence.
In practice, however, predictions about future prices become com-
monly available by leveraging machine learning. This paper aims
to incorporate machine-learned predictions to design competitive
algorithms for online search problems. An important property of
our algorithms is that they achieve performances competitive with
the o�ine algorithm in hindsight when the predictions are accurate
(i.e., consistency) and also provide worst-case guarantees when the
predictions are arbitrarily wrong (i.e., robustness). The proposed al-
gorithms achieve the Pareto-optimal trade-o� between consistency
and robustness, where no other algorithms for online search can im-
prove on the consistency for a given robustness. Further, we extend
the basic online search problem to a more general inventory man-
agement setting that can capture storage-assisted energy trading
in electricity markets. In empirical evaluations using traces from
real-world applications, our learning-augmented algorithms im-
prove the average empirical performance compared to benchmark
algorithms, while also providing improved worst-case performance.

CCS CONCEPTS
• Theory of computation ! Online algorithms; Online learn-
ing algorithms; • Hardware ! Energy generation and storage;
Batteries;

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

E-Energy ’24, June 04–07, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0480-2/24/06
https://doi.org/10.1145/3632775.3639590

KEYWORDS
Learning-augmented algorithms, online algorithms, energy storage,
Pareto-optimality

ACM Reference Format:
Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui. 2024. Online
Search with Predictions: Pareto-optimal Algorithm and its Applications
in Energy Markets . In The 15th ACM International Conference on Future
and Sustainable Energy Systems (E-Energy ’24), June 04–07, 2024, Singapore,
Singapore. ACM, New York, NY, USA, 22 pages. https://doi.org/10.1145/
3632775.3639590

1 INTRODUCTION
With the increasing penetration of renewable energy in the sup-
ply side and distributed energy resources in the demand side, the
electricity market has become increasingly volatile. To address
the uncertainties underlying both electricity prices and energy de-
mands in modern smart grids, competitive algorithms [5] have
been widely used for optimizing worst-case performances, such as
energy scheduling in Microgrids [21], storage management [22],
electric vehicle pricing and scheduling [6], and beyond.

In this paper, we study competitive algorithms for energy trading
problems based on a classic online search model. In this problem, an
online decision-maker aims to sell (buy) : � 1 units of energy for
the highest revenue (lowest cost) over a sequence of time-varying
prices. At each step, a price is observed, and the decision-maker
wants to �nd how many units to sell (buy) at the current price with-
out knowing the future prices. In online decision-making, a key
challenge is to balance the revenue (cost) of trading at the current
price, and deferring for future better prices at the risk that those
prices never arrive. The online search problem is foundational for
modeling online decision-making in volatile markets such as asset
trading in �nancial markets [8, 18, 24], energy arbitrage in electric-
ity markets [27], and revenue management in �ights market [4].

The online search problem has been tackled previously under
the framework of competitive analysis [5]. In this framework, the
ultimate goal is to design online algorithms with the best possible
competitive ratio, de�ned as the ratio between the revenue (cost)
of the o�ine optimum and an online algorithm. Lorenz et al. [18]
proposed two online threshold-based algorithms for both maxi-
mization and minimization versions of the online search problem.
The algorithm predetermines : threshold values and trades the 8-th
unit of the asset only if the price is at least (at most) equal to the 8-th
threshold value in the :-max (:-min) search. Then, by optimizing

386

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3632775.3639590
https://doi.org/10.1145/3632775.3639590
https://doi.org/10.1145/3632775.3639590
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632775.3639590&domain=pdf&date_stamp=2024-05-21

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

the threshold values, the online algorithms can achieve the opti-
mal competitive ratios for both versions of :-search. The original
algorithm in [18] requires that at most one unit asset can be traded
in each step. Then the follow-up work [29] extends it to a setting
that allows for trading multiple units in each step with a slight
modi�cation on the algorithm by Lorenz et al. [18] using the same
optimal threshold values. As : goes to in�nity, the :-search model
in [29] asymptotically becomes a continuous search problem, and
has been framed as the one-way trading problem by the seminal
work [8]. Our paper focuses on the setting by [29] that includes the
continuous trading problem as a special case. Further, we extend
the problem to an inventory management setting that is applicable
to online search problems with inventory dynamics.

The classic online algorithms designed purely with guarantees
of the worst-case performance tend to ignore predictions outright,
and thus they often have poor performance in common average-
case scenarios. In practice, however, for most application scenarios,
abundant historical data could be leveraged by machine learning
(ML) tools for generating some predictions of the unknown future
input, e.g., prices in :-search. The possibility of incorporating ML
predictions in algorithmic design has led to the recent development
of learning-augmented online algorithms [19, 23], where the goal
is to leverage predictions to improve the performance when predic-
tions are accurate and preserve the robust worst-case guarantees
when facing erroneous ML predictions. This high-level idea has led
researchers to revisit a wide range of online problems, including but
not limited to caching [19], rent-or-buy problems [12, 17, 23, 26],
facility location [10, 15], secretary matching [3, 7], metrical task
systems [2], and bin packing [1, 28].

Motivated by the above direction of online algorithms with pre-
dictions, this paper aims to design learning-augmented algorithms
for online search problems. This goal is particularly crucial for ap-
plications in volatile markets where ML predictions are useful when
they are accurate but can frequently advise the wrong direction,
resulting in drastic losses relative to the best trade in hindsight.

We design and analyze a learning-augmented algorithm under
the consistency-robustness framework [19], where consistency
represents the competitive ratio when the prediction is accurate,
and robustness is the competitive ratio regardless of the predic-
tion error. Our goal is to design an algorithm that can achieve
the Pareto-optimal trade-o� between consistency and robustness,
i.e., no other learning-augmented algorithms can simultaneously
achieve better consistency and robustness than ours. Although
learning-augmented algorithms have been an active research topic
in recent years, the majority of prior work focuses on algorithms
that can provide bounded consistency and robustness. However,
studies about the Pareto-optimality of the trade-o� are limited, with
a few exceptions, e.g., ski-rental problem [26], online conversion
problem [24], online matching problem [16] and single-leg revenue
management problem [4]. This paper contributes to this line of
research for the online search problem.

1.1 Contributions
Pareto-optimal algorithms for online :-search problems with pre-

dictions. We design learning-augmented algorithms for :-max and
:-min search, and prove that their robustness and consistency are

Pareto-optimal. To achieve this, we start by deriving lower bound
results on the trade-o� between consistency and robustness of
any learning-augmented algorithms. We then use the lower bound
trade-o� as the target of our algorithms. By leveraging ML predic-
tions, we redesign the threshold values in the classic algorithms
to prioritize the trading in cases predicted to occur for achieving
good consistency while also carefully reserving su�cient trading
opportunities for other cases to guarantee robustness. Finally, we
prove the target trade-o� is achievable by our design.

We note that a closely related work [24] has reported Pareto-
optimal algorithms for 1-max search and one-way trading with
predictions. Our proposed algorithm solves a more general :-search
problem that includes 1-max search (when : = 1) and one-way
trading (: ! 1) as two special cases. In addition, we also tackle
the minimization setting of :-search, which is demonstrated to
have di�erent performance guarantees from :-max search. Thus,
this paper studies the full spectrum of :-search problems with
predictions. In Figure 1, we show the Pareto boundaries achieved by
our algorithms, including the results in [24] as two special curves.

Extensions to online search with inventory dynamics. In many real-
world applications, the demand for trading (i.e., :) is unknown and
is only revealed to the decision-maker over time. To accommodate
the online demand together with time-varying prices, we consider
an online search problem assisted by an inventory; however, the in-
ventory dynamics strongly couples the decisions over time, adding
extra challenges to online decision-making. The presence of inven-
tory also adds a new design space for buying and storing items in
inventory when the price is low and using the stored items when
the market price is not attractive. Despite the temporal coupling
and more involved design space, we observe that the online search
with inventory dynamics can be decoupled "spatially" into multi-
ple virtual online search problems in parallel, and an independent
learning-augmented algorithm can solve each of them. Based on
this observation, we extend the learning-augmented algorithms
to solve this more general inventory management problem and
show that the algorithm preserves the Pareto optimality when the
inventory capacity is su�ciently large.

Applications in energy markets. We demonstrate the performance
of our learning-augmented algorithms with numerical experiments
for storage-assisted energy procurement in electricity markets. In
the empirical experiments, we use energy data traces from Akamai
data centers, renewable outputs from NREL, and energy prices from
several ISOs. Our proposed algorithms improve the average em-
pirical performance compared to worst-case optimized algorithms
and other baseline learning-augmented algorithms. Moreover, our
algorithms are shown to provide improved worst-case performance
even when the predictions are with relatively large errors. Thus,
our algorithms can potentially achieve best of both worlds.

2 PROBLEM STATEMENT
2.1 Online :-search problem
The :-max (:-min) search problem aims to sell (buy) : units of iden-
tical items over a sequence of) prices to maximize the total revenue
(to minimize the total cost). In the online setting, the) prices arrive
one at a time. Upon the arrival of price ?C , a decision-maker must

387

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

2 4 6 8 10

Robustness

1

1.5

2

2.5

3

C
o
n
si

st
en

cy

1-max search
2-max search
5-max search
10-max search
one-way trading
optimal CRs

2 4 6 8 10

Robustness

1

1.5

2

2.5

3

C
o
n
si

st
en

cy

1-min search
2-min search
5-min search
10-min search
one-way trading
optimal CRs

Figure 1: Illustrating Pareto-optimal boundaries of :-max
search and :-min search. All curves start from a point
(U (:)

⇤ ,U (:)
⇤) (or (i (:)

⇤ ,i (:))⇤) with both consistency and robust-
ness equal to the corresponding worst-case optimal competi-
tive ratio (CR), and end at the point (\ , 1). We set ?max = 50,
?min = 5 and \ = ?max/?min = 10, where ?max and ?min are
upper and lower bounds of prices over the time horizon.

immediately decide how many items to trade, GC 2 {0, 1, . . . ,:},
without knowing the future prices. If the decision-maker has only
traded < (< < :) items after the arrival of the () � 1)-th price,
she is compelled to trade all the remaining : �< items at the last
price ?) . We make no assumptions on the underlying distribution
of the prices and only assume they are bounded within known
limits ?min and ?max, i.e., ?C 2 [?min, ?max],8C 2 [)]. This is a
standard assumption for designing online algorithms with bounded
competitive ratios in the literature of online search problems [8, 18].
The price �uctuation ratio is de�ned as \ = ?max/?min.

De�ne the price sequence I := {?C }C 2 [)] as an instance of the
:-search problem. Let ALG(I) denote the objective value of the
:-search problem from an online algorithm. Under the framework
of competitive analysis [5], we aim to design the online algorithm
such that its performance is competitive with that of an o�ine
algorithm in hindsight. In particular, if an instance I is given from
the start, the :-max (:-min) search problem can be formulated as

max (min)
’

C 2 [)] ?CGC , (1a)

subject to
’

C 2 [)] GC = :, (1b)

variable GC 2 {0, 1, . . . ,:},8C 2 [)] . (1c)

Let OPT(I) denote the optimal objective of above optimization
problem. We evaluate the performance of an online algorithm by
its competitive ratio, which is de�ned as

U = max
I

OPT(I)
ALG(I) and i = max

I
ALG(I)
OPT(I) , (2)

for :-max search and :-min search, respectively. Both U and i are
greater than one; the smaller their value, the better the performance
of the online algorithm.

2.2 Worst-case optimized algorithms
The :-search problem can be solved by an online threshold-based
algorithm (OTA) as shown in Algorithm 1. This algorithm takes :
threshold values � := {�8 }82 [:] in :-max search (:= { 8 }82 [:]
in :-min search) as its input, and trades the 8-th item only if the
current price is at least �8 (at most 8). Let OTA� denote the OTA
with threshold �. OTA� can achieve the smallest competitive ratios

Algorithm 1 OTA� for :-max (OTA for :-min)

1: input: threshold values � = {�8 }82 [:] (= { 8 }82 [:]);
2: initialization:< = 1;
3: for step C = 1, . . . ,) � 1 do
4: GC = 0;
5: while ?C � �< (?C  <) and<  : do
6: < =< + 1 and GC = GC + 1;
7: end while
8: end for
9: G) = : �< + 1.

for :-search problems when the thresholds are designed optimally.
Based on the analysis in [18, 29], we have the following lemmas.

L���� 2.1 (:���� ������). OTA for:-max search isU (:)
⇤ -competitive

if the threshold values are

�8 = ?min


1 + (U (:)

⇤ � 1)
⇣
1 + U (:)

⇤ /:
⌘8�1�

, 8 2 [:], (3)

where U (:)
⇤ is the solution of \�1U�1 =

⇣
1 + U

:

⌘:
.

L���� 2.2 (:���� ������). OTA for:-min search isi (:)
⇤ -competitive

if the threshold values are

 8 = ?max


1 �

⇣
1 � 1/i (:)

⇤
⌘ ⇣

1 + 1/(:i (:)
⇤)

⌘8�1�
, 8 2 [:], (4)

where i (:)
⇤ is the solution of 1�1/\

1�1/i =
⇣
1 + 1

:i

⌘:
.

In the following, we sketch the key intuitions in the design and
analysis of the threshold values, which are important for designing
learning-augmented algorithms in the next section. Consider the
threshold values � for the :-max search. The threshold values are
monotonically non-decreasing because the algorithm must aggres-
sively trade items in the beginning to hedge the risk that values
of the future prices will all drop to the lowest ?min. As more items
are traded, the algorithm can gradually become more selective by
choosing higher threshold values and taking the opportunity to
trade at potentially high prices. Since the uncertain prices vary
within [?min, ?max], the : threshold values divide this range into
:+1 disjoint intervals [�0,�1), [�1,�2), . . . , [�:�1,�:), [�: ,�:+1],
where �0 := ?min and �:+1 := ?max. Suppose the highest price falls
in an interval [�8�1,�8), the total revenue of the o�ine algorithm
is upper bounded by :�8 , and the revenue of the online algorithm
is lower bounded by

Õ
92 [8�1] �9 + (: � 8 + 1)?min, where the �rst

8 � 1 items are traded at prices just equal to the �rst 8 � 1 thresholds
and the remaining items are compulsorily traded at the lowest price
?min. In this case, the ratio of the o�ine and online revenues is
upper bounded by

U (:)
8 (�) = :�8Õ

92 [8�1] �9 + (: � 8 + 1)?min
. (5)

Note that Equation (5) holds for all 8 2 [: + 1] when the maximum
price falls in the corresponding : + 1 intervals. Thus, the worst-
case ratio of the :-max search is U (:)

⇤ = max82 [:+1] U
(:)
8 and the

minimum is achieved when the ratios from di�erent intervals are
balanced, i.e., U (:)

⇤ = U (:)
8 ,88 2 [: + 1]. This gives : + 1 equations

388

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

with : unknown thresholds and one unknown ratio U (:)
⇤ . Solving

those equations gives the thresholds and the competitive ratio U (:)
⇤

for :-max search in Lemma 2.1. We can apply similar approaches
to design thresholds and i (:)

⇤ for :-min search in Lemma 2.2.

2.3 Learning-augmented algorithms
Prediction model. In the :-max (:-min) search, we consider a

prediction % 2 [?min, ?max] of the actual highest (lowest) price that
can be obtained from ML tools. De�ne Y = |+ � % | as the error
of the ML prediction, where + represents the actual highest (low-
est) price. We aim to augment the worst-case optimized algorithm
with the prediction % . Notably, we make no assumptions about
the quality of the ML predictions, and thus the prediction error
Y is unknown to the algorithm. To evaluate the performance of
the algorithm with such “untrusted” predictions, we focus on two
metrics: (i) consistency [, which is the competitive ratio when the
prediction is accurate, i.e., Y = 0; and (ii) robustness W , which is
the competitive ratio regardless of the prediction error. Therefore,
consistency and robustness measure the algorithm’s performance
when the prediction is of good quality and arbitrarily bad, respec-
tively. Our goal is to design the algorithm that can achieve the
Pareto-optimal trade-o� between consistency and robustness, i.e.,
for a given robustness W , no other online algorithms can achieve
a smaller consistency [. This consistency-robustness framework
was �rst introduced by [19] to study the online caching problem
and then has been widely adopted for designing online algorithms
with untrusted predictions [4, 16, 17, 23].

Baseline algorithm. To design learning-augmented algorithms
with bounded consistency and robustness for online resource allo-
cation, one natural approach is to divide the limited resource into
two portions, and then simultaneously run the robust algorithm
and the prediction-based algorithm using the two portions, respec-
tively (see examples in [13, 14]). Let _ 2 [0, 1] be a hyper-parameter
that indicates the degree of untrust in the prediction. The baseline
algorithm divides the : items into two portions, :A = d_:e and
:2 = : �:A . The algorithm, in parallel, runs a worst-case optimized
:A -search algorithm and a prediction-based algorithm that trades
all :2 items at the �rst price no smaller than the predicted price % .
The decision of the baseline algorithm is the sum of the decisions
from the worst-case algorithm and the prediction-based algorithm.

L���� 2.3. Given a hyper-parameter _ 2 [0, 1], the baseline
algorithm is :

:A /U (:A)
⇤ +:�:A

-consistent and :
:A /U (:A)

⇤ +(:�:A)/\
-robust

for the learning-augmented :-max search problem, where :A := d_:e.

Although bounded consistency and robustness can be guaran-
teed by the intuitive baseline algorithm, there exists a performance
gap between the baseline algorithm and the Pareto-optimal al-
gorithm as shown in Figure 2. This motivates us to design the
Pareto-optimal algorithm for :-search to close the theoretical gap.
In addition, we will show that the Pareto-optimal algorithm empiri-
cally outperforms the baseline algorithm in experiments using real
data (see Section 5), which is of signi�cance in real-world applica-
tions. The proof of Lemma 2.3 and the consistency-robustness result
of the baseline algorithm for :-min search are given in Appendix A.

2 4 6 8 10

Robustness

1

1.5

2

2.5

3

C
o

n
si

st
en

cy

2-max, opt
2-max, base
5-max, opt
5-max, base
20-max, opt
20-max, base

2 4 6 8 10

Robustness

1

1.5

2

2.5

3

C
o

n
si

st
en

cy

2-min, opt
2-min, base
5-min, opt
5-min, base
20-min, opt
20-min, base

Figure 2: Comparing consistency-robustness trade-o�s of
baseline algorithms and Pareto-optimal algorithms for :-
max and :-min search. ?max = 50 and ?min = 5.

3 PARETO-OPTIMAL ALGORITHMSWITH
PREDICTION FOR :-SEARCH

In this section, we design learning-augmented algorithms for :-
max search and :-min search, and prove that they can attain the
Pareto-optimal trade-o� between consistency and robustness. We
�rst focus on the :-max search in detail and then state the main
results for :-min search and defer the details to Appendix B.

In :-max search, we have a prediction of the maximum price
% 2 [?min, ?max]. Our learning-augmented algorithm is to redesign
the threshold values q (:, %) := q = {q8 }82 [:] in OTA based on the
prediction % such that OTAq can attain the Pareto-optimal consis-
tency and robustness. To achieve this goal, we �rst determine a
lower bound for the robustness-consistency trade-o�. Then, q is
designed such that OTAq can achieve this lower bound.

3.1 Learning-augmented algorithms for :-max
3.1.1 Lower bound. We �rst present a lower bound for any learning-
augmented algorithm for the :-max problem, which is used as a
target trade-o� in our algorithm design.

T������ 3.1. For:-max search, anyW-robust deterministic learning-
augmented algorithm must have a consistency lower bounded by

�(W) = \⇥
1 + (W � 1) (1 + W

:)b
⇤
/W + (\ � 1) (1 � b

:)
, (6)

where b =
l
ln

⇣
\�1
W�1

⌘
/ln

⇣
1 + W

:

⌘m
.

The lower bound result of the :-max search in Theorem 3.1
generalizes the existing results of 1-max search and one-way trading
in [24]. When : ! 1, we have b/: ! 1

W ln \�1W�1 and (1 + W
:)
b !

\�1
W�1 . Thus, the lower bound of :-max search approaches that of
one-way trading. When : = 1, we have b = 1. The lower bound of
:-max search approaches that of 1-max search.

P���� �� T������ 3.1. To show the lower bound, we consider
a special family of instances, and show that under the special in-
stances, any W-robust deterministic online algorithm at least has a
consistency [that is lower bounded by �(W). ⇤

D��������� 3.2 (?���������). A ?-instance I? consists of a se-
quence of prices that increase continuously from ?min to ? and drop
to ?min at the last price.

389

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Let 6(?) : [?min, ?max] ! {0, 1, . . . ,:} denote the cumulative
trading decision of an online algorithm when it executes the in-
stance I? before the compulsory trading in the last step. Since the
online decision is irrevocable, 6(?) is non-decreasing as ? increases
from ?min to ?max. In addition, items must be traded if the price
is the highest one ?max. Thus, we must have 6(?max) = : . Given
an online algorithm, let I?̂8 denote the �rst instance, in which the
algorithm trades the 8-th item, i.e., ?̂8 = inf {?2 [?min,?max]:6 (?)�8 } ? .

For any W-robust online algorithm, {?̂8 }82 [:] must satisfy

:?̂8Õ
92 [8�1] ?̂ 9 + (: � 8 + 1)?min

 W, 8 2 [: + 1], (7a)

?̂8  ?max, 8 2 [:], (7b)

where ?̂0 := ?min and ?̂:+1 := ?max. Based on Equation (7), we have

?̂8  min
⇢
?min + ?min (W � 1)

⇣
1 + W

:

⌘8�1
, ?max

�
,88 2 [:] . (8)

Suppose the prediction is given by % = ?max. To ensure [-
consistency under I?max , any W-robust algorithm must have

[�
OPT(I?max)
ALG(I?max)

=
:?maxÕ
82 [:] ?̂8

=
:?maxÕ

82 [b] ?̂8 + (: � b)?max
(9a)

� :?maxÕ
82 [b] ?min [1 + (W � 1) (1 + W

:)8�1] + (: � b)?max
(9b)

=
\⇥

1 + (W � 1) (1 + W
:)b

⇤
/W + (\ � 1) (1 � b

:)
, (9c)

where the inequality (9b) holds due to Equation (8) enforced by
W-robustness, and b satis�es ?min +?min (W �1) (1+ W:)

b�1 < ?max 
?min +?min (W � 1) (1+ W:)

b , which gives b :=
l
ln

⇣
\�1
W�1

⌘
/ln

⇣
1 + W

:

⌘m
.

This completes the lower bound proof.

3.1.2 Pareto-optimal algorithm. Based on the lower bound result,
for a given _ 2 [0, 1], we set our target consistency and robustness
of :-max search with predictions as

W (:) (_) = U (:)
⇤ + (1 � _) (\ � U (:)

⇤), [(:) (_) = �(W (:) (_)) . (10)

where _ is the con�dence factor that indicates the degree of untrust
in the prediction. Our goal is to design threshold value q (:, %) :=
{q8 }82 [:] that depends on : and prediction % such that OTAq can
achieve the target in Equation (10). In particular, the threshold value
q is designed in the form of

q8 =

8>>><
>>>:

I8 8 = 1, . . . , 9⇤,
28 8 = 9⇤ + 1, . . . , 8⇤,
A8 8 = 8⇤ + 1, . . . ,:,

(11)

where the two sequences {I8 }82 [9⇤] and {A8 }:8=8⇤+1 are designed to
guarantee the robustness and the sequence {28 }8

⇤
8=9⇤+1 is designed

to ensure the consistency. Recall the threshold values divide the
uncertainty price range [?min, ?max] into:+1 regions and theworst-
case ratio when the actual maximum price falls in each region is
U (:)
8 (q) derived in Equation (5). We design q such that

U (:)
8 (q) 

(
[(:) , 8 = 9⇤ + 1, . . . , 8⇤,
W (:) , otherwise,

(12)

when prediction % 2 [q 9⇤+1,q8⇤], and thus an accurate prediction
will lead to a consistency [(:) .

Design of threshold values. Given a prediction % of the maximum
price and the target consistency [and robustness W , we design a
piecewise threshold q including three cases as follows.

Letf⇤ 2 [:] be the largest index such that 1+(\�1)/(1+W/:)
:�f⇤

1+([�1) (1+[/:)f⇤ 
W
[. We de�ne two boundary values ?̃1 = ?min + ?min ([� 1) (1 +
[/:)f⇤�1 and ?̃2 = max{?̃1,W?min}.

Case I. When % 2 [?min, ?̃1], set 9⇤ = 0, 8⇤ = f⇤ and

28 = ?min + ?min ([� 1) (1 + [/:)8�1 , 8 2 [8⇤], (13a)

A8 = ?min +
?max � ?min
(1 + W/:):�8+1

, 8 = 8⇤ + 1, . . . ,: . (13b)

Case II. When % 2 (?̃1, ?̃2], set 9⇤ = 0 and

28 =

8>>><
>>>:

% 8 = 1, . . . ,<⇤,

[<
⇤%+(:�<⇤)?min

: 8 =<⇤ + 1,
?min + (2<⇤+1 � ?min) (1 + [/:)8�<

⇤�1 8 =<⇤ + 2, . . . , 8⇤,
(14a)

A8 = ?min +
?max � ?min
(1 + W/:):�8+1

, 8 = 8⇤ + 1, . . . ,:, (14b)

where<⇤ =
l
: %/[�?min
%�?min

m
and 8⇤ is the largest index that ensures

U (:)
8⇤+1 (q) =

:A8⇤+1Õ
8=[8⇤] 28+(:�8⇤)?min

 W .

Case III. When % 2 (?̃2, ?max], set
I8 = ?min + ?min (W � 1) (1 + W/:)8�1, 8 2 [9⇤], (15a)

28 =

8>>><
>>>:

%, 8 = 9⇤ + 1, . . . ,<⇤,

[
Õ

82 [9⇤] I8+(<⇤� 9⇤)%+(:�<⇤)?min
: , 8 =<⇤ + 1,

?min + (2<⇤+1 � ?min) (1 + [/:)8�<
⇤�1, 8 =<⇤ + 2, . . . , 8⇤,

(15b)

A8 = ?min +
?max � ?min
(1 + W/:):�8+1

, 8 = 8⇤ + 1, . . . ,:, (15c)

where we have

9⇤ =
⇠
ln

✓
%/?min � 1
W � 1

◆
/ln

⇣
1 + W

:

⌘⇡

<⇤ = 9⇤ +
&
:%/[� :?min [1 + (W � 1) (1 + W/:) 9⇤]/W

% � ?min

'

and 8⇤ is the largest index such that U (:)
8⇤+1 (q)  W .

In Figure 3, we illustrate the design of the threshold q in above
three cases with varying predictions. OTAq can ensure that the
worst-case ratio is upper bounded by [if the actual maximum price
falls in the shaded blue region and upper bounded by W if the actual
maximum price belongs to the shaded pink region. Also note that
the shaded blue region always contains the prediction % . Therefore,
OTAq is [-consistent and W-robust.

T������ 3.3. Given _ 2 [0, 1], OTAq is [(:) (_)-consistent and
W (:) (_)-robust for the learning-augmented :-max search when q is
given by Equations (13)-(15), where [= [(:) (_) and W = W (:) (_) are
given by Equation (10). Further, OTAq is Pareto-optimal.

390

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

5 10 15 20

Threshold index

0

10

20

30

40

50

T
h
re

sh
o
ld

 v
al

u
e

p
min

p
maxi*

c
i

r
i

(a) Case I with % = 8

5 10 15 20

Threshold index

0

10

20

30

40

50

T
h
re

sh
o
ld

 v
al

u
e

p
min

p
maxi*

m
*

c
i

r
i

(b) Case II with % = 12

5 10 15 20

Threshold index

0

10

20

30

40

50

T
h
re

sh
o
ld

 v
al

u
e

p
min

p
maxi*

m
j

z
i

c
i

r
i

(c) Case III with % = 15

5 10 15 20

Threshold index

0

10

20

30

40

50

T
h
re

sh
o
ld

 v
al

u
e

p
min

p
max

m
j

z
i

c
i

(d) Case III with % = 25

Figure 3: Threshold values for :-max search with ?max = 50,
?min = 5, : = 20, [= 1.52, and W = 2.63.

We �rst compare the trade-o� between consistency and robust-
ness for :-max search with similar results in [24] for 1-max and
one-way trading problems in Figure 1. In particular, we illustrate
the Pareto boundaries of the consistency and robustness in one-way
trading and the :-max search problem for four di�erent values of
: . For all problems, there exists a strong consistency-robustness
trade-o�. As the consistency improves from U (:)

⇤ (i.e., the optimal
worst-case competitive ratio) to the best possible ratio 1, the robust-
ness degrades from U (:)

⇤ to the worst possible ratio \ . In addition,
as the total number of budget : increases, the Pareto boundary of
:-max search improves towards that of the one-way trading. This is
because a large value of : gives more �exibility in online decision-
making to hedge the worst-case risk while using ML predictions.

We next sketch the key ideas in the design and analysis of OTAq
and defer the full proof of Theorem 3.3 to Appendix B.1. Recall that
in the worst-case optimized algorithm, the threshold divides the
uncertainty range [?min, ?max] to : +1 intervals and the worst-case
ratio U (:)

8 , 8 2 [: + 1] is captured by Equation (5). The algorithm
adopts a balancing rule by letting U (:)

8 = U (:)
⇤ ,88 2 [: + 1] to

achieve the optimal competitive ratio. In the learning-augmented
algorithm, we aim to leverage the prediction % to achieve unbal-
anced ratios as shown in Equation (12).

Our high-level idea is to prioritize the trading decisions for the
intervals neighbouring the prediction % by designing the thresholds
(i.e., {28 }8

⇤
8=9⇤+1) to attain good consistency, and just guarantee ro-

bustness in above-prediction (i.e., {A8 }:8=8⇤+1) and below-prediction
(i.e., {I8 }82 [9⇤]) intervals. In particular, we design the thresholds
{28 }8

⇤
8=9⇤+1 by letting U (:)

8  [to ensure consistency. The key
challenge is to simultaneously ensure the robustness of below-
prediction and above-prediction intervals (that are illustrated by

shaded pink areas in Figure 3). In the design, we have two key
observations that are summarized in Propositions 3.4 and 3.5.

P���������� 3.4. Given 9 2 [: � 1], if the thresholds after 9 are

q8 = ?min +
?max � ?min
(1 + W/:):�8+1

, 8 = 9 + 1, . . . ,:, (16)

and U (:)
9+1 (q)  W , then U

(:)
8 (q)  W, 8 = 9 + 2, . . . ,: + 1.

P���������� 3.5. For a given 9 2 [b], if the �rst 9 thresholds are
q8 = ?min + ?min (W � 1) (1 + W/:)8�1 , 8 = 1, . . . , 9, (17)

then U (:)
8 (q)  W, 8 = 1, . . . , 9 .

First, conditioned on U (:)
9+1  W , if we design the remaining thresh-

olds for 8 = 9 + 1, . . . ,: in Equation (16), the worst-case ratios of
the above-prediction intervals are upper bounded by the robust-
ness W , and this leads to the design of the sequence {A8 }:8=8⇤+1 and
the determination of 8⇤. Second, based on Proposition 3.5, we can
design the threshold {I8 }82 [9⇤] in Equation (17) to ensure the ro-
bustness of below-prediction intervals. Since the robustness of the
below-prediction intervals can be trivially satis�ed when prediction
% < W?min, the sequence {I8 }82 [9⇤] is only needed in Case III.

3.2 Learning-augmented algorithms for :-min
In the :-min search, we consider a prediction % 2 [?min, ?max] of
the minimum price of an instance. Our algorithm is still an OTA and
we aim to leverage % to design the thresholdk (:, %) := {k8 }82 [:]
such that OTAk can achieve the Pareto-optimal consistency-robustness
trade-o�. We start by deriving the lower bound of the trade-o�.

T������ 3.6. For:-min search, anyW-robust deterministic learning-
augmented algorithm must have a consistency lower bounded by

⇤(W) = \W � \ (W � 1) (1 + 1/(W:))Z � (\ � 1) (1 � Z /:) , (18)

where Z =
l
ln

⇣
\�1
\�\/W

⌘
/ln

⇣
1 + 1

W:

⌘m
.

Based on this lower bound, for a given _ 2 [0, 1], we set the
target consistency and robustness as

W (:) (_) = i (:)
⇤ + (1 � _) (\ � i (:)

⇤), [(:) (_) = ⇤(W (_)), (19)

where i (:)
⇤ is the optimal competitive ratio of :-min search.

We next derive the thresholdk based on the prediction % . Di�er-
ent from the threshold q in the :-max search,k is a non-increasing
sequence of values bounded within [?min, ?max]. k segments the
price range into : + 1 intervals [k0,k1), . . . , [k:�1,k:), [k: ,k:+1],
wherek0 := ?max andk:+1 := ?min. We designk in the same form
as q in Equation (11), where we reuse the notations :-max search.
Similar to :-max search, the thresholdk is designed such that

i (:)
8 (k) 

(
[(:) , 8 = 9⇤ + 1, . . . , 8⇤,
W (:) , otherwise,

(20)

where i (:)
8 (k) :=

Õ
9 2 [8�1] k 9+(:�8+1)?max

:k8
when the prediction of

the minimum price % 2 [k 9⇤+1,k8⇤]. Thus, an accurate prediction
will lead to consistency [, and regardless of the prediction, the
robustness W can be guaranteed.k is also designed in three cases,
and the Pareto-optimality of OTAk is given in the follow-up theorem.

391

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Letf⇤ 2 [:] be the largest index that 1� (1�1/[) (1+1/([:))f⇤

1� (1�1/\)/(1+1/(W:)):�f⇤ 
W
[. We de�ne two boundary values ?̃1 = ?max � ?max (1 � 1/[) (1 +
1/([:))f⇤�1 and ?̃2 = min{?̃1, ?max/W}.

Case IV. When % 2 (?̃1, ?max], set 9⇤ = 0, 8⇤ = f⇤, and

28 = ?max � ?max (1 � 1/[) (1 + 1/([:))8�1 , 8 2 [8⇤], (21a)

A8 = ?max �
?max � ?min

(1 + 1/(W:)):�8+1
, 8 = 8⇤ + 1, . . . ,: . (21b)

Case V. When % 2 (?̃2, ?̃1], set 9⇤ = 0 and

28 =

8>>><
>>>:

%, 8 = 1, . . . ,<⇤,
<⇤%+(:�<⇤)?max

[: , 8 =<⇤ + 1,
?max � (?max � 2<⇤+1) (1 + 1/([:))8�<⇤�1 , 8 =<⇤ + 2, . . . , 8⇤,

(22a)

A8 = ?max �
?max � ?min

(1 + 1/(W:)):�8+1
, 8 = 8⇤ + 1, . . . ,:, (22b)

where <⇤ =
l
: ?max�[%
?max�%

m
and 8⇤ is the largest index that ensures

i (:)
8⇤+1 (k)  W .

Case VI. When % 2 [?min, ?̃2], set
I8 = ?max � ?max (1 � 1/W) (1 + 1/(W:))8�1 , 8 2 [9⇤], (23a)

28 =

8>>>><
>>>>:

%, 8 = 9⇤ + 1, . . . ,<⇤,Õ
82 [9⇤] I8+(<⇤� 9⇤)%+(:�<⇤)?max

[: , 8 =<⇤ + 1,
?max � (?max � 2<⇤+1) (1 + 1/([:))8�1 , 8 =<⇤ + 2, . . . , 8⇤,

(23b)

A8 = ?max �
?max � ?min

(1 + 1/(W:)):�8+1
, 8 = 8⇤ + 1, . . . ,:, (23c)

in which we have 9⇤ =
l
ln

⇣
1�%/?max
1�1/W

⌘
/ln (1 + 1/(W:))

m
, and

<⇤ = 9⇤ + d:?max [1� (1�1/W) (1+1/(W:)) 9⇤]�:%[
?max�% e, and 8⇤ is the largest

index such that i (:)
8⇤+1 (k)  W .

T������ 3.7. Given _ 2 [0, 1], OTAk is [(:) (_)-consistent and
W (:) (_)-robust for the learning-augmented :-min search whenk is
given by Equations (21)-(23), where [:= [(:) (_) and W := W (:) (_)
are given in Equation (19). Further, OTAk is Pareto-optimal.

4 ONLINE SEARCHWITH INVENTORY
In this section, we consider an online search problem with inven-
tory dynamics, extend the learning-augmented algorithm for on-
line search to this more general problem, and prove the Pareto-
optimality of this algorithm.

4.1 Problem statement
Consider an inventory management problem in a time-slotted sys-
tem with horizon length) . In a volatile market with time-varying
prices, an inventory with capacity ⌫ is used to store items when the
price is low and use inventory to satisfy demand when the price
is high. In each slot C , we �rst observe a demand 3C 2 {0, 1, . . . }
that must be ful�lled immediately and a price ?C for purchasing the
items in the market. The demand 3C can be satis�ed by dual sources,

either by the inventory that was purchased in previous slots, or the
items purchased from the market. Then we decide GC 2 {0, 1, . . . },
the number of items to purchase from the market, in each slot C .
If GC > 3C , the additional items GC � 3C are stored in the inventory
for future use. The goal is to minimize the total cost of purchasing
items while ful�lling all real-time demands.

Let I := {?C ,3C }C 2 [)] denote an instance of the online search
with inventory dynamics (OSID). Given I, the problem can be for-
mulated as the following integer linear program.

(min-OSID) min
’

C 2 [)] ?CGC , (24a)

subject to BC = BC�1 + GC � 3C , 8C 2 [)], (24b)
GC � 3C � BC�1, 8C 2 [)], (24c)
BC  ⌫, 8C 2 [)], (24d)

variables GC , BC 2 {0, 1, . . . }, 8C 2 [)] . (24e)

where BC is the inventory level at the end of slot C with initial state
B0 = 0. The objective (24a) of OSID is to minimize the total cost of
purchasing the items over) slots. The constraint (24b) enforces the
inventory dynamics, i.e., the inventory level BC is equal to the pre-
vious inventory level BC�1 plus the net amount of purchased items
GC � 3C . The constraints (24c) and (24d) ensure that the inventory
level is within capacity, i.e., BC � 0 and BC  ⌫ for C 2 [)].

OSID is a general framework that can capture various resource
allocation problems with inventory dynamics. For instance, we
can apply OSID to model and solve the storage-assisted energy
trading problem in this paper. Particularly, consider a large energy
consumer (e.g., data centers) that aims to purchase energy from
the real-time energy market. It is equipped with an energy storage
that can be used to store energy when the energy price is low
and discharge to satisfy energy demand when the price is high. In
each slot C , the consumer observes its energy demand 3C and the
real-time electricity price ?C , and then decides how much energy to
purchase, GC , such that the demand can be satis�ed by the combined
amount from purchasing and storage discharging. In energy trading,
demand 3C and decision GC may be relaxed to continuous variables.
Our algorithms and results can be extended for the continuous
version of OSID (See Appendix D).

From the theoretical perspective, the o�ine OSID problem (24)
is an extension of the :-min search formulated in (1). Let :̄ =
minC 2 [)]:3C>0 3C denote the minimum non-zero demand, and with-
out loss of generality, consider ⌫ � :̄ for an inventory management
problem. When 3C = 0 for C = 1, . . . ,) � 1, and 3) = :̄ , OSID is to
minimize the cost of buying a total of :̄ items and storing them in
the inventory over the �rst) � 1 slots, and to use the inventory to
satisfy the demand :̄ in the last slot. This reduces to a :̄-min search
problem. When facing the general time-varying demand, OSID is
much challenging than the classical online search problem.

Correspondingly, the :-max version of OSID can be used to
model the problem of selling renewable energy (from solar panels
or wind turbines) in electricity markets. The seller is equipped with
an energy storage and can use it to temporally store the renewable
energy when the market price is not attractive, waiting for a better
selling opportunity. In each slot C , the seller obtains 0C 2 {0, 1, . . . }
amount of renewable energy with no production costs, and ob-
serves the real-time electricity price ?C . It then determines to sell GC

392

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

amount of energy in the market and earns a pro�t GC?C . If GC > 0C ,
the additional energy GC �0C is discharged from the energy storage.
Otherwise, the unsold energy 0C � GC is stored in the inventory for
trading in the future. The overall problem can be cast as follows:

(max-OSID) max
’

C 2 [)] ?CGC , (25a)

subject to BC = BC�1 � GC + 0C , 8C 2 [)], (25b)
GC  0C + BC�1, 8C 2 [)], (25c)
BC  ⌫, 8C 2 [)], (25d)

variables GC , BC 2 {0, 1, . . . }, 8C 2 [)] . (25e)

Note that if the renewable energy has a marginal production cost
2C (2C < ?min,8C 2 [)]), we can use a re�ned electricity price
?̂C := ?C � 2C with re�ned price uncertainty range [?̂min, ?̂max],
where ?̂min := ?min�maxC 2 [)] 2C and ?̂max := ?max�minC 2 [)] 2C in
the max-OSID. For simplicity of presentation, we focus on min-OSID
in the rest of the paper; but the algorithms and results can be
straightforwardly extended for max-OSID.

4.2 Learning-augmented algorithm for OSID
4.2.1 OSID with predictions. The key idea for designing online
algorithms for OSID is to note the following fact: in each slot C , if
the inventory level is su�ciently large to cover the demand 3C , we
can use the inventory to satisfy the demand �rst, and then run a
virtual online search algorithm to buy 3C items from the volatile
market in the following slots and restore them back to the inventory.
Thus, by running multiple virtual search problems in parallel, an
online algorithm for OSID can achieve a similar performance to
that of the online search if the inventory is non-empty.

Based on the above idea, we categorize time slots into busy peri-
ods with BC > 0 and idle periods with BC = 0, and make purchasing
decisions di�erently in busy and idle periods. In particular, given an
online algorithm for OSID, we divide the time horizon into a total of
intervals, where each interval = starts at a slot with non-empty
inventory and ends before the starting of the next interval or) .
Each interval = can be further divided into a busy period followed
by an idle period. Let T+

= and T 0
= denote sets of slots in the busy

period and idle period of the interval =, respectively.
In the beginning of each slot C , we are given a prediction %C .

When C 2 T+
= , %C is the predicted minimum price in the busy period

of interval =. When C 2 T 0
= , %C is a prediction of the minimum

price in the idle period of interval = and the busy period of = + 1.
Overall the prediction %C is the minimum price that a virtual search
problem created at slot C can observe in its lifecycle.
4.2.2 Learning-augmented algorithm. We propose an online algo-
rithm for OSID in Algorithm 2. This algorithm maintains multiple
virtual search problems in parallel in the busy period of each in-
terval and uses the algorithm for :-min search with predictions in
Section 3.2 as a subroutine to solve each virtual search problem.
In the following, we call the :-min search with prediction % as a
(:, %)-search problem. Let k (:, %) := {k8 (:, %)}82 [:] denote the
threshold values for (:, %)-search that can attain Pareto-optimal
consistency-robustness trade-o� in Equation (19). In the algorithm,
we set a target robustness guarantee W , and choose the optimal
consistency [(:) := [(:) (W) for given W and : .

Algorithm 2 divides the time horizon into # intervals. For each
C 2 T+

= in the busy period, the algorithm observes the demand 3C

Algorithm 2 Learning-augmented algorithm for OSID

1: input: thresholdk (:, %), inventory ⌫, target robustness W ;
2: initiation: = = 1, 8 = 1; < (1,1) = 1, : (1,1) = ⌫, % (1,1) = %0,
B0 = 0;k (1,1) := k (: (1,1) , % (1,1));

3: for C = 1, . . . ,) do
4: observe demand 3C and price ?C ; obtain prediction %C ;
5: if 3C > 0 then
6: 8 = 8 + 1, : (=,8) = 3C , % (=,8) = %C , k (=,8) :=
k (: (=,8) , % (=,8)) = {k (=,8)

9 } 92 [: (=,8)] ,<
(=,8) = 1;

7: end if
8: for 9 = 1, . . . , 8 do
9: G (=, 9)C = 0;
10: while ?C  k (=, 9)

< (=,9) and<
(=, 9)  : (=, 9) do

11: < (=, 9) =< (=, 9) + 1 and G (=, 9)C = G (=, 9)C + 1;
12: end while
13: end for
14: GC = max

nÕ
92 [8] G

(=, 9)
C ,3C � BC�1

o
;

15: BC = BC�1 + GC � 3C ;
16: if BC = 0 and BC�1 > 0 then
17: = = = + 1, 8 = 1, < (=,1) = 1, : (=,1) = ⌫, % (=,1) = %C ,

k (=,1) := k (: (=,1) , % (=,1));
18: end if
19: end for

and price ?C , and receives the prediction %C . It then creates a virtual
(3C , %C)-search problem if demand is strictly positive 3C > 0. Then
the algorithm runs the learning-augmented online threshold-based
algorithm (OTA) for all the 8 created online search problems in paral-
lel and obtains {G (=, 9)C } 92 [8] , where G (=, 9)C is the online decision of
the 9-th search problem. The online decision of OSID is then set to
the maximum of

Õ
92 [8] G

(=, 9)
C (i.e., the sum of trading decisions of

all virtual search problem) and 3C � BC�1 (i.e., the minimum trading
amount to satisfy the demand). If the �rst term is larger, we have
BC > 0 and the busy period continues. Otherwise, the inventory
becomes empty and the algorithm enters the idle period. Then the
algorithm clears all virtual search problems created in the busy
period, and initiates a (⌫, %C)-search problem based on the physical
capacity of the inventory, waiting for a low price that can start the
busy period of the next interval.

4.2.3 Consistency-robustness analysis. We next show that Algo-
rithm 2 provides the best consistency-robustness guarantees. We
still assume all prices are bounded ?C 2 [?min, ?max], and in OSID,
we additionally make the following assumption for the demand.

A��������� 4.1. The average demand in the idle period of one
interval is smaller than capacity ⌫, i.e., 1

#
Õ
=2 [#]

Õ
C 2T0

=
3C  ⌫.

This assumption basically means OSID is equipped with a su�-
ciently large inventory such that on average we can buy and store
cheap items during busy periods and use the inventory to satisfy
the demand in idle periods with high prices.

T������ 4.2. Under Assumption 4.1, given _ 2 [0, 1], Algorithm 2
is [(:̄) (_)-consistent and W (:̄) (_)-robust for the learning-augmented
OSID when k (:, %) is given by Equations (21)-(23), where [(:̄) (_)

393

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

and W (:̄) (_) are de�ned in Equation (19), and :̄ = minC 2 [)]:3C>0 3C
is the minimum non-zero demand. Algorithm 2 is Pareto-optimal for
OSID with minimum non-zero demand :̄ .

Our main result in this section is to show that our proposed
learning-augmented algorithms for OSID can achieve the best possi-
ble consistency-robustness trade-o�, and this trade-o� is the same
as that of :̄-min search with predictions, where :̄ is the minimum
non-zero demand of OSID and unknown to algorithm a prior. The
key step of Algorithm 2 is to, in parallel, run multiple learning-
augmented OTA for online search problems, and thus can be consid-
ered as an extension of the OTA for online search with predictions.
The consistency-robustness guarantee is restricted by the perfor-
mance of the online search problem with capacity :̄ since :̄-min
search is a special case of OSID with minimum non-zero demand :̄ .

4.2.4 Proof of Theorem 4.2. We sketch the proof for Theorem 4.2,
and defer all details to Appendix C. Let ALG(I) and OPT(I) de-
note the costs from the online algorithm and the o�ine optimal
algorithm under an instance I. We �rst show that Algorithm 2
generates a feasible solution for OSID.

L���� 4.3. The online solution of Algorithm 2 is feasible for OSID.

Let 8= denote the number of virtual search problems created in
the busy period of interval =, and let< (=,8) �1 denote the total num-
ber of items purchased by the 8-th virtual search problem in interval
=. The next lemma shows that we can upper bound the total cost of
the algorithm by threshold values {k (=,8)

9 }=2 [#],82 [8=], 92 [< (=,8)�1]
from the virtual search problems.

L���� 4.4. The cost of Algorithm 2 for OSID is upper bounded by

ALG(I)  [B) + '] ?max

+
’

=2 [#]

’
82 [8=]

 ’
92 [< (=,8)�1]

k (=,8)
9 + (: (=,8) �< (=,8) + 1)?max

�
,

where ' =
Õ
=2 [#]

Õ
C 2T0

=
3C � #⌫.

Next we show that the total cost of the o�ine optimum is lower
bounded by threshold values {k (=,8)

< (=,8) }=2 [#],82 [8=] from the virtual
search problems.

L���� 4.5. The cost of o�ine optimum for OSID is lower bounded

OPT(I) �
’

=2 [#]

’
82 [8=]

k (=,8)
< (=,8) · : (=,8) +

' · ?max
W

. (26)

Based on the property of threshold values given in (20), regard-
less of the accuracy of the predictions, we have

Õ
92 [< (=,8)�1] k

(=,8)
9 +

(: (=,8) �< (=,8) + 1)?max  Wk (=,8)
< (=,8):

(=,8) ,8= 2 [#], 8 2 [8=]. Com-
bining Lemma 4.4 and Lemma 4.5 gives

ALG(I) � B) ?max
OPT(I) 

W
Õ
=2 [#]

Õ
82 [8=] k

(=,8)
< (=,8):

(=,8) + '?maxÕ
=2 [#]

Õ
82 [8=] k

(=,8)
< (=,8):

(=,8) + ' ·?max
W

= W .

Thus, the robustness of Algorithm 2 is given by ALG(I)  WOPT(I)+
B) ?max, where B) ?max is an additive loss due to the remaining in-
ventory at the end of time horizon. Note that this additive loss is
inevitable compared to the o�ine optimum since the o�ine algo-
rithm knows the length of time horizon, and thus can always use

up all inventory at the end of horizon to minimize the cost. Further,
as the time horizon) increases, both ALG(I) and OPT(I) increase
and the performance loss is dominated by the multiplier term W
while the additive term B) ?max is negligible.

When all predictions are accurate, the threshold values given
by Equations (21)-(23) ensure that

Õ
92 [< (=,8)�1] k

(=,8)
9 + (: (=,8) �

< (=,8) + 1)?max  [(:
(=,8))k (=,8)

< (=,8):
(=,8) ,8= 2 [#], 8 2 [8=]. Based

on Lemma 4.4 and Lemma 4.5, we have

ALG(I) � B) ?max
OPT(I) 

[(:̄)
Õ
=2 [#]

Õ
82 [8=] k

(=,8)
< (=,8):

(=,8) + '?maxÕ
=2 [#]

Õ
82 [8=] k

(=,8)
< (=,8):

(=,8) + ' ·?max
W

 [(:̄) ,

where the last inequality holds since ' =
Õ
=2 [#]

Õ
C 2T0

=
3C �#⌫ 

0 under the Assumption 4.1. Thus, Algorithm 2 can guarantee
ALG(I)  [(:̄)OPT(I) + B) ?max.

Therefore, Algorithm 2 is W (:̄) -robust and [(:̄) -consistent.
Also, note that :̄-min search with predictions is a special case

of OSID with minimum non-zero demand :̄ . W (:̄) and [(:̄) are also
the lower bound of the consistency-robustness trade-o�. Thus, the
algorithm is Pareto-optimal.

4.3 Inventory-cost-aware algorithms
In numerous real-world applications of OSID, the utilization of in-
ventory introduces additional expenses, such as the battery cost
and energy conversion loss in the context of the storage-assisted en-
ergy trading problem. To address these associated costs, we extend
Algorithm 2 to an inventory-cost-aware algorithm. Speci�cally,
our extension accounts for two types of inventory-related costs in
the energy trading problem: (i) usage cost, entailing a cost of X for
each unit of energy charged into or discharged from inventory; and
(ii) conversion loss, wherein only d2 and d3 percentages of energy
can be e�ciently charged into and discharged from the inventory,
respectively. The inventory-cost-aware problem can be cast as:

min
GC �0,BC �0

’
C 2 [)] ?CGC + |3C � GC |X (27a)

subject to BC = BC�1 + d2G2C �
1
d3
G3C ,8C 2 [)] (27b)

G2C = (GC � 3C)+,8C 2 [)], (27c)

G3C = (3C � GC)+,8C 2 [)], (27d)
3C � GC  d3BC�1,8C 2 [)], (27e)
BC  ⌫,8C 2 [)], (27f)

where the objective (27a) additionally considers a cost |3C � GC |X
from inventory usage and the inventory dynamics (27b) takes into
account the energy conversion loss. We further relax the integral
constraints for this energy trading problem.

We make two modi�cations in Algorithm 2 to handle inventory
costs. To deal with the conversion loss, we increase the capacity of
the �rst virtual storage to : (1,1) = ⌫/(d2d3) in Line 2. The intuition
for adjusting only the �rst storage is that its extended capacity of ⌫
can be considered largely responsible for moving units in and out
of the physical storage. Modifying just this storage will adjust the

394

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

charging amount and leaving the virtual storages with capacity 3C
untouched will maintain trading to meet demand.

To deal with the inventory usage cost, we modify the threshold
prices depending on the current demand. The primary objective
is to encourage the algorithm to refrain from utilizing the inven-
tory unless it has good potential to reduce the purchasing cost
substantially. To achieve this, we set thresholds to avoid purchasing
a quantity too close to 3C . Speci�cally, we modify the thresholds
k (=, 9) in Line 10 to usek 0(=, 9) de�ned as follows:

k 0(=, 9)
8 =

8>>><
>>>:

k (=, 9)
g � 2X, k (=, 9)

g � 2X  k (=, 9)
8 < k (=, 9)

g

k (=, 9)
g , k (=, 9)

g  k (=, 9)
8  k (=, 9)

g + 2X
k (=, 9)
8 , otherwise;

where g =< (=, 9) + 3C ·
j
: (=,9)Õ
E : (=,E)

k
. First, we set a target utilization

g such that the aggregate target utilization over 9 inventories is
3C more than the current level. Then, prices within a range 2X of
the corresponding target price k (=, 9)

g are modi�ed such that the
algorithm only charges to the physical storage if the price is at
least 2X above/below the threshold price for meeting demand 3C .
The range 2X is chosen because it inevitably costs 2X to charge
and discharge one unit. Adding usage costs and conversion loss
fundamentally alters the problem formulation of OSID, making it
much more challenging to analyze the theoretical performance of
the inventory-cost-aware algorithm. Therefore, we leave the theo-
retical analysis of the algorithm for our future work but verify the
performance of the modi�ed algorithms numerically in Section 5.

5 EXPERIMENTAL RESULTS
5.1 Experimental setup
We apply the learning-augmented algorithms for the continuous
OSID (see Appendix D for more details). For supplementary experi-
ments on the basic :-search problem, see Appendix E. We set the
length of each slot to 5 minutes and set the time horizon of each
instance to 24 hours, i.e.,) = 288. The energy storage capacity is
set to 18 ⇥maxC 2 [)] 3C such that a full charge of the storage can
power the data center for 90 minutes of maximum energy demand.
We report the empirical ratios over 31 days.
Energy price.We use the day-ahead electricity prices of local elec-
tricity markets over several di�erent independent system operators
in the United States, i.e., CAISO, NYISO, ERCOT, and ISO-NE [9].
To have a consistent 5-minute settlement interval for our markets,
we up-sample some market price readings.
Data center demand. We use a repository of demand traces from
Akamai’s server clusters collected during a 31-day period from
multiple locations. We run our algorithms on data centers located
in relevant electricity markets: New York for NYISO, Dallas for
ERCOT, Los Angeles for CAISO, and Boston for ISO-NE. The energy
demand is partially supplied by renewable generation, which has
uncertainty that causes the net demand (the data center demand
minus renewable supply) to be more volatile.
Algorithm predictions. The learning-augmented algorithm for
OSID utilizes a prediction %C that predicts the minimum price in
the lifecyle of the virtual online search created at slot C . In our
experiments, we consider utilizing the minimum price of half-hour,
1-hour, and 2-hour windows. To adjust the prediction quality, we

add prediction errors drawn from a normal distribution with mean
0 and variance f scaled by a factor of \ .

5.2 Comparison algorithms
We compare the following seven algorithms. (NoSTR): An algorithm
that satis�es the demand by purchasing energy from the market
without using storage. The cost ratio of NoSTR demonstrates the
maximum bene�t of storage. (OS-on): The worst-case optimized
online algorithm [27] that solves OSID without predictions. (OS-b):
The baseline algorithm introduced in Section 2.3 adapted for OSID.
(OS-_): Our proposed learning-augmented algorithm for OSID. The
value of _ is selected according to an online learning algorithm
(i.e., adversarial Lipschitz algorithm [20]) to adaptively select _.
(OS-_⇤): Our proposed algorithm for OSID with the best choice of
. (OS--IA): Our extended learning-augmented algorithm that is
aware of inventory usage costs and conversion loss. (OS-on-IA):
The inventory-cost-aware algorithm without predictions.

5.3 Experimental results
We report the average empirical ratios of �ve algorithms in Table 1
across data center locations, seasons, and prediction window sizes.
The magnitude of the price �uctuation ratio \ clearly indicates
the problem di�culty, especially for OS-on. For example, in the
seasonal breakdown of ISO-NE, the cost ratio of OS-on increases
by 13% in winter as compared to spring. The same e�ect can be
observed for learning-augmented algorithms to a lesser degree: the
same comparison for OS-_ increases by 3% from spring to winter.

We observe that OS-_ outperforms other baseline algorithms
averaged over the course of a year. The degree of performance gain
depends on the prediction quality, with smaller prediction win-
dows yielding a greater gain. In the half-hour prediction window,
OS-_ outperforms OS-on averaged over a year by between 5% to
8%, depending on the dataset. In comparison, the 2-hour window
yields a year-average performance gain between 1.5% to 3%. The
performance of OS-_ relative to OS-b highlights the importance
of the optimality of our algorithm over all other prediction-based
algorithms, with a performance improvement of up to 8.4% in the
year-average CAISO half-hour trial. Both OS-_ and OS-_⇤ have
relatively smaller improvements on OS-b in the 2-hour window.
Despite this, all prediction-based algorithms perform better than
OS-on, indicating that even with poor predictions, good usage of the
trust parameter still improves on worst-case optimized algorithms.

To demonstrate the inherent tradeo� between the robustness
and consistency of our learning-augmented algorithms, we show
the performance of the algorithms with varying prediction errors
in Figure 4(a). The prediction error is generated by Gaussian noise
n ⇠ N(0,f), where f 2 [0, 2.5] and is normalized by \ . Recall
that algorithms with di�erent _s achieve di�erent consistency-
robustness tradeo�s, a smaller _ rendering a better consistency and
worse robustness. The algorithm with _ = 0 attains the best consis-
tency, i.e., it achieves the lowest cost ratio when the prediction error
is small; however, its robustness is the worst, i.e., it has the highest
cost ratio as the prediction error becomes large. As we increase
the value of _, the algorithm can experience lower cost ratios in
scenarios with large prediction errors, at the cost of higher cost
ratios when the prediction error is small. This corresponds with

395

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Table 1: The reported numbers are empirical cost ratios (the lower, the better, and one is the best) of algorithms in varying
markets and seasons; \ is the price �uctuation ratio; U (1)

⇤ is the theoretical competitive ratio.

Season \ U (1)
⇤ NoSTR OS-on

Half-hour window 1-hour window 2-hour window
OS-b OS-_ OS-_⇤ OS-b OS-_ OS-_⇤ OS-b OS-_ OS-_⇤

CA
IS
O

Spring 33.25 4.40 1.34 1.29 1.31 1.19 1.11 1.26 1.22 1.17 1.24 1.24 1.22
Summer 44.59 5.05 1.47 1.37 1.36 1.21 1.12 1.31 1.23 1.15 1.40 1.41 1.38

Fall 4.62 1.83 1.36 1.23 1.26 1.18 1.10 1.22 1.15 1.10 1.22 1.17 1.16
Winter 18.78 3.39 1.43 1.26 1.27 1.18 1.09 1.26 1.17 1.14 1.26 1.22 1.20

Year 25.31 3.67 1.40 1.28 1.30 1.19 1.11 1.26 1.19 1.14 1.28 1.25 1.24
N
YI
SO

Spring 3.74 1.68 1.36 1.20 1.22 1.15 1.11 1.19 1.16 1.13 1.18 1.20 1.19
Summer 5.93 2.03 1.36 1.28 1.28 1.22 1.12 1.23 1.17 1.11 1.23 1.22 1.20

Fall 4.66 1.84 1.38 1.28 1.28 1.21 1.13 1.23 1.18 1.13 1.21 1.20 1.19
Winter 2.83 1.50 1.21 1.17 1.19 1.13 1.07 1.21 1.14 1.11 1.20 1.17 1.14

Year 4.29 1.76 1.31 1.22 1.23 1.17 1.10 1.21 1.16 1.12 1.20 1.20 1.17

ER
CO

T

Spring 7.66 2.27 1.38 1.28 1.29 1.20 1.10 1.28 1.22 1.12 1.30 1.31 1.30
Summer 4.98 1.89 1.52 1.26 1.26 1.19 1.11 1.25 1.20 1.11 1.22 1.21 1.20

Fall 50.37 5.34 1.57 1.41 1.40 1.21 1.11 1.39 1.28 1.16 1.42 1.40 1.39
Winter 9.13 2.45 1.33 1.26 1.27 1.22 1.12 1.24 1.18 1.13 1.21 1.20 1.19

Year 18.03 2.99 1.45 1.30 1.30 1.20 1.11 1.29 1.22 1.13 1.28 1.28 1.27

IS
O
-N

E

Spring 10.57 2.62 1.32 1.26 1.27 1.25 1.10 1.25 1.24 1.13 1.24 1.23 1.19
Summer 9.37 2.48 1.47 1.34 1.33 1.22 1.11 1.30 1.24 1.17 1.34 1.32 1.28

Fall 6.70 2.15 1.36 1.27 1.29 1.18 1.10 1.27 1.22 1.16 1.28 1.27 1.22
Winter 46.44 5.14 1.69 1.43 1.39 1.29 1.13 1.36 1.34 1.25 1.32 1.32 1.31

Year 18.27 3.10 1.46 1.33 1.32 1.23 1.11 1.29 1.26 1.18 1.30 1.29 1.25

0 .5 1 1.5 2 2.5

Prediction variance

1.05

1.1

1.15

1.2

1.25

1.3

E
m

p
ir

ic
al

 c
o

st
 r

at
io

(a) E�ect of prediction quality on settings of _

0 .1 .2 .3 .4 .5

Normalized battery cost

1.15

1.2

1.25

1.3

1.35

1.4

E
m

p
ir

ic
al

 c
o
st

 r
at

io

(b) Impact of inventory usage cost

1.0 .95 .9 .85 .8 .75 .70 .65

Battery efficiency
c d

1.15

1.2

1.25

1.3

1.35

1.4

E
m

p
ir

ic
al

 c
o

st
 r

at
io

(c) Impact of conversion loss

Figure 4: Cost ratio vs. di�erent problem parameters. Dallas Jan 2023 with half-hour prediction window.

the theoretical robustness-consistency tradeo�s. Moreover, the per-
formances of all learning-augmented algorithms smoothly improve
with increasing prediction quality. This is desirable for algorithms
with untrusted predictions, and it underscores that, despite the algo-
rithms’ obliviousness to the prediction quality, their performances
consistently improve as prediction accuracy increases.

In Figure 4(b) and Figure 4(c), we showcase the impacts of in-
ventory usage cost and conversion loss on proposed algorithms.
We compare the average cost ratios of our inventory-cost-aware
algorithms against NoSTR and OS-on, which are ignorant of the
additional inventory dynamics. The usage cost X in Figure 4(b) is
normalized by ?min and the charging and discharging losses are rep-
resented by the overall battery e�ciency d2d3 . Storage e�ciency
in datacenters depends on the energy storage device used, ranging
from as high as 95% for ultra-capacitors or as low as 68% for com-
pressed air energy storage [25]. We observe that the increase in the
usage cost or the conversion loss tends to lower the cost ratios of
algorithms since the cost of the o�ine algorithm also rises. As usage
costs or energy loss grow, o�ine algorithm charges the battery less
frequently, and NoSTR becomes increasingly viable. OS-_-IA o�ers
consistent performance improvements over baseline algorithms
with di�erent battery costs until X = 0.5, where it matches the
cost ratio of NoSTR. As X increases, the performance gain from us-
ing OS-_-IA over OS-on grows from 5% to almost 10%. For battery

e�ciency below 65%, utilizing predictions is key to maintaining
improvement over baselines, as OS-on-IA matches NoSTR.

6 CONCLUSION
Wehave designed online algorithms augmented bymachine-learned
predictions for the online search problem and its extension to online
search with inventory dynamics. Theoretically, the performance
of our proposed algorithms is consistent with that of o�ine algo-
rithms in hindsight when the prediction is accurate and robust on
prediction errors. Further, the trade-o� between consistency and
robustness has been proven Pareto-optimal. Practically, we have
applied the learning-augmented algorithms to the storage-assisted
energy trading problem in energy markets. Through extensive
experiments using real traces, our proposed learning-augmented
algorithm has been shown to achieve the best of both worlds in
the sense that it improves the average empirical performance com-
pared to existing benchmark algorithms, while also improving the
worst-case performance even when the predictions are inaccurate.

ACKNOWLEDGMENTS
The work of Russell Lee and Mohammad Hajiesmaili was supported
by the U.S. National Science Foundation (NSF) under grant numbers
CAREER-2045641, NGSDI-2105494, CPS-2136199, CNS-2106299,
and CNS-2102963. The work of John C.S. Lui was supported in
part by the RGC GRF 14202923.

396

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

REFERENCES
[1] Spyros Angelopoulos, Shahin Kamali, and Kimia Shadkami. 2022. Online Bin

Packing with Predictions. In Proceedings of the Thirty-First International Joint
Conference on Arti�cial Intelligence, IJCAI-22, Lud De Raedt (Ed.). International
Joint Conferences on Arti�cial Intelligence Organization, 4574–4580.

[2] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand
Simon. 2020. Onlinemetric algorithmswith untrusted predictions. In International
Conference on Machine Learning. PMLR, 345–355.

[3] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. 2020.
Secretary and online matching problems with machine learned advice. Advances
in Neural Information Processing Systems 33 (2020), 7933–7944.

[4] Santiago Balseiro, Christian Kroer, and Rachitesh Kumar. 2023. Single-Leg Rev-
enue Management with Advice. In Proceedings of the 24th ACM Conference on
Economics and Computation (London, United Kingdom) (EC ’23). Association for
Computing Machinery, New York, NY, USA, 207.

[5] Allan Borodin and Ran El-Yaniv. 2005. Online computation and competitive
analysis. cambridge university press.

[6] Roozbeh Bostandoost, Bo Sun, Carlee Joe-Wong, and Mohammad Hajiesmaili.
2023. Near-optimal Online Algorithms for Joint Pricing and Scheduling in EV
Charging Networks. In Proceedings of the 14th ACM International Conference on
Future Energy Systems. 72–83.

[7] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. 2021.
Secretaries with advice. In Proceedings of the 22nd ACM Conference on Economics
and Computation. 409–429.

[8] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. 2001. Optimal Search and One-Way
Trading Online Algorithms. Algorithmica 30, 1 (May 2001), 101–139.

[9] Energy Online 2023. LCG Consulting Energy Online. available at httsp://www.
energyonline.com/Data.

[10] Dimitris Fotakis, Evangelia Gergatsouli, Themis Gouleakis, and Nikolas Patris.
2021. Learning augmented online facility location. arXiv preprint arXiv:2107.08277
(2021).

[11] Gemini Exchange 2023. Gemini Exchange Dataset. available at https://www.
cryptodatadownload.com/data/gemini.

[12] Sreenivas Gollapudi and Debmalya Panigrahi. 2019. Online algorithms for rent-or-
buy with expert advice. In International Conference on Machine Learning. PMLR,
2319–2327.

[13] Mark Heinsbroek. 2022. Online One-Way Trading with Machine Learned Advice.
Master’s thesis. Utrecht University.

[14] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. 2021.
Online knapsack with frequency predictions. Advances in Neural Information
Processing Systems 34 (2021), 2733–2743.

[15] Shaofeng H-C Jiang, Erzhi Liu, You Lyu, Zhihao Gavin Tang, and Yubo Zhang.
2021. Online Facility Location with Predictions. In International Conference on
Learning Representations.

[16] Billy Jin and Will Ma. 2022. Online Bipartite Matching with Advice: Tight
Robustness-Consistency Tradeo�s for the Two-Stage Model. arXiv preprint
arXiv:2206.11397 (2022).

[17] Russell Lee, Jessica Maghakian, Mohammad Hajiesmaili, Jian Li, Ramesh Sitara-
man, and Zhenhua Liu. 2021. Online peak-aware energy scheduling with un-
trusted advice. ACM SIGENERGY Energy Informatics Review 1, 1 (2021), 59–77.

[18] Julian Lorenz, Konstantinos Panagiotou, and Angelika Steger. 2009. Optimal
algorithms for k-search with application in option pricing. Algorithmica 55, 2
(2009), 311–328.

[19] Thodoris Lykouris and Sergei Vassilvtiskii. 2018. Competitive Caching with
Machine Learned Advice. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer
Dy and Andreas Krause (Eds.). PMLR, 3296–3305.

[20] Odalric-Ambrym Maillard and Rémi Munos. 2010. Online learning in adversarial
lipschitz environments. In Joint european conference on machine learning and
knowledge discovery in databases. Springer, 305–320.

[21] Ali Menati, Sid Chi-Kin Chau, and Minghua Chen. 2022. Competitive prediction-
aware online algorithms for energy generation scheduling in microgrids. In
Proceedings of the Thirteenth ACM International Conference on Future Energy
Systems. 383–394.

[22] Yanfang Mo, Qiulin Lin, Minghua Chen, and Si-Zhao Joe Qin. 2021. Optimal
online algorithms for peak-demand reduction maximization with energy storage.
In Proceedings of the twelfth ACM international conference on future energy systems.
73–83.

[23] Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving Online Algo-
rithms via ML Predictions. In Advances in Neural Information Processing Systems,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.), Vol. 31. Curran Associates, Inc.

[24] Bo Sun, Russell Lee, Mohammad Hajiesmaili, Adam Wierman, and Danny Tsang.
2021. Pareto-Optimal Learning-Augmented Algorithms for Online Conversion
Problems. In Advances in Neural Information Processing Systems, Vol. 34.

[25] Di Wang, Chuangang Ren, Anand Sivasubramaniam, Bhuvan Urgaonkar, and
Hosam Fathy. 2012. Energy Storage in Datacenters: What, Where, and How

Much? 40, 1 (jun 2012), 187–198. https://doi.org/10.1145/2318857.2254780
[26] Alexander Wei and Fred Zhang. 2020. Optimal robustness-consistency trade-

o�s for learning-augmented online algorithms. Advances in Neural Information
Processing Systems 33 (2020), 8042–8053.

[27] Lin Yang,MohammadHHajiesmaili, Ramesh Sitaraman, AdamWierman, Enrique
Mallada, and Wing S Wong. 2020. Online linear optimization with inventory
management constraints. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 1 (2020), 1–29.

[28] Ali Zeynali, Bo Sun, Mohammad Hajiesmaili, and Adam Wierman. 2021. Data-
driven competitive algorithms for online knapsack and set cover. In Proceedings
of the AAAI Conference on Arti�cial Intelligence, Vol. 35. 10833–10841.

[29] Wenming Zhang, Yinfeng Xu, Feifeng Zheng, and Ming Liu. 2011. Online algo-
rithms for the general k-search problem. Information processing letters 111, 14
(2011), 678–682.

397

httsp://www.energyonline.com/Data
httsp://www.energyonline.com/Data
https://www.cryptodatadownload.com/data/gemini
https://www.cryptodatadownload.com/data/gemini
https://doi.org/10.1145/2318857.2254780

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

A PROOFS ON BASELINE ALGORITHMS
We �rst prove Lemma 2.3 that provides the consistency and robustness of the baseline algorithm for :-max search. For completeness of the
presentation, we then give the corresponding result for :-min search that can be derived similarly.

A.1 Proof of Lemma 2.3
Given a hyper-parameter _ 2 [0, 1], the baseline algorithm reserves :A = d_:e capacity and :2 = : � :A capacity for running the robust
algorithm and the prediction-based algorithm, respectively. In particular, the robust algorithm is the worst-case optimized algorithm (i.e.,
Algorithm 1 with threshold values given in Equation (3)) and the prediction-based algorithm waits to trade all :2 items until the �rst price
that is no smaller than the predicted maximum price % .

Let ḠC and ĜC denote the trading decisions from the robust algorithm and the prediction-based algorithm, respectively. Then the baseline
algorithm trades GC = ḠC +ĜC in step C . Given an instanceI = {?C }C 2 [)] , the total revenue of the baseline algorithm is ALG(I) = Õ

C 2 [)] ?CGC =Õ
C 2 [)] ?C ḠC +

Õ
C 2 [)] ?C ĜC and the o�ine optimum is OPT(I) = :+ , where + = maxC 2 [)] ?C is the actual maximum price.

We �rst show the robustness of the baseline algorithm. Since ḠC is given by the optimal :A -max search algorithm, we have
Õ
C 2 [)] ?C ḠC �

:A+ /U (:A)
⇤ , in which U (:A)

⇤ is the optimal competitive ratio of :A -max search. In addition, the revenue of the prediction-based algorithm is
lower bounded by

Õ
C 2 [)] ?C ĜC � !:2 � :2+ /\ . Therefore, we have

ALG(I) � :A+ /U (:A)
⇤ + :2+ /\ =

h
:A /(:U (:A)

⇤) + (: � :A)/(:\)
i
OPT(I). (28)

Thus, the robustness of the baseline algorithm is :/[:A /U (:A)
⇤ + (: � :A)/\].

Next, we prove the consistency. When the prediction % is accurate, i.e., % = + , the revenue of the prediction-based algorithm isÕ
C 2 [)] ?C ĜC = +:2 . We then have

ALG(I) � :A+ /U (:A)
⇤ + :2+ =

h
:A /(:U (:A)

⇤) + (: � :A)/:
i
OPT(I). (29)

Thus, the consistency is :/[:A /U (:A)
⇤ + : � :A]. This completes the proof.

A.2 Results of baseline algorithms for :-min search.
The baseline algorithm can also solve the :-min search problem. We just need to modify the robust algorithm to the optimal :A -min search
algorithm and the prediction-based algorithm to wait to trade all :2 items until the �rst price that is no larger than the predicted minimum
price % . Then we can have the following result.

L���� A.1. Given _ 2 [0, 1], the baseline algorithm is :Ai
(:A)
⇤ +:�:A
: -consistent and :Ai

(:A)
⇤ +(:�:A)\

: -robust for the learning-augmented
:-min search problem, where :A := d_:e.

Proof of Lemma A.1. Given an instance I = {?C }C 2 [)] , the total cost of the baseline algorithm is ALG(I) = Õ
C 2 [)] ?CGC =

Õ
C 2 [)] ?C ḠC +Õ

C 2 [)] ?C ĜC and the o�ine optimum is OPT(I) = :+ , where + = minC 2 [)] ?C is the actual minimum price.
We �rst prove the robustness. Since ḠC is from the optimal :A -min search algorithm, we have

Õ
C 2 [)] ?C ḠC  :A+i

(:A)
⇤ , in which

i (:A)
⇤ is the optimal competitive ratio of :A -min search. In addition, the cost of the prediction-based algorithm is upper bounded byÕ
C 2 [)] ?C ĜC  ?max:2  :2+\ . Therefore, we have

ALG(I)  :A+i (:A)
⇤ + :2+\ = OPT(I)[:Ai (:A)

⇤ + (: � :A]\)/: . (30)

Thus, the robustness of the baseline algorithm is [:Ai (:A)
⇤ + (: � :A)\]/: .

Next, we prove the consistency. When the prediction % is accurate, i.e., % = + , the cost of the prediction-based algorithm is
Õ
C 2 [)] ?C ĜC =

+:2 . We then have

ALG(I)  :A+i (:A)
⇤ + :2+ = OPT(I)[:Ai (:A)

⇤ /: + (: � :A)/:] . (31)

Thus, the consistency is (:Ai (:A)
⇤ + : � :A)/: .

B PROOFS ON PARETO-OPTIMAL LEARNING-AUGMENTED ALGORITHMS
B.1 Proof of Theorem 3.3
The threshold values q = {q8 }82 [:] for :-max is a non-decreasing sequence q1  q2  · · ·  q: . For notations convenience, we de�ne
q0 = ?min and q:+1 = ?max . The threshold q divides the uncertainty range [?min, ?max] into : + 1 regions. If q8 = q8+1 = · · · = q 9 < q 9+1, we
use 9 + 1 to index the interval [q8 ,q 9+1). If OTA totally trades 8 items (excluding the compulsory trading at the last step), then the worst-case

398

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

price sequence is

q1,q2, . . . ,q8 ,q8+1 � n, . . . ,q8+1 � n| {z }
:

, ?min, . . . , ?min| {z }
:

,

where n > 0 and n ! 0. The worst-case ratio under this price sequence can be characterized by

U (:)
8+1 (q) =

:q8+1Õ
92 [8] q 9 + (: � 8)?min

. (32)

Before proceeding to the proof of Theorem 3.3, we �rst prove Proposition 3.4 and Proposition 3.5.

Proof of Proposition 3.4. Given 9 2 [: � 1], if U (:)
9+1  W , we have

’
B2 [9] qB + (: � 9)?min �

:q 9+1
W

. (33)

We then have

U (:)
9+2 =

:q 9+2Õ
B2 [9+1] qB + (: � 9 � 1)?min

=
:q 9+2Õ

B2 [9] qB + (: � 9)?min + q 9+1 � ?min
(34a)


:q 9+2

:q 9+1/W + q 9+1 � ?min
(34b)

=
Wq 9+2

?min + (1 + W/:) [q 9+1 � ?min]
= W, (34c)

where (34b) holds due to Inequality (33) and the last equality (34c) is based on the design of the threshold values in Equation (16). By
following the same step, the worst-case ratios in the following intervals can be shown that U (:)

8  W, 8 = 9 + 3, . . . ,: + 1.

Proof of Proposition 3.5. When the �rst 9 threshold values are designed based on Equation (17), the worst-case ratio of the 8-th interval of
OTA can be shown as

U (:)
8 =

:q8Õ
B2 [8�1] qB + (: � 8 + 1)?min

=
:q8

:
W [?min + ?min (W � 1) (1 + W/:)8�1]

= W,88 2 [9] . (35)

In the following, we show OTA with the designed threshold q can guarantee the target consistency and robustness in all three cases.

Case I. The prediction is % 2 [?min, ?̃1], where ?̃1 = ?min + ?min ([� 1) (1 + [/:)f⇤�1 and f⇤ 2 [:] is the largest index such that

1 + (\ � 1)/(1 + W/:):�f⇤

1 + ([� 1) (1 + [/:)f⇤  W

[
. (36)

We �rst prove that there exists an index f⇤ 2 [:] when the target consistency and robustness are set based on Equation (10). It is su�cient
to show that Equation (36) holds when f⇤ = 1, i.e.,

1 + (\ � 1)/(1 + W/:):�1
1 + ([� 1) (1 + [/:)  W

[
. (37)

When 1 + (W � 1) (1 + W/:):�1 � \ , Equation (37) holds since we can have

1 + (\ � 1)/(1 + W/:):�1
1 + ([� 1) (1 + [/:)  1 + (\ � 1)/(1 + W/:):�1

[
 W

[
.

When 1+ (W �1) (1+W/:):�1 < \ , we have b =
l
ln

⇣
\�1
W�1

⌘
/ln

⇣
1 + W

:

⌘m
= : and the corresponding target consistency is [= \W

1+(W�1) (1+W/:): .

Then we can construct a function 5 (W) = W
[[1 + ([� 1) (1 +[/:)] � [1 + (\ � 1)/(1 +W/:):�1]. By noting that 5 (W) is increasing in [U (:)

⇤ ,1)
and 5 (U (:)

⇤) = 0, we have 5 (U (:)
⇤) � 0, which gives Equation (37).

In the following, we start to prove the consistency and robustness by showing that U (:)
8 (q) satis�es Equation (12). We can derive the

worst-case ratios U (:)
8 (q) given the design of q as

28 = ?min + ?min ([� 1) (1 + [/:)8�1 , 8 2 [8⇤],

A8 = ?min +
?max � ?min
(1 + W/:):�8+1

, 8 = 8⇤ + 1, . . . ,: .

399

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

For 8 2 [8⇤], we have

U (:)
8 =

:28Õ
92 [8�1] 2 9 + (: � 8 + 1)?min

=
:28
:28/[

= [.

For 8 = 8⇤ + 1, we have

U (:)
8⇤+1 =

:A8⇤+1Õ
92 [8⇤] 2 9 + (: � 8⇤)?min

=
:
h
?min + (?max � ?min)/(1 + W/:):�8

⇤ i
:
[

⇥
?min + ?min ([� 1) (1 + [/:)8⇤

⇤

=
[
h
1 + (\ � 1)/(1 + W/:):�f⇤ i
1 + ([� 1) (1 + [/:)f⇤  W,

where the last inequality is due to Equation (36).
For 8 = 8⇤ + 2, . . . ,: + 1, based on Proposition 3.4 and U (:)

8⇤+1  W , we have U (:)
8  W, for all 8 = 8⇤ + 2, . . . ,: + 1.

Summarizing above results, if % 2 [?min, ?̃1], we have U (:)
8  [, 8 2 [8⇤] and thus OTAq is [-consistent. The worst-case competitive ratio

is max82 [:+1] U
(:)
8 = W , and thus OTAq is W-robust.

Case II. When the prediction % 2 (?̃1, ?̃2], where ?̃2 = max{?̃1,W?min}. This case exists only when ?̃1 < W?min. In the following, we derive
the worst-case ratios U (:)

8 given the threshold design

28 =

8>>><
>>>:

% 8 = 1, . . . ,<⇤,

[<
⇤%+(:�<⇤)?min

: 8 =<⇤ + 1,
?min + (2<⇤+1 � ?min) (1 + [/:)8�<

⇤�1 8 =<⇤ + 2, . . . , 8⇤,

A8 = ?min +
?max � ?min
(1 + W/:):�8+1

, 8 = 8⇤ + 1, . . . ,:,

where<⇤ =
l
: %/[�?min
%�?min

m
and 8⇤ is the largest index that ensures U (:)

8⇤+1 (q) =
:A8⇤+1Õ

8=[8⇤] 28+(:�8⇤)?min
 W .

For 8 = 1, U (:)
1 = :%/(:?min)  ?̃2/?min  W .

For 8 =<⇤ + 1 (noting that 28 = %,88 2 [<⇤]),

U (:)
<⇤+1 =

:2<⇤+1
<⇤% + (: �<⇤)?min

= [.

For 8 =<⇤ + 2, . . . , 8⇤, we have

U (:)
8 =

:28
<⇤% +Õ8�1

9=<⇤+1 2 9 + (: � 8 + 1)?min
=

:28
:
[[?min + (2<⇤+1 � ?min) (1 + [/:)8�<⇤�1]

= [.

For 8 = 8⇤ + 1, . . . ,: + 1, based on U (:)
8⇤+1  W and Proposition 3.4, we have U (:)

8  W .
Based on above results, when prediction % 2 (?̃1, ?̃2], we have U (:)

8  [, 8 =<⇤ + 1, . . . , 8⇤, and thus the consistency of OTAq is [. Since
max82 [:+1] U

(:)
8  W , the robustness is W .

Case III. When the prediction % 2 (?̃2, ?max], the worst-case ratios U (:)
8 can be shown as follows when the threshold values are given by

I8 = ?min + ?min (W � 1) (1 + W/:)8�1, 8 2 [9⇤],

28 =

8>>><
>>>:

%, 8 = 9⇤ + 1, . . . ,<⇤,

[
Õ

82 [9⇤] I8+(<⇤� 9⇤)%+(:�<⇤)?min
: , 8 =<⇤ + 1,

?min + (2<⇤+1 � ?min) (1 + [/:)8�<
⇤�1, 8 =<⇤ + 2, . . . , 8⇤,

A8 = ?min +
?max � ?min
(1 + W/:):�8+1

, 8 = 8⇤ + 1, . . . ,:,

where 9⇤ =
l
ln

⇣
%/?min�1
W�1

⌘
/ln

⇣
1 + W

:

⌘m
, <⇤ = 9⇤ +

⇠
:%/[�:?min [1+(W�1) (1+W/:) 9

⇤]/W
%�?min

⇡
, and 8⇤ is the largest index such that U (:)

8⇤+1 (q) =

:A8⇤+1Õ
82 [9⇤] I8+

Õ8⇤
8=9⇤+1 28+(:�8⇤)?min

 W .

400

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

For interval 8 2 [9⇤], we have U (:)
8  W since I8 is designed based on Equation (17) in Proposition 3.5. 9⇤ is determined as the largest

index such that q 9⇤ < %  ?max and thus 9⇤  b . Note that as the prediction % increases,<⇤ also increases to ensure the consistency. When
% = ?max, we have 9⇤ = b and<⇤ is given by

<⇤ = b +
&
:?max/[� :?min [1 + (W � 1) (1 + W/:)b]/W

?max � ?min

'
,

which cannot exceed the total number of available units : . Since the target consistency [and robustness W are given in Equation (10), we
have

:?max/[� :?min [1 + (W � 1) (1 + W/:)b]/W
?max � ?min

= : ·

h
1 + (W � 1) (1 + W

:)
b
i
/W + (\ � 1) (1 � b

:) � [1 + (W � 1) (1 + W/:)b]/W
\ � 1

= : � b,

and thus the target [and W can ensure<⇤  : .
For 8 =<⇤ + 1 (that corresponds to the interval [q 9⇤+1,q<⇤+1)), we have

U (:)
<⇤+1 =

:2<⇤+1Õ
92 [9⇤] I 9 + (<⇤ � 9⇤)% + (: �<⇤)?min

= [.

Finally, we have U (:)
8  [for 8 =<⇤ + 2, . . . , 8⇤ and U (:)

8  W for 8 = 8⇤ + 1, . . . ,: + 1 by following the same proof as Case II.
In this case, the worst-case ratio U (:)

8  [, 8 = 9⇤ + 1, . . . , 8⇤ and max82 [:+1] U
(:)
8 = W . Thus, OTAq is [-consistent and W-robust.

B.2 Proof of Theorem 3.6
To show the lower bound, we consider a special family of instances, and show that under the special instances, any W-robust online algorithm
at least has a consistency [lower bounded by ⇤(W).

D��������� B.1 (������� ?���������). A reverse ?-instance I? consists of a sequence of prices that decrease continuously from ?max to ?
and spike to ?max at the end.

Let 6(?) : [?min, ?max] ! {0, 1, . . . ,:} denote the cumulative trading decision of an online algorithm when it executes the instance I?
before the compulsory trading in the last step. Since online decision is irrevocable, 6(?) is non-decreasing as ? decreases from ?max to ?min.
In addition, items must be traded at the lowest price ?min. Thus, we must have 6(?min) = : . Given an online algorithm, let I?̂8 denote the
�rst instance, in which the algorithm trades the 8-th item, i.e., ?̂8 = sup{?2 [?min,?max]:6 (?)�8 } ? .

For any W-robust online algorithm, {?̂8 }82 [:] must satisfy
Õ
92 [8�1] ?̂ 9 + (: � 8 + 1)?max

:?̂8
 W, 8 2 [: + 1], ?̂8 � ?min, 8 2 [:], (41)

where ?̂0 := ?max and ?̂:+1 := ?min. Based on Equation (41), we have for 8 2 [:]

?̂8 � max

(
?max � ?max

✓
1 � 1

W

◆ ✓
1 + 1

:W

◆8�1
, ?min

)
. (42)

Suppose the prediction is % = ?min. To ensure consistency under the instance I?min , any W-robust online algorithm must have

[�
ALG(I?min)
OPT(I?min)

=

Õ
82 [:] ?̂8
:?min

�
Õ
82 [Z] ?̂8 + (: � Z)?min

:?min
(43a)

�

Õ
82 [Z]


?max � ?max

⇣
1 � 1

W

⌘ ⇣
1 + 1

:W

⌘8�1�
+ (: � Z)?min

:?min
(43b)

= \

"
W � (W � 1)

✓
1 + 1

W:

◆Z #
� (\ � 1)

✓
1 � Z

:

◆
, (43c)

where Z satis�es ?max � ?max
⇣
1 � 1

W

⌘ ⇣
1 + 1

:W

⌘Z�1
> ?min � ?max � ?max

⇣
1 � 1

W

⌘ ⇣
1 + 1

:W

⌘Z
, which gives Z =

l
ln

⇣
\�1
\�\/W

⌘
/ln

⇣
1 + 1

W:

⌘m
.

401

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

B.3 Proof of Theorem 3.7
The threshold valuesk = {k8 }82 [:] for :-min is a non-increasing sequencek1 � k2 � · · · � k: . We also de�nek0 = ?max andk:+1 = ?min
. The threshold k divides the uncertainty range [?min, ?max] into : + 1 regions. If k8 = k8+1 = · · · = k 9 < k 9+1, we use 9 + 1 to index the
interval [k8 ,k 9+1). Excluding the compulsory trading at the end, if OTA trades 8 items, the worst-case price sequence is

k1,k2, . . . ,k8 ,k8+1 + n, . . . ,k8+1 + n| {z }
:

, ?max, . . . , ?max| {z }
:

,

where n > 0 and n ! 0. The worst-case ratio under this price sequence is

i (:)
8 := i (:)

8 (k) =
Õ
92 [8�1] k 9 + (: � 8 + 1)?max

:k8
. (44)

We start by proving the two following two propositions.

P���������� B.2. For a given 9 2 [: � 1], if the threshold values after 9 are given by

k8 = ?max �
?max � ?min

(1 + 1/(W:)):�8+1
, 8 = 9 + 1, . . . ,:, (45)

and i (:)
9+1  W , then i (:)

8 (k)  W, 8 = 9 + 2, . . . ,: + 1.

Proof of Proposition B.2. Given that i (:)
9+1  W , we have’

B2 [9] kB + (: � 9)?max  :Wk 9+1 . (46)

We then have

i (:)
9+2 =

Õ
B2 [9+1] kB + (: � 9 � 1)?max

:k 9+2
=

Õ
B2 [9] kB + (: � 9)?max +k 9+1 � ?max

:k 9+2
(47a)


:Wk 9+1 +k 9+1 � ?max

:k 9+2
(47b)

= W
?max + (1 + 1

W:) (k 9+1 � ?max)
k 9+2

= W, (47c)

where the inequality (47b) holds due to inequality (46) and the last equality (47c) is based on the design of the threshold values in equation (45).
By following the same step, the worst-case ratios in the following intervals can be shown that i (:)

8  W,88 = 9 + 3, . . . ,: + 1.

P���������� B.3. For a given 9 2 [Z], if the �rst 9 threshold values are given by

k8 = ?max � ?max

✓
1 � 1

W

◆ ✓
1 + 1

W:

◆8�1
, 8 2 1, . . . , 9, (48)

then i (:)
8 (k)  W, 8 = 1, . . . , 9 .

Proof of Proposition B.3. When the �rst 9 threshold values are designed based on Equation (48), 88 2 [9], the worst-case ratio of the 8-th
interval of OTA can be shown as

i (:)
8 =

Õ
B2 [8�1] kB + (: � 8 + 1)?max

:k8
=
:W [?max � ?max (1 � 1/W) (1 + 1/(:W))8�1]

:k8
= W . (49)

In the following, we show OTA with the designed thresholdk can guarantee the target consistency and robustness in the :-min search in
Cases IV-VI.

Case IV. When % 2 [?̃1, ?max], where ?̃1 = ?max � ?max (1 � 1/[) (1 + 1/([:))f⇤�1 and f⇤ 2 [:] is the largest index such that

1 � (1 � 1/[) (1 + 1
[:)

f⇤

1 � (1 � 1/\)/(1 + 1
W:):�f

⇤  W

[
. (50)

In addition, 8⇤ = f⇤ and ?̃1 = 28⇤ . We derive the worst-case ratios i (:)
8 (k) given the design

28 = ?max � ?max (1 � 1/[) (1 + 1/([:))8�1 , 8 2 [8⇤],

A8 = ?max �
?max � ?min

(1 + 1/(W:)):�8+1
, 8 = 8⇤ + 1, . . . ,: .

402

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

For 8 2 [8⇤], we have

i (:)
8 =

Õ
92 [8�1] 2 9 + (: � 8 + 1)?max

:28
=
:[28
:28

= [.

For 8 = 8⇤ + 1, we have

i (:)
8⇤+1 =

Õ
92 [8⇤] 2 9 + (: � 8⇤)?max

:A8⇤+1
=
:[


?max � ?max

⇣
1 � 1

[

⌘ ⇣
1 + 1

[:

⌘8⇤ �

:
h
?max � ?max�?min

(1+1/(W:)):�8⇤
i

=
[
h
1 � (1 � 1/[) (1 + 1

[:)
8⇤
i

1 � (1 � 1/\)/(1 + 1
W:):�8

⇤  W,

where the last inequality is due to Equation (50).
For 8 = 8⇤ + 2, . . . ,: + 1, based on Proposition B.2 and i (:)

8⇤+1  W , we have i (:)
8  W, for all 8 = 8⇤ + 2, . . . ,: + 1.

Summarizing above results, in this case, we have i (:)
8  [, 8 2 [8⇤] and thus OTAk is [-consistent. The worst-case competitive ratio is

max82 [:+1] i
(:)
8 = W and thus OTAk is W-robust.

Case V. When the prediction % 2 [?̃2, ?̃1), where ?̃2 = min{?̃1, ?max/W}. This case exists only when ?̃1 > ?max/W . In the following, we
derive the worst-case ratios i (:)

8 given the threshold design

28 =

8>>><
>>>:

%, 8 = 1, . . . ,<⇤,
<⇤%+(:�<⇤)?max

[: , 8 =<⇤ + 1,
?max � (?max � 2<⇤+1) (1 + 1/([:))8�<⇤�1 , 8 =<⇤ + 2, . . . , 8⇤,

A8 = ?max �
?max � ?min

(1 + 1/(W:)):�8+1
, 8 = 8⇤ + 1, . . . ,:,

where<⇤ =
l
: ?max�[%
?max�%

m
and 8⇤ is the largest index that ensures i (:)

8⇤+1 (k)  W .
For 8 = 1, i (:)

1 = (:?max)/:%  ?max/?̃1  W .
For 8 =<⇤ + 1,

i (:)
<⇤+1 =

<⇤% + (: �<⇤)?max
:2<⇤+1

= [.

For 8 =<⇤ + 2, . . . , 8⇤, we have

i8 =
<⇤% +Õ8�1

9=<⇤+1 2 9 + (: � 8 + 1)?max

:28
=
:[


?max � (?max � 2<⇤+1)

⇣
1 + 1

[:

⌘8�<⇤�1�

:28
= [.

For 8 = 8⇤ + 1, . . . ,: + 1, based on i (:)
8⇤+1  W and Proposition B.2, we have i (:)

8  W .
Based on above results, when prediction % 2 [?̃2, ?̃1), the consistency of OTAk is [. Since max82 [:+1] i

(:)
8  W , the robustness is W .

Case VI. When % 2 [?min, ?̃2). The worst-case ratios i (:)
8 can be shown as follows when thresholds are

I8 = ?max � ?max (1 � 1/W) (1 + 1/(W:))8�1 , 8 2 [9⇤],

28 =

8>>>><
>>>>:

%, 8 = 9⇤ + 1, . . . ,<⇤,Õ
82 [9⇤] I8+(<⇤� 9⇤)%+(:�<⇤)?max

[: , 8 =<⇤ + 1,
?max � (?max � 2<⇤+1) (1 + 1/([:))8�1 , 8 =<⇤ + 2, . . . , 8⇤,

A8 = ?max �
?max � ?min

(1 + 1/(W:)):�8+1
, 8 = 8⇤ + 1, . . . ,:,

where 9⇤ =
l
ln

⇣
1�%/?max
1�1/W

⌘
/ln (1 + 1/(W:))

m
, and<⇤ = 9⇤+

⇠
:?max [1� (1�1/W) (1+1/(W:)) 9⇤]�:%[

?max�%

⇡
, and 8⇤ is the largest index such thati (:)

8⇤+1 (k) 
W .

For interval 8 2 [9⇤], we have i (:)
8  W since I8 is designed based on Equation (48) in Proposition B.3. 9⇤ is determined as the largest

index such thatk 9⇤ > % � ?min.

403

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

For interval 8 =<⇤ + 1 (i.e., [k 9⇤+1,k<⇤+1)), we have

i (:)
<⇤+1 =

Õ
92 [9⇤] I 9 + (<⇤ � 9⇤)% + (: �<⇤)?max

:2<⇤+1
= [.

Finally, we have i (:)
8  [for interval 8 =<⇤ + 2, . . . , 8⇤ and i (:)

8  W for interval 8 = 8⇤ + 1, . . . ,: + 1 by following the same proof as Case
V.

In this case, the worst-case ratio i (:)
8  [, 8 = 9⇤ + 1, . . . , 8⇤ and max82 [:+1] i

(:)
8 = W . Thus, OTAk is [-consistent and W-robust.

C PROOFS ON ONLINE SEARCHWITH INVENTORY DYNAMICS
C.1 Proof of Lemma 4.3
First, we can observe the inventory dynamics is enforced in Line 15 of Algorithm 2. Since the online decision isGC = max

nÕ
92 [8] G

(=, 9)
C ,3C � BC�1

o
(Line 14), we have GC � 3C � BC�1 and thus BC � 0,8C 2 [)]. Therefore, we only need to check the capacity constraint of the inventory. For
any C in a busy period of the =-th interval with 8 parallel online search problems, observe

BC =
’8

9=1
(< (=, 9)
C � 1) �

’8

9=2
: (=, 9)


’8

9=1
: (=, 9) �

’8

9=2
: (=, 9) = : (=,1) = ⌫,

where< (=, 9)
C � 1 denotes the number of purchased items of the 9-th online search problem up to time C , and< (=, 9)

C � 1  : (=, 9) in the online
search problem. Thus,

Õ8
9=1 (< (=, 9) � 1) and Õ8

9=2 :
(=, 9) represent the total number of purchased items and the total demand from the start

of the busy period to slot C , respectively. Thus, the inventory level never violates the capacity constraint.

C.2 Proof of Lemma 4.4
The total cost of the online algorithm can be upper bounded by the costs of purchasing items during the busy period and idle period. In
the busy period of interval =, there are a total of 8= virtual search problems and the 8-th problem buys< (=,8) � 1 items. Since each virtual
search problem buys items based on the OTA, the price of 9-th purchased item of problem 8 in interval = is at mostk (=,8)

9 . Thus, the cost of

busy period is upper bounded by
Õ
=2 [#]

Õ
82 [8=]

Õ
92 [< (=,8)�1] k

(=,8)
9 . In addition, the price of purchasing items in the busy period is upper

bounded by ?max. Thus,

ALG(I) 
’

=2 [#]

’
82 [8=]

’
92 [< (=,8)�1]

k (=,8)
9 +

 ’
C 2 [)]

3C + B) �
’

=2 [#]

’
82 [8=]

(< (=,8) � 1)
�
?max (54a)

=
’

=2 [#]

’
82 [8=]

 ’
92 [< (=,8)�1]

k (=,8)
9 + (: (=,8) �< (=,8) + 1)?max

�
+ [' + B)] ?max, (54b)

where ' :=
Õ
C 2 [)] 3C �

Õ
=2 [#]

Õ
82 [8=] :

(=,8) =
Õ
=2 [#]

Õ
C 2T0

=
3C � #⌫.

C.3 Proof of Lemma 4.5
Let � (B̂=,~=) denote the cost of the o�ine optimum in the busy period of the interval =, where B̂= is the initial inventory in the beginning of
the interval = and ~= is the number of purchased items in this busy period. Let � ⇤ (B̂=,~=) denote the minimum cost of purchasing ~= items
with initial inventory B̂= in the busy period of interval = without considering the price and demand of other intervals. Then we can have

�= (B̂=,~=) � � ⇤= (B̂=,~=) � � ⇤= (0,~=),8= 2 [#], (55)

where the �rst inequality is by de�nition and the second inequality is because a lower initial inventory gives more �exibility to minimize the
cost of purchasing the same amount of items.

Further, we can have, for all = 2 [#],

� ⇤=
⇣
0,
’

82 [8=]
: (=,8)

⌘
� � ⇤= (0,~=) 

⇣’
82 [8=]

: (=,8) � ~=
⌘ ?max

W
. (56)

Note that
Õ
82 [8=] :

(=,8) is the sum of inventory capacity and the total demand in the busy period. Thus, ~=  Õ
82 [8=] :

(=,8) . In addition,
there must exist prices no larger than ?max

W in the busy period. Therefore, above inequality holds since the price for purchasing any additional
items in the busy period by the cost minimum algorithm will be no larger than ?max

W . In addition, we have

� ⇤=
⇣
0,
’

82 [8=]
: (=,8)

⌘
�
’

82 [8=]
k (=,8)
< (=,8):

(=,8) , (57)

404

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

becausek (=,8)
< (=,8) is the minimum price of the 8-th virtual search problem of interval = in its lifecycle. Combining Equations (55)- (57) gives

�= (B̂=,~=) �
’

82 [8=]
k (=,8)
< (=,8):

(=,8) �
h’

82 [8=]
: (=,8) � ~=

i ?max
W

. (58)

The o�ine optimal cost can be lower bounded by

OPT(I) �
’

=2 [#] �= (B̂=,~=) +
h’

C 2 [)] 3C �
’

=2 [#] ~=
i ?max

W
(59a)

�
’

=2 [#]

’
82 [8=]

k (=,8)
< (=,8):

(=,8) + ' · ?max
W

, (59b)

where the �rst inequality holds since the minimum price during idle period is ?max
W , and the second inequality is obtained by substituting

inequality (58).

D CONTINUOUS VERSION OF ONLINE SEARCHWITH INVENTORY DYNAMICS
We present algorithms and results for the continuous version of the online search with inventory dynamics (OSID). In this problem, integral
constraints on the purchasing decisions and inventory levels are relaxed, i.e., the constraint (24e) is relaxed to GC � 0, BC � 0,8C 2 [)].
We show that the learning-augmented algorithm for OSID (i.e., Algorithm 2) can be extended to solve the continuous OSID and achieve
the Pareto-optimal trade-o� between consistency and robustness. In Section 5, we further apply the extended algorithm to solve the
storage-assisted energy procurement problem for data centers in the electricity markets.

Learning-augmented algorithm for continuous OSID. We use a modi�ed Algorithm 2 to solve the continuous OSID. Speci�cally, we choose
a large integer as an additional input. In this algorithm, for each created virtual search problem (=, 8) with prediction % (=,8) , we treat it as
a (, % (=,8))-search problem, and use the threshold valuesk (, % (=,8)) designed in Equations (21)-(23) to solve each virtual problem in line 8
to line 13 of Algorithm 2. Then we change the online decisions in line 14 by scaling them back from the virtual problems, i.e.,

GC = max
8>><
>>:
’
92 [8]

G (=, 9)C · : (=, 9)

,3C � BC�1
9>>=
>>;
, (60)

where : (=,8) is the capacity of the virtual search problem.

Consistency-robustness results. We �rst note that -min search (! 1) is a special case of the continuous OSID. Based on Theorem 3.6,
we can have the following lower bound result.

C�������� D.1. For continuous OSID with predictions, any W-robust deterministic learning-augmented algorithm must have a consistency
lower bounded by ⇤(W) = W � (\ � 1)

h
1 � W ln

⇣
\�1
\�\/W

⌘i
.

Based on this lower bound, for a given _ 2 [0, 1], we set the target consistency and robustness as

W (1) (_) = i (1)
⇤ + (1 � _) (\ � i (1)

⇤), [(1) (_) = ⇤(W (1) (_)), (61)

where i (1)
⇤ is the optimal competitive ratio of -min search (as ! 1), and is the solution of 1�1/\

1�1/i = exp
⇣
1
i

⌘
.

Based on upper bound results in Theorem 3.7, we further have the consistency-robustness result for the modi�ed Algorithm 2.

C�������� D.2. Given _ 2 [0, 1], the modi�ed Algorithm 2 (with ! 1) is [(1) (_)-consistent and W (1) (_)-robust for the learning-
augmented continuous OSID whenk ,% (·) are given by Equations (21)-(23). The modi�ed Algorithm 2 is Pareto-optimal.

As a remark, the existing work [27] studies this continuous OSID and designs an online algorithm that achieves the optimal competitive
ratio. Algorithm 2 can be considered as the learning-augmented extension for the worst-case optimized algorithm. In addition, Algorithm 2
can also achieve the optimal competitive ratio for OSID when we set _ = 1 to ignore the predictions.

E :-SEARCH EXPERIMENTAL RESULTS IN GENERAL FINANCIAL MARKETS
We present our main results for the application of trading in electricity markets, but our algorithms are applicable to general online search
problems. In the additional experiments in this section, we evaluate our algorithms for learning-augmented :-search in a general �nancial
market. We use a 5-year history of Bitcoin (BTC) prices collected from the Gemini Exchange [11] in this application.

E.1 Experimental setup
We consider the problem of buying or selling BTC over 3-week trading periods. Prices are observed every 10 minutes such that) = 3024.
We set the units available to be traded to : = 100. The price limits ?max and ?min are conservatively set according to the maximum and
minimum over the entire 5-year period. To generate a prediction % , we use the observed maximum (or minimum) exchange rate of the
previous instance. To evaluate the impact of prediction quality, we adjust the prediction error level with a scalar value between 0 and 1,

405

Online Search with Predictions E-Energy ’24, June 04–07, 2024, Singapore, Singapore

0.8 0.5
Error Level Group

1

1.25

1.5

1.75
P

ro
fi

t
R

at
io

(a) Prediction quality

0 0.1 0.2 0.3

-Hardness

1

1.25

1.5

1.75

P
ro

fi
t

R
a
ti

o

(b) Instance hardness

Figure 5: Comparing algorithms for :-max search.

0.8 0.5
Error Level Group

1

1.25

1.5

1.75

C
o

st
 R

at
io

(a) Prediction quality

0 0.1 0.2 0.3

-Hardness

1

1.25

1.5

1.75
C

o
s
t

R
a
ti

o

(b) Instance hardness

Figure 6: Comparing algorithms for :-min search.

where 0 indicates perfect predictions and 1 indicates non-adjusted predictions. Although BTC has experienced drastic price �uctuations,
these occurrences are still rare. Therefore, to evaluate the performance in worst-case settings, we de�ne an instance d�hard by giving it a
�xed probability d of observing the worst-case price in the last time slot.

E.2 Comparison algorithms
We compare the following four algorithms.

ù (OTA-on) The worst-case optimized online algorithm that does not take into account predictions, but guarantees optimal competitive
ratios.

ù (OTA(_⇤)) Our proposed algorithm with the best possible hyper-parameter _⇤ chosen o�ine. This algorithm is not practical since it is
fed with the optimal parameter, but it represents the best improvement from available predictions.

ù (OTA(_alf)) Our proposed algorithm that uses an online learning algorithm (i.e., adversarial Lipschitz algorithm [20]) to adaptively
select _.

ù (base(_alf)) The baseline algorithm that is introduced in Section 2.3 and uses the same online learning approach to select _.

406

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C.S. Lui

1.0 2.0 3.0 4.0
 Multiplier

2

4

6

8

E
m

p
ir

ic
al

 R
at

io

Figure 7: Impact of price uncertainty

0 .25 .5 .75 1

Prediction Error

1

1.5

2

2.5

9
9

th
 P

e
rc

e
n

ti
le

 C
o

s
t

R
a
ti

o

Figure 8: Impact of prediction quality

E.3 Experimental results
We compare the empirical competitive ratios of four algorithms for :-max and :-min search problems in Figures 5 and 6, respectively.
Figures 5(a) and 6(a) show OTA(_alf) can make the best use of prediction among all algorithms and bene�t most as the prediction quality
improves (from 0.8 to 0.5). In addition to incorporating good predictions, OTA(_alf) also maintains the best robustness, which degrades
slowly when the instances become harder, as shown in Figures 5(b) and 6(b). Thus, the experiments show the good potential of OTA(_alf) to
achieve the best of both worlds. Since :-max and :-min are known to have di�erent worst-case performances [18], we further compare
OTA(_alf) for :-max and :-min. The empirical performance of :-min is generally worse than :-max, which is most apparent for larger
values of uncertainty parameter \ in Figure 7. This is consistent with the worse consistency-robustness trade-o� of :-min as shown in
Figure 1. In Figure 8, we further investigate the impact of prediction quality on the worst-case performance of our algorithms. Speci�cally, we
consider 100 instances of :-max search while adding prediction errors n (normalized by ?max � ?min), and report the 99-th percentile of the
empirical ratios. We can observe that even when the prediction is almost incorrect by (?max � ?min)/2, our algorithms can still outperform
the worst-case optimized algorithm OTA-on.

407

	Abstract
	1 Introduction
	1.1 Contributions

	2 Problem Statement
	2.1 Online k-search problem
	2.2 Worst-case optimized algorithms
	2.3 Learning-augmented algorithms

	3 Pareto-optimal Algorithms with prediction for k-search
	3.1 Learning-augmented algorithms for k-max
	3.2 Learning-augmented algorithms for k-min

	4 Online Search with Inventory
	4.1 Problem statement
	4.2 Learning-augmented algorithm for OSID
	4.3 Inventory-cost-aware algorithms

	5 Experimental Results
	5.1 Experimental setup
	5.2 Comparison algorithms
	5.3 Experimental results

	6 Conclusion
	Acknowledgments
	References
	A Proofs on baseline algorithms
	A.1 Proof of Lemma 2.3
	A.2 Results of baseline algorithms for k-min search.

	B Proofs on Pareto-optimal learning-augmented algorithms
	B.1 Proof of Theorem 3.3
	B.2 Proof of Theorem 3.6
	B.3 Proof of Theorem 3.7

	C Proofs on online search with inventory dynamics
	C.1 Proof of Lemma 4.3
	C.2 Proof of Lemma 4.4
	C.3 Proof of Lemma 4.5

	D Continuous version of online search with inventory dynamics
	E k-search experimental results in general financial markets
	E.1 Experimental setup
	E.2 Comparison algorithms
	E.3 Experimental results

