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ABSTRACT KEYWORDS

Motivated by an imperative to reduce the carbon emissions of cloud
data centers, this paper studies the online carbon-aware resource
scaling problem with unknown job lengths (OCSU) and applies it
to carbon-aware resource scaling for executing computing work-
loads. The task is to dynamically scale resources (e.g., the number
of servers) assigned to a job of unknown length such that it is
completed before a deadline, with the objective of reducing the
carbon emissions of executing the workload. The total carbon emis-
sions of executing a job originate from the emissions of running
the job and excess carbon emitted while switching between dif-
ferent scales (e.g., due to checkpoint and resume). Prior work on
carbon-aware resource scaling has assumed accurate job length
information, while other approaches have ignored switching losses
and require carbon intensity forecasts. These assumptions prohibit
the practical deployment of prior work for online carbon-aware
execution of scalable computing workload.

We propose LACS, a theoretically robust, learning-augmented
algorithm that solves OCSU. To achieve improved practical average-
case performance, LACS integrates machine-learned predictions of
job length. To achieve solid theoretical performance, LACS extends
the recent theoretical advances on online conversion with switching
costs to handle a scenario where the job length is unknown. Our
experimental evaluations demonstrate that, on average, the carbon
footprint of LACS lies within 1.2% of the online baseline that assumes
perfect job length information and within 16% of the offline baseline
that, in addition to the job length, also requires accurate carbon
intensity forecasts. Furthermore, LACS achieves a 32% reduction in
carbon footprint compared to the deadline-aware carbon-agnostic
execution of the job.
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1 INTRODUCTION

The exponential growth in computing demand and the resulting
energy consumption has enhanced focus on its climate and sustain-
ability implications [4, 36, 37, 43]. The focus has been magnified
since the widespread adoption of generative artificial intelligence
tools, e.g., ChatGPT [29]. Key stakeholders, including policymak-
ers and end users, are trying to create direct incentives, through
caps or taxes [10] on carbon emissions, and indirect incentives,
through social pressure, to curb the climate impact of this unprece-
dented demand. In response, researchers and other stakeholders
in computing are trying to reduce the carbon footprint during its
various lifecycle stages, including manufacturing [18, 49], opera-
tions [3, 20, 41, 53], and end-of-life [17, 48]. While computing’s
carbon footprint at all stages are important to address, this paper
focuses on the operational carbon footprint arising from using elec-
tricity to run computing workloads, as it contributes significantly
to computing’s total carbon footprint [18].

Beyond improving the algorithmic efficiency of computing work-
loads and the energy efficiency of its hardware, computing’s opera-
tional footprint can be reduced by enhancing the carbon efficiency
of grid-supplied electricity (kilowatt-hours of energy produced per
unit of carbon emissions) [4]. One approach is to use low-carbon
energy sources, such as solar, wind, and nuclear, for electricity gen-
eration. However, as pathways to 100% renewable energy adoption
remain challenging and costly [2, 9], this approach may not entirely
eliminate electricity’s carbon emissions for all the locations in the
near future [21]. A complementary approach is to improve the effec-
tive carbon efficiency of the energy used for computing by running
flexible computing workloads when and where low-carbon energy
is available. Prior work has proposed leveraging computing work-
loads’ spatiotemporal flexibility [15, 23, 26, 44, 53] and resource
elasticity [19, 20, 25, 41] to reduce their carbon footprint.
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In this work, we focus on exploiting resource elasticity for
carbon-aware execution of scalable computing workloads with un-
known job lengths and future carbon intensity. The carbon-aware
resource scaling work requires determining the scale factor, i.e., the
number of cores or servers, at each time step before the job deadline
while considering the scalability properties of the job. Initial work
on carbon-aware resource scaling by Hanafy et al. [20] leverages
carbon intensity forecasts and develops an offline optimal approach
to determine the best scale factor for a job at each time step before
the deadline. The authors ignore switching overhead and assume
the deadline is provided at job submission time. Lechowicz et al.
[25] introduce and study an online class of problems motivated by
carbon-aware resource scaling and electric vehicle (EV) charging
applications. The proposed algorithms can be used to determine
the optimal scale factor without requiring carbon intensity fore-
casts while considering the energy inefficiencies in resource scaling
through a convex cost function, which is revealed online. However,
a key drawback for both studies is that they assume each job’s
length (i.e., the amount of work to be done) is known.

Estimating the duration of a job remains a challenging problem
in cluster and cloud computing. The unavailability of data on job
attributes, lack of diversity in the available data, variations in the
characteristics of the jobs submitted to the cluster over time, and
skewed distribution of users submitting the jobs means that job
length predictions, even when using machine learning techniques,
remain highly inaccurate and cannot be used for scheduling pur-
poses [24]. Ambati et al. [1] showed that job length estimates at job
submission time can have more than 140% mean absolute percent-
age error. The inaccuracy can be further amplified as the properties
of the job or the hardware it runs on change across different runs. As
a result, practical algorithms need to work without assuming that
accurate job length is available. In this work, we assume that the job
lengths are unknown and only the lower- and upper-bounds on job
length are available. This is a reasonable assumption as classifying
a job as short or long tends to be highly accurate [1, 59].

The existing theoretical literature that studies similar problems
crucially does not consider uncertainty in the job length [16, 25,
26, 28, 47] (i.e., the job length is precisely known to the algorithm).
In perhaps the closest setting to carbon-aware resource scaling,
Lechowicz et al. [25] presents the online conversion with switching
costs (OCS) problem. Uncertainty about the job length breaks many
of the assumptions in OCS; under a deadline and without precise
information on job length, the algorithm will either run too little
of the job at a low carbon intensity or run too much of the job
at a high carbon intensity. Without even approximate knowledge
of job length (i.e., lower- and upper-bounds on job lengths) and
under a deadline, the existing algorithms, e.g., for OCS, may not
complete the job by the deadline and thus fail to provide worst-case
guarantees.

It is worth noting that providing worst-case guarantees is an
important consideration for algorithms solving this problem. In-
production resource managers such as Borg [51] and Resource Cen-
tral [12], prefer deploying techniques with safety guarantees [39].
Techniques which fully rely on machine learning (ML) perform well
in the average-case, but can result in extremely poor outcomes in
the worst-case (e.g., when presented with out of distribution data),
making them undesirable for production deployment [24].
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Contributions. This paper proposes LACS, a learning-augmented
algorithm for online carbon-aware resource scaling with unknown
job lengths (OCSU) that uses ML predictions of job lengths, which
are potentially inaccurate, for resource scaling. We then analyze the
theoretical performance of LACS using the framework of competi-
tive analysis [6], and its learning-augmented variants [30, 38]. We
also evaluate the practical performance of LACS using real-world
data traces on an extensive set of experimental scenarios.

(1) Theoretical analysis of LACS: Bounded robustness and consistency.
The theoretical analysis of LACS leverages and advances the
emerging framework of robustness-consistency for learning-
augmented online algorithms [30, 38] and the recent compet-
itive results for OCS [25], which tackle a simplified OCSU
with known job lengths. We take multiple algorithmic steps
to achieve bounded competitive guarantees for LACS. First, we
consider two extreme scenarios of the “Ramp-On Ramp-Off”
(RORO) framework proposed by Lechowicz et al. [25] to design
robust baseline algorithms of assuming actual job lengths equal
to the given lower and upper bound values of job lengths. Then,
using these two extremes as the baseline, we introduce an ad-
ditional layer by integrating a job length predictor, and finally,
LACS leverages these robust baseline algorithms, combined with
potentially inaccurate predictions of the job length, to achieve
improved consistency in the average case (i.e., when predictions
are of high quality), while retaining worst-case guarantees (i.e.,
robustness given by the baselines).

Extensive trace-driven experiments. We then evaluate the perfor-
mance of LACS against state-of-the-art methods in carbon-aware
scheduling and online scheduling literature using three years
of real carbon intensity traces from Electricity Maps [32], using
an extensive range of experimental scenarios. In a set of rep-
resentative experiments, we demonstrate that, on average, the
carbon footprint of LACS lies within 1.2% of the online baseline
that assumes perfect job length information and within 16% of
the offline baseline that also requires accurate carbon intensity
forecasts. LACS achieves a 32% reduction in carbon footprint
compared to the deadline-aware carbon-agnostic job execution.

@

2 PROBLEM STATEMENT

In the following, we will consider a server cluster that is used to
run batch jobs. We introduce the online carbon-aware resource
scaling problem with unknown job lengths (OCSU), where the goal
is to complete a job with total length ¢ (where ¢ is unknown) while
minimizing its overall carbon emissions to complete the job. At each
time step ¢ € [T], a convex cost function g;(-) arrives, which is a
combination of both the time-varying carbon intensity (e.g., of the
electricity grid) and the job’s time-varying scaling profile (e.g., how
parallelizable the job is). In response, the algorithm must choose
the amount of server resources x; that will be given to the job in
time step ¢, where x; € [0, d;], which produces carbon emissions
given by g; (x;). Here, d; is the maximum amount of job that can
be scheduled for the job at time ¢ (rate constraint). Intuitively, we
assume that ¢;(0) = 0 for any cost function (i.e., completing none
of the job does not emit any carbon), and g;(x) > 0 for any valid
x> 0.
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Table 1: Summary of Notations

Notation Definition

C, Cmin, Cmax | Actual job length, minimum job length, maximum job length

é Job length prediction

p Switching emissions coefficient

CI, Carbon intensity (e.g., in gCOzeq./kWh) at time ¢

E Energy used (e.g. in kWh) by one unit of threads/cores/servers

T Deadline: Maximum time (e.g., 24 hours) the job is allowed to run
after being submitted

g:(-) Convex cost function that arrives at time ¢

Xt Amount of the job that is scheduled to be done at time #

w(®) Total amount of the job that has been completed up to time #

rr Maximum resource available at time

dy Maximum amount of the job that can be scheduled at time ¢

Whenever the allocation decision changes in adjacent time steps,
it incurs extra carbon emissions caused by switching denoted by
Blx; — x;—1|. For the model, we let xo = 0 and xT+1 = 0, which
require the algorithm to incur some switching carbon emissions
to “turn on” and “turn off”, respectively. The parameter f can be
interpreted as a linear coefficient that charges the algorithm propor-
tionally to the amount of scaling between consecutive time steps,
based on, e.g., the carbon emitted due to overhead of changing
the resource allocation or checkpointing/resuming the job.!. In
summary, the offline version of OCSU is formalized as:

T T+1
Zt:l ge(xe)  + th] Blxs — x-11, (1)
S e

Execution carbon emissions  Switching carbon emissions

T
E Xt 2c
t=1

———
Job completion constraint

OCSU :

min
{xt}term

s.t., Xt € [0, dt], Vt € [T] (2)

In this paper, we focus on designing algorithms for the online
version of this problem, where the algorithm must choose an ir-
revocable x; at each time step without knowledge of future cost
functions or the total job length c. Each cost function g;(-) is re-
vealed online at the start of time step ¢, and the actual job length
c is revealed when the constraint in Equation 2 is satisfied (i.e.,
the job has been finished). We note that OCSU builds on the ex-
isting formulation of online conversion with switching costs (OCS),
introduced by Lechowicz et al. [25]. The minimization variant of
OCS is a special case of OCSU where the online algorithm has
perfect knowledge of the actual job length c. The core notations
are summarized in Table 1.

Details of the cost function. To formalize the definition of the
cost functions g;(+), let h;(-) denote the scaling profile of the job
at time ¢. For a given s, as the number of allocated resources (e.g.,
cores or servers), h;(s) provides the throughput (e.g., amount of
work done) x at time ¢. Naturally, h;(+) is a concave function since
adding resources has diminishing returns even in highly parallel
computing workloads. Note that ht_l(x) (i.e., the inverse of the
scaling function) maps a throughput x to the necessary amount of
allocated resources s at time ¢. There is a carbon emissions associated
with the resource allocation amount of s. Let E denote the energy
used (e.g., in kWh) by one unit of resource, and let CI; denote the
carbon intensity (e.g., in gCO2eq./kWh) at time ¢. Then, the cost

'We note that while OCSU assumes the emissions to “turn on” is equivalent to the cost
to “turn off” (i.e., the switching emissions are symmetric), it can be extended to cases
where the switching emissions are time-varying or asymmetric by letting f|x; — x;_1|
be an upper bound on the actual switching emissions, as discussed in [25]
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function g;(-) of OCSU is defined as:
gr(x) = Cly x Ex h; 1(x), te[T].

Since the scaling profile A (+) is known, the primary unknown quan-
tity which makes g;(-) an online input is the unknown carbon in-
tensity CI;. Furthermore, considering that the available resources
constrain the quantity of job that can be scheduled in each time
slot, we introduce r; to represent the maximum resources available
at a given time. Consequently, the maximum amount of the job that
can be scheduled at time ¢, denoted as d; (maximum rate), equals

he(re).

Assumptions. We make the following assumptions in the paper.

o Assumption 1. Although the job length c is unknown, we as-
sume that the value of ¢ is bounded between a minimum and a
maximum length cpin and cmax, i€, ¢ € [Cmin, Cmax]. Without
loss of generality, we assume cpi, = 1, which further gives that
Cmax > Cmin = 1.

o Assumption 2. We assume that the derivatives of the cost func-
tion are bounded, i.e., L < dg;/dx; < U Vt € [T] on the interval
x¢ € [0,d;], where L and U are known positive constants. This is
a necessary assumption for any competitive algorithm, as shown
in [16, 47, 58]; otherwise, no online algorithm can achieve a bounded
competitive ratio.

o Assumption 3. The switching emissions coefficient f is
known to the algorithm, and is bounded within an interval (f €
[0, (U-L)/2)), as in [25]. If § exceeds (U-L)/2, any competitive algo-
rithm should only consider the excess emissions due to switching
because the overhead is very large; hence the decision-making
becomes trivial.

o Assumption 4. OCSU requires the algorithm to complete the
entire job before the sequence ends at “deadline” T. If the scheduler
has completed w(/) amount of the job at time j, a compulsory
execution begins whenever (T — j — 1) < (¢ — w()) (i.e., when the
remaining time steps are barely enough to complete the job). During
this compulsory execution, a carbon-agnostic algorithm takes over
and runs the job with the maximum available resources in the
remaining time steps. Although ¢ is unknown to the algorithm, for
modeling purposes, we assume that the algorithm will begin this
compulsory execution when the remaining steps are sufficient to
fulfill the worst-case job length, which is given by (cmax — w/ ).

o Assumption 5. In an application such as carbon-aware resource
scaling, the deadline T is typically known in advance. Our algo-
rithms, however, do not require this assumption to be true. If T is
unknown, we assume that the algorithm is given a signal to indi-
cate that the deadline is coming up and that compulsory execution
should begin to finish a job with worst-case size cmax-

o Assumption 6. We assume that the job execution time horizon
has sufficient slackness, i.e., the compulsory execution does not
make up a large fraction of the sequence - otherwise, the problem
is trivial. Formally, we have that the earliest time step j” at which
the compulsory execution begins (i.e., the first time step such that
(T-j"-1) < cmax) is j* > 1, which implies that T is sized
appropriately for the job. This assumption is reasonable in practice,
since if T is small or ¢ is large, the job’s temporal flexibility will be
low, so even a solution with perfect knowledge of future carbon
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Algorithm 1 Online ramp-on, ramp-off (ROR0) algorithm [25]

1: input: pseudo-cost threshold ¢ (w)

2: initialization: initial decision x( = 0, initial progress w® =

3: while cost function g, (-) is revealed and w=D) < ¢ do

4 solve pseudo-cost minimization problem to obtain decision x;,

wt=D 4
x¢ = argmin ge(x) + flx - x| - / $(w)du.
w

xe[0,min(1-w(=D d;)] (t-1)

®)

5. update the progress w(*) = w(t=1) 4 x;;

intensity values will be unable to take advantage of time-varying
carbon intensity to reduce emissions.

Competitive analysis. We tackle OCSU from the perspective of
competitive analysis, where the objective is to design an online
algorithm that maintains a small competitive ratio [7], defined as:

DEFINITION 2.1 (COMPETITIVE RATIO). We denote OPT(I') as the
offline optimum on the input I, and ALG(T) represents the profit
obtained by an online algorithm (ALG) on that input. Formally, letting
Q denote the set of all possible inputs, we say that ALG is n-competitive
if the following holds: CR = max y ¢ ALG(L)/oPT(I) = 1. Observe that
CR is greater than or equal to one. The smaller it is, the closer the
algorithm is to the optimal solution.

Learning-augmented competitive algorithms. In the nascent
literature on learning-augmented algorithms [30, 38], algorithms
are evaluated through the metrics of consistency and robustness. In-
tuitively, these quantities measure how close a learning-augmented
algorithm’s solution is to that of the offline optimal solution when
the prediction is accurate (consistency) and how far an algorithm’s
solution can be from the optimal solution in the worst case when
the prediction is erroneous (robustness).

DEFINITION 2.2 (CONSISTENCY AND ROBUSTNESS). Formally, an
algorithm is b-consistent if it is b-competitive with respect to an
accurate prediction and r-robust if it is r-competitive regardless of the
quality of the prediction.

3 ALGORITHM DESCRIPTIONS

In this section, we introduce LACS, a Learning-Augmented Carbon-
aware Resource Scaling algorithm that solves OCSU. To achieve
the best of both worlds on satisfactory practical performance and
theoretical worst-case guarantees, LACS integrates predictions of
the job length into its operation by combining the decisions of an
algorithm that assumes the prediction is correct with the decisions
of two competitive baselines. By combining these strategies, LACS
can improve its performance significantly when the predictions
are accurate while maintaining worst-case competitive guarantees.
Below, we start by reviewing approaches from prior work that
inform our design of the competitive baselines.

3.1 Algorithmic Background

The competitive baselines we consider in the next section build on
prior work, specifically the “ramp-on, ramp-off” (RORO) framework
proposed by [25] that achieves the optimal competitive ratio for
OCS, as a simplified version of OCSU that assumes job length is
known a priori to the online algorithm. In the RORO framework [25],
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whenever an input arrives online, the algorithm solves a pseudo-cost
minimization problem to determine the amount of job to run at time
t (denoted by x; € [0, d;]). The progress w(?) denotes the fraction of
the total job that has been completed up to time ¢. This pseudo-cost
minimization design generalizes the concept of threshold-based
algorithm design — at each time step, when a cost function arrives,
the pseudo-cost of a particular decision x is defined as the actual
carbon emissions of running x amount of the job (including both the
execution and the switching emissions), minus a threshold value
which describes the exact amount which should be allocated to
maintain a certain competitive ratio.

This pseudo-cost acts as an incentive to prevent the algorithm
from “waiting too long” to run the job. Intuitively, if an algorithm
naively minimizes the cost function g; at each time step (resulting
in decisions x; = 0 for all ¢ € [T]), it will be required to complete
the entire job during compulsory execution during a potentially bad
period for carbon intensity. The pseudo-cost minimization provides
a framework that balances the extreme options of allocating “too
much” early on and waiting indefinitely. Whenever the carbon
intensity is “attractive enough,” the pseudo-cost minimization finds
the best decision that allocates just enough resources given the
current carbon intensity to maintain competitiveness. In the setting
where the job length is known, we summarize the RORO algorithm
in Algorithm 1.

To define this pseudo-cost minimization problem, the authors in
[25] define a dynamic threshold function, which essentially defines
the highest carbon intensity deemed acceptable by RORO at time ¢.
We note that in OCS with known job lengths, ¢ is defined to be 1
(without loss of generality). According to [25, Definition 3.1], the
dynamic threshold for OCS, for a job with length ¢, and for any
progress w € [0, c] is defined as:

U w
¢ocs(w)—U—ﬁ+(;—U+2ﬁ)exp(a), (4)
where « is the competitive ratio defined as:
-1
0(:[W[(%+£—l)exp(@—l)]—%+l . (5)
Uu U U U

In the above equation, W(-) is the Lambert W function, defined
as the inverse of f(y) = ye¥ [11]. Note that it is well-known that
W(x) ~ In(x) [22]. Given this definition of @, note that ¢ocs(-) is
monotonically decreasing on the interval w € [0, c].

3.2 LACS: A Learning-augmented Algorithm for
Carbon-aware Resource Scaling

In this section, we describe the design of LACS, which uses pre-
dictions of the actual job length to significantly improve average-
case performance (consistency) without losing worst-case guaran-
tees (robustness). We first introduce two baseline competitive algo-
rithms before describing how LACS leverages predictions to improve
average-case performance without losing competitive guarantees.
Competitive baseline algorithms. Here we present two adap-
tations of the RORO framework detailed in Section 3.1, denoted by
ROROcmax and RORO¢min. Since OCSU introduces job length uncer-
tainty, each of these adaptations considers an opposing extreme
case for the job length. We describe each variant in turn below.
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ROROcmax: RORO assuming maximum job lengths. ROROcmax takes
an optimistic approach by assuming every job has the maximum
length cmax. This aims to prepare for potentially long jobs by gath-
ering enough resources. RORO¢max s assumption of worst-case job
sizes makes it less conservative in terms of carbon intensities where
it is willing to run the job. This gives it the flexibility to prepare
for scenarios where long jobs (e.g., with length cmax) do arise, al-
though it risks “overspending” for shorter jobs. We see the impact
of this assumption in RORO¢max’s threshold function Equation 6.
Compared to alternatives like RORO, which knows the exact job
length, ROROcmax s threshold reduces at a slower exponential rate
as job progress increases — intuitively, this is because RORO¢max
plans for a longer job, which scales up the threshold function along
the axis of w. Though this strategy may run the job when carbon
intensities are “too high,” particularly for jobs that are much shorter
than cmay, it can be advantageous when job lengths do approach
the maximum. In such situations, RORO¢max may result in a more
favorable outcome, avoiding the last-minute compulsory execution.

DEFINITION 3.1. The threshold function ¢1 used by ROROcmax for
any progress w € [0, cmax] is defined as:

U w
=U- Z_U+2
1 (w) B+ ( " + ﬁ) exp (Cmaxa) , (6)
where a is defined in Equation 5.

This approach captures one of two extreme cases that inform our

algorithm design. Next, we will “flip” these assumptions to capture
the other extreme case in the RORO¢pi, algorithm.
ROROcmin: RORO assuming minimum job lengths. ROROcpin takes a
pessimistic approach by assuming each job is as short as cpjn. This
approach is efficient for handling shorter jobs since RORO¢pin is
more conservative in choosing which carbon intensities are good
enough to run the job. The threshold function decreases faster than
ROROcmax, Which assumes the maximum job length.

However, when ROROpin encounters a longer job, its conser-
vative nature can become a hindrance. RORO.min, is, by design, re-
luctant to allocate resources liberally due to its lower threshold,
potentially missing the chance to make significant progress on
lengthy jobs early on. This may necessitate costly compulsory exe-
cution at the end of the time period.

To mitigate this, we scale the threshold by the ratio cmax/cyin. This
adjustment still allows the threshold to remain more cautious than
ROROcmax, but avoids the worst-case scenario for jobs that may turn
out to be longer than cpiy. This remains economical for the assumed
short jobs while also being flexible enough to accommodate the
resource needs of unexpectedly longer jobs without resorting to
compulsory executions at the end of the time period.

DEFINITION 3.2. The threshold function ¢ used by RORO¢min for
any progressw € [0, cmax] is defined as:

¢2(W)=U—ﬂ+(%—U+2ﬁ)exp( ) (7)

Cmaxa’
where &’ is defined as follows:

%W[M(%+£—l) p(ﬂ(%_l))}_%_Fl .
Cmin Cmax U U Cmax U U

o =
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These two approaches comprise our worst-case algorithm de-
sign. While the competitive bounds of each algorithm differ, the
empirical performance of each intuitively depends on the actual
observed job lengths. In practice, we may often have a relatively ac-
curate prediction about a given job’s length. In the next section, we
consider how this type of job length prediction can be incorporated
into an algorithm design without losing worst-case guarantees.

Learning-augmented algorithm design. Here we formalize our
learning-augmented algorithm, referred to as LACS and outlined in
Algorithm 2. This algorithm integrates insights from two robust
algorithms, RORO¢max and ROROcpmin, alongside predictions from an
algorithm named ROROpyed. ROROpyed is essentially a RORO algorithm
that uses the predicted job length ¢ rather than the actual job length
c. Although ROROpq operates on predictions, it guarantees that
the job is completed before the deadline (Equation 2) by beginning
a compulsory execution when the remaining time steps are enough
to complete a job with length cpax.

The combination of ROROpeq with competitive baselines
ROROcmax and RORO¢min is designed to enhance average perfor-
mance. Since ROROcmay is tailored for longer jobs and RORO¢min
is more effective for shorter ones, we introduce an intermediate
algorithm called RORO,opyst Which leverages strengths of both com-
petitive baselines. Let k € [0, 1] denote a decision factor, which
dictates the proportion of the solution to derive from ROROcmax
({xlt}\ﬁe 1) or ROROcmin ({x2t}Vte 1)- Then ROROgpyst con-
structs a solutlon {Xe}veer): Where each Xt is defined as X; =
kx1t + (1 — k)xgs, Vt € [T].

By unifying the two competitive baseline algorithms, we sim-
plify the expression of LACS, which integrates these competitive
decisions X; with the decisions of ROROpreq as follows: We set an
augmentation factor A € [0, 1], which determines the influence of
each algorithm on the final decision (A from ROROpeq, (1 — A) from
RORO;ohyst)- Intuitively, a larger value of A implies that LACS is closer
to the prediction. The result is a solution that benefits from the
predictive strength of ROROpeq While maintaining the robustness
provided by the combined solutions of RORO¢max and RORO¢pin-

In the following, we formalize our instantiation of LACS (and
RORO,obust as a subroutine) for OCSU, which includes definitions
of k, A, and the parameters of € and y that they depend on.

DEFINITION 3.3. Let € € [0, |a; — az|], where a1 and a2 are the
robust competitive ratios defined in Equation 9 and Theorem 4.2.

Wesetk =1- 5 faz (which is bounded in [0,1]) to form the
solution ({Xt}yte[1)) obtained by RORO,opys-

Lety € [0,a1 — sign(a1 — az)e — a], where a is the robust com-
petitive ratio defined in Equation 5, and sign(x) is the 51gn function.

LACS sets a augmentation factor of A = 1 —

which is bounded in [0, 1].

ap— 51gn(zx1 a)e—a

In the next section, we provide the consistency and robustness
bounds for LACS. Intuitively, the primary desiderata for LACS is to
be able to nearly match the performance of an online algorithm
which knows the exact job length (e.g., RORO) when the job length
predictions are correct, while preserving worst-case performance
bounds in line with that of RORO¢max and RORO.min.
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Algorithm 2 LACS: A learning-augmented algorithm for OCSU

1: input: The predicted solution {X; }v;e[1] given by ROROpeq, compet-
itive solutions {x1; }yse[r] and {x2; }vse[7] given by ROROcmax and
ROROcmin, decision factor k, augmentation factor A.

: while cost function g, (-) is revealed and w1 < ¢ do

obtain robust decisions x1; and x¢;

Xp = kxye + (1= k)xoy;

obtain prediction decision X;;

set the online decision as x; = Ax; + (1 — 1)Xy;

update the progress w*) = w(t=1) 4 x;;

NPy

4 THEORETICAL RESULTS

In this section, we state our main theoretical results. We start with
the competitive results for the competitive baseline RORO¢max and
ROROcmin algorithms before stating the consistency and robustness
results for LACS. We discuss the results and their significance here,
while deferring their full proofs to Appendix A.

Competitive analysis for RORO¢max. Recall that RORO¢max as-
sumes each job has the maximum length cmax. In the following
theorem, we state the competitive result for ROROcmax and discuss
its significance. The full proof of Theorem 4.1 is in Section A.1.

THEOREM 4.1. RORO¢pqax for OCSU is a1 -competitive when the
threshold function is given by ¢1(w) from Definition 3.1.
= E + %

al L

Intuitively, compared to the competitive bound a shown for OCS

when job lengths are exactly known, a4 is worse. This captures an
edge case where the actual job length is, e.g., ¢yin, While RORO¢max s
design assumes the job has length cmax. As we discuss in the full
proof, this occurs because ROROcmay’s scaled threshold design al-
lows it to complete a job with length cpi, by using the worst ¢ pin
fraction of the threshold, while RORO (where the job length is known)
uses the entire domain of the monotonically decreasing threshold
function to complete the job.
Competitive analysis for RORO¢yin. Contrary to the assumption
of ROROcmax, the RORO¢pin algorithm is derived to prepare for a job
with length cpiy, while acknowledging that the actual job length
may be cmax. In the following theorem, we state the competitive
result for RORO iy and discuss both its significance and relation to
the existing RORO algorithm with known job lengths.

©)

a1

THEOREM 4.2. RORO¢min for OCSU is o’ -competitive when the
threshold function is given by ¢2(w) from Definition 3.2. We hence-
forth use az = &’ to denote the competitive ratio of RORO¢min.

As we show in the full proof, in Section A.2, a3 = &’ > «,
further implying that ¢2(w) < ¢1(w) for any w € [0, cmax]. This
supports the notion that RORO iy is indeed more conservative than
ROROcmax in terms of the carbon intensities for which it is willing
to run the job. We note that the functions ¢1(w) and ¢2(w) are
equivalent when cpin = cmax, indicating that both algorithms make
the same decisions when all jobs have the same length.
Consistency and robustness of LACS. Recall that LACS (summa-
rized in Algorithm 2) is our learning-augmented algorithm that
plays a convex combination of the solutions obtained by RORO,pust

and ROROpeq- Letting agg,*?’gpmd denote the worst-case competitive
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Figure 1: Competitive upper bounds for different algo-
rithms (RORO with the full knowledge of job length, RORO¢min,
ROROcmax, and LACS[y = 1,€ = 3])

ratio of ROROpq (i.e., when the job length predictions are maxi-
mally incorrect), we obtain the following consistency and robust-
ness bounds for LACS for any value of € € [0, |a; — a2|] and any
value of y € [0, a7 — sign(a; — az)e — a]:

THEOREM 4.3. Given parameterse andy, LACS is (a+y)-consistent
_ Y max y(a—sign(a—a)e) | |
and [ (1 al—sign(al—ag)e—a) aROROP,ed + (al—sign(al—ag)e—a

robust.

This result, proven fully in Section A.4, implies that LACS can
achieve a competitive ratio of @ when the job length prediction is
correct. Since « is the best achievable competitive ratio for the orig-
inal OCS problem, LACS with accurate predictions of the job length
achieves the optimal consistency bound as y — 0. Furthermore,
the robustness bound implies that the worst-case competitive ratio
when predictions are incorrect remains bounded by a combination
of a1 and ap; this is intuitive because the competitive bounds of
ROROcmax and ROROcmin (respectively) are the worst-case results for
algorithms which expect one extreme job length and must deal
with the other extreme job length.

In Figure 1, we plot the numerical values of a, a1, a2, and the
consistency-robustness results of LACS with y = 1, € = 3 for several
different values of U/L. f is fixed to U/10, and €max/cmin = 4. Note that
«a (the best competitive ratio for standard OCS) grows sublinearly
in U/L, while the competitive bounds of RORO¢max (1) and ROROcpmin
(az) grow linearly in U/L. This reflects the inherent challenges of
OCSU and the impact of uncertain job lengths on the achievable
competitive ratios. Notably, for this setting of € and y, LACS is able
to nearly match the optimal a for OCS when the predictions are
correct (consistency), and is strictly upper bounded by az when the
predictions are adversarially incorrect (robustness), meaning that
it achieves the best of both worlds.

5 EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the performance of LACS
in reducing the carbon footprint of scalable computing workloads.

5.1 Experimental Setup

We take a job-centric approach where a carbon-aware scheduler
independently allocates (i.e., scales) computing resources to each job
to reduce the total carbon footprint of its execution while respecting
per-job deadlines. We next detail our experimental setup.

Carbon intensity trace. We use carbon intensity data from Elec-
tricity Maps [32] for California ISO (CAISO). The carbon trace
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Table 2: Inverse of scaling profiles as a mapping between
the completed part of the job (x) and amount of resources

allocated (s).
Profile Equation Profile Equation
P1 s=X P4 s =0.5x"+x
P2 s =0.15x7 + x P5 s =0.75x" + X
P3 s=0.25x7 +x P6 s=x2+x

Table 3: Summary of characteristics for the baseline algo-
rithms and two variants of the proposed algorithm

Algorithm Carbon-Aware | Switching-Aware | Job Length Input
RORO [25] Yes Yes Actual
OWTpred Yes No Prediction
Single Threshold Yes No N/A
Carbon Agnostic No No N/A
CarbonScaler [20] Yes No Prediction
LACS (this paper) Yes Yes Prediction
D-LACS3(this paper) Yes Yes Prediction

provides carbon intensity measured in grams of CO2 equivalent per
kilowatt-hour (gCO2eq/kWh) at an hourly granularity and spans
2020 to 2023. We picked 1314 time slots as the job arrival times
(once every 20 hrs?) to assess the performance across the whole
trace duration. To evaluate algorithms that require carbon intensity
(CI) forecasts, we introduce a uniformly random error to carbon
intensity data to account for forecast errors, denoted as Clerr, where
err is the mean of added percentage error.

Job characteristics. Each job arrives independently with a job
length ¢ uniformly sampled within the range [cpin, ¢max]- To eval-
uate the impact of job length prediction error, we model a predic-
tor that yields a job length estimate within the range [c — p X ¢,
¢+ p X c], where p is the percentage error in job length predictions.
We also assume that all jobs have a deadline (T) of 24 hrs and incur
a fixed symmetric maximum switching overhead of 5.h(r) (e.g., for
checkpoint and resume) when scaling from zero to the maximum
resources r, where h(-) is the scaling profile.

Resource scaling profiles. Carbon savings highly depend on
the scalability of jobs [20], where more scalable jobs can yield
higher savings as they provide higher marginal throughput for
each added resource. Table 2 depicts the mapping functions s =
ht_l (x) (the inverse of the scaling profiles), where x represents the
completed part of the job (i.e., progress made) and s represents
the amount of resource, e.g., servers, to obtain the given progress.
Some of the utilized profiles represent common scalability profiles
of real-world batch jobs. For instance, P1 refers to embarrassingly
parallel applications such as BLAST [41], while P2 and P4 are a fitted
version of the machine learning training workloads for ResNet18
and MobileNetV2, respectively, described in [20]. In contrast, P3,
P4, and P6 are synthesized profiles to represent moderate and non-
scalable applications.

Parameter settings. We evaluate LACS across a wide range of ex-
perimental scenarios that impact its performance, including a range
of maximum job lengths (cmax), varying coefficients for switching
emissions (f), errors in job length predictions, and a range of learn-
ing augmentation factors (1). We set the value of the decision factor
(k) in Algorithm 2 to 0.5, so both robust algorithms receive equal
consideration. To impose practical constraints, we evaluate LACS

2We purposefully avoid an arrival every 24 hrs to avoid diurnal patterns.
3D-LACS is the modified version of LACS, which considers discrete resource allocation
based on the solution given by LACS.
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across a range of carbon intensity forecast errors (Clery) and re-
source constraints (r) since available resources are constrained.
Baseline algorithms. We evaluate the two variants of our pro-
posed algorithm, LACS and D-LACS, against multiple state-of-the-art
algorithms, summarized in Table 3 and detailed below.

(1) RORO: An online conversion with switching costs algorithm
with knowledge of job length [25], described in Section 3.1.
This online algorithm knows the accurate job length, so it serves
as an upper bound for LACS that has no access to the exact job
length a priori.

OWTpreq: Threshold-based one-way trading with job length pre-
dictions. This algorithm adapts a threshold-based one-way trad-
ing algorithm [47] that assumes perfect job length information.
Our adaptation, OWT 4, uses inaccurate job length predictions
to decide the amount of job x; to be scheduled at time t based
on a threshold function ®. It accounts for the carbon emissions
of execution but ignores any switching emissions. When f = 0,
ROROpeq (described in Section 3.2) reduces to OWTpreq.

Single Threshold: The algorithm utilizes a static threshold
set at VUL, a value initially introduced in [16]. Adapted for
OCSU, Single Threshold operates by running the job with
the maximum resource available at each time step ¢, but only if
the execution emissions are lower than VUL. This algorithm
also does not consider switching emissions.

Carbon Agnostic: This algorithm presents a greedy approach
that executes each job with maximum available resources upon
submission. As the scheduler does not know the job length,
executing the job with maximum resources reduces execution
time and ensures completion before the deadline, if feasible.
CarbonScaler: The CarbonScaler [20] algorithm utilizes its
knowledge of the job length, carbon intensity, and deadline to
construct a carbon-aware resource scaling. To accommodate job
length prediction inaccuracies and potential errors in carbon
intensity forecasts, we feed the predicted job length and the
erroneous carbon intensity forecasts to the algorithm.

@

~
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~
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=
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~

It must be noted that all algorithms, except RORO, start the com-

pulsory execution at the time slot T — (¢max — wlt )) /d;, where T is
the deadline, and w(?) is the progress at time t to ensure that the
job completes before the deadline?.
Evaluation metric. We compare the performance of an algorithm
against an offline optimal resource scaling schedule computed using
anumerical solver [52], which allows us to report the empirical com-
petitive ratio represented as ALG/0PT (lower value is better). We also
report the reduction in carbon footprint with respect to the Carbon
Agnostic execution of the job that uses maximum resources and
aims to finish the job as soon as possible.

5.2 Effect of Maximum Job Length

The ratio between the maximum and minimum job lengths (cmax,
cmin) dictates the characteristics of jobs that may arrive at the sched-
uler; a higher ratio means the job lengths can be more diverse. For
simplicity, we set cpin = 1 and analyze the effect of cmax. Figure 2
shows the performance of various algorithms under different cpmax
values, where lower ALG/OPT is better. We evaluate the proposed
algorithm against RORO, OWTpred, Single Threshold, and Carbon

“4RORO starts the compulsory execution based the actual job length ¢
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Figure 2: (a), (b), and (c) report cumulative distribution functions (CDFs) of empirical competitive ratios for evaluated algorithms
under different cmax values, where cpnin =1. (d) Shows the effect of cmax on empirical competitive ratios. The scaling profile is
P1, S = 20, job prediction error is 20%, and A = 0.5. A CDF curve towards the top left corner indicates better performance.
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Figure 3: (a), (b), and (c) report cumulative distribution functions (CDFs) of empirical competitive ratios for selected algorithms
under different § values. (d) Shows the effect of f on empirical competitive ratios. The scaling profile is P1, cjyax = 3, job
prediction error is 20%, and 1=0.5. A CDF curve towards the top left corner indicates better performance.

Agnostic by showing their performance compared to the offline
optimal algorithm. We omit CarbonScaler in this section as it re-
quires discrete resource allocation; we will consider it when we
enforce discrete assignment. We assume scaling profile P1, i.e., the
job is embarrassingly parallel, switching emission coefficient § = 20,
job prediction error of 20%, and augmentation factor A = 0.5.

Figure 2a shows the special case where cmax = cpin, i-€., all jobs
are the same length and known to LACS, RORO, OWTeqd. As expected,
LACS and RORO are identical while OWT},q is slightly behind as it
does not consider switching emissions. Nonetheless, these algo-
rithms achieve higher performance than Single Threshold and
Carbon Agnostic. Figure 2b and Figure 2c show realistic cases
where the cmax is 3 and 6, respectively. As shown, LACS is the clos-
est to RORO in all settings. Its performance is within 15.1 and 19.8%
on average from the offline optimal and only 0.6% and 4.6% from
RORO, when cmax is 3 and 6, respectively. Figure 2d summarizes the
average competitive ratio across different cyax values; increasing
the cmax decreases the performance of all techniques, as a higher
Cmax Yyields more uncertainty on the actual job length and exacer-
bates switching emissions as we do not employ resource constraints.
Nonetheless, the results indicate the superiority of LACS across dif-
ferent cmax values, where LACS performs within 16.1% of the offline
optimal and only 1.3% away from RORO, resulting in a 31% reduction
in carbon emissions compared to the Carbon Agnostic policy.

5.3 Effect of Switching Emissions

Dynamic resource adjustment leads to wasted time and energy,
which result in extra emissions. For example, when applications
employ suspend-resume scheduling, the switching emissions are
due to the incurred energy required to checkpoint or restore the
state before being able to resume processing. Since these switch-
ing emissions differ across systems and applications, e.g., due to
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memory size [40], we evaluate the effect of the switching emissions
coefficient f on performance, where higher f hinders the policy’s
ability to adapt to variations in carbon intensity. Figure 3 shows the
performance of the algorithms against different values of . We fix
maximum job length (¢cmax = 3) while keeping the other parameters
the same as Figure 2. We assigned f as 0, 20, and 40 gCO2eq, rep-
resenting 0.0, 7.3, and 14.6% of California’s average hourly carbon
intensity (273 gCO2eq/kWh), respectively. For completeness, we
added the case of f = 0 where resource scaling does not incur any
overheads. Figure 3a shows the case where switching is cost-free.
We observe that OWT},req outperforms LACS, because LACS must also
incorporate the robust decisions from RORO,gpyust (note that since
B =0, OWTppeq is equivalent to ROROpreq). Figure 3b and Figure 3¢
explore realistic cases with non-zero switching emissions, where
LACS nearly matches RORO. It lags behind on average and in the
worst case by 0.6 and 10%, respectively, when f§ = 20 and by 1.1
and 32.3%, respectively, when f = 40. Finally, Figure 3d summa-
rizes the average performance of all the algorithms, highlighting
the effectiveness of our proposed approach. As expected, higher
leads to higher ALG/oPT for the algorithms that do not incorporate
switching emissions. However, increasing f does not affect the
relative performance of the algorithms; LACS achieves average per-
formance within 1.2% of RORO and 16% of the offline optimal, which
constitutes 32% carbon savings compared to Carbon Agnostic.

5.4 Effect of Job Length Prediction Error

As explained in Section 3.2, LACS augments robust algorithms with
a prediction-based approach that leverages job length predictions.
However, since typical batch job predictors are highly erroneous,
we use an augmentation factor A that controls how much this job
length prediction influences the final solution. Figure 4 shows the
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Figure 4: Average competitive ratios for LACS under different job prediction errors, augmentation factors A, switching emissions

f and cmax values for scaling profile P1.

effect of various prediction accuracies, defined by prediction error %,
and augmentation factors A on the empirical competitiveness of
LACS under different maximum job lengths cmax and switching
emissions coefficients f. The scaling profile is P1.

The results show that as the prediction error increases, LACS
should employ a lower augmentation factor for the predictions. For
instance, at a job prediction error of 60%, a mid-range augmentation
factor (between 0.25 and 0.75) leads to better results than either
extreme. Interestingly, the results show that higher prediction accu-
racy and augmentation factors do not always guarantee the highest
performance. For instance, for 0% error in job length predictions,
fully augmenting with predictions does not yield the best ALG/oPT.
For example, when f = 10, cmax = 3 (Figure 4b) and f = 40, cmax
= 6 (Figure 4h) setting A = 0.75 outperforms fully augmenting with
predictions (A = 1) by 21% and 33%, respectively.

This counter-intuitive result manifests because, during compul-
sory execution, ROROped must run with the maximum available
resources, regardless of the job length prediction accuracy. This can
lead to increased switching emissions compared to scenarios where
robust algorithms contribute more to the decision-making in LACS,
potentially reducing the time spent in the compulsory execution.
This may happen since the robust algorithm caters to the upper
bound and sets a less conservative threshold. Higher values of
and cmayx can intensify this phenomenon, as more switching emis-
sions are incurred when scheduling with the maximum available
resources in the compulsory execution zone. In summary, LACS
balances the decisions from the robust algorithm and the job length
predictor by using a moderate augmentation factor A; the results
indicate that aside from different values of cmax, f, and job length
prediction errors, an augmentation factor A = 0.5 can perform
within 4% of RORO and within 18% of the offline optimal, which
translates to 20.8% carbon savings over Carbon Agnostic.

5.5 Real-world Considerations

In the previous experiments, we assumed that resource allocation is
continuous and resources can be acquired in any quantity. In prac-
tice, however, resources such as cores or servers must be allocated in
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discrete quantities and have physical and performance constraints.
To accommodate such requirements, we discretize the scaling pro-
file into fixed-size units, which map to different amounts of the job
based on the scalability of the profile. Then, to map the scheduling
decisions to discrete allocations, we round the decisions of LACS to
the nearest discrete quantity, a policy we denote Discrete-LACS
(D-LACS). To create this discrete allocation, we dissect each resource
unit into 8 equally sized segments. Our evaluation shows that the
discretization process has a negligible impact on our results, as
observed across all the results in Figure 5 and Figure 6.

Additionally, the maximum resources available to a job may be
constrained for various reasons, including resource contention and
cost considerations. To accommodate such constraints and analyze
their effect, we bound the resources allocated to the job in a time
slot to a maximum number r. We assume that the total number of
resource units is 32, where resource r takes values of 1/8,1/4,1/2,
and 1, denoting 4, 8, 16, and 32 resource units. This ensures compat-
ibility with the employed resource discretization. In what follows,
we evaluate the performance of these considerations and compare
our proposed method to CarbonScaler [20] that assumes both
discrete resources and rate limits but relies on carbon intensity
forecasts to make scheduling decisions.
Impact of carbon intensity forecast error. The requirement of
fairly accurate carbon intensity forecasts significantly limits the
practical deployment of CarbonScaler [20]. We evaluate the effect
of Clery on the performance of CarbonScaler and compare it with
LACS that does not require CI forecasts. In the experimental setup
for Figure 5, we choose profile P2°, impose a resource constraint
(r=1/4), consider job length prediction error of 30%, while keeping
the rest of the setup the same as Figure 3. We evaluate the perfor-
mance of LACS, D-LACS®, and CarbonScaler under different Clery
values.

Figure 5a shows the baseline case without any forecast errors,
i.e., Clerr = 0, and shows that although CarbonScaler outperforms

SWe do not use CarbonScaler with P1 as it will scale to the maximum resources
during expected low carbon intensity slots, exacerbating the effect of Cleyy.

®We note that the optimal policy does not mandate discrete assignments but considers
the rate constraints, making it a lower bound for our solutions
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Figure 6: Average competitive ratios across policies under dif-
ferent maximum resource constraints r and carbon intensity
forecast error Clerr. We assume scaling profile is P2, cmax = 3,
P = 20, job prediction error is 30% and A = 0.5.

Figure 7: Effect of profiles on Average competitive ratio across
scaling profiles from Table 2. We assume cmax = 3,7 = 1/4,
B = 20 job prediction error is 30%, Clerr = 10, and A = 0.5.

D-LACS on average by 4.6%, D-LACS outperforms CarbonScaler by
4.8% in the worst-case. Figure 5b and Figure 5¢ show more realistic

scenarios where the forecasts are erroneous and demonstrate the when Cle;y = 20 and r = 1/4. In the absence of resource con-
sensitivity of CarbonScaler to carbon intensity errors. At 10% er- straints, the gap between CarbonScaler and D-LACS shrinks as
ror, which is equivalent to the average error rate of state-of-the-art CarbonScaler can fully scale up when encountering a good car-
carbon intensity forecasting models such as [31], the performance bon intensity, possibly avoiding compulsory execution.

of CarbonScaler is strictly below D-LACS, where D-LACS outper-
forms CarbonScaler by 6.3 and 4.8% when Cley = 10 and by 13.1

and 7.9% when Cleyy = 20, on average and in the worst case, respec- 5.6 Effect of Scaling Profiles

tively. Figure 5d depicts the performance of CarbonScaler and Many factors, including the network speed, and the ratio between
shows the applicability of D-LACS in the real world with erroneous workload’s communication and computation, determine an appli-
or unavailable carbon intensity forecasts. cation’s scalability. To evaluate the effect of scaling profiles, we
Impact of resource constraints. Figure 6 shows the performance test various profiles (see Table 2), which represent possible scaling
of LACS, D-LACS and CarbonScaler as a function of resource con- profiles seen in the real world. Figure 7 evaluates the performance
straints. We set the scaling profile (P2), cmax = 3, switching emis- of D-LACS for these different profiles. We set cmax = 3, switching
sions coefficient § = 20, the job prediction error to 30%, and aug- emissions coefficient § = 20, the job prediction error is 30%, the car-
mentation factor as A = 0.5. The results indicate that enforcing bon intensity forecast error is set to Cleyy = 10%, and augmentation
a lower resource constraint narrows the gap between algorithms factor A = 0.5. Figure 7a shows the performance of D-LACS across
and the offline optimal, where the average performance of D-LACS different profiles; D-LACS is more effective at higher scalability, but
ranges from 9 to 31% of the offline optimal, rending 21 to 37% shows comparable competitiveness across profiles. As resources
carbon savings compared to the Carbon Agnostic policy. This is increase, jobs with worse scaling profiles will be more conservative
reasonable as a lower resource constraint means a lower degree in their decisions, forcing them to run at inefficient scales during
of freedom, forcing all approaches to run similarly. Nevertheless, the compulsory execution. Figure 7b, depicts this behavior across
D-LACS outperforms CarbonScaler in almost all cases. For exam- scaling behavior and rates, showing that all scaling profiles expe-
ple, when r = 1/8, D-LACS outperforms CarbonScaler by 3.6 and rience less performance as the rate increases, which is consistent
10% when Cler = 10 and Clepy = 20, respectively. The results are with earlier results. The results indicate that across scaling profiles
consistent with previous experiments, where higher Cleyr yields D-LACS performs between 9 and 15% and 31 and 49% of the offline
a higher gap between D-LACS and CarbonScaler, reaching 13.3% optimal for r = 1/8 and r = 1, respectively.
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Table 4: Carbon-aware temporal shifting and scaling

Algorithm Unknown | Forecast Not Deadline Switching ‘ Decision
Job Length | Required Cost Space
WaitAwhile-Thr. [53] Yes Yes No No Shift
WaitAwhile [53] No No Yes No Shift
k-min search [28] No Yes Yes No Shift
Double Threshold [26] No Yes Yes Yes Shift
Wait&Scale [41] Yes No No No Scale
CarbonScaler [20] No No Yes No Scale
OWT [16, 47] No Yes Yes No Scale
RORO [25] No Yes Yes Yes Scale
This work Yes Yes Yes Yes Scale

6 RELATED WORK

To bridge the gap between the availability of low-carbon energy
and demand, carbon-aware schedulers utilize the inherent flexi-
bility of workloads to select an appropriate time and location to
execute the workloads [15, 19, 20, 23, 25, 26, 41, 42, 44, 50, 53, 57].
In this paper, we focus on a special case of carbon-aware temporal
shifting of batch jobs, where schedulers decide on a scale factor at
each time step ranging from 0 (i.e., suspending) to a user-defined
max factor. In addition, the problem of carbon-aware scheduling
has historically been closest to online search problems such as k-
min search [27, 28], one-way trading [14, 16, 35, 45, 47], and online
knapsack [5, 13, 33, 46, 54, 55, 58]. These have seen applications in
e.g., cloud pricing [56], EV charging [8, 47], and stock trading [28],
among others. Recently, two studies have explicitly extended on-
line search ideas towards carbon-aware problems. In [26], the au-
thors present online pause and resume, which extends the k-min
search problem to incorporate switching costs. Similarly, the au-
thors in [25] present the OCS problem discussed in this paper,
which introduces a linear switching cost into the formulation of
one-way trading. In contrast to all of the above literature, the OCSU
problem we propose is the first online search-type setting where
the job length (i.e., demand) is uncertain. We summarize state-of-
the-art work in carbon-aware scheduling and applicable methods
in online scheduling in Table 4, highlighting different assumptions
regarding job length, dependency on carbon intensity forecasts,
and compliance with deadlines.

7 CONCLUSION

This paper introduces LACS, a novel learning-augmented carbon-
aware algorithm for resource scaling of computing workloads with
uncertain job lengths. We analyzed the theoretical performance of
LACS using the framework of robustness-consistency of competitive
online algorithms. Further, we evaluated the empirical performance
of LACS through extensive experimental, showing its superior per-
formance as compared to an extensive set of baseline algorithms.
LACS, to be best of our knowledge, is the first algorithm with both
theoretical guarantees and promising practical performance for
carbon-aware resource scaling with unknown job lengths.
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APPENDIX
A DEFERRED PROOFS FROM SECTION 4
A.1 Competitive Proofs for RORO¢max

In this section, we provide the proof of Theorem 4.1 that states ROROcmax for OCSU is a1 -competitive, where a4 is defined in Equation 9.

ProOF OF THEOREM 4.1. Let 7 € Q denote any valid sequence, and let w(/) denote ROROcmax’s final progress before the compulsory
execution that begins at time j < T. Note that wl) e [0,cmax ] Assuming a job arrives with length c, the worst performance of RORO¢max
happens when ¢ = cpin, and RORO¢max is a1-competitive. In this scenario, we have two cases:

Case (i). When the job is finished during the compulsory execution.
In this case, w/) < Cmin» and according to lemma B.2 in [25], the offline optimum is lower-bounded by:

OPT(Z) = cmin($1(w)) - B) (10)

Additionally, according to lemma B.3 in [25], the online carbon emissions is upper-bounded by:
W) _ _
ROROcmax (1) < / $1(wdu + w9 B+ (e —w)U (11)
0
By combining inequalities (10) and (11), we have:

wl) () ()
ROROcmax (1) _ S d1du+w B+ (cmin —wUHU

< - a (12)
OPT(1) cmin(¢1(w)) = B)
Case (ii). When the job is done without compulsory execution. O
LEMMA A.1. The carbon emissions of RORO¢max is upper bounded by:
U
ROROcmax(Z) < cming1(0) + cminff = Cmin; + Cminf (13)

ProoF. According to lemma B.3 in [25], when the job length = ¢, and the job is done with no compulsory execution, ROROcmax <
/OC ¢1(u)du + Pc. In the worst-case scenario, the job length is cpin; hence, we have:

Cmin U
ROR0mx(7) < [ $1(u0du+ Pomin < i1 (0) + coinff = emin .+ 2B (19
0
[m]

The right hand side of inequality (14) stands correct because ¢1 (u) is monotonically decreasing, and @1 (u) < ¢1(0) = % + B.
The lower bound of OPT(7) is:

OPT(J) > cminL (15)
Combining inequalities (14) and (15), we have:

U
RORocmax(I) < Cminy T 2ﬁcmin _ E + % — oy (16)
OPT(Z) CminL ol " L
Comparing @y against a, we note that when RORO¢max completes the job without compulsory execution, it has “overspent” compared to the
RORO algorithm which knows the actual job length. This follows by recalling that the threshold functions of both algorithms are monotonically
decreasing, and observing their respective threshold values at w() = ¢, which can be expressed as follows: pocsu (cmin) = L+ < ¢1(cmin)-
Thus, ROROcmax allows a strictly higher carbon intensity to run the job with length cpin, and the competitive ratio ayj, is worse.
Therefore, since a1 := max{ay, @}, we obtain the following final competitive bound:
Uu 2
= — 4+ —ﬁ
al L

a1

A.2 Competitive Proofs for ROROcmin

In this section, we provide the proof of Theorem 4.2 that states the instantiation of RORO¢pin for OCSU is az-competitive, where az = a’ and
@’ is defined in Equation 8.

PROOF OF THEOREM 4.2. Roadmap of the proof: We initially consider an intermediate algorithm, named ALGy. This algorithm operates
under the assumption that the length of each job is cyin and schedules the job based on a threshold function ¢(w), w € [0, ¢pin] (Definition
A.2). We first compute this threshold function and the competitive ratio, preparing for the worst-case scenario where the actual job length is
Cmax (Step 1).
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Subsequently, we adapt the threshold function gzg(ﬁf), scaling it up by a factor of cmax/cmin to obtain a new threshold function ¢, (w), w €
[0, cmax] (Equation 7), which defines the operation of RORO.pin— We proceed to determine the competitive ratio (a2) for RORO¢pin, finding
that it is less than that of ALG,. This outcome reinforces the rationale behind choosing RORO¢min Over ALG2, as RORO¢min proves to be a more
strategically sound choice under the given conditions.(Step 2)

Step 1: Let 7 € Q denote any valid OCSU sequence, and let w/ be the ALGy’s final progress before the compulsory execution, which begins
at time step j < T, and w0 e [0, ¢min]- O

DEFINITION A.2. Threshold function gzgfor OCSU solved by ROROcmin for any progress w € [0, cpmin]:

qg(W)zU—ﬁ+(%—U+2ﬁ)exp( w ) (17)

Cmind’

LEMMA A.3. The offline optimum is lower bounded by OPT(I) > ((/’;(WU)) - B)emin-

PROOF. According to lemma B.2 in [25], the optimal offline strategy, setting aside any additional switching emissions, involves completing
the job at the most favorable cost function within the sequence {g:(-);e[1]}- Suppose the best cost function occurs at an arbitrary step m
(m € [T],m < j), denoted by gpm(.).

Lemma B.2 in [25] further states that for any job length ¢, OPT(J) = c( UL c(g{)(w(J)) B, wl) e [0, c], where w() is the progress

before the compulsory execution. Given that ¢ € [cyin, cmax] in OCSU problem the lower bound of OPT is when ¢ = ¢y, , mirroring the
assumption made in the ALG; algorithm; therefore, OPT(I) > (¢(\2/(j)) — B)Cmins w) € [0, emin] o

LEMMA A.4. The carbon emissions of ALGy(I') is upper-bounded by:
w)
ALGy(T) < / d(wydu + pwD + (cpax — WU (18)
0
Proor. According to lemma B.3 in [25], RORO(J') incurred carbon emissions for a job with a length of ¢ is upper-bounded by:
w(/)
RORO(T) < / bocs-min(Wdu + pw) + (c = wIHU, w) € [0,c] (19)
0

where w(/) is the progress at time j (j < T) before the compulsory execution. The term (c — w))U denotes the maximum carbon emissions
while doing the compulsory execution to satisfy constraint (2). Since ALG; is not aware of the actual jOb length (c), the maximum carbon

emitted during the compulsory execution is (cmax — WU U. Therefore ALGy (7)) is upper-bounded by /0 ¢(u)du + ﬁw(f )+ (cmax—wNU,
el
w') € [0, emin] o

Combining Lemma A.3 and Lemma A .4 gives:

’ U(Ccmax — Cmin)

- W 5 () - (j)
ALGy (1) <f0 (du+ it + (emax = WU

< - - <a = - =« (20)
0PT(T) ($HD) = B Cnin($D) —p)
where the last inequality holds since for any w € [0, ¢yin]:
w) ) )
/ Pwdu + D) + (cmay — WU (21)
0
w(i) U wl) ) )
:/ U-f+ (— —U+2ﬁ) exp + ) + (cmax — wYUHU (22)
0 min
= & cmin (E U+ z/s) [exp ( ad ) — 1|+ YD) + (cmax - WU + (U - ppwD) (23)
o " Cmin
, U w
= o' cmin (—/ -U+ Zﬁ) exp( . ) — 1| + Ucmax (24)
a " Cmin
U w)
=a cmin |U - 2B+ (— +2f - U) exp + U(cmax — Cmin) (25)
@’ Cin
= o conin($(WV)) = B) + U (cmax = Crmin) (26)

In what follows, we will calculate the optimal o’ (as in [25, Theorem 3.3]) to define the threshold function based on the assumptions
established for ALG, (namely, that ALG, assumes the job has length ¢y and that it must complete the job during the compulsory execution if
it has length > cyip). It is known that worst-case instances for online search problems such as OCSU occur when inputs arrive in decreasing
order of cost (i.e., carbon intensity) [25, 45, 47]. We formalize these x-instances below.
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DEFINITION A.5 (x-INSTANCE FOR OCSU). For sufficiently large m,n € Z, we let § := (U-L)/m. Given x € [L, U], Ix € Q is an x-instance for
OCSU which consists of my := 2[(x=L)/5] + 1 alternating blocks of cost functions. For i € [my — 2], the ith block contains n linear cost functions
with coefficient U if i is odd, or a single linear cost function with coefficient U — [i/2]5 when i is even. The last 2 blocks consist of n linear cost
function with coefficients (x + €), followed by n cost functions with coefficients U.

As m — oo, the alternating blocks of single “good” cost functions continuously decrease down to x, and each of these blocks is interrupted
by a long block of worst-case U functions. Note that iy is a simple stream of n cost functions, all with coefficient U, and that the last cost
function for any 7 are always U (i.e., the marginal emission is maximized during the compulsory execution).

LEMMA A.6. Any deterministic online algorithm ALG for OCSU which assumes the job has length cmin (and is thus forced to complete longer
Jjobs during the compulsory execution) has a competitive ratio of at least &’ (where &’ is as defined in (33) ).

PrRoOF. On any x-instance Zx, we may fully describe the actions of any deterministic algorithm ALG via a conversion function h(x) :
[L,U] — [0, cmin]- Note that this function is unidirectional (irrevocable), and non-increasing in [L, U] such that A(x — §) > h(x), since
processing I,._ s is equivalent to first processing 7 (besides the final two blocks) and then processing blocks with marginal emissions of
x — & and U. The total emission of ALG described by the conversion function h(x) on instance J is expressed as follows:

X

ALG(I) = h(U/Ja U]’ — ‘/UJ/C , udh(u) + (c — h(x))U < h(U/d" YU/’ - ./U / udh(u) + (cmax — h(x))U (27)

|

We note that on an instance Z, OPT(Ix) — cmaxX as € — 0 and n is sufficiently large. Letting ALG be a’-competitive, we then have the
following necessary condition on the conversion function when considering equation (27):

X
h(U/a YU /e’ - / udh(u) + (cmax — h(x))U < @ cpaxx (28)
Ula'
By integral by parts, (28) implies that h(x) must satisfy:
o x
h(x) > Cmaxl = & Cmaxx ! h(u)du (29)

+
U-x-2p U-x=-28Juja
By Gronwall’s Inequality [34, p. 356, Theorem 1], we have:

x
Ucmax — a’cmaxx Ua’cmax = Ucmax — 2ﬁcmax ’
h(x) > - In(u+26-U 30
(x) 2 U—x—28 u+2p-U @ cmax In(u + 28 ) (30)
Ula'
h(x) 2 &' cmax In(U/a’ + 28 — U) — &’ eppax In(x + 28 — U) (31)

By the problem definition, the job with length ¢y, should be completed upon observing the best carbon intensity L, i.e., h(x) < h(L) < cpin,
giving the following:
Cmin/Cmax = o« In(U/a’ +2B - U) — &’ In(L + 28 - U). (32)
The optimal @’ is obtained when the above inequality is binding, which gives the following:

i 2 i 2 2
Cmin —'B+£—l exp Cmin —ﬁ—l - —+1
Cmax U U Cmax U U

-1
(33)

Cmax
a = [—W
Cmin

[m]

Step 2: By scaling up ¢(Aw), w € [0, cmin] to the factor of cmax/cmin, we will have ¢g2(w), w € [0, cmax] in (7). The competitive ratio of
RORO¢min that utilizes ¢ (w) can be derived using the following two cases:
© If RORO¢in completes any amount of the job before the compulsory execution. In this case, the analysis from Section 4 exactly
translates to the RORO.pin setting. Substituting ¢» for ¢ gives the following competitive bound for this case:

RORO¢pmin (£ U 2

cmm( ) — + _l; (34)
OPT(7) L L
® If RORO.min completes none of the job before the compulsory execution. In this case, we know that OPT(Z) is lower-bounded by
$2(0) — B, because if a cost function better than ¢ (0) — § arrived during the instance 7, RORO¢pin would have completed a non-zero amount
of the job before the compulsory execution. This gives the following competitive bound:
ROROcmin (1) _ Ucmin Y ’

PT(Z)  [$2(0) —Plemm U (35)

Because a’ approaches U/L as cmax/cmin grows, the competitive ratio in the second case is the worst-case bound, yielding the following

competitive bound for RORO¢min:

as=a. (36)
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Here we note that az does not contain an extra linear dependence on cmax/cyin Which is present in a4, implying that ap < ag4. This is
intuitive, since even if ALG completes some fraction of the job before the compulsory execution, it must complete (cmax — ¢min) of the job
during the compulsory execution, whereas the scaled threshold in RORO¢pi,, allows it to be more flexible. In the rest of the paper, we use the
design of RORO¢pin as our baseline based on its improved theoretical bounds and its superior performance in experiments.

A.3 Analyzing the impact of rate constraints

We note that the rate constraint d; : t € [T] surprisingly does not appear in the worst-case analysis of RORO¢max and RORO¢pin. In this
section, we give intuitive justification to explain this dynamic for completeness.

Specifically, we show that when a threshold-based algorithm (i.e., RORO¢max or ROROcpin) achieves a certain competitive ratio for OCSU
when d; = ¢ Vt € [j] (i.e., when the rate allows completing the entire job in a single time slot), the worst-case competitive ratio will stay
constant if d; < ¢ Vt € [j].

LEMMA A.7. Let ALG denote a threshold-based algorithm for OCSU which uses a threshold function y(w). Suppose ALG is n-competitive when
di = cVt € [j]. Ifd; < ¢Vt € [j], the competitive ratio of ALG is still upper bounded by 1).

ProOF. We consider the case where a rate constraint d; < ¢ causes ALG to make a decision which violates its worst-case competitive
ratio of 1. At any arbitrary time slot ¢, the disconnect between the setting where x; € [0, c] and the setting with rate constraints < c,
where x; € [0,d;], is that x; cannot be > d;. Intuitively, a challenging situation for ALG under such a constraint is the case where ALG
would otherwise run more than > d; of the job during a period of “good” carbon intensity (before the compulsory execution), but it is now
constrained from doing so.

We now show that such a situation implies that ALG achieves a worst-case competitive ratio which is equal to or better than 7. Recall that
w(t) denotes the progress of ALG after time step t.

For an instance 7 € Q and an arbitrary time step m, let wim) = (m=1) g implying that x,,, = d,. For the sake of comparison, we first
consider this time step with a cost function gy, (-) such that gm (xm) + Blxm — xm-1| = lﬁ(w(’”))xm, implying that even if the rate constraint
was not present, ALG would set xp; = dp,. If no more of the job is completed by ALG after time step m (ignoring the compulsory execution),
we know that ALG is n-competitive (e.g., for ROROcmax, 7 = @1, and for RORO¢in, 1 = @2).

Consider the exact same setting, except with a substituted cost function g},,(-), such that g, (xm) + Slxm — xm-1] < 1//(w(m)) - Xm. We
denote this new instance by 7’. This implies that without the presence of a rate constraint, ALG would set x;; > dp,. In other words, g/, (+)
has a “good carbon intensity”, but ALG cannot run as much of the job as it otherwise should due to the rate constraint.

Note that OPT is also subject to the same rate constraint dy,,. Thus, we know that OPT(Z ") is lower bounded by [1//(w(m)) -pl(1—dm) +
g (dm) — the rest of the optimal solution is bounded by the final threshold value, since we assume that no more of the job is completed by
ALG after time step m.

(m)
The worst-case carbon emission of ALG is upper bounded by ALG(Z’) < ALG(T) — fwu(’m_l) Y(u)du + g),,(dm), which follows since we
substitute the last portion of the threshold function (of “width” d,) with the new cost function g}, (dpm).
Compared to the previous setting of 7, the OPT and ALG solutions have both decreased — OPT(Z’) has decreased by a factor of g, (d) —

(m

)
[t//(w(m)) — Bldm, while ALG(Z ") has decreased by a factor of g, (dm) — /W‘Tm—l) ¥ (u)du.

(m)
However, note that since ¢ is monotonically decreasing in w, by definition, [lﬁ(w(m)) - pldm < W‘Tm,l) Y(u)du. Thus, the cost of ALG
has improved more than the cost of OPT. This then implies the following:

ALG(T) _ ALG(T) = [ty Y()du+ g (dm)
OPT(T) = [y(w(™) - B(c — dpn) + g (dm)

At a high-level, this result shows that even if there is a rate constraint which prevents ALG from accepting a good carbon intensity, the
worst-case competitive ratio does not change. O

A.4 LACS Consistency and Robustness for OCSU

In the following, we prove Theorem 4.3, which states that the instantiation of LACS for OCSU is (a + y)-consistent and
[(1 _ _ ¥ )amax (Y(OflfSig”(aﬁaz)e)

ar-sign(a;—az)e—a ) “ROROpreq oy —sign(a;—az)e—a
gorithm design describe an algorithm’s performance when the predictions are exactly accurate and entirely incorrect, respectively. See
Definition 2.2 for the formal definitions of both consistency and robustness.

)]—robust. We note that consistency and robustness in learning-augmented al-
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ProoF oF THEOREM 4.3. Initially, we start by noting that the online solutions given by RORO,opyst and LACS are always feasible considering
the constraint in Equation 2. Let 7 € Q be an arbitrary valid OCSU sequence, and for a job with length c:

T T
RORO,gpust (1) :Z;zt = Z[kxlt +(1=K)xz] > ke+(1-k)e > ¢
t=1 t=1
T T
LACS(T) :th = Z[m +(1=DF] > e+ (1= >c
t=1 t=1

LEmMMA A.8. The carbon emissions of RORO,op,s; is bounded by:
RORO,opyst(Z) < kROROcmax(Z) + (1 — k)ROROcpmin (1) (37)

PrOOF.
T+1

T
ROROropust (1) = ) gr (%) + ) Blie = %11
= t=1

T+1

=1
T
th(kxlt + (1= k)xa) + Z Blkxir + (1 = k)xar — kxgz—1) — (1 = k)xg(z-1)|
t=1 t=1

T+1 T+1

T T
<k ;gt(xlt) +(1-k) ;gt(XZt) + ; Blkxie — kxy(r_qy| + ; BI(1 = K)xzr = (1= k)xy(r-)|
T

T
< k(z gr(x1) + Blx1r —x1s—1))) + (1 - k)(Z gt (x2t) + Blxar — x9(4-1)1)
=1 t=1

< kROROcmax (I) + (1 — k)RORO¢pmin (1)

Since RORO¢max () < @10PT(J) and RORO¢min () < ap0PT (1) by definition, we have:
RORO obust (£) < (ka1 + (1 — k)a)OPT(Z) (38)
ROROyobust (£) < (k(a1 — az) + a2)OPT(1) (39)

We denote € € [0, |a; — az|], and we setk =1 — ; therefore, we have:

__€
lar—az|

ROROyobyst (£) < (a1 — sign(ay — a2)€)OPT(Z) = aroro, OPT(T) (40)

robust

where sign(x) is the sign function.
By using the same proof in Lemma A.8, we can show that:

LACS(Z) < AROROpred(Z) + (1 = )RORO st (£) (41)
LEMMA A.9. LACS is (a + y)-consistent with accurate predictions.

Proor. We assume ROROpeq(Z') has the perfect prediction of the job length (¢ = ¢), and by leveraging the perfect prediction (excepting
minor differences in the compulsory execution), we have that RORO,eq(Z) = RORO(J). Therefore, by definition, ROROpreq () < @OPT(T)
Considering Equation 40 and Equation 41, we have:

LACS(Z) < AROROpred (Z) + (1 — A)RORO opyst (1) (42)
LACS(ZT) < A@OPT(Z) + (1 — A)tRoRo,yy, OPT(X) (43)
LACS(Z) < (Aar + (1 — A)ctroro, . JOPT(T) (44)
LACS(Z) < (A + (1 - A)(a1 — sign(ay — a2)€))OPT(I) (45)

Since a < a3 —sign(aj—az)e Ve € [0,|a;1—az|],and we have y € [0, a1 —sign(a; —a2)e—a]; therefore we set A = 1—m,

and we have:
LACS(T) < (a+y)OPT(T) (46)

O

LEmMMA A.10. LACS is ( (1 -

Y Max y(ai—sign(ai—az)e)
ay-sign(ay—az)e—a | "ROROpeq ay—sign(a;—az)e—a

) )—robustfor any prediction.
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Proor. To calculate the competitive ratio of ROROpreq(£) when the job length prediction error is maximized, we consider two cases:
Case (i) [¢ = cmin, ¢ = cmax]: Since ROROpeq assumes the job length is ¢y it will utilize the threshold function below:

¢(w):U—ﬁ+(g—U+2ﬁ)exp( ) (47)

Cmin®

Let w(/) be the final progress before the compulsory execution at time j < T, and let 7 € Q be a OCSU sequence that the minimum
carbon intensity L is revealed at time m < j < T. By disregarding extra switching emissions, OPT(Z) — cmaxL. In [25], by the definition of
the threshold function for any job length, we use the threshold function for ¢y, in Equation 47, when the minimum carbon intensity L
arrives at time m, the remained amount of the job until w) would be scheduled; hence, w™ = w) andm = Jj, and according to Lemma
B.2in [25],L = ¢(w(j)) — f which means no other carbon intensities are accepted and the rest of the job (cyin — w(/)) should be done
during compulsory execution. By Lemma B.3 in [25] and observing that the rest of the job must be completed in the compulsory execution,
ROROpred (£) is upper-bounded by:

W)
ROROpred(Z) < / P(w) + pw + (emin = wI)U | + (emax — emin)U (48)
0
< [a(¢p(w) = B1 + (cmax = Cmin)U (49)
< aL + (cmax — Cmin)U (50)

The term (cmax — Cmin)U in (48) is the amount of remaining job that must be done during compulsory execution since ¢ = c¢pax.
Considering (50) and the lower bound of OPT(Z'), we have:
ROROpred (£) oL+ (cmax — ¢min)U o @ Cmax = Cmin uv_, (51)
OPT(I) ~ CmaxL "~ Cmax Cmax L aROROprEd
Case (ii) [¢ = cmax,> € = Cmin]: In this case, ROROpyeq uses the exact same threshold function as ROROcmax. Thus, ROROcmax I = ROROped (£ ),
and we inherit the following competitive bound:

RORopred(I) < U 28 2

ZLr 52

OPT(Z) oL L  “ROROa 2

Considering both Case (i) and Case (ii), we let agé?{xopmd = max{aéORopmd, aéOROpred} to reflect the worst-case in either of these cases. By
Equation 41, we have the following robustness bound:

LACS(Z) < AROROpred(Z) + (1 — A)ROROgpyst(7) (53)

LACS(J) < Aagz)%’gpredOPT(I ) + (1 = A)ARORO gt OPT (1) (54)

LACS(J) < (Aag(‘)aR’Bpred + (1 =A) (a1 — €))OPT(T) (55)

LACS(T) < | |1 - — alx vl —signlen — @2)e) | \oor 1) (56)

a; —sign(a; —a)e—a pred a; —sign(a; —a)e —a

By combining the results of Lemma A.9 and Lemma A.10, the statement of Theorem 4.3 follows, and we conclude that LACS for OCSU is

max (W)] -robust.

- i -y
(a + Y) consistent and [(1 a;—sign(ag —ag)e—a) aROROP,ed ap—sign(a—az)e—a
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