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ABSTRACT

This article investigates the theoretical and empirical performance of Fisher-Pitman-type permutation tests
for assessing the equality of unknown Poisson mixture distributions. Building on nonparametric maximum
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likelihood estimators (NPMLEs) of the mixing distribution, these tests are theoretically shown to be able to

adapt to complicated unspecified structures of count data and also consistent against their corresponding
ANOVA-type alternatives; the latter is a result in parallel to classic claims made by Robinson. The studied
methods are then applied to a single-cell RNA-seq data obtained from different cell types from brain samples
of autism subjects and healthy controls; empirically, they unveil genes that are differentially expressed
between autism and control subjects yet are missed using common tests. For justifying their use, rate
optimality of NPMLEs is also established in settings similar to nonparametric Gaussian (Wu and Yang) and
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binomial mixtures (Tian, Kong, and Valiant; Vinayak et al.). Supplementary materials for this article are

available online.

1. Introduction

Considering an experiment with multiple samples drawn from
multiple populations, distinguishing possible difference among
them in one or more dimensions is a fundamental statistical
task. In the classical test of the null hypothesis of no mean
differences, one-way analysis of variance (ANOVA, see Fisher
1925) F-test is perhaps the most commonly used tool, and is the
uniformly most powerful invariant one under additional normal
assumption, see Scheffé (1959, p. 50).

Despite its popularity, one-way ANOVA has its competing
alternatives. In the context of randomized experiments, Fisher
(Fisher 1935) initialized an ingenious permutation approach
as an alternative to performing ANOVA F-test. This idea was
later developed further by Pitman (Pitman 1938). The resulting
procedures, often termed the Fisher-Pitman permutation tests
in literature, achieve the appealing property of being exactly
distribution-free and have been suggested in various contexts
as, for example, when the distributional assumptions of F-tests
no longer hold (Marascuilo and McSweeney 1977; Still and
White 1981; Berry and Mielke 1983). Robustness properties
have been further studied empirically (Boik 1987) and theo-
retically (Chung and Romano 2013); power analyses were also
performed in Hoeftding (1952) and Robinson (1973).

Although being originally defined in Euclidean spaces, it is
by now well understood that the ANOVA F-tests and especially
their permutation-type alternatives are able to adapt to an
arbitrary metric space. This is via the approach of “interpoint”

distance functions (Mielke Jr., Berry, and Johnson 1976;
Mielke Jr. 1984) that uses an alternative representation of the
F statistic as a function of between- and within-group pairwise
distances. Thus, through replacing the original Euclidean
distance by any properly defined distance function, the idea of
Fisher-Pitman permutation tests is now implementable in many
complicated metric spaces beyond the Euclidean (Anderson
2001; Mielke and Berry 2007; Petersen and Miiller 2019).

Our study of Fisher-Pitman-type permutation tests stems
from the analysis of single-cell RNA-seq (scRNA-seq) data,
and particularly, a framework that was recently promoted in
Sarkar and Stephens (2021). There, the authors described how
a separation of measurement and expression models is able to
clarify confusion in modeling scRNA-seq data, and accordingly
advocated using the terminology of Poisson mixtures to unify
many existing models (see Table 1 in Sarkar and Stephens 2021).
In detail, thinking about Xi(jk) to be the absolute expression of
a specific gene in cell i € [Ny] := {1,2,..., Ny} of subject
j € [ni] of population k € [K], we are interested in studying the
following model of Xl.(jk) that is a slight simplification to Sarkar
and Stephens’s Equation (1):

(measurement model)
(1.1)

(expression model) (1.2)

k) | 4 (k) . (k)5 (k).
Xij |kij ~P01sson(rij Aij ),

® _ ~A®
g~ Q.
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Here r,.(jk) > 0 adjusts the cell “read depth” (see Zhang, Ntranos,

and Tse 2020, p. 1), often set to be the scaled cell’s total reads
across all genes (Sarkar and Stephens 2021, eq. (1)), and in
this article is assumed to be known; Q;k) is a properly defined
distribution that describes the “expression level” of the gene
in population k and is assumed to have a compact support on
the nonnegative real line. Adopting the statistical terminology,
for each k € [K]andj € [mg], {Xl.(jk),i = L...,Ni} then
independently follow Poisson mixture distributions of point
mass functions (PMFs)

(k) \x
SN ) {Ar.. }
W= i ——dQ®Pm), x=0,1,2,...
if 0 X! ]

and a mixing distribution Q;k) that has to be characterized by
a nonparametric model; see Sarkar and Stephens (2021, sec.
“Modeling scRNA-seq data”) for a discussion of why a non-
parametric model of Q;k) is preferred in single-cell genomics,
though Sarkar and Stephens (2021) did not employ such Poisson
mixtures for individual level differential expression testing.
Based on the observations {Xl.(jk), i € [Nilj € [mlk €
[K]} as well as the measure/expression models (1.1)-(1.2), a
natural question to ask is whether there exists any population-
level gene expression difference among the K groups. For this,
we propose to leverage a Fisher-Pitman-type permutation test
based on consistent estimators {é;k), j e lnlk e [K]} of the

mixing distributions { Q;k), j e [nlk € [K]} under Wasser-
stein metrics, which have received much attention in recent
mixture distribution estimation literature (see, among many
others, Nguyen (2013), Tian, Kong, and Valiant (2017), Vinayak
et al. (2019), Wu and Yang (2020), and the references therein).
Particularly appealing choices to us include the NPMLE a]gk)
and its Poisson-smoothed one ha('k) (notation to be introduced
by the end of this section); see Sejction 2 ahead for the detailed
description of the testing procedure.

Many methods have been developed for differential expres-
sion analysis of scRNA-seq data (Chen, Ning, and Shi 2019).
However, their focus is differential expression between two
groups of cells instead of two groups of individuals. For indi-
vidual level testing, a standard approach is to add up gene
expression across all the cells (of a particular cell type) of an
individual to create a pseudo-bulk sample, and then apply the
methods for differential expression analysis using bulk RNA-
seq data, such as DESeq2 (Love, Huber, and Anders 2014). The
novelty of our proposed procedure is that we assess differential
expression across individuals using cell level data instead of
pseudo-bulk data. Furthermore, the proposed tests are shown
to be consistent against their ANOVA-type alternatives, that is,
they are able to asymptotically distinguish the null from any
fixed alternative where the “between-group” variation is larger
than the “within-group” variation, a result that sheds insight
to the power of the developed tests and is in line with classic
observations (Hoeffding 1952; Robinson 1973).1

'In addition to developing a more flexible nonparametric model, another
route to boost the power of differential expression analysis is to de-noise
the scRNA-seq data; see Zhang et al. (2022) for a proposal along that track.
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As a byproduct of our theoretical study, this article fur-
ther justifies the use of NPMLEs via establishing their rate-
optimality in estimating the Poisson mixing distribution under
the Wasserstein-1 (W) metric. Although the consistency of the
NPMLE:s has been established in the literature for different non-
parametric mixture models (see Simar (1976) for nonparametric
Poisson mixtures; and Chen (2017) and the references therein
for more general models), NPMLEs’ rates of convergence and
their matching to a minimax lower bound are long standing
until very recently. Built on the breakthroughs in binomial
(Tian, Kong, and Valiant 2017; Vinayak et al. 2019) and Gaussian
mixtures (Wu and Yang 2020) (see also Jiang and Zhang (2019)
for a related study on the nonparametric likelihood ratio test)
as well as the new analytical techniques devised in Jiao et al.
(2015), Wu and Yang (2016), Jiao, Han, and Weissman (2018),
and Han and Shiragur (2021), we are now able to further the
optimality of NPMLEs to the nonparametric Poisson mixtures
under minimal assumptions on the true mixing distribution
function. These results yield additional theoretical support for
the use of NPMLEs in our developed tests.

The rest of this article is organized as follows. Section 2
describes the model setup and studies the size and power of the
proposed permutation tests. Section 3 discusses implementation
of the developed test. The finite-sample performance of the
developed (smoothed or not) NPMLE-based permutation tests
is investigated in Section 4. Section 5 applies the studied tests
to a real scRNA-seq data containing single brain nuclei from
autism subjects and healthy controls (Velmeshev et al. 2019) and
discover significantly differentially expressed genes that cannot
be detected using the benchmark DESeq2 method applied on
pseudo-bulk data (Love, Huber, and Anders 2014). In Section 6,
we justify the use of NPMLEs in the permutation tests outlined
in Section 2 by providing minimax optimality results for the
NPMLE for nonparametric mixture of Poissons. All the proofs
are relegated to a supplementary materials.

Notation. For any two distributions P, Q on the real line,
the Wasserstein-1 distance is defined to be W{(P,Q) :=
SUPgerip, J £(dP — dQ), where Lip, represents all 1-Lipschitz
functions. For any distribution Q on the nonnegative real line,
we define its Poisson smoothed version as

o )LX
ho(x) = / e‘A;dQ(A), x=0,1,2,...
0 .

For any two constants a, b, we denote a Vv b := max{a, b} and
a A b:= min{a, b}.

2. Permutation Tests
2.1. Setup

Throughout this section, it is assumed that the observations are

heterogeneous count data {Xi(jk),i € [Nil,j € [ml.k € [K]}
witthk = Njkn — ocoand ng = ng, —> coasn = » ng —
00. In contrast, K > 2 is assumed to be a fixed integer. It is
further assumed that the probability measures Q;k) s in (1.1)
have a common support [0, B] for some B > 0 that is known
a priori (see appendix Section C for a real implementation) and
kept to be fixed in this section; later in Section 6 we will explore
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a more general setting where B = B, is allowed to increase
with n.

To facilitate the approach to distinguishing differences
among the K groups, in addition to the measurement model
(1.1) and the expression model (1.2), a third-layer “population
model” is introduced to encourage iid randomness among each
ni within-group expression models:

iid
(population model)

foreach k € [K] :
(2.1)

Here Qy is understood to be a probability measure over the
Prohorov-metric topology of the space of probability measures
that are defined on the Borel o-field of [0, B]; details about
constructing Prohorov-metric topology are referred to pp. 72—
73 in Billingsley (1999). Following the discussions in Sarkar
and Stephens (2021, sec. “Modeling scRNA-seq data”), we do
not specify Qy except for assuming boundedness and well-
definedness.

To wrap up, the model considered in this manuscript, sum-
marizing the three layers ((1.1), (1.2), (2.1)), is

{xiP.1 € Nyl j € I k e K1)
are independently distributed with PMFs

/[/Be <k>{ ()}x
0

x=0,1,2,....

—2—dQ() |dQu(@.
(2.2)

Under the above model, it is understood that Q;,..., Ok
and K > 2 are fixed, all of which won’t change with n. Besides
Q1,..., 9k and accordingly the random measures Q](k)’s, the

observations Xij (k5 also depend on the read depths r(]k) rl(]kz ’s
that are allowed to change with n. We are hence faced with a

triangular array of possibly highly heterogeneous observations.

2.2. Tests

Under Model (2.2), we are interested in testing the following null
hypothesis,

Hy:9,=9,=---=0Qx,

and aim to detect any population-level difference between
groups. Note that here, due to the incorporation of read depths
(Jk)’s, the measurements themselves even within each group
are generally not identically distributed; thus, a naive empirical
distribution function based test could be substantially biased.
The main interest of this article is to explore how robust a

Fisher-Pitman-type test can be when each unobserved subject-

(2.3)

level random measure ng) is replaced by a plug-in-type estimate

6]@ and its Poisson-smoothed version ha(k) calculated from the

measurements ng), .. ,XI(\},;?( j- To this end, let’s regulate aj( M as

follows.

Definition 2.1. For any j € [ny] and any k € [K], an estimator
Q;k) of Q](k) is said to be subject-specific conditionally W;-
consistent (shorthanded as “conditionally Wj-consistent”) if it

is (i) a function of X(k) .. <k)

satisfying

; (ii) of support [0, B]; and (iii)

~(k k k
E[W1(Q;)>Q; )> ‘ Q]()] — 0as Njy = Njgy —> 00 (2.4)

for almost all Q;k) with regard to the measure Q.

We next consider the Poisson-smoothed mixing distribution

estimator
o
h>w = / e
Q 0

based on any conditionally W;-consistent estimator ajk). It

A~
P QP o)
X!

justifies the use of smoothed NPMLE:s as an alternative to 6]@.
Note that in the classic setting when read depths are all forced
to be equal, Proposition 3.1 in Lambert and Tierney (1984)
showed that some h~(k) can approximate hQ(k) polynomially

J
fast. Accordingly, although the differences between Q; s can be
larger than those between h o® ’s, the differences between (NQ(k) ’s

J
can be smaller than those between ha(k) s. See also Section 4.1 for

some numerical results as well as Han Miao, and Shen (2021)
for some related theoretical discussions.

Theorem 2.1. Suppose a;k) is conditionally Wj-consistent.
Then

E{Wl (hQ(k)’ Q(k)) ‘ Q( )} — 0as Njx = Njkn = 00

for almost all Q;k) with regard to the measure Q.

A particularly appealing candidate estimator of the mixing
distribution is the following NPMLE a;k) with read depth incor-
porated:

x®

00 (k) {Ar(k)} i
log/ e i —————dQ(A).
0 Xi]

(2.5)

0w
QY e

argmax
Q of support [0,B] i€[Nj]

Note that here a](k) may not be unique due to read depths,
and if there are multiple choices, pick any one of them (see
Remark 3.1). We shall discuss the calculation of a}k) in Sec-
tion 3. The next theorem shows that NPMLEs are conditionally
W-consistent under no further assumptions on the population
measures Qs except for the already imposed bounded support
one.

Theorem 2.2 (Conditionally Wl—consistency of NPMLEj).

Assume Nji = Nj,, — 00 as n — 00, r(]) = 11'1 € [yo, 1] are

uniformly upper and lower bounded by two positive universal
constants yp, ¥1, and Qk’s have a common fixed support [0, B].
We then have the NPMLEs ajk)’s are all conditionally W;-
consistent.



Remark 2.1. In the literature, consistency of NPMLEs of mix-
ing distributions under the classical iid mixture distribution
setup (corresponding to the case with all read depths identi-
cal to each other) has been studied in depth. Notable results
include Kiefer and Wolfowitz (1956), Simar (1976), and Pfan-
zagl (1988); note also the survey by Chen (2017). However,
although arising naturally from single-cell genomics modeling,
read-depth-incorporated nonparametric mixture distributions

x )

(Q(kl) Q(kz))
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have not received much attention in mathematical statistics and,
to our knowledge, Theorem 2.2 delivers the first consistency
result for NPMLEs under this heterogeneous setting.

Based on any conditionally W;-consistent estimators {6]@ }
of {Q}k)} and their Poisson-smoothed versions ha(k) ’s, the pro-
J

posed ANOVA-type (pseudo-F) test statistics are

>k oy w(@hal)

F . ki,k2€[K] ji€lng Liz€lng, ] cIK] ]1] Sein]
o (k) Xk
“L Z Wi (Q](I )’ Q;z)>
ke[K]  jij2€lngl
and
2 2
% Z Z (hN(kl) > h (kz)) - i’lLk Wl (ha(k) S ha(k))
= kika€[K] jr€lng, Ljz€lng, ] i) kelK1 * jijaclngd ) )
h = ,
Yo LW (hQ(k>,hQ<k>)
kelK] ~ jija€lngl ) 2

Itis ready to check that these two test statistics both reduce to the
original one-way ANOVA statistic if the examined space is the
real space equipped with the Euclidean norm. The studied statis-
tics then generalize the one-way ANOVA statistics to the Wy-
metric measure space with different inputs (mixing distribution
smoothed or not); similar generalizations have been made in
various other (non-)Euclidean spaces (Anderson 2001; Mielke
and Berry 2007; Petersen and Miiller 2019).

We then move on to introduce the corresponding permuted
ANOVA-type test statistics. To this end, for each permutation
: [n] = [n], let TVx = (Hjlk, I k) = 1 (j, k) represent the
or1g1nal subject and population indices corresponding to “the
jth subject in the kth group” after permutation 7. The permuted
test statistics are

~(k ~(k 2 1-[]1 k) ~ l—IJZk) 2
% Z Z Wl(lel)’Q}zz)) - Z nL Z WI(Q 11k ’QHJzk )
T kik2€[K] j1€lnk, Liz€ln, ] ke[K]  juj2€lnil 1
= * *
1 H]l ) 1-[12 ) 2
g 2 W1<Q 112’< ’QJzk >
kelK]  jija€lng] It
and
1 2 1 2
DY > (h6<k1>,h~(k2>) - > m > W1<h (an,h (l_[jz,k)>
ki,k2€[K] j1€lnk, L2 €ln, ] i % kelK] ~ juj2€lng] Q 7k ik
T _ b w2’
h 2
Z nLk Z Wl(h (HJI k)>h (HJ'ka)>
kelK]  jija€lml inll'k njlzz’k

The following are the Fisher-Pitman-type permutation tests
with nominal level a:

~ 1,
Ty =
:0,
T =K _
~ R 1fP(F <Fh|Q ) >1—a,
Thy = 0

where the probability here is only with respect to the random
permutation 7.

if PF" < F| Q(k)s) >1—aq,

otherwise,

and

—

otherwise,

As the (Poisson smoothed-)NPMLEs are chosen the corre-
sponding tests Ty and Tha are specified as T, and Th o-

2.3. Theory

This section provides the necessary theoretical support on the
presented tests F" and F” Particular focus is on the asymptotic
size and consistency agalnst Robinson-type ANOVA alterna-
tives (see Theorem 3 in Robinson 1973). To minimize assump-
tions and for presentation clearness, we are focused on the
following balanced design case:
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Assumption 2.1. The design is balanced so that ny = n/K and
Njx = Nforj € [ng], k € [K]. In addition, it is assumed that the

sets {r;.k), i € [N]} are invariant with respect to both j and k.

Remark 2.2. 'We note that Assumption 2.1 can be weakened
in a straightforward manner to allow for n/n — 1/K, Ny’s
asymptotically comparable, and the sets {rfjk) i € [Nyl} all
weakly converge to a same probability measure that does not
depend on the particular choice of j and k (see Shi, Drton, and
Han (2022, Proposition 2.2) as well as Deb and Sen (in press) for
asimilar setup in the recent independence testing literature). We
however do not pursue these tracks but rather leave them to the
readers of interest to verify.

Our first result concerns with the sizes of proposed tests, is
still valid with a finite sample size, and is a direct consequence
of a long line of literature on permutation-based tests.

Theorem 2.3 (Size validity). We have, for any finite N and #, as
long as Hy in (2.3) and Assumption 2.1 hold,
P(Ty = 1|Hp) <a and P(Tye = 1|Hp) < a.
In the following, we are focused on asymptotic results with

the balanced design and let N = N,, — oo asn — oc. The next
theorem is the main result of this section.

Theorem 2.4 (Power against ANOVA-type fixed alternatives).
Consider Q;k) ’s to be conditionally W -consistent estimators of

Q}k) s. If Assumption 2.1 holds, then the following two state-
ments are true.

., Ok such that

H % Z E{W1 (ng),ng))z}

(a) Under any fixed alternative regarding Q;, . .

ke[K]
k k
3 E(w1(Q", Q%)) 26)
K(K = 1) ’ '
k1 #k2€[K]

we have lim P(Ta = 1|H;) = 1 foreach o € (0,1).
n—oQo
., Ok such that

1 2
Hun: g 2 E{W(lge-gn) |

(b) Under any fixed alternative regarding Q;, . .

ke[K]
h h ?
E{Wl( (k1) <k2>)}
Q Q
N 2.7
< X KK —1) @7)
k1#k2€[K]

we have lim P(Th,a = 1|Hyy) = 1 for each o € (0, 1).
n—oo

Remark 2.3. Assumption (2.6) states that the average of the
Wasserstein distances within groups is less than the average of
the Wasserstein distances between groups. If then, our theory
suggested that one is able to test the differences between groups
using the permuted ANOVA-type test statistics. Assumption
(2.7) is analogous, while since the test statistics is based on
the smoothed NPMLEs, assumptions have to be made on

(I’lQ(lk) , hQ;k) )’s.

Specific to (smoothed-)NPMLEs, the following theorem is a
direct consequence of Theorems 2.2-2.4.

Corollary 2.1. Suppose Assumption 2.1 and all conditions in
Theorem 2.2 hold. Then the following are true for any o €
0, 1).

(a) For any finite N and n, as long as Hy in (2.3) holds, we have
P(Ty = 1|Hp) <a and P(Tj, = 1|Hp) < a.
(b) Concerning any fixed alternative H; (or Hj;), we have
lim P(?a =1|H;) =1 and
n—00

lim P(Thy = 1| Hyp) = 1.
n—0oo

Remark 2.4. We note that, in both Theorem 2.4 and Corol-
lary 2.1, the considered alternatives are not the complement of
Hy in (2.3); in particular, there exist Qj, O, ..., Qg such that
(a) the probability measures are different, yet (b) they yield the
same within- and between-group distances. For such alterna-
tives, it is obvious that the tests considered in Theorem 2.4 and
Corollary 2.1 have no power, and hence they are not consistent
tests of Hy. This lack of consistency is well known in the ANOVA
literature (see chap. 7.3 in Lehmann and Romano 2005).

3. Algorithms

This section presents three algorithms to calculate (2.5),

1. the vertex direction method (VDM), see Fedorov (1972),
Simar (1976), Wu (1978a, 1978b), Bohning (1982), and Lind-
say (1983a);

2. the vertex exchange method (VEM), see Bohning (1985,
1986);

3. the intra simplex direction method (ISDM), see Lesperance
and Kalbfleisch (1992).

Some more recent algorithmic developments along this track
can be found in, for example, Groeneboom, Jongbloed, and
Wellner (2008) and Koenker and Mizera (2014).

To simplify the notation, in this section we remove j, k from
the subscript and use {Xj, i € [N]} and {r;, i € [N]} to denote the
sample points and the corresponding read-depths. Moreover, we
use Q to denote the NPMLE defined in (2.5) based on {X;,i €
[N] and {r;,i € [N]}. For a discrete measure G on [0, B] with
support points {1, m € [M]}, let G(Ap,) stand for the mass G
assigned at X, for each m € [M]. We define

1 . )
®(6) =+ > log| D GOm)e T (hri)™
ie[N] me[M]

and its directional derivative from G to §; as

®'(G,8;) := lim e*l{cb{(l —e)GGBerS,\}—CIJ(G)}

e—0t
1 e (Ary)%i
N ic[N] > e GOum)e 2t (i) Xi



Here §), represents the unit measure at A € [0, B]. Lastly, for any
two signed measures v; and v, on the real line, we denote v ® v,
as the sum of v; and v,, and v; © v, as the sum of v; and —v,.
With these notation, we are now ready to present the VDM,
VEM, and ISDM algorithms for calculating Q.
The VDM Algorithm

Step 0 (Initialization). Select a point A; € (0, B]. Let G; = §;,
be the initial value. Set the loop index L = 1.
Step 1. If /\m[a)é] ®’'(Gy,8,) = 0, then stop and return Gy. Oth-
elo,
erwise, find Apmax = argmax ®'(Gr, ;).
1€[0,B]
Step 2. Find amax = argmax, (o 1 dD{(l —a)GL @ O“Skmax}'
Step 3. Set Gr4+1 = (1 — &) GL, D ¥maxBi,,,,- Set L = L + 1 and
go to Step 1.
The VEM Algorithm

Step 0 (Initialization). Select a point A; € (0, B]. Let G; = 8,
be the initial value. Set the loop index L = 1.
Step 1. If m[a)é] @'(Gp, 8,) = 0, then stop and return Gj. Oth-
relo,

erwise, find Amaxy = argmax @' (Gr,6,) and Amin =
1€[0,B]
argmin ®'(G, 8,), where supp(Gp) stands for the sup-
Aesupp(Gr)
port of Gr.

Step 2. Find omax = argmax, o 1) @{GL@ (OlGL()xmin)((Sxmax@

akmm)) }

Step3. Set Gt = Gi @ (ctmax G Gomin) By, © SAmm))- Set
L =1L+ 1andgoto Step 1.

The ISDM Algorithm

Step 0 (Initialization). Select a point 11 € (0, B]. Let G| = 8y,
be the initial value. Set the loop index L = 1.

Step 1. If AH%S’E] @'(Gp, 8,) = 0, then stop and return Gy. Oth-
elo,

erwise, find all local maxima Amax 15 - - - > Amax, A7 Of A
@’(Gy, 8,) on [0, B], where N represents the number of
local maxima.

Step 2. Find (@max,0 - - - » ¥max, ') = argmaxcb{(l — 9)GL ®

©Q5ee N

A1y P - D@ “N(Skmax,N} subject to ag > 0,07 >
0,...,a¢n >0andag + o1 +---+apn =1.

Step 3. Set G+1 = (1 — Amax0)GL © amax,lskmax)l DD
Umax, N Shpa - St L = L+ 1 and go to Step 1.

The convergence of VDM, VEM, and ISDM is guaranteed by
the following theorem.

Theorem 3.1. Assuming r; > 0 for each i € [N]. For each of
VDM, VEM, and ISDM, if it stops for some L, then we have
®(Gr) = ®(Q); otherwise, D(Gr) — P(Q) as L — o0.

Remark 3.1. Unlike in the traditional setting where all read
depths are identical, when heterogeneous read depths are incor-
porated, although G — ®(G) is still a concave function, there
is no theoretical guarantee about the uniqueness of Q’s that
maximize the objective function and whether the maximizer is
unique or not is still open. This issue of computational unique-
ness shall be compared to the parallel result in Theorem 2.2,
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which provides theoretical guarantee for the consistency of an
arbitrary maximizer of the objective function as the sample size
increases to infinity.

4. Simulation Studies

This section is split to two parts. The first part aims to show
that the two NPMLE-based tests presented in Section 2 cannot
dominate each other. To this end, we fix K = 2 and con-
sider three designs with several cases of population models that
will be detailed in Section 4.1. The second part provides some
preliminary discussions on the computation complexity of the
proposed algorithm.

4.1. Finite-Sample Experiments
Designs.

(A) Balanced designs with all read depths settobe 1,n; = ny =
10, and Nj; = 50, 100, and 500 for each j, k.

(B) Balanced designs with read-depth effects with n; = ny =
10 and Njx = 50, 100 and 500 for each j, k. In addition,

in each round of the simulation, {ri(l1 ) ,i € [Ny1]} are iid

generated from Uniform(0.5,1.5) and then let ri(jk) = rl(l1 )
for each j, k.

A particular unbalanced design motivated by the single-cell
RNA-seq data in Section 5 ahead, with n; = 10,1, = 13

and Nj be as in Table 1. For each round of the simulation,

©

{ri(jk),i € [Nil.j € [ml,k € [K]} are iid generated from
Uniform(0.5, 1.5).

We then move on to specify the population model (2.1) used
in our simulation studies. Hereafter, let Gam(a, b; B) denote a
truncated Gamma distribution with a shape parameter a > 0,
a rate parameter b > 0, and with any realization larger than B

shrunken to B. Let {A](k),j € [nkl,k € [K]} be iid generated
from Uniform(—1, 1).

Population models.

1. (a) Q]?") ~ Gam(14+A]?"),7/4; 50) for eachj € [ng], k € [2].
(b) Q;k) ~ Gam(14 + A;k), 7;50) for each j € [n], k € [2].
(c) Q;k) ~ Gam(6 + A;k), 1;50) for each j € [nx], k € [2].

2. (a) Q;I) ~ Gam(14 + A]f“, 7/4;50) for j € [n] and Q]@ ~

Gam(6 + Ajz), 3/4;50) for j € [na].

() Q" ~ Gam(14 + A",7/3;50) forj € [m] and Q¥ ~
Gam(6 + A;Z), 1;50) for j € [n2].

(©) Q;” ~ Gam(14 + A]f”,7/2; 50) for j € [n1] and Q]@ ~
Gam(6 + Ajz), 3/2;50) for j € [na].

Table 1. Njk in the unbalanced design (Design (C)).

Nigp Nog N3 Nag Nsy Nei Nz Ngypo N
388 1142 162 391 215 278 284 193 542 106 202 759
N3y Naz Nsp Nea Nyo Nga Nogo Niga Nipa Niga Nz
415 69 327 431 414 451 275 733 422 65 362

Nio1 N1z Npp
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3. (a) Q}l) ~ Gam(4 + A;l), 1;20) for j € [n;] and Q;z) ~
Gam(5 + A(Y,1520) for j € [n,].
(b) Q;l) ~ Gam(5 + A;l),l;20) forj € [n;] and Q;Z) ~
Gam(6 + A;Z), 1;20) for j € [n3].
(c) Q}l) ~ Gam(6 + A;l), 1;20) for j € [n;] and Q;z) ~
Gam(7 + A{Y,1520) for j € [,].
4. () Q" ~ Gam(11 + A[",1550) for j & [m]and Q) ~
Gam(12 + A;Z), 1;50) for j € [n3].
(b) Q}l) ~ Gam(12 + A]Q), 1;50) for j € [n1] and QJQ) ~
Gam(13 + A, 1;50) for j € [n2].
(c) Q;l) ~ Gam(13 + A](I), 1;50) for j € [n;] and QJQ) ~
Gam(14 + A@), 1;50) for j € [n3].

Our focus is on examining as well as comparing the empirical
performance of the tests T and Tha with NPMLE calculated
using the oracle B. Both of them are based on an exact criti-
cal value approximated by 1000 Monte Carlo simulations. The
underlying nominal significance level is 0.05. For each setting,
1000 rounds of simulations were performed. We use VEM to
compute NPMLEs with a stop tolerance 0.01. Optimization in
Step 1 and Step 2 in VEM is implemented by the default interior-
point algorithm in Matlab; see the support page of function
“fmincon” for further details.

Table 2 shows the empirical sizes and powers (rejection fre-
quencies) of tests T and Th «- In short, the results conﬁrm our
earlier theoretical claims on the sizes and powers of T, and Th o
in the different models and balanced designs (Designs (A) and
(B)). Moreover, even under the unbalanced design (Design C),
Ty and Th o still perform well in terms of their empirical sizes
and powers.

Some more detailed comparisons between T, and ?h,oz
are in line. The following observations depend on the “signal

strengths” D and Dy, defined as follows:

D= E(W1(Q)", Q"))
- (Bwi@P. Q") + Ewi @02 /2
(4.1)

and

Dy, == E{W, (th),hQiz))z}

- (E{W1 (th1>> hQél))z} + E{w; (hQﬁz)’ th2>)2}) /2.
(4.2)

First, empirical results for Model 1 illustrates that under Hy,
empirical powers are close to the nominal level « = 0.05,
confirming the size validity of Ty and Tha In addition, even
under the unbalanced design (Design C), empirical powers are
stable and close to the nominal level « = 0.05, indicating the
robustness of the studied tests.

Second, we compare the empirical powers using Models
2, 3, and 4. In Model 2, D is significantly larger than Dy, and
the corresponding empirical powers of Ty are all larger than
these of Tha in all three considered designs (Designs (A), (B),
and (C)). This phenomenon is not surprising to us as the
difference between variation between groups and variation
within groups in mixing distributions is much larger than
that in mixture distributions. Therefore, Ty is more powerful
than Th o

In Model 3, D is approximately equal to D and the empirical
power of Ty, is smaller than the empirical power of Th « When N
is small (e.g., 50 and 100). However, the empirical powers of Ty
and Th « are close when N is large. Similar observation applies
to Model 4, where D is also approximately equal to Dy,. However,
compared to Model 3, the mixing distributions in Model 4 have
larger B and thus the empirical powers of T are higher than
the empirical powers of T, even for N = 500, especially under

Table 2. Empirical sizes and powers of Ty and /T\h,ai here D and Dy, are defined in (4.1) and (4.2).

Model 1) 1(b) 1(c) 2(a) 2(b) 2(c) 3(a) 3(b) 3(c) 4(a) 4(b) 4(c)

D 0 0 0 0.59 0.32 0.15 0.99 0.99 0.99 0.99 0.99 0.99

Dy, 0 0 0 0.22 0.10 0.03 A0.99 0.99 0.99 0.99 0.99 0.99

N Empirical sizes/powers for T, under Design (A)

50 0.054 0.050 0.045 0.644 0.595 0.356 0.811 0.772 0.698 0.538 0.501 0.502
100 0.043 0.055 0.053 0.901 0.835 0.583 0.870 0.872 0.843 0.723 0.680 0.668
500 0.049 0.049 0.060 0.996 0.999 0.965 0.952 0.958 0.941 0.850 0.831 0.829
N Empirical sizes/powers for?hya under Design (A)

50 0.054 0.045 0.049 0.284 0.210 0.111 0.833 0.816 0.767 0.650 0.635 0.624
100 0.038 0.063 0.049 0.371 0.264 0.138 0.896 0.892 0.882 0.797 0.788 0.771
500 0.042 0.047 0.055 0.492 0.309 0.186 0.951 0.961 0.947 0.944 0.924 0.921
N Empirical sizes/powers for?a under Design (B)

50 0.044 0.048 0.058 0.644 0.508 0.338 0.796 0.763 0.729 0.559 0.522 0.520
100 0.053 0.050 0.062 0.863 0.779 0.518 0.878 0.862 0.846 0.714 0.735 0.679
500 0.036 0.052 0.054 1.000 0.998 0.972 0.958 0.952 0.939 0.922 0.920 0.913
N Empirical sizes/powers for?hla under Design (B)

50 0.044 0.050 0.054 0.262 0.193 0.100 0.821 0.806 0.772 0.632 0.619 0.602
100 0.058 0.041 0.053 0.350 0.276 0.132 0.885 0.877 0.858 0.772 0.788 0.759
500 0.036 0.045 0.057 0.501 0.414 0.187 0.956 0.950 0.943 0.932 0.928 0.924
N Empirical sizes/powers for/T\a under Design (C)

Table 1 0.048 0.050 0.051 0.994 0.988 0.900 0.962 0.940 0.951 0.910 0.904 0.907
N Empirical sizes/powers for?h,a under Design (C)

Table 1 0.047 0.051 0.052 0.452 0.346 0.173 0.966 0.947 0.952 0.929 0.920 0.922




Design (A). Some pilot studies to explain this phenomenon will
be put in Section 6, where we analyze the finite-sample behavior
of the NPMLE under an exploratory simplified setting where all
read depths are fixed to be 1. There, the rate of convergence of
NPMLE, at the worst case, is showed to be O(loglog N/ log N);
in contrast, Lambert and Tierney (1984, Lemma 4.1 and
Theorem 4.1) showed that the Poisson-smoothed NPMLE
attains a near-root-n rate of convergence to the mixture
distribution.

4.2. Time Complexity and Actual Running Time

This section provides some discussions on the algorithm
implemented in Section 4.1, with B assumed to be bounded.
This algorithm consists of two major parts: (a) implementing
the VEM algorithm detailed in Section 3 for calculating
estimates of the mixing distributions; (b) feeding the estimates
to the permutation tests in Section 2.2. In the following we
discussed the computation complexity of these two parts
separately.

4.2.1. Time Complexity of NPMLE

We start with an analysis of the VEM algorithm. Using the nota-
tion of Section 3, every iteration of VEM involves the following
three steps:

1. find Amax = argmax; (o 3| (G, 83);

2. find Apin = argmin, cg,00(G,) @' (Gy, 8,);

3. find amax = argmax, (o) P{GL @ [@GL(Amin) (e ©
S}me)]h

where it is reminded that

1 =M o)X
VGt = 3 s
N SRy 2Zomenm GL (Am) €4 (nri)™

In Step 1, to obtain an e-accuracy (with respect to the objective
function) solution, we search over an e-grid on [0, B] (ie.,
[0,€,2¢, ..., B]) and then use a gradient-descent algorithm with
the best result over the grid as the initial value to obtain an
accurate solution, an idea commonly used in literatures; see, for
example, Lindsay (1995, chap. 6.1). Since the derivative of A —
®'(Gp, 8) is bounded on [0, B], it is immediate that this grid
search method indeed leads to an €-accuracy solution for suffi-
ciently small €; here the boundedness of the derivative of A +—
@' (Gy, 8;,) follows from the derivative of A — e~*" (Ar;)%i, that
is,

e ()i (X — rid)

)
. —rie_’i)‘ if X; =0,
T e XTI — ) i XG> 1,

which is bounded on [0, B]. The time complexity for the grid
search method is O(N?/¢), where N comes from the sum of
index i € [N]and m € [M] with M < N. For the time
complexity of the gradient-descent algorithm, it follows from
Nesterov’s Theorem (Nesterov 2003, Theorem 2.1.14) that one
needs O(N? /€) iterations to obtain an e-accuracy solution as
long as the objective function has a Lipschitz continuous gradi-
ent, or equivalently, the boundedness of the second derivative
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Table 3. Actual running time (in seconds) for computing NPMLEs.

Gam(6,1;50)
4.99

The mixing distribution Q Gam(14,1;50) Gam(10,1;50)

Actual running time 6.31 574

of A = ®'(Gy,8,). This follows from the boundedness of the
second derivative of A > e (Ar;)%, that is,
e ()% (A7 — Xi(2Ari + 1) + X7)
A2

1’1-26_”" if X; =0,
— rizef)‘ri (Ar; —2) lel =1,
rf(ief)"kaffz[(kr,- - X)? = X)) ifX; > 2.

on [0, B].

In Step 2, since the support size of G is at most N and
the summation over i is from 1 to N in ®'(Gy,§;), a brutal
force method requires at most O(N?) to find the Amin. The time
complexity for Step 3 is the same as for Step 1 by analogous
arguments, and hence the total time complexity in three steps
is O(N?/€) to obtain an e-accuracy solution in each iteration.

To determine the total time complexity, it remains to deter-
mine how many iterations (recalling that each iteration contains
the above three steps) are needed. It follows from Bohning
(1982, Assumption (iii) and its proof) or Equation (A.11) in
the supplementary materials that the increase of the objective
function is strict and linear after each iteration. Accordingly,
the number of iterations is O(1/€) to obtain an e-accuracy
solution and the total time complexity for the VEM algorithm is
O(N?/€?).

Table 3 shows the actual running time (in seconds) for com-
puting NPMLEs averaged over 100 simulations; recall that the
tolerance level is set to be 0.01. Here we adopt the Design (B)

with N = 500, {r; : i € [N]} 1'1\C}Uniform(0.5,1.5), and con-
sider three population models, Gam(14,1;50), Gam(10,1;50),
and Gam(6,1;50). The simulation is conducted over a laptop
with a 1.8 GHz Intel Core i5 processor and an 8 GB memory.

4.2.2. Time Complexity of Permutation Tests
We then move on to examine the time complexity of the remain-
ing parts. For computing W; distance between two Poisson
mixture distributions, where the corresponding mixing distri-
butions are both supported over at most M points, first note that
the time complexity of computing the mixture density at any
point is O(M). Moreover, it follows from Poisson tail inequality
(see Lemma B.5 in the supplementary materials) that as long as
the support mixing distributions is bounded by some positive
constant, it suffices to compute the mixture densities over at
most O(,/log(1/€)) points to obtain an e-accuracy solution.
As a consequence, the time complexity for computing the W
distance between two Poisson mixtures is O(M,/log(1/¢€)).
With a little abuse of notation, let’s use N to denote
max; x{Njk}. Since each NPMLE is supported over at most N
points, the time complexity of computing the W; distance of
estimated mixture and mixing distributions is O(N,/log(1/¢))
and hence the time complexity of computing the W; distance
matrix is O(n112N,/log(1/€)), where n; and n, are the number
of subjects in each group. As a result, the total time complexity
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of performing permutation-based test is

O(ninyNy/log(1/€) + niny M),

where M represents the set number of permutations.

For an example of the actual running time, with M = 1000,
the total time to perform permutation tests with mixture and
mixing distribution estimates input is averagely 0.19 sec on a
laptop with a 1.8 GHz Intel Core i5 processor and a 8 GB
memory, where the mixing distributions are NPMLEs estimated
under Design (A) and Model 4(c) with N = 500.

5. Applications to Single-Cell Genomics

This section applies the studied permutation tests to a scCRNA-
seq data. There has been a large literature studying fitting RNA-
seq data using Poisson mixtures including, for example, over-
dispersed Poisson model (Robinson, McCarthy, and Smyth
2010), Poisson-Gamma model (Love, Huber, and Anders 2014;
Huang et al. 2018), Poisson-Beta model (Vu et al. 2016),
Poisson-log normal model (Silva et al. 2019), Poisson mixture
model with K-clusters (Rau et al. 2015), finite Poisson mixture
models (Wu, Qin, and Zhu 2013), zero-inflated mixture Poisson
linear models (Liu, Jiang, and Yu 2019), Poisson mixture models
with unimodal mixing distributions (Lu 2018). Compared to
parametric Poisson mixture models, nonparametric Poisson
mixture models haven’t received much attention; some notable
exceptions include Bi and Davuluri (2013), Dadaneh, Qian, and
Zhou (2018), Sarkar and Stephens (2021), the latter of which
was closely followed by us.

5.1. Dataset Description

The scRNA-seq data used in this article is obtained from Velme-
shev et al. (2019), which focused on autism spectrum disorder
(ASD) and recorded gene expression of 23 subjects (13 ASD vs.
10 control) and 18,041 genes for each subject from 17 different
cell types and 2 different brain regions. Here we focus on the
brain region prefrontal cortex, which is more relevant to autism
disease etiology. Moreover, each subject has seven covariates
including age, sex, diagnosis, capbatch, seqbatch, postmortem
interval (PMI), and RNA integrity number (RIN).

We focus on a pre-selected subset including 100 genes
(names of the genes put in Table 4) that were documented to
be related to body height; for relation between ASD and body

Table 4. All genes used in Section 5.

height, see, for example, Fukumoto et al. (2011) and Chawarska
et al. (2011). In addition to permutation testing with either
estimated mixing distributions or mixture distributions, we also
consider DESeq2 (Love, Huber, and Anders 2014) as a bench-
mark. In implementing the two considered permutation tests,
we adopt a common strategy to incorporate four covariates:
age, sex, seqbatch, and RIN. The other two covariates PMI and
capbatch are not significantly associated with gene expression
given the other covariates, since their p-value distributions
across all genes are uniform. The corresponding tests were
denoted as TZ (with the original NPMLE) and Thz (with
the Poisson-smoothed NPMLE). Implementation details—
including the choice of B, the choice of read depths, and an
additional step of covariate adjustment based on the work of
Zhang et al. (2022)—were put in the Section C, supplementary
materials.

5.2. Implementation Results

Using Ty, 9 genes are significant under the threshold of false
discovery rate (FDR) 0.05 after multiple testing correction by the
Benjamini-Hochberg procedure. Replacing T, by Th 7, 8 genes
are significant under the same threshold of FDR and 7 genes are
coincident with significant genes found by Ty. This shows some
consistency between Ty and Th,Z

Furthermore, by DESeq2 there are seven significant genes
under the same threshold of FDR and all of them are coincident
with significant genes found by T. In other words, among sig-
nificant genes found by Ty, 78% significant genes are coincident
with genes found by DESeq2 and 22% are new which means Ty
could enrich the set of significant genes found by the standard
method DESeq2.

Similarly, six genes are coincident with significant genes
found by T, z. In other words, among significant genes found
by Th.z> 75% significant genes are coincident with genes found
by DESeq2 and 25% are new which means Th 7 could enrich the
set of significant genes found by the standard method DESeq2.
In one word, both TZ and Th 7 could enrich the set of significant
genes found by DESeq2. Further details are summarized in
Figure 1.

Our results can also be justified by functions of significant
genes. For example, fasting blood glucose measurement is not
only one of functions of gene DHRS7B, but also related to
ASD (Hoirisch-Clapauch and Nardi 2019). More such results are
summarized in Table 5.

DST CHSY3 TSC2 EHD4
ELL ODF2L FBXL5 LNX1
DAP SSH2 WDR60 SAXO1
GHR KCNK9 RGL1 SOCS5
Kiz SHPRH RBMS3 MFSD2B
IL16 MTMR3 CDK10 ZNF628
BST2 UMAD1 CPED1 ESYT2
LHX2 FBP2 ZC3H13 SRRM2
RLF LAYN SUSD5 DOT1L
DAZL CYFIP2 ST7L cwezz
BCLY LRWD1 LMO7 PTENP1
NRK GCLC PPM1H ITGA9
ANKDD1A ZNF710-AS1

HERC1 KIF16B DLGAP1 PIK3CG
ERGIC3 CBFA2T2 FAM20A STAT2
FOXP2 SAMDA4A TSPAN9 ARAP3
ZNF76 ADAMTS2 DHRS7B PNMAB8C
NR4A3 cepain RAB33A WDR70
CAPZB ATXN7L3 PSKH1 FGFRL1
LRRC43 SMARCA4 MYO18A IL17RD
NOTCH1 HSD17B3 SBNO1 EIF3H
WARS2 RPS4XP13 PHF11 CDK11B
C90rf152 TOB1-AS1 HIFTAN KLHL28
CEP112 LINC01572 PPP4R2 UBE2Z
HIPTR PPP1R16A POLR3E TANC2
ZRANB2-AS2 DNAJC27-AS1



https://doi.org/10.1080/01621459.2022.2120401

TOB1-AS1

DHRS7B

SMARCAA4,
TSPAND9,
WDRG6O,
CDK11B,
LRWD1,
RAB33A

Empty Set

DESeq2

o~

Figure 1. Significant genes selected using Mixing (Tz), Mixture (Tj, 7), and DESeq2

methods.

Table 5. Significant genes on ASD with some literature support.

Gene name Related functions Literatures
DHRS7B Fasting blood glucose Hoirisch-Clapauch and
Nardi (2019)

WDR60 Abnormality of refraction Ezegwui et al. (2014)

EIF3H Reaction time Baisch et al. (2017)
measurement

LRWD1 Insomnia measurement Hohn et al. (2019)

RAB33A Bipolar disorder Joshi etal. (2012)

TSPAN9 Creatinine measurement Cameron et al. (2017)

WARS2, CDK11B

SMARC4, TOB1-AS1

Heel bone mineral density

Cholesterol measurement

Calarge and Schlechte
(2017)
Benachenhou et al. (2019)

NOTE: The first column includes names of genes, the second column includes
functions potentially related to ASD, and the third column includes literature
support.

6. Minimax Optimality of the Poisson NPMLEs

This section provides additional theoretical support for the use
of NPMLEs in forming up the tests ?a and ?h,a in Section 2. To
this end, due to the technical challenges, focus is restricted to a
simplified setting of (2.2), where the observations {Xj,i € [N]}
independently follow a distribution of PMF

B , AX
hq(x) = / e ng(A), x=0,1,2,..., (6.1)
0 .

where Q is a deterministic measure supported on [0, B] that
cannot be characterized by a simple parametric model. This is
exactly the classic nonparametric Poisson mixture setup, and we
study the nonasymptotic behavior of the following NPMLE

Q= argmax Z log hq(X;). (6.2)

Q of support [0,B] ie[N]

Note that the above NPMLE is the simplified version of (2.5)
with all read depths there forced to be one.

There has been an enormous literature studying the NPMLE
(6.2) under the nonparametric Poisson mixture model (6.1).
Earlier results on the existence, discreteness (of the NPMLE
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support), and computation include, among many others, Simar
(1976), Laird (1978), Jewell (1982), Lindsay (1983a), Lindsay
(1983b), and Lindsay and Roeder (1993); see also Lindsay
(1995) for a survey. Consistency of NPMLEs were established
in, among many others, Kiefer and Wolfowitz (1956), Simar
(1976), and Pfanzagl (1988); see also Chen (2017) for a survey.

Beyond these important results, there has been another track
of substantial research that is focused on establishing the min-
imax rate in estimating the mixing distribution (mostly on the
density function) of nonparametric Poisson mixtures. Notable
results there include Zhang (1995), Loh and Zhang (1996),
van de Geer (1996), Hengartner (1997), van de Geer (2003),
Roueff and Rydén (2005), and Rebatka and Roueft (2015). How-
ever, to our knowledge, a study on the minimax optimality and
the corresponding convergence rates for NPMLEs under a fully
nonparametric Poisson mixture model is still absent from the
literature.

Before presenting our main result in this section, we would
love to highlight again that, due to the nature of nonasymptotic
analysis, all the parameters in the model (6.1), including B, are
allowed to change with N. This is a strict generalization of the
“asymptotic” setting in Section 2, where, due to the additional
hardness of handling the read depth as well as for simplifying
notation and assumptions, we do not intend to establish similar
nonasymptotic results.

Our first theorem concerns with the NPMLE’s rate of conver-
gence.

Theorem 6.1 (Upper bound of NPMLEs).

(a) Suppose there exists a universal constant ¢y > 0 such that
B < cplogN. Then there exists a positive constant C =
C(co) such that for all sufficiently large N (> Ny(cp)) we
have

~ B logN
sup E{WI(Q,Q)} §C1 Nlog B Vel.
Q of support [0,B] og

(6.3)

(b) Suppose there exist universal strictly positive constants
¢, Co and €g € (0,1/3) such that B € [¢g log N, CoN1/3—€0],
Then there exists a strictly positive constant C = C(e, ¢o)
such that for all sufficiently large N (> Ny(co, Cp, €9)) we
have

logN" (6.4)

sp  E{wi@Qf =c
Q of support [0,B]

Remark 6.1. We believe that the condition B < CoN/3~€0 in
Theorem 6.1(b) is somewhat necessary. In particular, supposing
there exist ¢ > 0,8 > 0 such that B > ¢oN2, we conjecture
that a sufficiently small constant ¢ = ¢(co, ) exists such that
for all N large enough, infa supg E{W1(Q, Q)} = ¢+/B but not
/B/log N; here the infimum and supremum are taken over
all estimators and all distributions of support [0, B]. At this
moment, we do not know how to prove this conjecture.

Our second theorem concerns with minimax lower bounds
in estimating mixing distributions in model (6.1). Com-
bined with Theorem 6.1, it confirms the NPMLE’s minimax
optimality.



404 (&) ZMIAOETAL

Theorem 6.2 (Minimax lower bound of mixing distribution esti-
mation).

(a) Supposing there exists cg > 0 such that B < ¢plogN, it
follows that for any N > 3,

16¢o logN)‘

~ B
inf sup E{W7(Q, 1
1% stép M} = 24elogN og( B

(b) Supposing there exists cp > 0 such that B > ¢ylogN, it
follows that for any N > 1,

~ 3 B
inf sup E{W1(Q, > — [
infsup E(W1(Q Q) = o7 [0
In the above, the infimum and supremum are understood to be
taken over all estimators and all distributions of support [0, B].

Remark 6.2. Under fully nonparametric binomial mixture mod-
els, minimax optimal convergence rates for NPMLEs of mixing
distributions were obtained by Vinayak et al. (2019, sec. 3) in
terms of the W distance. Under fully nonparametric binomial
and Gaussian mixture models, Tian, Kong, and Valiant (2017,
Theorem 1) and Wu and Yang (2020, p. 1985) obtained optimal
convergence rates for moment-based estimators in terms of W
distance; see also Polyanskiy and Wu (2020, Remark 2). Nguyen
(2013, Theorems 1 and 2) upper bounded the Wasserstein dis-
tance between mixing distributions by the divergence between
the corresponding mixture distributions under general mixture
models, with normal mixture models as an example in Example
2. However, their results cannot be applied here since Theorem
1 restricts the mixing distribution being discrete and Theorem
2 is only for convolution mixture models.

Remark 6.3. Comparing the theoretical results in Theorem 6.1
to the empirical observations in Sections 4 and 5 suggests an
interesting discrepancy, that a slow logarithmic convergence
rate of estimation can yield tests of power in finite-sample stud-
ies. To explain this, we note that the derived rates of convergence
are in the minimax sense and hence necessarily conservative
against many special types of alternatives. In particular, recent
results (Saha and Guntuboyina 2020; Kim and Guntuboyina
2022) revealed that, in various related scenarios, NPMLEs are
provably able to adapt to the structure of mixing density and
hence yield much faster convergence rates. A complete study of
this phenomenon in our setting, however, has to be left to the
future.

Supplementary Materials

The supplemental materials contain all the proofs and the implementation
details for the real experiment presented in Section 5.
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