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ABSTRACT
We introduce and study online conversion with switching costs,
a family of online problems that capture emerging problems at
the intersection of energy and sustainability. In this problem, an
online player attempts to purchase (alternatively, sell) fractional
shares of an asset during a �xed time horizon with length ) . At
each time step, a cost function (alternatively, price function) is re-
vealed, and the player must irrevocably decide an amount of asset
to convert. The player also incurs a switching cost whenever their
decision changes in consecutive time steps, i.e., when they increase
or decrease their purchasing amount. We introduce competitive
(robust) threshold-based algorithms for both the minimization and
maximization variants of this problem, and show they are optimal
among deterministic online algorithms. We then propose learning-
augmented algorithms that take advantage of untrusted black-box
advice (such as predictions from a machine learning model) to
achieve signi�cantly better average-case performance without sac-
ri�cing worst-case competitive guarantees. Finally, we empirically
evaluate our proposed algorithms using a carbon-aware EV charg-
ing case study, showing that our algorithms substantially improve
on baseline methods for this problem.
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1 PROBLEM FORMULATION
We present the online conversion with switching costs (OCS) prob-
lem, focusing on theminimization variant (OCS-min) in this abstract.
In OCS-min, an online player must buy an asset with total size ⇠ ,
while minimizing their total cost. Without loss of generality, let
⇠ = 1. At each time step C 2 [) ], a convex cost function 6C (·) arrives
online. The player can buy GC 2 [0,3C ] amount of the asset at a cost
of 6C (GC ), where 3C  1 is a rate constraint that limits the purchase
amount. Following convention, 6C (0) = 0; i.e., if the player pur-
chases nothing, they pay no cost, and 6C (GC ) � 0 for any valid GC .
Whenever the player’s decision changes in consecutive time steps,
they incur a switching cost that is formalized as V |GC � GC�1 |, where
V is a coe�cient charging the online player proportionally to their
absolute movement. We let G0 = 0 and G)+1 = 0, forcing any player
to incur some switching costs to “turn on” and “o�”, respectively.

The online playermust purchase the entire asset before the end of
the sequence (the “deadline”). If the player has boughtF (C ) 2 [0, 1]
fraction of the asset at time C , a compulsory trade begins whenÕ)
g=C+1 3g < 1 �F (C ) (i.e., when the future purchase opportunities

will not be enough). During this compulsory trade, a cost-agnostic
algorithm takes over and purchases maximally to satisfy the con-
straint. The o�ine version of OCS-min can be formalized as follows:

min
{GC 2 [0,3C ]:C 2 [) ] }

)’
C=1

6C (GC )

|      {z      }
purchasing

+
)+1’
C=1

V |GC � GC�1 |

|              {z              }
switching

, s.t.,
)’
C=1

GC = 1,

|      {z      }
deadline

(1)

Our focus is on the online version of OCS, where the player
must make irrevocable decisions GC at each time step without the
knowledge of future inputs. The most important unknowns are the
cost functions 6C (·), which are revealed online.

Competitive analysis. Our goal is to design an online algorithm
that maintains a small competitive ratio. For an online algorithm
ALG and an o�ine optimal solution OPT, ALG is 1-competitive if
ALG(I)  1OPT(I) 8I 2 ⌦, where I denotes a valid input se-
quence for the problem and ⌦ is the set of all feasible inputs.

In the emerging literature on learning-augmented algorithms,
competitive analysis is interpreted through consistency and robust-
ness. Let LALG(I, Y) denote the cost of learning-augmented algo-
rithm LALG on input I when provided predictions with error Y.
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LALG is 2-consistent when predictions are correct if LALG(I, 0) 
2OPT(I) 8I 2 ⌦, and A -robust if LALG(I, E)  AOPT(I) 8I 2 ⌦,
where E is a maximum error (or 1).

Assumptions and additional notation. We assume that cost func-
tions {6C (·)}C 2 [) ] have a bounded derivative, i.e. !  36C/3GC  * ,
where ! and * are known. We assume that all 6C (·) are convex –
this models diminishing returns, and is empirically valid for the
applications of interest. The switching cost coe�cient V is known
to the player, and is bounded within an interval V 2 (0,* �!/2).

2 ALGORITHMS AND MAIN RESULTS

Algorithm 1 Online Ramp-On, Ramp-O� (RORO) framework
1: input: R���O�( ·) problem, R���O��( ·) problem ,
2: pseudo-cost function PC���( ·)
3: initialization: initial decision G0 = 0, initial utilization F (0) = 0;
4: while cost/price function 6C ( ·) is revealed and F (C�1) < 1 do
5: solve the (ramping-on problem) to obtain decision G+

C and its
pseudo cost A+C ,

G+
C = R���O�(6C ( ·),GC�1 ), (2)

A+C = PC���(6C ( ·),G+
C ,GC�1 ) . (3)

6: solve the (ramping-o� problem) to obtain decision G�
C and its

pseudo cost A�C ,

G�
C = R���O��(6C ( ·),GC�1 ), (4)
A�C = PC���(6C ( ·),G�

C ,GC�1 ) . (5)

7: if A+C  A�C then set GC = G+
C else set GC = G�

C ;
8: update the utilization F (C ) = F (C�1) + GC ;

Competitive algorithms. We present an online optimization
framework called Ramp-On, Ramp-O� (RORO). At each time step
RORO solves two pseudo-cost minimization problems, with a restricted
decision space in each (the ramping-on and ramping-o� prob-
lems). Pseudo-cost minimization is an online search technique that
generalizes threshold-based design for continuous decision spaces.

In the full paper [1], we provide more context about how the
RORO framework’s dynamic threshold approach simultaneously gen-
eralizes prior work [2] on pseudo-cost minimization for one-way
trading and our prior work on an online search problemwith switch-
ing costs and a binary decision space (online pause and resume).

D��������� 1 (D������ ��������� q ��� OCS-min). For any
utilization F 2 [0, 1], q (F) = * � V + (*/U � * + 2V) exp(F/U),
where U is the competitive ratio and is de�ned in (9).

D��������� 2 (RORO ������������� ��� OCS-min (RORO-min)).
RORO solves OCS-min when instantiated with the following pseudo-
cost, ramping-on problem, and ramping-o� problem:

PC���(6C ( ·),GC ,GC�1 ) = 6C (GC ) + V |GC � GC�1 |�
π F (C�1) +GC

F (C�1)
q (D )3D,

(6)
R���O�(6C ( ·),GC�1 ) = argmin

G 2 [GC�1,min(1�F (C�1) ,3C ) ]
PC���(6C ( ·),G,GC�1 ), (7)

R���O��(6C ( ·),GC�1 ) = argmin
G 2 [0,min(GC�1,3C ) ]

PC���(6C ( ·),G,GC�1 ) . (8)

In the following, we state our main theoretical results for OCS-min.

T������ 3. RORO-min is U-competitive for OCS-min, where U is
the solution to * �!�2V

* /U�* �2V = exp(1/U) and is given by

U :=

,

✓✓
2V
*

+ !

*
� 1

◆
4
2V/*�1

◆
� 2V

*
+ 1

��1
. (9)

In the above,, (·) is the Lambert, function.

T������ 4. No deterministic online algorithm for OCS-min can
achieve a competitive ratio better than U , as de�ned in (9).

Learning-augmentation. We consider how untrusted advice
(e.g., from an ML model) can help break past pessimistic competi-
tive bounds for OCS. We propose a meta-algorithm, RO-Advice, that
integrates black-box advice to signi�cantly improve performance.

D��������� 5 (B�������� ������ ����� ��� OCS). A learning-
augmented algorithm LALG receives advice of the form {ĜC }C 2 [) ] for
some valid instance I. If the advice is correct, a naïve algorithm ADV

choosing ĜC at each time step satis�es ADV(I) = OPT(I).
RO-Advice combines the robust decision of RORO (denoted by

G̃C ) at each time step with the predicted ĜC obtained from the black-
box advice. Let n 2 [0,U � 1] parameterize a trade-o� between
consistency and robustness. RO-Advice-min sets a combination
factor _ := U�1�n

U�1 2 [0, 1] that determines the decision fraction
from each subroutine (i.e., _ from the black-box advice and (1 �
_) from RORO). At each time step, RO-Advice chooses the online
decision GC = _ĜC + (1 � _)G̃C .

T������ 6. Given a parameter n 2 [0,U � 1], RO-Advice-min
is (1 + n)-consistent and

⇣
(* +2V )/! (U�1�n )+Un

(U�1)
⌘
-robust for OCS-min.

In the full paper [1], we prove and discuss all of the above results
in detail. We also provide additional theoretical results about the
advice complexity of OCS, showing that prior advice models used
for e.g., one-way trading are insu�cient for the OCS setting.

Experiments. In the full paper [1], we implement and evaluate
RORO and RO-Advice for the motivating task of carbon-aware elec-
tric vehicle (EV) charging. We use real EV charging traces, carbon
intensity data, and a pre-trained open-source ML model for carbon
forecasts, showing that RORO and RO-Advice perform well.
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