
LACS: Learning-Augmented Algorithms for Carbon-Aware
Resource Scaling with Uncertain Demand

Roozbeh Bostandoost
University of Massachusetts Amherst

USA

Adam Lechowicz
University of Massachusetts Amherst

USA

Walid A. Hanafy
University of Massachusetts Amherst

USA

Noman Bashir
Massachusetts Institute of Technology

USA

Prashant Shenoy
University of Massachusetts Amherst

USA

Mohammad Hajiesmaili
University of Massachusetts Amherst

USA

ABSTRACT
Motivated by an imperative to reduce the carbon emissions of cloud
data centers, this paper studies the online carbon-aware resource
scaling problem with unknown job lengths (OCSU) and applies it
to carbon-aware resource scaling for executing computing work-
loads. The task is to dynamically scale resources (e.g., the number
of servers) assigned to a job of unknown length such that it is
completed before a deadline, with the objective of reducing the
carbon emissions of executing the workload. The total carbon emis-
sions of executing a job originate from the emissions of running
the job and excess carbon emitted while switching between dif-
ferent scales (e.g., due to checkpoint and resume). Prior work on
carbon-aware resource scaling has assumed accurate job length
information, while other approaches have ignored switching losses
and require carbon intensity forecasts. These assumptions prohibit
the practical deployment of prior work for online carbon-aware
execution of scalable computing workload.

We propose LACS, a theoretically robust, learning-augmented
algorithm that solvesOCSU. To achieve improved practical average-
case performance, LACS integrates machine-learned predictions of
job length. To achieve solid theoretical performance, LACS extends
the recent theoretical advances on online conversionwith switching
costs to handle a scenario where the job length is unknown. Our
experimental evaluations demonstrate that, on average, the carbon
footprint of LACS lies within 1.2% of the online baseline that assumes
perfect job length information and within 16% of the o�ine baseline
that, in addition to the job length, also requires accurate carbon
intensity forecasts. Furthermore, LACS achieves a 32% reduction in
carbon footprint compared to the deadline-aware carbon-agnostic
execution of the job.

CCS CONCEPTS
• Theory of computation! Online algorithms; • Social and
professional topics! Sustainability.

This work is licensed under a Creative Commons Attribution International
4.0 License.

E-Energy ’24, June 04–07, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0480-2/24/06
https://doi.org/10.1145/3632775.3661942

KEYWORDS
Sustainable computing, online algorithms, resource scaling

ACM Reference Format:
Roozbeh Bostandoost, Adam Lechowicz, Walid A. Hanafy, Noman Bashir,
Prashant Shenoy, and Mohammad Hajiesmaili. 2024. LACS: Learning-
Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain
Demand. In The 15th ACM International Conference on Future and Sustainable
Energy Systems (E-Energy ’24), June 04–07, 2024, Singapore, Singapore. ACM,
New York, NY, USA, 19 pages. https://doi.org/10.1145/3632775.3661942

1 INTRODUCTION
The exponential growth in computing demand and the resulting
energy consumption has enhanced focus on its climate and sustain-
ability implications [4, 36, 37, 43]. The focus has been magni�ed
since the widespread adoption of generative arti�cial intelligence
tools, e.g., ChatGPT [29]. Key stakeholders, including policymak-
ers and end users, are trying to create direct incentives, through
caps or taxes [10] on carbon emissions, and indirect incentives,
through social pressure, to curb the climate impact of this unprece-
dented demand. In response, researchers and other stakeholders
in computing are trying to reduce the carbon footprint during its
various lifecycle stages, including manufacturing [18, 49], opera-
tions [3, 20, 41, 53], and end-of-life [17, 48]. While computing’s
carbon footprint at all stages are important to address, this paper
focuses on the operational carbon footprint arising from using elec-
tricity to run computing workloads, as it contributes signi�cantly
to computing’s total carbon footprint [18].

Beyond improving the algorithmic e�ciency of computing work-
loads and the energy e�ciency of its hardware, computing’s opera-
tional footprint can be reduced by enhancing the carbon e�ciency
of grid-supplied electricity (kilowatt-hours of energy produced per
unit of carbon emissions) [4]. One approach is to use low-carbon
energy sources, such as solar, wind, and nuclear, for electricity gen-
eration. However, as pathways to 100% renewable energy adoption
remain challenging and costly [2, 9], this approach may not entirely
eliminate electricity’s carbon emissions for all the locations in the
near future [21]. A complementary approach is to improve the e�ec-
tive carbon e�ciency of the energy used for computing by running
�exible computing workloads when and where low-carbon energy
is available. Prior work has proposed leveraging computing work-
loads’ spatiotemporal �exibility [15, 23, 26, 44, 53] and resource
elasticity [19, 20, 25, 41] to reduce their carbon footprint.

27

https://orcid.org/0000-0003-0959-6763
https://orcid.org/0000-0002-7774-9939
https://orcid.org/0000-0001-5765-8194
https://orcid.org/0000-0001-9304-910X
https://orcid.org/0000-0002-5435-1901
https://orcid.org/0000-0001-9278-2254
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3632775.3661942
https://doi.org/10.1145/3632775.3661942
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632775.3661942&domain=pdf&date_stamp=2024-05-31

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

In this work, we focus on exploiting resource elasticity for
carbon-aware execution of scalable computing workloads with un-
known job lengths and future carbon intensity. The carbon-aware
resource scaling work requires determining the scale factor, i.e., the
number of cores or servers, at each time step before the job deadline
while considering the scalability properties of the job. Initial work
on carbon-aware resource scaling by Hanafy et al. [20] leverages
carbon intensity forecasts and develops an o�ine optimal approach
to determine the best scale factor for a job at each time step before
the deadline. The authors ignore switching overhead and assume
the deadline is provided at job submission time. Lechowicz et al.
[25] introduce and study an online class of problems motivated by
carbon-aware resource scaling and electric vehicle (EV) charging
applications. The proposed algorithms can be used to determine
the optimal scale factor without requiring carbon intensity fore-
casts while considering the energy ine�ciencies in resource scaling
through a convex cost function, which is revealed online. However,
a key drawback for both studies is that they assume each job’s
length (i.e., the amount of work to be done) is known.

Estimating the duration of a job remains a challenging problem
in cluster and cloud computing. The unavailability of data on job
attributes, lack of diversity in the available data, variations in the
characteristics of the jobs submitted to the cluster over time, and
skewed distribution of users submitting the jobs means that job
length predictions, even when using machine learning techniques,
remain highly inaccurate and cannot be used for scheduling pur-
poses [24]. Ambati et al. [1] showed that job length estimates at job
submission time can have more than 140% mean absolute percent-
age error. The inaccuracy can be further ampli�ed as the properties
of the job or the hardware it runs on change across di�erent runs. As
a result, practical algorithms need to work without assuming that
accurate job length is available. In this work, we assume that the job
lengths are unknown and only the lower- and upper-bounds on job
length are available. This is a reasonable assumption as classifying
a job as short or long tends to be highly accurate [1, 59].

The existing theoretical literature that studies similar problems
crucially does not consider uncertainty in the job length [16, 25,
26, 28, 47] (i.e., the job length is precisely known to the algorithm).
In perhaps the closest setting to carbon-aware resource scaling,
Lechowicz et al. [25] presents the online conversion with switching
costs (OCS) problem. Uncertainty about the job length breaks many
of the assumptions in OCS; under a deadline and without precise
information on job length, the algorithm will either run too little
of the job at a low carbon intensity or run too much of the job
at a high carbon intensity. Without even approximate knowledge
of job length (i.e., lower- and upper-bounds on job lengths) and
under a deadline, the existing algorithms, e.g., for OCS, may not
complete the job by the deadline and thus fail to provide worst-case
guarantees.

It is worth noting that providing worst-case guarantees is an
important consideration for algorithms solving this problem. In-
production resource managers such as Borg [51] and Resource Cen-
tral [12], prefer deploying techniques with safety guarantees [39].
Techniques which fully rely on machine learning (ML) perform well
in the average-case, but can result in extremely poor outcomes in
the worst-case (e.g., when presented with out of distribution data),
making them undesirable for production deployment [24].

Contributions. This paper proposes LACS, a learning-augmented
algorithm for online carbon-aware resource scaling with unknown
job lengths (OCSU) that uses ML predictions of job lengths, which
are potentially inaccurate, for resource scaling. We then analyze the
theoretical performance of LACS using the framework of competi-
tive analysis [6], and its learning-augmented variants [30, 38]. We
also evaluate the practical performance of LACS using real-world
data traces on an extensive set of experimental scenarios.

(1) Theoretical analysis of LACS: Bounded robustness and consistency.
The theoretical analysis of LACS leverages and advances the
emerging framework of robustness-consistency for learning-
augmented online algorithms [30, 38] and the recent compet-
itive results for OCS [25], which tackle a simpli�ed OCSU
with known job lengths. We take multiple algorithmic steps
to achieve bounded competitive guarantees for LACS. First, we
consider two extreme scenarios of the “Ramp-On Ramp-O�”
(RORO) framework proposed by Lechowicz et al. [25] to design
robust baseline algorithms of assuming actual job lengths equal
to the given lower and upper bound values of job lengths. Then,
using these two extremes as the baseline, we introduce an ad-
ditional layer by integrating a job length predictor, and �nally,
LACS leverages these robust baseline algorithms, combined with
potentially inaccurate predictions of the job length, to achieve
improved consistency in the average case (i.e., when predictions
are of high quality), while retaining worst-case guarantees (i.e.,
robustness given by the baselines).

(2) Extensive trace-driven experiments. We then evaluate the perfor-
mance of LACS against state-of-the-art methods in carbon-aware
scheduling and online scheduling literature using three years
of real carbon intensity traces from Electricity Maps [32], using
an extensive range of experimental scenarios. In a set of rep-
resentative experiments, we demonstrate that, on average, the
carbon footprint of LACS lies within 1.2% of the online baseline
that assumes perfect job length information and within 16% of
the o�ine baseline that also requires accurate carbon intensity
forecasts. LACS achieves a 32% reduction in carbon footprint
compared to the deadline-aware carbon-agnostic job execution.

2 PROBLEM STATEMENT
In the following, we will consider a server cluster that is used to
run batch jobs. We introduce the online carbon-aware resource
scaling problem with unknown job lengths (OCSU), where the goal
is to complete a job with total length 2 (where 2 is unknown) while
minimizing its overall carbon emissions to complete the job. At each
time step C 2 [)], a convex cost function 6C (·) arrives, which is a
combination of both the time-varying carbon intensity (e.g., of the
electricity grid) and the job’s time-varying scaling pro�le (e.g., how
parallelizable the job is). In response, the algorithm must choose
the amount of server resources GC that will be given to the job in
time step C , where GC 2 [0,3C], which produces carbon emissions
given by 6C (GC). Here, 3C is the maximum amount of job that can
be scheduled for the job at time C (rate constraint). Intuitively, we
assume that 6C (0) = 0 for any cost function (i.e., completing none
of the job does not emit any carbon), and 6C (G) � 0 for any valid
G > 0.

28

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Table 1: Summary of Notations
Notation De�nition
2 , 2min , 2max Actual job length, minimum job length, maximum job length
2̂ Job length prediction
V Switching emissions coe�cient
CIC Carbon intensity (e.g., in gCO2eq./kWh) at time C
⇢ Energy used (e.g. in kWh) by one unit of threads/cores/servers
) Deadline: Maximum time (e.g., 24 hours) the job is allowed to run

after being submitted
6C (·) Convex cost function that arrives at time C
GC Amount of the job that is scheduled to be done at time C
F (C) Total amount of the job that has been completed up to time C
AC Maximum resource available at time C
3C Maximum amount of the job that can be scheduled at time C

Whenever the allocation decision changes in adjacent time steps,
it incurs extra carbon emissions caused by switching denoted by
V |GC � GC�1 |. For the model, we let G0 = 0 and G)+1 = 0, which
require the algorithm to incur some switching carbon emissions
to “turn on” and “turn o�”, respectively. The parameter V can be
interpreted as a linear coe�cient that charges the algorithm propor-
tionally to the amount of scaling between consecutive time steps,
based on, e.g., the carbon emitted due to overhead of changing
the resource allocation or checkpointing/resuming the job.1. In
summary, the o�ine version of OCSU is formalized as:

OCSU : min
{GC }C 2 [)]

’)

C=1
6C (GC)| {z }

Execution carbon emissions

+
’)+1

C=1
V |GC � GC�1 || {z }

Switching carbon emissions

, (1)

s.t.,
’)

C=1
GC � 2,| {z }

Job completion constraint

GC 2 [0,3C], 8C 2 [)] . (2)

In this paper, we focus on designing algorithms for the online
version of this problem, where the algorithm must choose an ir-
revocable GC at each time step without knowledge of future cost
functions or the total job length 2 . Each cost function 6C (·) is re-
vealed online at the start of time step C , and the actual job length
2 is revealed when the constraint in Equation 2 is satis�ed (i.e.,
the job has been �nished). We note that OCSU builds on the ex-
isting formulation of online conversion with switching costs (OCS),
introduced by Lechowicz et al. [25]. The minimization variant of
OCS is a special case of OCSU where the online algorithm has
perfect knowledge of the actual job length 2 . The core notations
are summarized in Table 1.
Details of the cost function. To formalize the de�nition of the
cost functions 6C (·), let ⌘C (·) denote the scaling pro�le of the job
at time C . For a given B , as the number of allocated resources (e.g.,
cores or servers), ⌘C (B) provides the throughput (e.g., amount of
work done) G at time C . Naturally, ⌘C (·) is a concave function since
adding resources has diminishing returns even in highly parallel
computing workloads. Note that ⌘�1C (G) (i.e., the inverse of the
scaling function) maps a throughput G to the necessary amount of
allocated resources B at time C . There is a carbon emissions associated
with the resource allocation amount of B . Let ⇢ denote the energy
used (e.g., in kWh) by one unit of resource, and let CIC denote the
carbon intensity (e.g., in gCO2eq./kWh) at time C . Then, the cost
1We note that whileOCSU assumes the emissions to “turn on” is equivalent to the cost
to “turn o�” (i.e., the switching emissions are symmetric), it can be extended to cases
where the switching emissions are time-varying or asymmetric by letting V |GC �GC�1 |
be an upper bound on the actual switching emissions, as discussed in [25]

function 6C (·) of OCSU is de�ned as:

6C (G) = CIC ⇥ ⇢ ⇥ ⌘�1C (G), C 2 [)] .

Since the scaling pro�le ⌘C (·) is known, the primary unknown quan-
tity which makes 6C (·) an online input is the unknown carbon in-
tensity CIC . Furthermore, considering that the available resources
constrain the quantity of job that can be scheduled in each time
slot, we introduce AC to represent the maximum resources available
at a given time. Consequently, the maximum amount of the job that
can be scheduled at time C , denoted as 3C (maximum rate), equals
⌘C (AC).

Assumptions. We make the following assumptions in the paper.
• Assumption 1. Although the job length 2 is unknown, we as-

sume that the value of 2 is bounded between a minimum and a
maximum length 2min and 2max, i.e., 2 2 [2min, 2max]. Without
loss of generality, we assume 2min = 1, which further gives that
2max > 2min = 1.

• Assumption 2. We assume that the derivatives of the cost func-
tion are bounded, i.e., !  36C/3GC  * 8C 2 [)] on the interval
GC 2 [0,3C], where ! and* are known positive constants. This is
a necessary assumption for any competitive algorithm, as shown
in [16, 47, 58]; otherwise, no online algorithm can achieve a bounded
competitive ratio.

• Assumption 3. The switching emissions coe�cient V is
known to the algorithm, and is bounded within an interval (V 2
[0, (* �!)/2)), as in [25]. If V exceeds (* �!)/2, any competitive algo-
rithm should only consider the excess emissions due to switching
because the overhead is very large; hence the decision-making
becomes trivial.

• Assumption 4. OCSU requires the algorithm to complete the
entire job before the sequence ends at “deadline”) . If the scheduler
has completed F (9) amount of the job at time 9 , a compulsory
execution begins whenever () � 9 � 1) < (2 �F (9)) (i.e., when the
remaining time steps are barely enough to complete the job). During
this compulsory execution, a carbon-agnostic algorithm takes over
and runs the job with the maximum available resources in the
remaining time steps. Although 2 is unknown to the algorithm, for
modeling purposes, we assume that the algorithm will begin this
compulsory execution when the remaining steps are su�cient to
ful�ll the worst-case job length, which is given by (2max �F (9)).

• Assumption 5. In an application such as carbon-aware resource
scaling, the deadline) is typically known in advance. Our algo-
rithms, however, do not require this assumption to be true. If) is
unknown, we assume that the algorithm is given a signal to indi-
cate that the deadline is coming up and that compulsory execution
should begin to �nish a job with worst-case size 2max.

• Assumption 6. We assume that the job execution time horizon
has su�cient slackness, i.e., the compulsory execution does not
make up a large fraction of the sequence – otherwise, the problem
is trivial. Formally, we have that the earliest time step 9 0 at which
the compulsory execution begins (i.e., the �rst time step such that
() � 9 0 � 1) < 2max) is 9 0 � 1, which implies that) is sized
appropriately for the job. This assumption is reasonable in practice,
since if) is small or 2 is large, the job’s temporal �exibility will be
low, so even a solution with perfect knowledge of future carbon

29

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

Algorithm 1 Online ramp-on, ramp-o� (RORO) algorithm [25]
1: input: pseudo-cost threshold q (F)
2: initialization: initial decision G0 = 0, initial progress F (0) = 0;
3: while cost function 6C (·) is revealed and F (C�1) < 2 do
4: solve pseudo-cost minimization problem to obtain decision GC ,

GC = argmin
G 2 [0,min(1�F (C�1) ,3C)]

6C (G) + V |G � GC�1 | �
π F (C�1) +G

F (C�1)
q (D)3D . (3)

5: update the progress F (C) = F (C�1) + GC ;

intensity values will be unable to take advantage of time-varying
carbon intensity to reduce emissions.
Competitive analysis.We tackle OCSU from the perspective of
competitive analysis, where the objective is to design an online
algorithm that maintains a small competitive ratio [7], de�ned as:

D��������� 2.1 (C���������� R����). We denote OPT(I) as the
o�ine optimum on the input I, and ALG(I) represents the pro�t
obtained by an online algorithm (ALG) on that input. Formally, letting
⌦ denote the set of all possible inputs, we say that ALG is [-competitive
if the following holds: CR = maxI2⌦ ALG(I)/OPT(I) = [. Observe that
CR is greater than or equal to one. The smaller it is, the closer the
algorithm is to the optimal solution.

Learning-augmented competitive algorithms. In the nascent
literature on learning-augmented algorithms [30, 38], algorithms
are evaluated through the metrics of consistency and robustness. In-
tuitively, these quantities measure how close a learning-augmented
algorithm’s solution is to that of the o�ine optimal solution when
the prediction is accurate (consistency) and how far an algorithm’s
solution can be from the optimal solution in the worst case when
the prediction is erroneous (robustness).

D��������� 2.2 (C���������� ��� R���������). Formally, an
algorithm is 1-consistent if it is 1-competitive with respect to an
accurate prediction and A -robust if it is A -competitive regardless of the
quality of the prediction.

3 ALGORITHM DESCRIPTIONS
In this section, we introduce LACS, a Learning-Augmented Carbon-
aware Resource Scaling algorithm that solves OCSU. To achieve
the best of both worlds on satisfactory practical performance and
theoretical worst-case guarantees, LACS integrates predictions of
the job length into its operation by combining the decisions of an
algorithm that assumes the prediction is correct with the decisions
of two competitive baselines. By combining these strategies, LACS
can improve its performance signi�cantly when the predictions
are accurate while maintaining worst-case competitive guarantees.
Below, we start by reviewing approaches from prior work that
inform our design of the competitive baselines.

3.1 Algorithmic Background
The competitive baselines we consider in the next section build on
prior work, speci�cally the “ramp-on, ramp-o�” (RORO) framework
proposed by [25] that achieves the optimal competitive ratio for
OCS, as a simpli�ed version of OCSU that assumes job length is
known a priori to the online algorithm. In the RORO framework [25],

whenever an input arrives online, the algorithm solves a pseudo-cost
minimization problem to determine the amount of job to run at time
C (denoted by GC 2 [0,3C]). The progressF (C) denotes the fraction of
the total job that has been completed up to time C . This pseudo-cost
minimization design generalizes the concept of threshold-based
algorithm design – at each time step, when a cost function arrives,
the pseudo-cost of a particular decision G is de�ned as the actual
carbon emissions of running G amount of the job (including both the
execution and the switching emissions), minus a threshold value
which describes the exact amount which should be allocated to
maintain a certain competitive ratio.

This pseudo-cost acts as an incentive to prevent the algorithm
from “waiting too long” to run the job. Intuitively, if an algorithm
naively minimizes the cost function 6C at each time step (resulting
in decisions GC = 0 for all C 2 [)]), it will be required to complete
the entire job during compulsory execution during a potentially bad
period for carbon intensity. The pseudo-cost minimization provides
a framework that balances the extreme options of allocating “too
much” early on and waiting inde�nitely. Whenever the carbon
intensity is “attractive enough,” the pseudo-cost minimization �nds
the best decision that allocates just enough resources given the
current carbon intensity to maintain competitiveness. In the setting
where the job length is known, we summarize the RORO algorithm
in Algorithm 1.

To de�ne this pseudo-cost minimization problem, the authors in
[25] de�ne a dynamic threshold function, which essentially de�nes
the highest carbon intensity deemed acceptable by RORO at time C .
We note that in OCS with known job lengths, 2 is de�ned to be 1
(without loss of generality). According to [25, De�nition 3.1], the
dynamic threshold for OCS, for a job with length 2 , and for any
progressF 2 [0, 2] is de�ned as:

qOCS (F) = * � V +
✓
*

U
�* + 2V

◆
exp

⇣ F
2U

⌘
, (4)

where U is the competitive ratio de�ned as:

U =

,

✓
2V
*

+ !

*
� 1

◆
exp

✓
2V
*

� 1
◆�

� 2V
*

+ 1
��1
. (5)

In the above equation,, (·) is the Lambert, function, de�ned
as the inverse of 5 (~) = ~4~ [11]. Note that it is well-known that
, (G) s ln(G) [22]. Given this de�nition of U , note that qOCS (·) is
monotonically decreasing on the intervalF 2 [0, 2].

3.2 LACS: A Learning-augmented Algorithm for
Carbon-aware Resource Scaling

In this section, we describe the design of LACS, which uses pre-
dictions of the actual job length to signi�cantly improve average-
case performance (consistency) without losing worst-case guaran-
tees (robustness). We �rst introduce two baseline competitive algo-
rithms before describing how LACS leverages predictions to improve
average-case performance without losing competitive guarantees.
Competitive baseline algorithms. Here we present two adap-
tations of the RORO framework detailed in Section 3.1, denoted by
ROROcmax and ROROcmin. Since OCSU introduces job length uncer-
tainty, each of these adaptations considers an opposing extreme
case for the job length. We describe each variant in turn below.

30

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

ROROcmax: RORO assuming maximum job lengths. ROROcmax takes
an optimistic approach by assuming every job has the maximum
length 2max. This aims to prepare for potentially long jobs by gath-
ering enough resources. ROROcmax’s assumption of worst-case job
sizes makes it less conservative in terms of carbon intensities where
it is willing to run the job. This gives it the �exibility to prepare
for scenarios where long jobs (e.g., with length 2max) do arise, al-
though it risks “overspending” for shorter jobs. We see the impact
of this assumption in ROROcmax’s threshold function Equation 6.
Compared to alternatives like RORO, which knows the exact job
length, ROROcmax’s threshold reduces at a slower exponential rate
as job progress increases – intuitively, this is because ROROcmax
plans for a longer job, which scales up the threshold function along
the axis ofF . Though this strategy may run the job when carbon
intensities are “too high,” particularly for jobs that are much shorter
than 2max, it can be advantageous when job lengths do approach
the maximum. In such situations, ROROcmax may result in a more
favorable outcome, avoiding the last-minute compulsory execution.

D��������� 3.1. The threshold function q1 used by ROROcmax for
any progressF 2 [0, 2max] is de�ned as:

q1 (F) = * � V +
✓
*

U
�* + 2V

◆
exp

✓
F

2maxU

◆
, (6)

where U is de�ned in Equation 5.

This approach captures one of two extreme cases that inform our
algorithm design. Next, we will “�ip” these assumptions to capture
the other extreme case in the ROROcmin algorithm.
ROROcmin: RORO assuming minimum job lengths. ROROcmin takes a
pessimistic approach by assuming each job is as short as 2min. This
approach is e�cient for handling shorter jobs since ROROcmin is
more conservative in choosing which carbon intensities are good
enough to run the job. The threshold function decreases faster than
ROROcmax, which assumes the maximum job length.

However, when ROROcmin encounters a longer job, its conser-
vative nature can become a hindrance. ROROcmin is, by design, re-
luctant to allocate resources liberally due to its lower threshold,
potentially missing the chance to make signi�cant progress on
lengthy jobs early on. This may necessitate costly compulsory exe-
cution at the end of the time period.

To mitigate this, we scale the threshold by the ratio 2max/2min. This
adjustment still allows the threshold to remain more cautious than
ROROcmax, but avoids the worst-case scenario for jobs that may turn
out to be longer than 2min. This remains economical for the assumed
short jobs while also being �exible enough to accommodate the
resource needs of unexpectedly longer jobs without resorting to
compulsory executions at the end of the time period.

D��������� 3.2. The threshold function q2 used by ROROcmin for
any progressF 2 [0, 2max] is de�ned as:

q2 (F) = * � V +
✓
*

U 0
�* + 2V

◆
exp

✓
F

2maxU 0

◆
, (7)

where U 0 is de�ned as follows:

U 0 =

2max
2min

,


2min
2max

✓
2V
*

+ !

*
� 1

◆
exp

✓
2min
2max

✓
2V
*

� 1
◆◆�

� 2V
*

+ 1
��1
.

(8)

These two approaches comprise our worst-case algorithm de-
sign. While the competitive bounds of each algorithm di�er, the
empirical performance of each intuitively depends on the actual
observed job lengths. In practice, we may often have a relatively ac-
curate prediction about a given job’s length. In the next section, we
consider how this type of job length prediction can be incorporated
into an algorithm design without losing worst-case guarantees.

Learning-augmented algorithm design. Here we formalize our
learning-augmented algorithm, referred to as LACS and outlined in
Algorithm 2. This algorithm integrates insights from two robust
algorithms, ROROcmax and ROROcmin, alongside predictions from an
algorithm named ROROpred. ROROpred is essentially a RORO algorithm
that uses the predicted job length 2̂ rather than the actual job length
2 . Although ROROpred operates on predictions, it guarantees that
the job is completed before the deadline (Equation 2) by beginning
a compulsory execution when the remaining time steps are enough
to complete a job with length 2max.

The combination of ROROpred with competitive baselines
ROROcmax and ROROcmin is designed to enhance average perfor-
mance. Since ROROcmax is tailored for longer jobs and ROROcmin
is more e�ective for shorter ones, we introduce an intermediate
algorithm called ROROrobust which leverages strengths of both com-
petitive baselines. Let : 2 [0, 1] denote a decision factor, which
dictates the proportion of the solution to derive from ROROcmax
({G1C }8C 2 [)]) or ROROcmin ({G2C }8C 2 [)]). Then ROROrobust con-
structs a solution ({G̃C }8C 2 [)]), where each G̃C is de�ned as G̃C =
:G1C + (1 � :)G2C ,8C 2 [)].

By unifying the two competitive baseline algorithms, we sim-
plify the expression of LACS, which integrates these competitive
decisions G̃C with the decisions of ROROpred as follows: We set an
augmentation factor _ 2 [0, 1], which determines the in�uence of
each algorithm on the �nal decision (_ from ROROpred, (1 � _) from
ROROrobust). Intuitively, a larger value of _ implies that LACS is closer
to the prediction. The result is a solution that bene�ts from the
predictive strength of ROROpred while maintaining the robustness
provided by the combined solutions of ROROcmax and ROROcmin.

In the following, we formalize our instantiation of LACS (and
ROROrobust as a subroutine) for OCSU, which includes de�nitions
of :, _, and the parameters of n and W that they depend on.

D��������� 3.3. Let n 2 [0, |U1 � U2 |], where U1 and U2 are the
robust competitive ratios de�ned in Equation 9 and Theorem 4.2.

We set : = 1 � n
U1�U2

(which is bounded in [0, 1]) to form the
solution ({G̃C }8C 2 [)]) obtained by ROROrobust.

Let W 2 [0,U1 � sign(U1 � U2)n � U], where U is the robust com-
petitive ratio de�ned in Equation 5, and sign(x) is the sign function.

LACS sets a augmentation factor of _ = 1 � W
U1�sign(U1�U2)n�U

which is bounded in [0, 1].

In the next section, we provide the consistency and robustness
bounds for LACS. Intuitively, the primary desiderata for LACS is to
be able to nearly match the performance of an online algorithm
which knows the exact job length (e.g., RORO) when the job length
predictions are correct, while preserving worst-case performance
bounds in line with that of ROROcmax and ROROcmin.

31

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

Algorithm 2 LACS: A learning-augmented algorithm for OCSU
1: input: The predicted solution {ĜC }8C 2 [)] given by ROROpred, compet-

itive solutions {G1C }8C 2 [)] and {G2C }8C 2 [)] given by ROROcmax and
ROROcmin, decision factor : , augmentation factor _.

2: while cost function 6C (·) is revealed and F (C�1) < 2 do
3: obtain robust decisions G1C and G2C ;
4: G̃C = :G1C + (1 � :)G2C ;
5: obtain prediction decision ĜC ;
6: set the online decision as GC = _ĜC + (1 � _)G̃C ;
7: update the progress F (C) = F (C�1) + GC ;

4 THEORETICAL RESULTS
In this section, we state our main theoretical results. We start with
the competitive results for the competitive baseline ROROcmax and
ROROcmin algorithms before stating the consistency and robustness
results for LACS. We discuss the results and their signi�cance here,
while deferring their full proofs to Appendix A.
Competitive analysis for ROROcmax. Recall that ROROcmax as-
sumes each job has the maximum length 2max. In the following
theorem, we state the competitive result for ROROcmax and discuss
its signi�cance. The full proof of Theorem 4.1 is in Section A.1.

T������ 4.1. ROROcmax for OCSU is U1-competitive when the
threshold function is given by q1 (F) from De�nition 3.1.

U1 =
*

U!
+ 2V

!
. (9)

Intuitively, compared to the competitive bound U shown forOCS
when job lengths are exactly known, U1 is worse. This captures an
edge case where the actual job length is, e.g., 2min, while ROROcmax’s
design assumes the job has length 2max. As we discuss in the full
proof, this occurs because ROROcmax’s scaled threshold design al-
lows it to complete a job with length 2min by using the worst 2min
fraction of the threshold, while RORO (where the job length is known)
uses the entire domain of the monotonically decreasing threshold
function to complete the job.
Competitive analysis for ROROcmin. Contrary to the assumption
of ROROcmax, the ROROcmin algorithm is derived to prepare for a job
with length 2min, while acknowledging that the actual job length
may be 2max. In the following theorem, we state the competitive
result for ROROcmin and discuss both its signi�cance and relation to
the existing RORO algorithm with known job lengths.

T������ 4.2. ROROcmin for OCSU is U 0-competitive when the
threshold function is given by q2 (F) from De�nition 3.2. We hence-
forth use U2 = U 0 to denote the competitive ratio of ROROcmin.

As we show in the full proof, in Section A.2, U2 = U 0 � U ,
further implying that q2 (F)  q1 (F) for any F 2 [0, 2max]. This
supports the notion that ROROcmin is indeed more conservative than
ROROcmax in terms of the carbon intensities for which it is willing
to run the job. We note that the functions q1 (F) and q2 (F) are
equivalent when 2min = 2max, indicating that both algorithms make
the same decisions when all jobs have the same length.
Consistency and robustness of LACS. Recall that LACS (summa-
rized in Algorithm 2) is our learning-augmented algorithm that
plays a convex combination of the solutions obtained by ROROrobust
and ROROpred. Letting Umax

ROROpred
denote the worst-case competitive

10 20 30 40 50
U/L

0

10

20

30

40

C
om

p
et

it
iv

e
U

pp
er

B
ou

nd

Optimal � (job length known)

ROROcmax : �1

ROROcmin : �2

LACS[� = 1, � = 3] consistency

LACS[� = 1, � = 3] robustness

Figure 1: Competitive upper bounds for di�erent algo-
rithms (RORO with the full knowledge of job length, ROROcmin,
ROROcmax, and LACS[W = 1, n = 3])
ratio of ROROpred (i.e., when the job length predictions are maxi-
mally incorrect), we obtain the following consistency and robust-
ness bounds for LACS for any value of n 2 [0, |U1 � U2 |] and any
value of W 2 [0,U1 � sign(U1 � U2)n � U]:

T������ 4.3. Given parameters n andW , LACS is (U+W)-consistent
and

 ⇣
1 � W

U1�sign(U1�U2)n�U
⌘
Umax
ROROpred

+
⇣
W (U1�sign(U1�U2)n)
U1�sign(U1�U2)n�U

⌘ �
-

robust.

This result, proven fully in Section A.4, implies that LACS can
achieve a competitive ratio of U when the job length prediction is
correct. Since U is the best achievable competitive ratio for the orig-
inal OCS problem, LACS with accurate predictions of the job length
achieves the optimal consistency bound as W ! 0. Furthermore,
the robustness bound implies that the worst-case competitive ratio
when predictions are incorrect remains bounded by a combination
of U1 and U2; this is intuitive because the competitive bounds of
ROROcmax and ROROcmin (respectively) are the worst-case results for
algorithms which expect one extreme job length and must deal
with the other extreme job length.

In Figure 1, we plot the numerical values of U , U1, U2, and the
consistency-robustness results of LACS with W = 1, n = 3 for several
di�erent values of */!. V is �xed to*/10, and 2max/2min = 4. Note that
U (the best competitive ratio for standard OCS) grows sublinearly
in*/!, while the competitive bounds of ROROcmax (U1) and ROROcmin
(U2) grow linearly in */!. This re�ects the inherent challenges of
OCSU and the impact of uncertain job lengths on the achievable
competitive ratios. Notably, for this setting of n and W , LACS is able
to nearly match the optimal U for OCS when the predictions are
correct (consistency), and is strictly upper bounded by U2 when the
predictions are adversarially incorrect (robustness), meaning that
it achieves the best of both worlds.

5 EXPERIMENTAL RESULTS
In this section, we experimentally evaluate the performance of LACS
in reducing the carbon footprint of scalable computing workloads.

5.1 Experimental Setup
We take a job-centric approach where a carbon-aware scheduler
independently allocates (i.e., scales) computing resources to each job
to reduce the total carbon footprint of its execution while respecting
per-job deadlines. We next detail our experimental setup.
Carbon intensity trace. We use carbon intensity data from Elec-
tricity Maps [32] for California ISO (CAISO). The carbon trace

32

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Table 2: Inverse of scaling pro�les as a mapping between
the completed part of the job (G) and amount of resources
allocated (B).

Pro�le Equation Pro�le Equation
P1 B = G P4 B = 0.5G2 + G
P2 B = 0.15G2 + G P5 B = 0.75G2 + G
P3 B = 0.25G2 + G P6 B = G2 + G

Table 3: Summary of characteristics for the baseline algo-
rithms and two variants of the proposed algorithm

Algorithm Carbon-Aware Switching-Aware Job Length Input
RORO [25] Yes Yes Actual
OWTpred Yes No Prediction

Single Threshold Yes No N/A
Carbon Agnostic No No N/A
CarbonScaler [20] Yes No Prediction
LACS (this paper) Yes Yes Prediction

D-LACS
3(this paper) Yes Yes Prediction

provides carbon intensity measured in grams of CO2 equivalent per
kilowatt-hour (gCO2eq/kWh) at an hourly granularity and spans
2020 to 2023. We picked 1314 time slots as the job arrival times
(once every 20 hrs2) to assess the performance across the whole
trace duration. To evaluate algorithms that require carbon intensity
(CI) forecasts, we introduce a uniformly random error to carbon
intensity data to account for forecast errors, denoted as CIerr, where
err is the mean of added percentage error.
Job characteristics. Each job arrives independently with a job
length 2 uniformly sampled within the range [2min, 2max]. To eval-
uate the impact of job length prediction error, we model a predic-
tor that yields a job length estimate within the range [2 � ? ⇥ 2 ,
2 + ? ⇥ 2], where ? is the percentage error in job length predictions.
We also assume that all jobs have a deadline ()) of 24 hrs and incur
a �xed symmetric maximum switching overhead of V .⌘(A) (e.g., for
checkpoint and resume) when scaling from zero to the maximum
resources A , where ⌘(·) is the scaling pro�le.
Resource scaling pro�les. Carbon savings highly depend on
the scalability of jobs [20], where more scalable jobs can yield
higher savings as they provide higher marginal throughput for
each added resource. Table 2 depicts the mapping functions B =
⌘�1C (G) (the inverse of the scaling pro�les), where G represents the
completed part of the job (i.e., progress made) and B represents
the amount of resource, e.g., servers, to obtain the given progress.
Some of the utilized pro�les represent common scalability pro�les
of real-world batch jobs. For instance, P1 refers to embarrassingly
parallel applications such as BLAST [41], while P2 and P4 are a �tted
version of the machine learning training workloads for ResNet18
and MobileNetV2, respectively, described in [20]. In contrast, P3,
P4, and P6 are synthesized pro�les to represent moderate and non-
scalable applications.
Parameter settings. We evaluate LACS across a wide range of ex-
perimental scenarios that impact its performance, including a range
of maximum job lengths (2max), varying coe�cients for switching
emissions (V), errors in job length predictions, and a range of learn-
ing augmentation factors (_). We set the value of the decision factor
(:) in Algorithm 2 to 0.5, so both robust algorithms receive equal
consideration. To impose practical constraints, we evaluate LACS

2We purposefully avoid an arrival every 24 hrs to avoid diurnal patterns.
3
D-LACS is the modi�ed version of LACS, which considers discrete resource allocation
based on the solution given by LACS.

across a range of carbon intensity forecast errors (CIerr) and re-
source constraints (A) since available resources are constrained.
Baseline algorithms. We evaluate the two variants of our pro-
posed algorithm, LACS and D-LACS, against multiple state-of-the-art
algorithms, summarized in Table 3 and detailed below.
(1) RORO: An online conversion with switching costs algorithm

with knowledge of job length [25], described in Section 3.1.
This online algorithm knows the accurate job length, so it serves
as an upper bound for LACS that has no access to the exact job
length a priori.

(2) OWTpred: Threshold-based one-way trading with job length pre-
dictions. This algorithm adapts a threshold-based one-way trad-
ing algorithm [47] that assumes perfect job length information.
Our adaptation, OWTpred, uses inaccurate job length predictions
to decide the amount of job GC to be scheduled at time C based
on a threshold function �. It accounts for the carbon emissions
of execution but ignores any switching emissions. When V = 0,
ROROpred (described in Section 3.2) reduces to OWTpred.

(3) Single Threshold: The algorithm utilizes a static threshold
set at

p
*!, a value initially introduced in [16]. Adapted for

OCSU, Single Threshold operates by running the job with
the maximum resource available at each time step C , but only if
the execution emissions are lower than

p
*!. This algorithm

also does not consider switching emissions.
(4) Carbon Agnostic: This algorithm presents a greedy approach

that executes each job with maximum available resources upon
submission. As the scheduler does not know the job length,
executing the job with maximum resources reduces execution
time and ensures completion before the deadline, if feasible.

(5) CarbonScaler: The CarbonScaler [20] algorithm utilizes its
knowledge of the job length, carbon intensity, and deadline to
construct a carbon-aware resource scaling. To accommodate job
length prediction inaccuracies and potential errors in carbon
intensity forecasts, we feed the predicted job length and the
erroneous carbon intensity forecasts to the algorithm.
It must be noted that all algorithms, except RORO, start the com-

pulsory execution at the time slot) � (2max �F (C))/3C , where) is
the deadline, andF (C) is the progress at time C to ensure that the
job completes before the deadline4.
Evaluation metric. We compare the performance of an algorithm
against an o�ine optimal resource scaling schedule computed using
a numerical solver [52], which allows us to report the empirical com-
petitive ratio represented as ALG/OPT (lower value is better). We also
report the reduction in carbon footprint with respect to the Carbon
Agnostic execution of the job that uses maximum resources and
aims to �nish the job as soon as possible.
5.2 E�ect of Maximum Job Length
The ratio between the maximum and minimum job lengths (2max,
2min) dictates the characteristics of jobs that may arrive at the sched-
uler; a higher ratio means the job lengths can be more diverse. For
simplicity, we set 2min = 1 and analyze the e�ect of 2max. Figure 2
shows the performance of various algorithms under di�erent 2max
values, where lower ALG/OPT is better. We evaluate the proposed
algorithm against RORO, OWTpred, Single Threshold, and Carbon

4
RORO starts the compulsory execution based the actual job length 2

33

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

1 2 3 4 5 6
cMax

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

A
L
G

/O
P

T

LACS RORO OWTpred Single Threshold Carbon Agnostic

(a) 2max = 1 (b) 2max = 3 (c) 2max = 6 (d) E�ect of 2max

Figure 2: (a), (b), and (c) report cumulative distribution functions (CDFs) of empirical competitive ratios for evaluated algorithms
under di�erent 2max values, where 2min =1. (d) Shows the e�ect of 2max on empirical competitive ratios. The scaling pro�le is
P1, V = 20, job prediction error is 20%, and _ = 0.5. A CDF curve towards the top left corner indicates better performance.

1 2 3 4 5 6
cMax

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

A
L
G

/O
P

T
LACS RORO OWTpred Single Threshold Carbon Agnostic

(a) V = 0 (b) V = 20 (c) V = 40 (d) E�ect of V
Figure 3: (a), (b), and (c) report cumulative distribution functions (CDFs) of empirical competitive ratios for selected algorithms
under di�erent V values. (d) Shows the e�ect of V on empirical competitive ratios. The scaling pro�le is P1, 2max = 3, job
prediction error is 20%, and _=0.5. A CDF curve towards the top left corner indicates better performance.
Agnostic by showing their performance compared to the o�ine
optimal algorithm. We omit CarbonScaler in this section as it re-
quires discrete resource allocation; we will consider it when we
enforce discrete assignment. We assume scaling pro�le P1, i.e., the
job is embarrassingly parallel, switching emission coe�cient V = 20,
job prediction error of 20%, and augmentation factor _ = 0.5.

Figure 2a shows the special case where 2max = 2min, i.e., all jobs
are the same length and known to LACS, RORO, OWTpred. As expected,
LACS and RORO are identical while OWTpred is slightly behind as it
does not consider switching emissions. Nonetheless, these algo-
rithms achieve higher performance than Single Threshold and
Carbon Agnostic. Figure 2b and Figure 2c show realistic cases
where the 2max is 3 and 6, respectively. As shown, LACS is the clos-
est to RORO in all settings. Its performance is within 15.1 and 19.8%
on average from the o�ine optimal and only 0.6% and 4.6% from
RORO, when 2max is 3 and 6, respectively. Figure 2d summarizes the
average competitive ratio across di�erent 2max values; increasing
the 2max decreases the performance of all techniques, as a higher
2max yields more uncertainty on the actual job length and exacer-
bates switching emissions as we do not employ resource constraints.
Nonetheless, the results indicate the superiority of LACS across dif-
ferent 2max values, where LACS performs within 16.1% of the o�ine
optimal and only 1.3% away from RORO, resulting in a 31% reduction
in carbon emissions compared to the Carbon Agnostic policy.

5.3 E�ect of Switching Emissions
Dynamic resource adjustment leads to wasted time and energy,
which result in extra emissions. For example, when applications
employ suspend-resume scheduling, the switching emissions are
due to the incurred energy required to checkpoint or restore the
state before being able to resume processing. Since these switch-
ing emissions di�er across systems and applications, e.g., due to

memory size [40], we evaluate the e�ect of the switching emissions
coe�cient V on performance, where higher V hinders the policy’s
ability to adapt to variations in carbon intensity. Figure 3 shows the
performance of the algorithms against di�erent values of V . We �x
maximum job length (2max = 3) while keeping the other parameters
the same as Figure 2. We assigned V as 0, 20, and 40 gCO2eq, rep-
resenting 0.0, 7.3, and 14.6% of California’s average hourly carbon
intensity (273 gCO2eq/kWh), respectively. For completeness, we
added the case of V = 0 where resource scaling does not incur any
overheads. Figure 3a shows the case where switching is cost-free.
We observe that OWTpred outperforms LACS, because LACSmust also
incorporate the robust decisions from ROROrobust (note that since
V = 0, OWTpred is equivalent to ROROpred). Figure 3b and Figure 3c
explore realistic cases with non-zero switching emissions, where
LACS nearly matches RORO. It lags behind on average and in the
worst case by 0.6 and 10%, respectively, when V = 20 and by 1.1
and 32.3%, respectively, when V = 40. Finally, Figure 3d summa-
rizes the average performance of all the algorithms, highlighting
the e�ectiveness of our proposed approach. As expected, higher V
leads to higher ALG/OPT for the algorithms that do not incorporate
switching emissions. However, increasing V does not a�ect the
relative performance of the algorithms; LACS achieves average per-
formance within 1.2% of RORO and 16% of the o�ine optimal, which
constitutes 32% carbon savings compared to Carbon Agnostic.

5.4 E�ect of Job Length Prediction Error
As explained in Section 3.2, LACS augments robust algorithms with
a prediction-based approach that leverages job length predictions.
However, since typical batch job predictors are highly erroneous,
we use an augmentation factor _ that controls how much this job
length prediction in�uences the �nal solution. Figure 4 shows the

34

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

(a) V = 0, 2max = 3 (b) V = 10, 2max = 3 (c) V = 20, 2max = 3 (d) V = 40, 2max = 3

(e) V = 0, 2max = 6 (f) V = 10, 2max = 6 (g) V = 20, 2max = 6 (h) V = 40, 2max = 6

Figure 4: Average competitive ratios for LACS under di�erent job prediction errors, augmentation factors _, switching emissions
V and 2max values for scaling pro�le P1.
e�ect of various prediction accuracies, de�ned by prediction error %,
and augmentation factors _ on the empirical competitiveness of
LACS under di�erent maximum job lengths 2max and switching
emissions coe�cients V . The scaling pro�le is P1.

The results show that as the prediction error increases, LACS
should employ a lower augmentation factor for the predictions. For
instance, at a job prediction error of 60%, a mid-range augmentation
factor (between 0.25 and 0.75) leads to better results than either
extreme. Interestingly, the results show that higher prediction accu-
racy and augmentation factors do not always guarantee the highest
performance. For instance, for 0% error in job length predictions,
fully augmenting with predictions does not yield the best ALG/OPT.
For example, when V = 10, 2max = 3 (Figure 4b) and V = 40, 2max
= 6 (Figure 4h) setting _ = 0.75 outperforms fully augmenting with
predictions (_ = 1) by 21% and 33%, respectively.

This counter-intuitive result manifests because, during compul-
sory execution, ROROpred must run with the maximum available
resources, regardless of the job length prediction accuracy. This can
lead to increased switching emissions compared to scenarios where
robust algorithms contribute more to the decision-making in LACS,
potentially reducing the time spent in the compulsory execution.
This may happen since the robust algorithm caters to the upper
bound and sets a less conservative threshold. Higher values of V
and 2max can intensify this phenomenon, as more switching emis-
sions are incurred when scheduling with the maximum available
resources in the compulsory execution zone. In summary, LACS
balances the decisions from the robust algorithm and the job length
predictor by using a moderate augmentation factor _; the results
indicate that aside from di�erent values of 2max, V , and job length
prediction errors, an augmentation factor _ = 0.5 can perform
within 4% of RORO and within 18% of the o�ine optimal, which
translates to 20.8% carbon savings over Carbon Agnostic.

5.5 Real-world Considerations
In the previous experiments, we assumed that resource allocation is
continuous and resources can be acquired in any quantity. In prac-
tice, however, resources such as cores or servers must be allocated in

discrete quantities and have physical and performance constraints.
To accommodate such requirements, we discretize the scaling pro-
�le into �xed-size units, which map to di�erent amounts of the job
based on the scalability of the pro�le. Then, to map the scheduling
decisions to discrete allocations, we round the decisions of LACS to
the nearest discrete quantity, a policy we denote Discrete-LACS
(D-LACS). To create this discrete allocation, we dissect each resource
unit into 8 equally sized segments. Our evaluation shows that the
discretization process has a negligible impact on our results, as
observed across all the results in Figure 5 and Figure 6.

Additionally, the maximum resources available to a job may be
constrained for various reasons, including resource contention and
cost considerations. To accommodate such constraints and analyze
their e�ect, we bound the resources allocated to the job in a time
slot to a maximum number A . We assume that the total number of
resource units is 32, where resource A takes values of 1/8, 1/4, 1/2,
and 1, denoting 4, 8, 16, and 32 resource units. This ensures compat-
ibility with the employed resource discretization. In what follows,
we evaluate the performance of these considerations and compare
our proposed method to CarbonScaler [20] that assumes both
discrete resources and rate limits but relies on carbon intensity
forecasts to make scheduling decisions.
Impact of carbon intensity forecast error. The requirement of
fairly accurate carbon intensity forecasts signi�cantly limits the
practical deployment of CarbonScaler [20]. We evaluate the e�ect
of CIerr on the performance of CarbonScaler and compare it with
LACS that does not require CI forecasts. In the experimental setup
for Figure 5, we choose pro�le P25, impose a resource constraint
(A=1/4), consider job length prediction error of 30%, while keeping
the rest of the setup the same as Figure 3. We evaluate the perfor-
mance of LACS, D-LACS6, and CarbonScaler under di�erent CIerr
values.

Figure 5a shows the baseline case without any forecast errors,
i.e., CIerr = 0, and shows that although CarbonScaler outperforms

5We do not use CarbonScaler with P1 as it will scale to the maximum resources
during expected low carbon intensity slots, exacerbating the e�ect of CIerr.
6We note that the optimal policy does not mandate discrete assignments but considers
the rate constraints, making it a lower bound for our solutions

35

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

0 10 20 30 40
Carbon Intensity Error (%)

1.0

1.1

1.2

1.3

1.4

1.5

A
ve

ra
ge

A
L
G

/O
P

T

LACS D-LACS CarbonScaler

(a) CIerr = 0 (b) CIerr = 10% (c) CIerr = 20% (d) E�ect of CIerr
Figure 5: (a), (b), and (c) report cumulative distribution functions (CDFs) of empirical competitive ratios for selected algorithms
under di�erent CIerr values. (d) shows the e�ect of CIerr on average ALG/OPT. We assume scaling pro�le is P2, 2max = 3, A = 1/4,
V = 20, job prediction error is 30%, and _ = 0.5. A CDF curve towards the top left corner indicates better performance.

0 10 20 30 40
Carbon Intensity Error (%)

1.0

1.1

1.2

1.3

1.4

1.5

A
ve

ra
ge

A
L
G

/O
P

T

LACS D-LACS CarbonScaler

(a) CIerr = 10% (b) CIerr = 20%

Figure 6: Average competitive ratios across policies under dif-
ferent maximum resource constraints A and carbon intensity
forecast error CIerr. We assume scaling pro�le is P2, 2max = 3,
V = 20, job prediction error is 30% and _ = 0.5.

D-LACS on average by 4.6%, D-LACS outperforms CarbonScaler by
4.8% in the worst-case. Figure 5b and Figure 5c show more realistic
scenarios where the forecasts are erroneous and demonstrate the
sensitivity of CarbonScaler to carbon intensity errors. At 10% er-
ror, which is equivalent to the average error rate of state-of-the-art
carbon intensity forecasting models such as [31], the performance
of CarbonScaler is strictly below D-LACS, where D-LACS outper-
forms CarbonScaler by 6.3 and 4.8% when CIerr = 10 and by 13.1
and 7.9% when CIerr = 20, on average and in the worst case, respec-
tively. Figure 5d depicts the performance of CarbonScaler and
shows the applicability of D-LACS in the real world with erroneous
or unavailable carbon intensity forecasts.
Impact of resource constraints. Figure 6 shows the performance
of LACS, D-LACS and CarbonScaler as a function of resource con-
straints. We set the scaling pro�le (P2), 2max = 3, switching emis-
sions coe�cient V = 20, the job prediction error to 30%, and aug-
mentation factor as _ = 0.5. The results indicate that enforcing
a lower resource constraint narrows the gap between algorithms
and the o�ine optimal, where the average performance of D-LACS
ranges from 9 to 31% of the o�ine optimal, rending 21 to 37%
carbon savings compared to the Carbon Agnostic policy. This is
reasonable as a lower resource constraint means a lower degree
of freedom, forcing all approaches to run similarly. Nevertheless,
D-LACS outperforms CarbonScaler in almost all cases. For exam-
ple, when A = 1/8, D-LACS outperforms CarbonScaler by 3.6 and
10% when CIerr = 10 and CIerr = 20, respectively. The results are
consistent with previous experiments, where higher CIerr yields
a higher gap between D-LACS and CarbonScaler, reaching 13.3%

1/8 1/4 1/2 1
Rate

1.0

1.1

1.2

1.3

1.4

1.5

A
ve

ra
ge

A
L
G

/O
P

T

P2 P3 P4 P5 P6

(a) Maximum resources is 1/4 (b) E�ect of maximum resources

Figure 7: E�ect of pro�les onAverage competitive ratio across
scaling pro�les from Table 2. We assume 2max = 3, A = 1/4,
V = 20 job prediction error is 30%, CIerr = 10, and _ = 0.5.

when CIerr = 20 and A = 1/4. In the absence of resource con-
straints, the gap between CarbonScaler and D-LACS shrinks as
CarbonScaler can fully scale up when encountering a good car-
bon intensity, possibly avoiding compulsory execution.

5.6 E�ect of Scaling Pro�les
Many factors, including the network speed, and the ratio between
workload’s communication and computation, determine an appli-
cation’s scalability. To evaluate the e�ect of scaling pro�les, we
test various pro�les (see Table 2), which represent possible scaling
pro�les seen in the real world. Figure 7 evaluates the performance
of D-LACS for these di�erent pro�les. We set 2max = 3, switching
emissions coe�cient V = 20, the job prediction error is 30%, the car-
bon intensity forecast error is set to CIerr = 10%, and augmentation
factor _ = 0.5. Figure 7a shows the performance of D-LACS across
di�erent pro�les; D-LACS is more e�ective at higher scalability, but
shows comparable competitiveness across pro�les. As resources
increase, jobs with worse scaling pro�les will be more conservative
in their decisions, forcing them to run at ine�cient scales during
the compulsory execution. Figure 7b, depicts this behavior across
scaling behavior and rates, showing that all scaling pro�les expe-
rience less performance as the rate increases, which is consistent
with earlier results. The results indicate that across scaling pro�les
D-LACS performs between 9 and 15% and 31 and 49% of the o�ine
optimal for A = 1/8 and A = 1, respectively.

36

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Table 4: Carbon-aware temporal shifting and scaling

Algorithm Unknown
Job Length

Forecast Not
Required Deadline Switching

Cost
Decision
Space

WaitAwhile-Thr. [53] Yes Yes No No Shift
WaitAwhile [53] No No Yes No Shift
:-min search [28] No Yes Yes No Shift

Double Threshold [26] No Yes Yes Yes Shift
Wait&Scale [41] Yes No No No Scale
CarbonScaler [20] No No Yes No Scale
OWT [16, 47] No Yes Yes No Scale
RORO [25] No Yes Yes Yes Scale
This work Yes Yes Yes Yes Scale

6 RELATEDWORK
To bridge the gap between the availability of low-carbon energy
and demand, carbon-aware schedulers utilize the inherent �exi-
bility of workloads to select an appropriate time and location to
execute the workloads [15, 19, 20, 23, 25, 26, 41, 42, 44, 50, 53, 57].
In this paper, we focus on a special case of carbon-aware temporal
shifting of batch jobs, where schedulers decide on a scale factor at
each time step ranging from 0 (i.e., suspending) to a user-de�ned
max factor. In addition, the problem of carbon-aware scheduling
has historically been closest to online search problems such as :-
min search [27, 28], one-way trading [14, 16, 35, 45, 47], and online
knapsack [5, 13, 33, 46, 54, 55, 58]. These have seen applications in
e.g., cloud pricing [56], EV charging [8, 47], and stock trading [28],
among others. Recently, two studies have explicitly extended on-
line search ideas towards carbon-aware problems. In [26], the au-
thors present online pause and resume, which extends the :-min
search problem to incorporate switching costs. Similarly, the au-
thors in [25] present the OCS problem discussed in this paper,
which introduces a linear switching cost into the formulation of
one-way trading. In contrast to all of the above literature, theOCSU
problem we propose is the �rst online search-type setting where
the job length (i.e., demand) is uncertain. We summarize state-of-
the-art work in carbon-aware scheduling and applicable methods
in online scheduling in Table 4, highlighting di�erent assumptions
regarding job length, dependency on carbon intensity forecasts,
and compliance with deadlines.

7 CONCLUSION
This paper introduces LACS, a novel learning-augmented carbon-
aware algorithm for resource scaling of computing workloads with
uncertain job lengths. We analyzed the theoretical performance of
LACS using the framework of robustness-consistency of competitive
online algorithms. Further, we evaluated the empirical performance
of LACS through extensive experimental, showing its superior per-
formance as compared to an extensive set of baseline algorithms.
LACS, to be best of our knowledge, is the �rst algorithm with both
theoretical guarantees and promising practical performance for
carbon-aware resource scaling with unknown job lengths.

ACKNOWLEDGMENTS
Mohammad Hajiesmaili acknowledges this work is supported by
the U.S. National Science Foundation (NSF) under grant num-
bers CAREER-2045641, CPS-2136199, CNS-2106299, CNS-2102963,
and NGSDI-2105494. Prashant Shenoy’s research is supported by
NSF grants 2213636, 2105494, 2021693, 2020888, DOE grant DE-
EE0010143, and VMware.

This material is based upon work supported by the U.S. Depart-
ment of Energy, O�ce of Science, O�ce of Advanced Scienti�c
Computing Research, Department of Energy Computational Sci-
ence Graduate Fellowship under Award Number DE-SC0024386.

DISCLAIMERS
This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liabil-
ity or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any speci�c commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not
necessarily state or re�ect those of the United States Government
or any agency thereof.

REFERENCES
[1] Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy. 2021. Good

Things Come to Those Who Wait: Optimizing Job Waiting in the Cloud. In
Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SoCC ’21). Association for Computing Machinery, New York, NY, USA, 229–242.
https://doi.org/10.1145/3472883.3487007

[2] Douglas J Arent, Peter Green, Zia Abdullah, Teresa Barnes, Sage Bauer, Andrey
Bernstein, Derek Berry, Joe Berry, Tony Burrell, Birdie Carpenter, et al. 2022.
Challenges and opportunities in decarbonizing the US energy system. Renewable
and Sustainable Energy Reviews 169 (2022), 112939.

[3] Rohan Arora, Umamaheswari Devi, Tamar Eilam, Aanchal Goyal, Chandra
Narayanaswami, and Pritish Parida. 2023. Towards Carbon Footprint Man-
agement in Hybrid Multicloud. In Proceedings of the 2nd Workshop on Sustainable
Computer Systems. 1–7.

[4] Noman Bashir, David Irwin, Prashant Shenoy, and Abel Souza. 2023. Sustainable
Computing – Without the Hot Air. ACM SIGENERGY Energy Informatics Review
3, 3 (2023), 47–52.

[5] Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Ross-
manith. 2014. The online knapsack problem: Advice and randomization. Theoret-
ical Computer Science 527 (2014), 61–72. https://doi.org/10.1016/j.tcs.2014.01.027

[6] Allan Borodin and Ran El-Yaniv. 2005. Online computation and competitive
analysis. cambridge university press.

[7] Allan Borodin, Nathan Linial, and Michael E. Saks. 1992. An Optimal On-Line
Algorithm for Metrical Task System. J. ACM 39, 4 (Oct 1992), 745–763. https:
//doi.org/10.1145/146585.146588

[8] Roozbeh Bostandoost, Bo Sun, Carlee Joe-Wong, and Mohammad Hajiesmaili.
2023. Near-Optimal Online Algorithms for Joint Pricing and Scheduling in EV
Charging Networks. In Proceedings of the 14th ACM International Conference
on Future Energy Systems (Orlando, FL, USA) (e-Energy ’23). Association for
Computing Machinery, New York, NY, USA, 72–83. https://doi.org/10.1145/
3575813.3576878

[9] Wesley J Cole, Danny Greer, Paul Denholm, A Will Frazier, Scott Machen, Trieu
Mai, Nina Vincent, and Samuel F Baldwin. 2021. Quantifying the challenge of
reaching a 100% renewable energy power system for the United States. Joule 5, 7
(2021), 1732–1748.

[10] European Commission. 2024. Carbon Border Adjustment Mechanism. https:
//taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en. Ac-
cessed January.

[11] Robert M Corless, Gaston HGonnet, David EGHare, David J Je�rey, and Donald E
Knuth. 1996. On the LambertW function. Advances in Computational mathematics
5 (1996), 329–359.

[12] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
153–167. https://doi.org/10.1145/3132747.3132772

37

https://doi.org/10.1145/3472883.3487007
https://doi.org/10.1016/j.tcs.2014.01.027
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/3575813.3576878
https://doi.org/10.1145/3575813.3576878
https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en
https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en
https://doi.org/10.1145/3132747.3132772

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

[13] Marek Cygan, Łukasz Jeż, and Jiří Sgall. 2016. Online knapsack revisited. Theory
of Computing Systems 58 (2016), 153–190.

[14] Peter Damaschke, Phuong Hoai Ha, and Philippas Tsigas. 2007. Online Search
with Time-Varying Price Bounds. Algorithmica 55, 4 (Dec. 2007), 619–642. https:
//doi.org/10.1007/s00453-007-9156-9

[15] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy
Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A Smith, Nicole
DeCario, and Will Buchanan. 2022. Measuring the Carbon Intensity of AI in
Cloud Instances. In FAccT. ACM, New York, NY, USA, 1877–1894.

[16] Ran El-Yaniv, Amos Fiat, Richard M. Karp, and G. Turpin. 2001. Optimal Search
and One-Way Trading Online Algorithms. Algorithmica 30, 1 (May 2001), 101–139.
https://doi.org/10.1007/s00453-001-0003-0

[17] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S Lee, David
Brooks, and Carole-Jean Wu. 2022. ACT: Designing Sustainable Computer Sys-
tems with an Architectural Carbon Modeling Tool. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. ACM, New York, NY,
USA, 784–799.

[18] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon
Wei, David Brooks, and Carole-Jean Wu. 2022. Chasing Carbon: The Elusive
Environmental Footprint of Computing. IEEE Micro 42, 4 (jul 2022), 37–47.
https://doi.org/10.1109/MM.2022.3163226

[19] Walid A. Hanafy, Roozbeh Bostandoost, Noman Bashir, David Irwin, Mohammad
Hajiesmaili, and Prashant Shenoy. 2023. The War of the E�ciencies: Understand-
ing the Tension between Carbon and Energy Optimization. In Proceedings of
the 2nd Workshop on Sustainable Computer Systems. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3604930.3605709

[20] Walid A. Hanafy, Qianlin Liang, Noman Bashir, David Irwin, and Prashant
Shenoy. 2023. CarbonScaler: Leveraging Cloud Workload Elasticity for Op-
timizing Carbon-E�ciency. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 7, 3 (Dec 2023), 28 pages. arXiv:2302.08681 [cs.DC]

[21] Stephen P. Holland, Matthew J. Kotchen, Erin T. Mansur, and Andrew J. Yates.
2022. Why Marginal CO2 Emissions Are Not Decreasing for U.S. Electricity: Es-
timates and Implications for Climate Policy. Proceedings of the National Academy
of Sciences 119, 8 (2022), e2116632119.

[22] Abdolhossein Hoorfar and Mehdi Hassani. 2008. Inequalities on the Lambert W
function and hyperpower function. Journal of Inequalities in Pure and Applied
Mathematics 9, 51 (Jan. 2008). Issue 2.

[23] Young Geun Kim, Udit Gupta, Andrew McCrabb, Yonglak Son, Valeria Bertacco,
David Brooks, and Carole-Jean Wu. 2023. GreenScale: Carbon-Aware Systems
for Edge Computing. arXiv preprint arXiv:2304.00404 (2023).

[24] Michael Kuchnik, J. Park, C. Cranor, Elisabeth Moore, Nathan DeBardeleben, and
George Amvrosiadis. 2019. This is Why ML-driven Cluster Scheduling Remains
Widely Impractical. Technical Report CMU-PDL-19-103.

[25] Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad
Hajiesmaili, AdamWierman, and Prashant Shenoy. 2024. Online Conversion with
Switching Costs: Robust and Learning-augmented Algorithms. In Proceedings of
the 2024 SIGMETRICS/Performance Joint International Conference on Measurement
and Modeling of Computer Systems (Venice, Italy) (SIGMETRICS / Performance
’24). Association for Computing Machinery, New York, NY, USA.

[26] Adam Lechowicz, Nicolas Christianson, Jinhang Zuo, Noman Bashir, Mohammad
Hajiesmaili, Adam Wierman, and Prashant Shenoy. 2023. The Online Pause and
Resume Problem: Optimal Algorithms and An Application to Carbon-Aware
Load Shifting. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 7, 3, Article 53 (Dec 2023), 36 pages. arXiv:2303.17551 [cs.DS]

[27] Russell Lee, Bo Sun, Mohammad Hajiesmaili, and John C. S. Lui. 2024. Online
Search with Predictions: Pareto-optimal Algorithm and its Applications in En-
ergy Markets. In Proceedings of the 15th ACM International Conference on Future
Energy Systems (Singapore, Singapore) (e-Energy ’24). Association for Computing
Machinery, New York, NY, USA.

[28] Julian Lorenz, Konstantinos Panagiotou, and Angelika Steger. 2008. Optimal
Algorithms for k-Search with Application in Option Pricing. Algorithmica 55, 2
(Aug. 2008), 311–328. https://doi.org/10.1007/s00453-008-9217-8

[29] Alexandra Sasha Luccioni, Yacine Jernite, and Emma Strubell. 2023.
Power Hungry Processing: Watts Driving the Cost of AI Deployment?
arXiv:2311.16863 [cs.LG]

[30] Thodoris Lykouris and Sergei Vassilvtiskii. 2018. Competitive Caching with
Machine Learned Advice. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer
Dy and Andreas Krause (Eds.). PMLR, 3296–3305. https://proceedings.mlr.press/
v80/lykouris18a.html

[31] Diptyaroop Maji, Prashant Shenoy, and Ramesh K. Sitaraman. 2022. CarbonCast:
Multi-Day Forecasting of Grid Carbon Intensity. In Proceedings of the 9th ACM In-
ternational Conference on Systems for Energy-E�cient Buildings, Cities, and Trans-
portation (Boston, Massachusetts) (BuildSys ’22). Association for Computing Ma-
chinery, New York, NY, USA, 198–207. https://doi.org/10.1145/3563357.3564079

[32] Electricity Maps. 2023. Electricity Map. https://www.electricitymap.org/map.
[33] A. Marchetti-Spaccamela and C. Vercellis. 1995. Stochastic on-line knapsack

problems. Mathematical Programming 68, 1-3 (Jan. 1995), 73–104. https://doi.

org/10.1007/bf01585758
[34] Dragoslav S. Mitrinovic, Josip E. Pečarić, and A. M. Fink. 1991. Inequalities

Involving Functions and Their Integrals and Derivatives. Vol. 53. Springer Science
& Business Media.

[35] Esther Mohr, Iftikhar Ahmad, and Günter Schmidt. 2014. Online algorithms for
conversion problems: a survey. Surveys in Operations Research and Management
Science 19, 2 (2014), 87–104.

[36] Steven Gonzalez Monserrate. 2022. The Staggering Ecological Impacts of Com-
putation and the Cloud. https://thereader.mitpress.mit.edu/the-staggering-
ecological-impacts-of-computation-and-the-cloud/.

[37] National Science Foundation (NSF). 2022. Design for Environmental Sustainability
in Computing (DESC). https://www.nsf.gov/pubs/2023/nsf23532/nsf23532.htm.

[38] Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving Online Algo-
rithms via ML Predictions. In Advances in Neural Information Processing Systems,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.), Vol. 31. Curran Associates, Inc.

[39] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemys-
law Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. 2020. Autopilot: workload autoscaling at Google.
In Proceedings of the Fifteenth European Conference on Computer Systems (Her-
aklion, Greece) (EuroSys ’20). Association for Computing Machinery, New York,
NY, USA, Article 16, 16 pages. https://doi.org/10.1145/3342195.3387524

[40] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy. 2016. Flint:
batch-interactive data-intensive processing on transient servers. In Proceedings of
the Eleventh European Conference on Computer Systems (London, United Kingdom)
(EuroSys ’16). Association for Computing Machinery, New York, NY, USA, Article
6, 15 pages. https://doi.org/10.1145/2901318.2901319

[41] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David
Irwin, and Prashant Shenoy. 2023. Ecovisor: A Virtual Energy System for Carbon-
E�cient Applications. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 252–265. https://doi.org/10.1145/3575693.3575709

[42] Abel Souza, Shruti Jasoria, Basundhara Chakrabarty, Alexander Bridgwater, Axel
Lundberg, Filip Skogh, Ahmed Ali-Eldin, David Irwin, and Prashant Shenoy.
2023. CASPER: Carbon-Aware Scheduling and Provisioning for Distributed Web
Services. In Proceedings of the 14th International Green and Sustainable Computing
Conference (IGSC), Toronto, ON, Canada. ACM.

[43] Emma Strubell, Ananya Ganesh, and AndrewMcCallum. 2020. Energy and Policy
Considerations for Modern Deep Learning Research. In Proceedings of the AAAI
Conference on Arti�cial Intelligence, Vol. 34. AAAI, New York, NY, 13693–13696.

[44] Thanathorn Sukprasert, Abel Souza, Noman Bashir, David Irwin, and Prashant
Shenoy. 2023. Quantifying the Bene�ts of Carbon-Aware Temporal and Spatial
Workload Shifting in the Cloud. arXiv:2306.06502 [cs.DC]

[45] Bo Sun, Russell Lee, Mohammad Hajiesmaili, Adam Wierman, and Danny Tsang.
2021. Pareto-Optimal Learning-Augmented Algorithms for Online Conversion
Problems. In Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34.
Curran Associates, Inc., 10339–10350.

[46] Bo Sun, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John CS Lui, Don
Towsley, and Danny HK Tsang. 2022. The Online Knapsack Problem with De-
partures. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 6, 3 (2022), 1–32.

[47] Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and
Danny H.K. Tsang. 2021. Competitive Algorithms for the Online Multiple Knap-
sack Problem with Application to Electric Vehicle Charging. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 4, 3, Article 51 (June
2021), 32 pages. https://doi.org/10.1145/3428336

[48] Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and Pat Pannuto. 2023. Junk-
yard Computing: Repurposing Discarded Smartphones to Minimize Carbon. In
Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. ACM, New York, NY,
USA, 400–412.

[49] Swamit Tannu and Prashant J Nair. 2023. The Dirty Secret of SSDs: Embodied
Carbon. ACM SIGENERGY Energy Informatics Review 3, 3 (2023), 4–9.

[50] John Thiede, Noman Bashir, David Irwin, and Prashant Shenoy. 2023. Carbon
Containers: A System-Level Facility for Managing Application-Level Carbon
Emissions. In Proceedings of the 2023 ACM Symposium on Cloud Computing
(SoCC ’23). Association for Computing Machinery, New York, NY, USA, 17–31.
https://doi.org/10.1145/3620678.3624644

[51] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems
(Bordeaux, France) (EuroSys ’15). Association for Computing Machinery, New
York, NY, USA, Article 18, 17 pages. https://doi.org/10.1145/2741948.2741964

[52] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

38

https://doi.org/10.1007/s00453-007-9156-9
https://doi.org/10.1007/s00453-007-9156-9
https://doi.org/10.1007/s00453-001-0003-0
https://doi.org/10.1109/MM.2022.3163226
https://doi.org/10.1145/3604930.3605709
https://arxiv.org/abs/2302.08681
https://arxiv.org/abs/2303.17551
https://doi.org/10.1007/s00453-008-9217-8
https://arxiv.org/abs/2311.16863
https://proceedings.mlr.press/v80/lykouris18a.html
https://proceedings.mlr.press/v80/lykouris18a.html
https://doi.org/10.1145/3563357.3564079
https://www.electricitymap.org/map
https://doi.org/10.1007/bf01585758
https://doi.org/10.1007/bf01585758
https://thereader.mitpress.mit.edu/the-staggering-ecological-impacts-of-computation-and-the-cloud/
https://thereader.mitpress.mit.edu/the-staggering-ecological-impacts-of-computation-and-the-cloud/
https://www.nsf.gov/pubs/2023/nsf23532/nsf23532.htm
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/2901318.2901319
https://doi.org/10.1145/3575693.3575709
https://arxiv.org/abs/2306.06502
https://doi.org/10.1145/3428336
https://doi.org/10.1145/3620678.3624644
https://doi.org/10.1145/2741948.2741964

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scienti�c Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[53] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz
Thamsen. 2021. Let’s Wait AWhile: How Temporal Workload Shifting Can
Reduce Carbon Emissions in the Cloud. In Proceedings of the 22nd International
Middleware Conference. Association for Computing Machinery, New York, NY,
USA, 260–272. https://doi.org/10.1145/3464298.3493399

[54] Lin Yang, Ali Zeynali, Mohammad H. Hajiesmaili, Ramesh K. Sitaraman, and Don
Towsley. 2021. Competitive Algorithms for Online Multidimensional Knapsack
Problems. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 5, 3, Article 30 (Dec 2021), 30 pages.

[55] Ali Zeynali, Bo Sun, Mohammad Hajiesmaili, and Adam Wierman. 2021. Data-
driven Competitive Algorithms for Online Knapsack and Set Cover. Proceedings
of the AAAI Conference on Arti�cial Intelligence 35, 12 (May 2021), 10833–10841.
https://doi.org/10.1609/aaai.v35i12.17294

[56] ZiJun Zhang, Zongpeng Li, and Chuan Wu. 2017. Optimal posted prices for
online cloud resource allocation. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 1, 1 (2017), 1–26.

[57] Jiajia Zheng, Andrew A. Chien, and Sangwon Suh. 2020. Mitigating Curtailment
and Carbon Emissions through Load Migration between Data Centers. Joule 4,
10 (2020), 2208–2222. https://doi.org/10.1016/j.joule.2020.08.001

[58] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. 2008. Budget Con-
strained Bidding in Keyword Auctions and Online Knapsack Problems. In Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 566–576.

[59] Salah Zrigui, Raphael Y de Camargo, Arnaud Legrand, and Denis Trystram.
2022. Improving the Performance of Batch Schedulers Using Online Job Runtime
Classi�cation. J. Parallel and Distrib. Comput. 164 (2022), 83–95.

39

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3464298.3493399
https://doi.org/10.1609/aaai.v35i12.17294
https://doi.org/10.1016/j.joule.2020.08.001

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

APPENDIX
A DEFERRED PROOFS FROM SECTION 4
A.1 Competitive Proofs for ROROcmax
In this section, we provide the proof of Theorem 4.1 that states ROROcmax for OCSU is U1-competitive, where U1 is de�ned in Equation 9.

P���� �� T������ 4.1. Let I 2 ⌦ denote any valid sequence, and let F (9) denote ROROcmax’s �nal progress before the compulsory
execution that begins at time 9 ) . Note thatF (9) 2 [0,2max]. Assuming a job arrives with length 2 , the worst performance of ROROcmax
happens when 2 = 2min, and ROROcmax is U1-competitive. In this scenario, we have two cases:
Case (i). When the job is �nished during the compulsory execution.

In this case,F (9) < 2min, and according to lemma B.2 in [25], the o�ine optimum is lower-bounded by:

OPT(I) � 2min (q1 (F (9)) � V) (10)

Additionally, according to lemma B.3 in [25], the online carbon emissions is upper-bounded by:

ROROcmax (I) 
π F (9)

0
q1 (D)3D +F (9)V + (2min �F (9))* (11)

By combining inequalities (10) and (11), we have:

ROROcmax (I)
OPT(I) 

Ø F (9)

0 q1 (D)3D +F (9)V + (2min �F (9))*
2min (q1 (F (9)) � V)

= U (12)

Case (ii). When the job is done without compulsory execution. ⇤

L���� A.1. The carbon emissions of ROROcmax is upper bounded by:

ROROcmax (I)  2minq1 (0) + 2minV = 2min
*

U
+ 2minV (13)

P����. According to lemma B.3 in [25], when the job length = c, and the job is done with no compulsory execution, ROROcmax Ø 2
0 q1 (D)3D + V2 . In the worst-case scenario, the job length is 2min; hence, we have:

ROROcmax (I) 
π 2min

0
q1 (D)3D + V2min  2minq1 (0) + 2minV = 2min

*

U
+ 2V2min (14)

⇤

The right hand side of inequality (14) stands correct because q1 (D) is monotonically decreasing, and q1 (D)  q1 (0) = *
U + V .

The lower bound of OPT(I) is:
OPT(I) � 2min! (15)

Combining inequalities (14) and (15), we have:

ROROcmax (I)
OPT(I) 

2min
*
U + 2V2min
2min!

=
*

U!
+ 2V

!
= U11 (16)

Comparing U11 against U , we note that when ROROcmax completes the job without compulsory execution, it has “overspent” compared to the
RORO algorithm which knows the actual job length. This follows by recalling that the threshold functions of both algorithms are monotonically
decreasing, and observing their respective threshold values atF (9) = 2min, which can be expressed as follows:qOCSU (2min) = !+V < q1 (2min).
Thus, ROROcmax allows a strictly higher carbon intensity to run the job with length 2min, and the competitive ratio U11 is worse.

Therefore, since U1 B max{U11 ,U}, we obtain the following �nal competitive bound:

U1 =
*

U!
+ 2V

!

A.2 Competitive Proofs for ROROcmin
In this section, we provide the proof of Theorem 4.2 that states the instantiation of ROROcmin for OCSU is U2-competitive, where U2 = U 0 and
U 0 is de�ned in Equation 8.

P���� �� T������ 4.2. Roadmap of the proof: We initially consider an intermediate algorithm, named ˆALG2. This algorithm operates
under the assumption that the length of each job is 2min and schedules the job based on a threshold function q̂ (F̂), F̂ 2 [0, 2min] (De�nition
A.2). We �rst compute this threshold function and the competitive ratio, preparing for the worst-case scenario where the actual job length is
2max (Step 1).

40

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Subsequently, we adapt the threshold function q̂ (F̂), scaling it up by a factor of 2max/2min to obtain a new threshold function q2 (F),F 2
[0, 2max] (Equation 7), which de�nes the operation of ROROcmin– we proceed to determine the competitive ratio (U2) for ROROcmin, �nding
that it is less than that of ˆALG2. This outcome reinforces the rationale behind choosing ROROcmin over ˆALG2, as ROROcmin proves to be a more
strategically sound choice under the given conditions.(Step 2)
Step 1: Let I 2 ⌦ denote any valid OCSU sequence, and let F̂ 9 be the ˆALG2’s �nal progress before the compulsory execution, which begins
at time step 9 ) , and F̂ (9) 2 [0, 2min]. ⇤

D��������� A.2. Threshold function q̂ for OCSU solved by ROROcmin for any progress F̂ 2 [0, 2min]:

q̂ (F̂) = * � V +
✓
*

U 0
�* + 2V

◆
exp

✓
F̂

2minU 0

◆
(17)

L���� A.3. The o�ine optimum is lower bounded by OPT(I) � (q̂ (F̂ (9)) � V)2min.

P����. According to lemma B.2 in [25], the optimal o�ine strategy, setting aside any additional switching emissions, involves completing
the job at the most favorable cost function within the sequence {6C (·)C 2 [)] }. Suppose the best cost function occurs at an arbitrary step<
(< 2 [)],<  9), denoted by 6< (.).

Lemma B.2 in [25] further states that for any job length c, OPT(I) = 2 (m6<
mG

) � 2 (q̂ (F̂ (9)) � V), F̂ (9) 2 [0, 2], where F̂ (9) is the progress
before the compulsory execution. Given that 2 2 [2min, 2max] in OCSU problem; the lower bound of OPT is when 2 = 2min , mirroring the
assumption made in the ˆALG2 algorithm; therefore, OPT(I) � (q̂ (F̂ (9)) � V)2min, F̂ (9) 2 [0, 2min] ⇤

L���� A.4. The carbon emissions of ˆALG2 (I) is upper-bounded by:

ˆALG2 (I) 
π F̂ (9)

0
q̂ (D)3D + VF̂ (9) + (2max � F̂ (9))* (18)

P����. According to lemma B.3 in [25], RORO(I) incurred carbon emissions for a job with a length of 2 is upper-bounded by:

RORO(I) 
π F (9)

0
qOCS-min (D)3D + VF (9) + (2 �F (9))* ,F (9) 2 [0, 2] (19)

whereF (9) is the progress at time 9 (9 )) before the compulsory execution. The term (2 �F (9))* denotes the maximum carbon emissions
while doing the compulsory execution to satisfy constraint (2). Since ˆALG2 is not aware of the actual job length (2), the maximum carbon

emitted during the compulsory execution is (2max�F̂ (9))* . Therefore ˆALG2 (I) is upper-bounded by
Ø F̂ (9)

0 q̂ (D)3D+VF̂ (9) + (2max�F̂ (9))* , :
F̂ (9) 2 [0, 2min] ⇤

Combining Lemma A.3 and Lemma A.4 gives:

ˆALG2 (I)
OPT(I) 

Ø F̂ (9)

0 q̂ (D)3D + VF̂ (9) + (2max � F̂ (9))*
(q̂ (F̂ (9)) � V)2min

 U 0 + * (2max � 2min)
2min (q̂ (F̂ (9)) � V)

= U20 (20)

where the last inequality holds since for any F̂ 2 [0, 2min]:π F̂ (9)

0
q̂ (D)3D + VF̂ (9) + (2max � F̂ (9))* (21)

=
π F̂ (9)

0

"
* � V +

✓
*

U 0
�* + 2V

◆
exp

F̂ (9)

U 02min

!#
+ VF̂ (9) + (2max � F̂ (9))* (22)

= U 02min

✓
*

U 0
�* + 2V

◆ 
exp

✓
F

U 02min

◆
� 1

�
+ VF̂ (9) + (2max � F̂ (9))* + (* � V)F̂ (9) (23)

= U 02min

✓
*

U 0
�* + 2V

◆ 
exp

✓
F

U 02min

◆
� 1

�
+*2max (24)

= U 02min

"
* � 2V +

✓
*

U 0
+ 2V �*

◆
exp

F̂ (9)

U 02min

!#
+* (2max � 2min) (25)

= U 02min (q̂ (F̂ (9)) � V) +* (2max � 2min) (26)

In what follows, we will calculate the optimal U 0 (as in [25, Theorem 3.3]) to de�ne the threshold function based on the assumptions
established for ˆALG2 (namely, that ˆALG2 assumes the job has length 2min and that it must complete the job during the compulsory execution if
it has length > 2min). It is known that worst-case instances for online search problems such as OCSU occur when inputs arrive in decreasing
order of cost (i.e., carbon intensity) [25, 45, 47]. We formalize these G-instances below.

41

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

D��������� A.5 (G��������� ��� OCSU). For su�ciently large<,= 2 Z, we let X B (* �!)/<. Given G 2 [!,*], IG 2 ⌦ is an G-instance for
OCSU which consists of<G B 2d(G�!)/Xe + 1 alternating blocks of cost functions. For 8 2 [<G � 2], the 8th block contains = linear cost functions
with coe�cient* if 8 is odd, or a single linear cost function with coe�cient * � d8/2eX when 8 is even. The last 2 blocks consist of = linear cost
function with coe�cients (G + n), followed by = cost functions with coe�cients* .

As< ! 1, the alternating blocks of single “good” cost functions continuously decrease down to G , and each of these blocks is interrupted
by a long block of worst-case* functions. Note that I* is a simple stream of = cost functions, all with coe�cient* , and that the last cost
function for any IG are always* (i.e., the marginal emission is maximized during the compulsory execution).

L���� A.6. Any deterministic online algorithm ALG for OCSU which assumes the job has length 2min (and is thus forced to complete longer
jobs during the compulsory execution) has a competitive ratio of at least U 0 (where U 0 is as de�ned in (33)).

P����. On any G-instance IG , we may fully describe the actions of any deterministic algorithm ALG via a conversion function ⌘(G) :
[!,*] ! [0, 2min]. Note that this function is unidirectional (irrevocable), and non-increasing in [!,*] such that ⌘(G � X) � ⌘(G), since
processing IG�X is equivalent to �rst processing IG (besides the �nal two blocks) and then processing blocks with marginal emissions of
G � X and* . The total emission of ALG described by the conversion function ⌘(G) on instance IG is expressed as follows:

ALG(IG) = ⌘(* /U 0)* /U 0 �
π G

* /U 0
D3⌘(D) + (2 � ⌘(G))*  ⌘(* /U 0)* /U 0 �

π G

* /U 0
D3⌘(D) + (2max � ⌘(G))* (27)

We note that on an instance IG , OPT(�G) ! 2maxG as n ! 0 and = is su�ciently large. Letting ALG be U 0-competitive, we then have the
following necessary condition on the conversion function when considering equation (27):

⌘(* /U 0)* /U 0 �
π G

* /U 0
D3⌘(D) + (2max � ⌘(G))*  U 02maxG (28)

By integral by parts, (28) implies that ⌘(G) must satisfy:

⌘(G) � 2max* � U 02maxG

* � G � 2V
+ 1
* � G � 2V

π G

* /U 0
⌘(D)3D (29)

By Gronwall’s Inequality [34, p. 356, Theorem 1], we have:

⌘(G) � *2max � U 02maxG

* � G � 2V
+

"
*U 02max �*2max � 2V2max

D + 2V �*
� U 02max ln(D + 2V �*)

#G
* /U 0

(30)

⌘(G) � U 02max ln(* /U 0 + 2V �*) � U 02max ln(G + 2V �*) (31)

By the problem de�nition, the job with length 2min should be completed upon observing the best carbon intensity !, i.e.,⌘(G)  ⌘(!)  2min,
giving the following:

2min/2max � U 0 ln(* /U 0 + 2V �*) � U 0 ln(! + 2V �*). (32)

The optimal U 0 is obtained when the above inequality is binding, which gives the following:

U 0 =

2max
2min

,


2min
2max

✓
2V
*

+ !

*
� 1

◆
exp

✓
2min
2max

✓
2V
*

� 1
◆◆�

� 2V
*

+ 1
��1

. (33)

⇤

Step 2: By scaling up ˆq (F),F 2 [0, 2min] to the factor of 2max/2min, we will have q2 (F),F 2 [0, 2max] in (7). The competitive ratio of
ROROcmin that utilizes q2 (F) can be derived using the following two cases:
• If ROROcmin completes any amount of the job before the compulsory execution. In this case, the analysis from Section 4 exactly
translates to the ROROcmin setting. Substituting q2 for q1 gives the following competitive bound for this case:

ROROcmin (I)
OPT(I) =

*

U 0!
+ 2V

!
. (34)

• If ROROcmin completes none of the job before the compulsory execution. In this case, we know that OPT(I) is lower-bounded by
q2 (0) � V , because if a cost function better than q2 (0) � V arrived during the instance I, ROROcmin would have completed a non-zero amount
of the job before the compulsory execution. This gives the following competitive bound:

ROROcmin (I)
OPT(I) =

*2min
[q2 (0) � V] 2min

=
*

*/U 0 = U 0 . (35)

Because U 0 approaches */! as 2max/2min grows, the competitive ratio in the second case is the worst-case bound, yielding the following
competitive bound for ROROcmin:

U2 = U 0 . (36)

42

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Here we note that U2 does not contain an extra linear dependence on 2max/2min which is present in U20 , implying that U2  U20 . This is
intuitive, since even if ˆALG2 completes some fraction of the job before the compulsory execution, it must complete (2max � 2min) of the job
during the compulsory execution, whereas the scaled threshold in ROROcmin allows it to be more �exible. In the rest of the paper, we use the
design of ROROcmin as our baseline based on its improved theoretical bounds and its superior performance in experiments.

A.3 Analyzing the impact of rate constraints
We note that the rate constraint 3C : C 2 [)] surprisingly does not appear in the worst-case analysis of ROROcmax and ROROcmin. In this
section, we give intuitive justi�cation to explain this dynamic for completeness.

Speci�cally, we show that when a threshold-based algorithm (i.e., ROROcmax or ROROcmin) achieves a certain competitive ratio for OCSU
when 3C = 2 8C 2 [9] (i.e., when the rate allows completing the entire job in a single time slot), the worst-case competitive ratio will stay
constant if 3C < 2 8C 2 [9].

L���� A.7. Let ALG denote a threshold-based algorithm for OCSU which uses a threshold functionk (F). Suppose ALG is [-competitive when
3C = 2 8C 2 [9]. If 3C < 2 8C 2 [9], the competitive ratio of ALG is still upper bounded by [.

P����. We consider the case where a rate constraint 3C < 2 causes ALG to make a decision which violates its worst-case competitive
ratio of [. At any arbitrary time slot C , the disconnect between the setting where GC 2 [0, 2] and the setting with rate constraints < 2 ,
where GC 2 [0,3C], is that GC cannot be > 3C . Intuitively, a challenging situation for ALG under such a constraint is the case where ALG
would otherwise run more than > 3C of the job during a period of “good” carbon intensity (before the compulsory execution), but it is now
constrained from doing so.

We now show that such a situation implies that ALG achieves a worst-case competitive ratio which is equal to or better than [. Recall that
F (C) denotes the progress of ALG after time step C .

For an instance I 2 ⌦ and an arbitrary time step<, letF (<) = F (<�1) +3< , implying that G< = 3< . For the sake of comparison, we �rst
consider this time step with a cost function 6< (·) such that 6< (G<) + V |G< � G<�1 | = k (F (<))G< , implying that even if the rate constraint
was not present, ALG would set G< = 3< . If no more of the job is completed by ALG after time step< (ignoring the compulsory execution),
we know that ALG is [-competitive (e.g., for ROROcmax, [= U1, and for ROROcmin, [= U2).

Consider the exact same setting, except with a substituted cost function 60< (·), such that 60< (G<) + V |G< � G<�1 | < k (F (<)) · G< . We
denote this new instance by I0. This implies that without the presence of a rate constraint, ALG would set G< > 3< . In other words, 60< (·)
has a “good carbon intensity”, but ALG cannot run as much of the job as it otherwise should due to the rate constraint.

Note that OPT is also subject to the same rate constraint 3< . Thus, we know that OPT(I0) is lower bounded by [k (F (<)) � V] (1 � 3<) +
60< (3<) – the rest of the optimal solution is bounded by the �nal threshold value, since we assume that no more of the job is completed by
ALG after time step<.

The worst-case carbon emission of ALG is upper bounded by ALG(I0)  ALG(I) �
Ø F (<)

F (<�1) k (D)3D + 60< (3<), which follows since we
substitute the last portion of the threshold function (of “width” 3<) with the new cost function 60< (3<).

Compared to the previous setting of I, the OPT and ALG solutions have both decreased – OPT(I0) has decreased by a factor of 60< (3<) �
[k (F (<)) � V]3< , while ALG(I0) has decreased by a factor of 60< (3<) �

Ø F (<)

F (<�1) k (D)3D.
However, note that sincek is monotonically decreasing inF , by de�nition, [k (F (<)) � V]3< <

Ø F (<)

F (<�1) k (D)3D. Thus, the cost of ALG
has improved more than the cost of OPT. This then implies the following:

ALG(I)
OPT(I) 

ALG(I) �
Ø F (<)

F (<�1) k (D)3D + 60< (3<)
[k (F (<)) � V] (2 � 3<) + 60C (3<)

< [.

At a high-level, this result shows that even if there is a rate constraint which prevents ALG from accepting a good carbon intensity, the
worst-case competitive ratio does not change. ⇤

A.4 LACS Consistency and Robustness for OCSU
In the following, we prove Theorem 4.3, which states that the instantiation of LACS for OCSU is (U + W)-consistent andh⇣
1 � W

U1�sign(U1�U2)n�U
⌘
Umax
ROROpred

+
⇣
W (U1�sign(U1�U2)n)
U1�sign(U1�U2)n�U

⌘i
-robust. We note that consistency and robustness in learning-augmented al-

gorithm design describe an algorithm’s performance when the predictions are exactly accurate and entirely incorrect, respectively. See
De�nition 2.2 for the formal de�nitions of both consistency and robustness.

43

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Bostandoost et al.

P���� �� T������ 4.3. Initially, we start by noting that the online solutions given by ROROrobust and LACS are always feasible considering
the constraint in Equation 2. Let I 2 ⌦ be an arbitrary valid OCSU sequence, and for a job with length 2:

ROROrobust (I) :
)’
C=1

G̃C =
)’
C=1

[:G1C + (1 � :)G2C] > :2 + (1 � :)2 > 2

LACS(I) :
)’
C=1

GC =
)’
C=1

[_ĜC + (1 � _)G̃C] > _2 + (1 � _)2 > 2

⇤

L���� A.8. The carbon emissions of ROROrobust is bounded by:

ROROrobust (I)  :ROROcmax (I) + (1 � :)ROROcmin (I) (37)

P����.

ROROrobust (I) =
)’
C=1

6C (G̃C) +
)+1’
C=1

V |G̃C � G̃C�1 |

=
)’
C=1

6C (:G1C + (1 � :)G2C) +
)+1’
C=1

V |:G1C + (1 � :)G2C � :G2(C�1) � (1 � :)G2(C�1) |

 :
)’
C=1

6C (G1C) + (1 � :)
)’
C=1

6C (G2C) +
)+1’
C=1

V |:G1C � :G1(C�1) | +
)+1’
C=1

V | (1 � :)G2C � (1 � :)G2(C�1) |

 : (
)’
C=1

6C (G1C) + V |G1C � G1(C�1) |) + (1 � :) (
)’
C=1

6C (G2C) + V |G2C � G2(C�1) |)

 :ROROcmax (�) + (1 � :)ROROcmin (�)
⇤

Since ROROcmax (I)  U1OPT(I) and ROROcmin (I)  U2OPT(I) by de�nition, we have:

ROROrobust (I)  (:U1 + (1 � :)U2)OPT(I) (38)
ROROrobust (I)  (: (U1 � U2) + U2)OPT(I) (39)

We denote n 2 [0, |U1 � U2 |], and we set : = 1 � n
|U1�U2 | ; therefore, we have:

ROROrobust (I)  (U1 � sign(U1 � U2)n)OPT(I) = UROROrobustOPT(I) (40)

where sign(G) is the sign function.
By using the same proof in Lemma A.8, we can show that:

LACS(I)  _ROROpred (I) + (1 � _)ROROrobust (I) (41)

L���� A.9. LACS is (U + W)-consistent with accurate predictions.

P����. We assume ROROpred (I) has the perfect prediction of the job length (2̂ = 2), and by leveraging the perfect prediction (excepting
minor di�erences in the compulsory execution), we have that ROROpred (I) = RORO(I). Therefore, by de�nition, ROROpred (I)  UOPT(I)

Considering Equation 40 and Equation 41, we have:

LACS(I)  _ROROpred (I) + (1 � _)ROROrobust (I) (42)
LACS(I)  _UOPT(I) + (1 � _)UROROrobustOPT(I) (43)
LACS(I)  (_U + (1 � _)UROROrobust)OPT(I) (44)
LACS(I)  (_U + (1 � _) (U1 � sign(U1 � U2)n))OPT(I) (45)

Since U  U1�sign(U1�U2)n 8n 2 [0, |U1�U2 |], and we haveW 2 [0,U1�sign(U1�U2)n�U]; therefore we set _ = 1� W
U1�sign(U1�U2)n�U ,

and we have:

LACS(I)  (U + W)OPT(I) (46)

⇤

L���� A.10. LACS is
✓ ⇣

1 � W
U1�sign(U1�U2)n�U

⌘
Umax
ROROpred

+
⇣
W (U1�sign(U1�U2)n)
U1�sign(U1�U2)n�U

⌘ ◆
-robust for any prediction.

44

LACS: Learning-Augmented Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand E-Energy ’24, June 04–07, 2024, Singapore, Singapore

P����. To calculate the competitive ratio of ROROpred (I) when the job length prediction error is maximized, we consider two cases:
Case (i) [2̂ = 2min, 2 = 2max]: Since ROROpred assumes the job length is 2min it will utilize the threshold function below:

q (F) = * � V +
✓
*

U
�* + 2V

◆
exp

✓
F

2minU

◆
(47)

Let F (9) be the �nal progress before the compulsory execution at time 9 ) , and let I 2 ⌦ be a OCSU sequence that the minimum
carbon intensity ! is revealed at time<  9 ) . By disregarding extra switching emissions, OPT(I) ! 2max!. In [25], by the de�nition of
the threshold function for any job length, we use the threshold function for 2min in Equation 47, when the minimum carbon intensity !
arrives at time<, the remained amount of the job untilF (9) would be scheduled; hence,F< = F (9) and< = 9 , and according to Lemma
B.2 in [25], ! = q (F (9)) � V which means no other carbon intensities are accepted and the rest of the job (2min �F (9)) should be done
during compulsory execution. By Lemma B.3 in [25] and observing that the rest of the job must be completed in the compulsory execution,
ROROpred (I) is upper-bounded by:

ROROpred (I) 
"π F (9)

0
q (F) + VF (9) + (2min �F (9))*

#
+ (2max � 2min)* (48)

 [U (q (F (9)) � V] + (2max � 2min)* (49)
 U! + (2max � 2min)* (50)

The term (2max � 2min)* in (48) is the amount of remaining job that must be done during compulsory execution since 2 = 2max.
Considering (50) and the lower bound of OPT(I), we have:

ROROpred (I)
OPT(I)  U! + (2max � 2min)*

2max!
 U

2max
+ 2max � 2min

2max

*

!
= U1

ROROpred
(51)

Case (ii) [2̂ = 2max, 2 = 2min]: In this case, ROROpred uses the exact same threshold function as ROROcmax. Thus, ROROcmax (I) = ROROpred (I),
and we inherit the following competitive bound:

ROROpred (I)
OPT(I)  *

U!
+ 2V

!
= U2

ROROpred
(52)

Considering both Case (i) and Case (ii), we let Umax
ROROpred

= max{U1
ROROpred

,U2
ROROpred

} to re�ect the worst-case in either of these cases. By
Equation 41, we have the following robustness bound:

LACS(I)  _ROROpred (I) + (1 � _)ROROrobust (I) (53)
LACS(I)  _Umax

ROROpred
OPT(I) + (1 � _)UROROrobustOPT(I) (54)

LACS(I)  (_Umax
ROROpred

+ (1 � _) (U1 � n))OPT(I) (55)

LACS(I) 
 ✓

1 � W

U1 � sign(U1 � U2)n � U

◆
Umax
ROROpred

+
✓
W (U1 � sign(U1 � U2)n)
U1 � sign(U1 � U2)n � U

◆ !
OPT(I) (56)

⇤

By combining the results of Lemma A.9 and Lemma A.10, the statement of Theorem 4.3 follows, and we conclude that LACS for OCSU is
(U + W)-consistent and

h⇣
1 � W

U1�sign(U1�U2)n�U
⌘
Umax
ROROpred

+
⇣
W (U1�sign(U1�U2)n)
U1�sign(U1�U2)n�U

⌘i
-robust.

45

	Abstract
	1 Introduction
	2 Problem Statement
	3 Algorithm Descriptions
	3.1 Algorithmic Background
	3.2 LACS: A Learning-augmented Algorithm for Carbon-aware Resource Scaling

	4 Theoretical Results
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Effect of Maximum Job Length
	5.3 Effect of Switching Emissions
	5.4 Effect of Job Length Prediction Error
	5.5 Real-world Considerations
	5.6 Effect of Scaling Profiles

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Deferred Proofs from [sec:analysis]Section 4
	A.1 Competitive Proofs for ROROcmax
	A.2 Competitive Proofs for ROROcmin
	A.3 Analyzing the impact of rate constraints
	A.4 LACS Consistency and Robustness for OCSU

