
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 12, DECEMBER 2023 7823

Nonparametric Mixture MLEs Under Gaussian-
Smoothed Optimal Transport Distance

Fang Han , Zhen Miao , and Yandi Shen

Abstract— The Gaussian-smoothed optimal transport (GOT)
framework, pioneered by Goldfeld et al. and followed up by
a series of subsequent papers, has quickly caught attention
among researchers in statistics, machine learning, information
theory, and related fields. One key observation made therein
is that, by adapting to the GOT framework instead of its
unsmoothed counterpart, the curse of dimensionality for using
the empirical measure to approximate the true data generating
distribution can be lifted. The current paper shows that a
related observation applies to the estimation of nonparametric
mixing distributions in discrete exponential family models, where
under the GOT cost the estimation accuracy of the nonpara-
metric MLE can be accelerated to a polynomial rate. This is
in sharp contrast to the classical sub-polynomial rates based
on unsmoothed metrics, which cannot be improved from an
information-theoretical perspective. A key step in our analysis
is the establishment of a new Jackson-type approximation bound
of Gaussian-smoothed Lipschitz functions. This insight bridges
existing techniques of analyzing the nonparametric MLEs and
the new GOT framework.

Index Terms— GOT distance, nonparametric mixture models,
nonparametric maximum likelihood estimation, rate of conver-
gence, function approximation.

I. INTRODUCTION

LET f(x | ✓) be a known parametric density function with
respect to a certain (counting or continuous) measure and

X1, . . . ,Xn be n i.i.d. observations drawn from the following
mixture density function,

hQ(x) :=
Z

f(x | ✓)dQ(✓), (1)

where Q is unspecified and termed the mixing distribution
of ✓. Our goal is to estimate the unknown Q based on
X1, . . . ,Xn. This is the celebrated nonparametric mixing
distribution estimation problem, which has been extensively
studied in literature [2]. The focus of this paper is on studying
the estimation of Q in the case of (identifiable) discrete expo-
nential family models [3], i.e., f(x | ✓) taking the following
form that is known to us:

f(x | ✓) = g(✓)w(x)✓x, (2)

Manuscript received 6 December 2021; revised 27 June 2023; accepted
6 July 2023. Date of publication 25 July 2023; date of current version
22 November 2023. The work of Fang Han was supported by NSF under
Grant DMS-1712536, Grant SES-2019363, and Grant DMS-2210019.
(Corresponding author: Fang Han.)

Fang Han and Zhen Miao are with the Department of Statistics, Uni-
versity of Washington, Seattle, WA 98195 USA (e-mail: fanghan@uw.edu;
zhenm@uw.edu).

Yandi Shen is with the Department of Statistics, University of Chicago,
Chicago, IL 60615 USA (e-mail: ydshen@uchicago.edu).

Communicated by E. Gassiat, Associate Editor for Machine Learning and
Statistics.

Digital Object Identifier 10.1109/TIT.2023.3296380

with x = 0, 1, 2, . . ., w(x) > 0 for all x � 0, and 0  ✓ 
(a known fixed constant) ✓⇤ < ✓r, where ✓r 2 (0,1] is the

radius of convergence of the power series ✓ 7!
P1

x=0 w(x)✓x

and g(·) is analytic in a neighborhood of 0. This model
includes, among many others, Poisson and negative binomial
distributions. We assume throughout the paper that the support
of the true mixing distribution Q is contained in [0, ✓⇤].

Estimation of Q under the discrete exponential family
models has been extensively investigated in literature through,
e.g., the use of nonparametric maximum likelihood estimators
(MLEs) [4], method of moments [5], Fourier and kernel
methods [3], [6], [7], and projection methods [8], [9], [10].
Of particular interest to us is the MLE-based approach, partly
due to its asymptotic efficiency under regular parametric
models. In the case of nonparametric mixture models, the MLE
can be written as

bQ := argmax
eQ on [0,✓⇤]

nX

i=1

log h eQ(Xi), (3)

which is a convex problem with efficient solving
algorithms [4].

Although a proof of the consistency of bQ has been standard
now (cf. [11]), of central importance to statisticians and
machine learning scientists in making inference based on bQ
is its rate of convergence. It is by now well-understood that
the estimation of Q and many other deconvolution-related
problems suffer from a sub-polynomial rate. In this regard,
[3] established the first minimax lower bound, indicating
that, at the worst case, it is impossible for the MLEs to
achieve a polynomial rate if measured using regular metrics
such as the total variation distance and the optimal transport
distance (OT; in this paper restricted to the Wasserstein-1
distance W1); see also [12], [13], [14] for slow rates in
other deconvolution problems. More recently, it was shown
that for Poisson mixtures, the minimax rate of convergence
under the W1 distance is log log n/ log n and could indeed
be achieved by MLEs [15]. The aforementioned slow rates
demonstrate that the estimation of Q suffers severely from its
nonparametric structure.

Interestingly, a similar fundamental “curse” also exists in
using the empirical measure Pn of an independently and
identically distributed (i.i.d.) sample of size n to approximate
the true data generating distribution P in Rd. First studied by
Dudley [16] and then refined in a series of recent work [17],
[18], [19], [20], it is now well known that under some
moment/regularity assumptions on P , the minimax rate under
the W1 distance is n�1/d as d > 2. Partly motivated by
a problem of estimating information flows in deep neural
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networks [1], [21] introduced a new distance W �
1 named the

Gaussian-smoothed OT (GOT) distance, which is defined by

W �
1 (Q1, Q2) := W1(Q1 ⇤N�, Q2 ⇤N�). (4)

Here N� is short for the Gaussian distribution N (0,�2).
In words, W �

1 proceeds by first smoothing the target distri-
butions (P,Q) via Gaussian convolution, and then computing
their W1 distance. The GOT distance, like its unsmoothed
counterpart, is a metric on the probability measure space with
finite first moment that metrizes the weak topology. In addi-
tion, both W �

1 and the corresponding optimal transport plan
converge weakly to the corresponding unsmoothed versions
as the smoothing parameter � ! 0 (cf. Theorems 2, 3,
and 4 in [22]).

Under this new distance and with some further moment
conditions on P , [1] was able to prove an upper bound of
W �

1 (Pn, P ) that is of the best possible root-n order and thus
overcomes the curse of dimensionality faced with the classical
unsmoothed scenario. Subsequent developments establish the
weak convergence of W �

1 (Pn, P ) to a functional of a Gaussian
process [23], weaken the moment assumption [24], and study
high noise limit as � !1 [25].

One of the main contributions of this paper is to prove that
an observation similar to what was made in [1] occurs to the
nonparametric mixture MLEs, i.e., under some conditions on
w(·), we have

sup
Q on [0,✓⇤]

EW �
1 ( bQ, Q)  C(�, ✓⇤, w)n�⌘(✓⇤,w), (5)

where C and ⌘ are two positive constants only depending on
{�, ✓⇤, w} and {✓⇤, w}, respectively. Our result thus bridges
two distinct areas, namely nonparametric mixing distribution
estimation and empirical approximation to population dis-
tribution; in the earlier case, GOT is shown to boost the
convergence rate to polynomial, while in the latter case GOT
overcomes the curse of dimensionality.

The main technical step in our proof of (5) is a
new Jackson-type bound on the error of degree-k polyno-
mial (for an arbitrary positive integer k) approximation to
Gaussian-smoothed Lipschitz functions with a bounded sup-
port. Our result thus extends the classic Jackson’s Theorem
(see [26]; Lemma 15) and paves a way to leverage existing
technical tools of analyzing the nonparametric MLEs, devised
in an early draft written by some of the authors in this
paper [15, Sec. 6].

Notation: For any positive integer n, let [n] := {1, . . . , n}.
Let Z+ denote the set of all nonnegative integers. For any two
distributions Q1 and Q2 over Rd, let Q1 ⇤ Q2 represent the
convolution of Q1 and Q2, i.e., Q1 ⇤ Q2(A) =

R R
1A(x +

y)dQ1(x)dQ2(y), with 1·(·) standing for the indicator func-
tion. For any two measurable functions f, g on Rd, f ⇤ g
represents their convolution, i.e., f ⇤g(x) =

R
f(x�y)g(y)dy.

For any function f : R ! R and ↵ > 0, let f (↵) represent
the ↵-time derivative of f . With the help of Kantorovich-
Rubinstein formula, the OT (i.e., Wasserstein W1) distance
between Q1 and Q2 is as

W1(Q1, Q2) := sup
`2Lip1

Z
`(dQ1 � dQ2),

where the supremum is over all 1-Lipschitz functions (under
the Euclidean metric k · k) on Rd. The GOT distance W �

1 is
defined as

W �
1 (Q1, Q2) := W1

�
Q1 ⇤N (0,�2Id), Q2 ⇤N (0,�2Id)

�
,

(6)

where N (0,�2Id) is the d-dim Gaussian distribution with
mean 0 and covariance �2Id. Let �� denote the density
function of N (0,�2Id), whose dimension will be clear from
the context. Let P(Rd) represent the set of all Borel proba-
bility measures on Rd and P1(Rd) be the subset of P(Rd)
with elements of finite first moment. Throughout the paper,
C, C 0, C 00, c, c0 are used to represent generic positive constants
whose values may change in different locations.

Paper Organization: The rest of this paper is organized
as follows. Section II gives the preliminaries on the studied
nonparametric mixture models and the MLEs. Section III
delivers the main results, including the key technical insights
to the proof. Section IV collects the main proofs, with auxiliary
proofs relegated to Section V.

II. PRELIMINARIES

A. Nonparametric Mixture MLEs
Estimating the mixing distribution is known to be sta-

tistically challenging in a variety of nonparametric mixture
models including the Gaussian [27], binomial [28], [29],
and Poisson [15] ones. Specific to the discrete exponential
family models in the form of (2), the following log n-scale
information-theoretical lower bound formalized this difficulty
under the standard unsmoothed W1 distance. We present its
proof in Section IV-B.

Theorem 1 (Minimax Lower Bounds Under W1 Distance):
Let n � 2 and (X1, . . . ,Xn) be an i.i.d. sample generated
from the mixture density function hQ defined in (1).
(a) For any f(x | ✓) taking the form (2), we have

inf
eQ

sup
Q on [0,✓⇤]

EW1(Q, eQ) � c

log n
, (7)

where the infimum is taken over all measurable estimators
of the mixing distribution Q with support on [0, ✓⇤] and
c = c(✓⇤) > 0 only depends on ✓⇤.

(b) (Theorem 6.2 in [15]) Suppose further f(x | ✓) =
e�✓✓x/x! is the probability mass function of the Poisson
distribution with mean parameter ✓. Then

inf
eQ

sup
Q on [0,✓⇤]

EW1(Q, eQ) � c0 log log n

log n
,

for a constant c0 = c0(✓⇤) > 0 depending only on ✓⇤.
Remark 2: In (2), the condition “w(x) > 0 for all x 2 Z+”

is a sufficient condition to ensure the identifiability of Q in (1).
Similar conditions were also posed in, e.g., Corollary 1 in [3]
and Corollary 1 in [6]. As a matter of fact, Theorem 1(a)
in [30] showed that, if there exists some x0 2 Z+ such that
f(x | ✓) = 0 for all x � x0 and ✓ 2 [0, ✓⇤], then Q is
not identifiable, i.e., there exist at least two distinct mixing
distributions Q1, Q2 over [0, ✓⇤] such that hQ1 = hQ2 . On the
other hand, it is straightforward to generalize Theorem 1 to
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the case of “w(x) > 0 for all x � x0 for some x0 2 Z+ that
is known to us”.

In the past several decades, methods that provably (nearly)
achieve the above minimax lower bounds have been proposed;
cf. [3], [9], and [10] among many others. However, none
of the above methods is likelihood-based, partly due to the
theoretical challenges faced with analyzing the nonparametric
MLEs. A major breakthrough towards understanding the rate
of convergence of nonparametric mixture MLEs was made
in [29] for the binomial case and [15] for the Poisson case.

The following theorem provides an extension of
Theorem 6.1 in [15] to cover general discrete mixture
models of the form (2). We present its proof in Section IV-C.

Theorem 3 (Minimax Upper Bounds of MLEs Under W1

Distance): Let (X1, . . . ,Xn) be an i.i.d. sample generated
from the mixture density function hQ defined in (1), and bQ
be the MLE defined in (3). The following are true.
(a) If there exists some C � 1 such that 1/w(x)  Cx for all

x 2 Z+, then there exists some C 0 = C 0(✓⇤, C) > 0 such
that

sup
Q on [0,✓⇤]

EW1(Q, bQ)  C 0

log n
.

(b) If there exists some C � 1 such that 1/w(x)  (Cx)Cx

for all integers x � 1, then there exists some C 0 =
C 0(✓⇤, C) > 0 such that

sup
Q on [0,✓⇤]

EW1(Q, bQ)  C 0 log log n

log n
.

Remark 4: Theorem 3 is concerned with two types of tails
conditions (exponential and super-exponential) for 1/w(x);
they are classical and ensure the identifiability of Q as
discussed in Remark 2. Similar conditions were posed in
Theorem 4 in [3], Corollary 1 in [6], Theorem 1 in [7], and
Corollary 1 in [10].

Remark 5: It is straightforward to verify that, after some
standard operations including location shift, point mass infla-
tion, and reparametrization, Theorem 3(a) applies to, e.g., the
(zero-inflated or C-truncated) negative binomial, the logarith-
mic [31], the lost games [32], as well as the generalized
Poisson, negative binomial, and logarithmic [33] distribu-
tions; Theorem 3(b) applies to, e.g., the (zero-inflated or
C-truncated) Poisson as well as the Poisson polynomial [34]
distributions.

B. The GOT Distance
Theorem 1 suggests that, under the W1 cost, the sub-

polynomial rate in estimating the mixing distribution of a
nonparametric mixture model is information-theoretically opti-
mal. As a matter of fact, the conclusion of Theorem 1 goes
beyond the discrete exponential family models studied in this
paper; cf. Proposition 8 in [27] for a similar phenomenon in
the nonparametric Gaussian mixture models.

Revising the Wasserstein distance through convolu-
tion/smoothing has a long and rich history. In probability
theory, this is interestingly related to heat semigroup operators
on Riemannian manifold [35], which reveals its connection to

the Ricci curvature. More recently, stemming from the interest
in estimating the mutual information of deep networks, [21]
initiated the study of GOT distances, introduced as a smoothed
alternative to the classic OT metric.

Indeed, the GOT distance is now known to be able to
effectively alleviate some undesired issues associated with the
OT distances. Let us start with the following simple fact, that
the W1-distance is non-increasing under convolution.

Lemma 6: Consider µ1, µ2, ⌫ 2 P1(Rd) be arbitrary three
Borel probability measures on Rd with finite first moment.
We then have

W1(µ1 ⇤ ⌫, µ2 ⇤ ⌫)  W1(µ1, µ2).

Proof: Recall the duality definition of W1(µ1, µ2) as

W1(µ1, µ2) := inf EkX � Y k,

with the infimum is taken over all couplings of (X,Y ) such
that X ⇠ µ1 and Y ⇠ µ2. We then consider any such (X,Y )
and assume Z to be independent of (X,Y ) and follows the
distribution of ⌫. Then it is immediate that

W1(µ1 ⇤ ⌫, µ2 ⇤ ⌫) Ek(X + Z)� (Y + Z)k = EkX � Y k,

and accordingly (by taking infimum over all such (X,Y ))

W1(µ1 ⇤ ⌫, µ2 ⇤ ⌫)  W1(µ1, µ2).

This completes the proof. ⇤
Lemma 6 confirms that the GOT distance is no greater

than the original OT distance, but it does not quantify the
difference. For that purpose, the existing literature has pro-
vided us with an interesting example, i.e., in approximating the
population measure using the empirical one. In detail, suppose
Pn is the empirical measure of P , and both are supported on
Rd with some integer d � 3. Theorem 1 in [19] showed that

sup
P :EP kXk2<1

EW1(P, Pn) ⇣ n�1/d,

which is faced with severe curse of dimensionality as the
dimension d becomes larger. In a recent paper of [1], the
authors showed that, via appealing to the GOT one, this curse
can be effectively handled. More specifically, they proved that,
as long as P is sub-gaussian with a fixed subgaussian constant,
we have

EW �
1 (P, Pn) . n�1/2,

which is the parametric rate of convergence. See also [23] for
the limiting distribution of

p
nW �

1 (P, Pn) as well as [24] for
the relaxation of the moment conditions on P .

The purpose of this paper is to present the second and also a
statistically interesting example, for which adopting the GOT
distance can significantly accelerate the convergence rate of a
statistical procedure.

III. MAIN RESULTS

The following theorem is the main result of this paper.
Theorem 7: Let (X1, . . . ,Xn) be an i.i.d. sample generated

from the mixture density function hQ defined in (1), and
bQ be the MLE introduced in (3). Suppose that there exist
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some positive constants c1, c2, c3, C1, C2, C3 depending only
on w(·) such that one of the following two conditions holds,
(i) c1cx

2  1/w(x)  C1Cx
2 for all x = 1, 2, . . .;

(ii) c1cx
2xc3x  1/w(x)  C1Cx

2 xC3x for all x = 1, 2, . . ..
Then we have

sup
Q on [0,✓⇤]

EW �
1 (Q, bQ)  C · n�c.

Here C = C(�, ✓⇤, c1, c2, c3, C1, C2, C3) and c = c(✓⇤, c3,
C2, C3) are two positive constants.

Remark 8: Let us point out some results in the nonpara-
metric mixture model literature that are relevant to ours.
Reference [36] studied the convergence of h bQ to hQ in a
specific nonparametric Poisson mixture model based on the
regular unsmoothed distance. They observed that the con-
vergence rate can be nearly parametric; cf. Proposition 3.1
therein. This observation is particularly relevant to ours as the
map Q 7! hQ is intrinsically also “smoothing” the probability
measure. The Gaussian analogue of this result was derived
in [37] and [38], which showed that the nonparametric MLE
achieved near-parametric convergence for mixture density
estimation when the mixing distribution has bounded/sub-
Gaussian tails. A similar observation was made in [27], which
studied the estimation of mixing distributions in (finite) Gaus-
sian mixture models via a method of moments. In particular,
their Lemma 8 considers bounding the chi-squared distance
between two Gaussian mixtures with sub-gaussian mixing
distributions whose first k moments are identical. Their bound
suggests a similar exponential-order improvement as ours.
However, it is clear from the context that the proof techniques
in [36], [37], [38], and [27] are distinct from the current paper,
where, as we detail next, the conclusion is arrived via a new
Jackson-type bound.

Remark 9: From a methodological perspective, one may
interpret Theorem 3.1 as a motivation to use Gaussian
smoothing for studying mixing distribution-related statistical
properties. In practice, this insight has partly helped the
authors in a separate study of autism spectrum disorder [15],
[39]. There the problem of interest is to identify differen-
tially expressed genes based on brain single-cell data, which
were modeled using nonparametric Poisson mixtures. Refer-
ence [15] found that, compared to the unsmoothed version,
there are extra biologically plausible genes discovered based
on Poisson-smoothed nonparametric MLEs, which are natural
counterparts of the Gaussian-smoothed ones investigated in
this paper. See the discussions before Theorem 2.1 in [15] for
more details.

Remark 10: In Theorem 7 the explicit value of c was not
exposed. For readers of interest, considering ✏ 2 (0, 1) to be
an arbitrarily small positive constant, the largest possible c we
can obtain for the Poisson mixture is

1/10� ✏

and for negative binomial mixture is
h
2
n

1 + 2 · log(e/✓⇤)
log(1/✓⇤)

oi�1
� ✏,

recalling that ✓⇤ 2 (0, 1) in this case.

We present the proof of the above two claims in
Section IV-E. While we have not been able to pin down
the sharpest possible value of c, it is our conjecture that for
any fixed �, the best possible rate under W �

1 , at least in the
Poisson case, should be the parametric rate n�1/2 up to some
logarithmic factors. In other words, the parametric rate as
was observed in [1] is also (up to some logarithmic terms)
recoverable in the setting of nonparametric mixture MLEs
considered in this paper. An improvement of the current upper
bound analysis calls for the parametric convergence rate of the
nonparametric MLE under linear functionals (e.g., polynomial
functionals). There has been some recent work (e.g., [27], [40])
that studies the estimation of linear functionals in deconvolu-
tion problems, but to our best understanding this is still open
for the nonparametric MLEs.

Next we give a proof sketch of Theorem 7, which shares
some common steps with that of Theorem 3. Invoking the
same argument that was used in the proof of Theorem 6.1(a)
in [15], for any given 1-Lipschitz function `(·) such that
`(0) = 0, we introduce the following function to approximate
it,

b̀
k(✓) :=

kX

x=0

bx,`f(x|✓), for bx,` 2 R and ✓ 2 [0, ✓⇤],

where k is an integer to be chosen later. In the unsmoothed
case, some straightforward manipulations (see Section IV-C
for details) then yield

W1(Q, bQ)  sup
`2Lip1,`(0)=0

n
2 sup

✓2[0,✓⇤]

���`(✓)� b̀
k(✓)

���

+
���

kX

x=0

bx,`

⇣
hQ(x)� hobs(x)

⌘���

+
���

kX

x=0

bx,`

⇣
hobs(x)� h bQ(x)

⌘���
o

, (8)

where hobs(x) := n�1
Pn

i=1 1(x = Xi). The last two
terms of (8) can be handled by concentration arguments (see
Lemma 17): with high probability,
���

kX

x=0

bx,`

⇣
hQ(x)� hobs(x)

⌘��� _
���

kX

x=0

bx,`

⇣
hobs(x)�h bQ(x)

⌘���

. max0xk |bx,`|
n1/2�✏

,

where ✏ > 0 is some small constant. It remains to bound the
coefficients max0xk |bx,`| and the approximation error in
the first term of (8). To this end, we apply a Jackson-type
bound (see Lemma 12) and obtain:

sup
`2Lip1,`(0)=0

sup
✓2[0,✓⇤]

���`(✓)� b̀
k(✓)

���  C/k, (9)

and,

sup
`2Lip1,`(0)=0

max
0xk

���bx,`

���  Ck max
0xk

n 1
w(x)

o
,

where C > 0 is independent of k and `. After plugging
in the two types of tails of 1/w(·), balancing the above
two terms yields the optimal choices of k ⇠ log n or
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k ⇠ log n/ log log n, leading to the two sub-polynomial
bounds of EW1(Q, bQ) in Theorem 3.

With these concepts in mind, let us move on to the smoothed
case where the GOT distance is used. Similar to the derivation
of (8) and further noting that

R
`d(Q ⇤ N�) =

R
`�dQ with

`� := ` ⇤ ��, one can show that

W �
1 (Q, bQ)  sup

`2Lip1,`(0)=0

n
2 sup

✓2[0,✓⇤]

���`�(✓)� `�(0)� b̀
k(✓)

���

+
���

kX

x=0

bx,`

⇣
hQ(x)� hobs(x)

⌘���

+
���

kX

x=0

bx,`

⇣
hobs(x)� h bQ(x)

⌘���
o

. (10)

The last two terms in (10) can be similarly handled as in (8),
and it remains to control the first term. Up to some negligible
terms, we prove the following approximation bound (see
Lemma 11 for precise statement):

sup
✓2[a,b]

���`�(✓)� `�(0)� pk(✓)
��� . k�k/2.

In contrast to the linear convergence in the classical
Jackson-type bound (9), the above bound states that approxi-
mation to Gaussian-smoothed Lipschitz functions by degree-k
polynomials is super-exponentially fast, hinting a substantial
gain of convergence speed whence GOT distances are used
to quantify the distance. We present the proof of the above
bound in Section V-A, which is based on a general recipe of
Devore (cf. Lemma 13) that bounds the approximation error
by the modulus of continuity of (the derivatives of) the target
function. We refer to Section IV-D for the complete proof of
Theorem 7.

IV. PROOFS OF MAIN RESULTS

In the subsequent proofs, we sometimes drop the track of
dependence on C, C 0 for simplicity.

A. Approximation Results

This subsection collects all the approximation results used
in our proof. Lemmas 13-15 are standard in the literature, and
we provide the proofs of Lemmas 11 and 12 in Section V
ahead.

Lemma 11 (Polynomial Approximation of Gaussian-
Smoothed Lipschitz Functions): Let 0 2 [a, b] ⇢ R be a
bounded interval and let `(·) be a 1-Lipschitz function over
[a, b]. For any � > 0 and integer k > 1, there exist a constant
C = C(a, b) > 0 only depending on a, b and a polynomial
pk(·) of degree at most k such that

sup
✓2[a,b]

���`�(✓)� `�(0)� pk(✓)
���  Ce� ·

h2
p

e�
p

k

b� a

i�k
k�1/4,

where we recall that `� := ` ⇤ �� with �� standing for the
density function of N (0,�2).

Lemma 12: For any integer k � 1 and 1-Lipschitz function
✓ 7! `(✓) on [0, ✓⇤] with `(0) = 0, there exists some

b̀(✓) =
Pk

x=0 bxf(x|✓) such that max✓2[0,✓⇤] |`(✓) � b̀(✓)| 
C/k, and

max
x2[0,k]

|bx|  Ck · max
0xk

1/w(x),

where C > 0 is independent of k and `(·).
Lemma 13 (Theorem 6.2 in Chapter 7, [41]): For any int-

eger r � 1, let

W r
1([�1, 1]) :=

n
 : [�1, 1] ! R :  (r�1) is absolutely

continuous and the supremum of  (r) on [�1, 1] is finite
o

be the Sobolev space on [�1, 1]. For functions f 2
W r
1([�1, 1]) and any integer k > r, there exists a polynomial

pk of degree at most k such that

sup
✓2[�1,1]

���f(✓)� pk(✓)
���  Ck�r!

�
f (r), k�1

�
,

where C > 0 is a universal constant and

!(f (r), k�1) := sup
✓1,✓2:|✓1�✓2|k�1

���f (r)(✓1)� f (r)(✓2)
���.

Lemma 14 (Chapter 2.6 Equation 9 in [42]): Suppose
k 2 Z+ and ✓ 7! pk(✓) =

Pk
x=0 cx✓x with coefficients

{cx}k
x=0 ⇢ R. Then

|cx| 
kx

x!
max
|✓|1

|pk(✓)|  ek max
|✓|1

|pk(✓)|.

Lemma 15 (Jackson’s Theorem, Lemma 10 of [43] or
see [41]): Let k > 0 be any integer, and [a, b] ✓ R be any
bounded interval. For any 1-Lipschitz function `(·) on [a, b],
there exists a constant C independent of k, ` such that there
exists a polynomial pk(·) of degree at most k such that

|`(✓)� pk(✓)|  C
p

(b� a)(✓ � a)/k, 8✓ 2 [a, b]. (11)

In particular, the following norm bound holds:

sup
✓2[a,b]

|`(✓)� pk(✓)|  C(b� a)/k. (12)

Combining with Lemma 14, it follows that the coefficients of
pk(✓) are bounded by ekO(|b� a| + `(a)).

B. Proof of Theorem 1
The proof of part (a) is based on Le Cam’s two-point method

(cf. Chapter 2.3 in [44]) and uses the following proposition.
Proposition 16 (Lemma 3 in [28], Proposition 4.3 in [29]):

For any positive integer k and any M > 0, there
exist two distributions P1, P2 with support in [0, M ]
such that P1, P2 have first k moments identical and
W1(P1, P2) � M/(2k).

We first upper bound g(x)(0)✓x
⇤/x!. Note that g(✓) is an

analytic function of ✓ and g(0) 6= 0, so that it must have
an analytic inverse in the neighborhood of 0. Therefore, there
exist positive constants C 0 and C depending only on w(·) and
✓⇤ such that

|g(x)(0)✓x
⇤/x!|  C 0(C + 1)x, for all x = 0, 1, 2, . . . .

(13)
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We then combine (13) with Proposition 16 to finish the
proof. On one hand, for any k = 1, 2, . . ., Proposition 16
guarantees the existence of two distributions Q1, Q2 over
[0, ✓⇤/(C + 3)] such that

Z
✓xdQ1(✓) =

Z
✓xdQ2(✓), for all x 2 [k],

and W1(Q1, Q2) � ✓⇤/(2(C + 3)k). On the other hand, the
total variation distance between hQ1 and hQ2 satisfies

TV(hQ1 , hQ2)

=
1
2

1X

x=0

���
Z ✓⇤/(C+3)

0
g(✓)w(x)✓xdQ1(✓)

�
Z ✓⇤/(C+3)

0
g(✓)w(x)✓xdQ2(✓)

���


1X

x=0

w(x)
X

m:m+x�k+1

|g(m)(0)|
m!

⇣ ✓⇤
C + 3

⌘m


1X

x=0

w(x)
⇣ ✓⇤

C + 3

⌘x X

m:m+x�k+1

C 0
⇣C + 1

C + 3

⌘m

 C 0
⇣C + 1

C + 3

⌘k 1X

x=0

w(x)✓x
⇤ = C 0g(✓⇤)�1

⇣C + 2
C + 3

⌘k
.

Picking k ⇣ log n so that

C 0g(✓⇤)�1
⇣C + 2

C + 3

⌘k
= 1/(2n),

it follows from Le Cam’s lower bound for two hypotheses that,
denoting Q⌦n to be the n-time product measure of Q,

inf
eQ

sup
Q

EW1(Q, eQ) � 1
2
W1(Q1, Q2)

n
1� TV(h⌦n

Q1
, h⌦n

Q2
)
o

� 1
2
W1(Q1, Q2){1� n/(2n)}

=
1
4
W1(Q1, Q2),

with W1(Q1, Q2) � ✓⇤/(2(C+3)k) by the construction. Note
that here we use the fact that for any discrete distributions
P,Q, TV(P⌦n, Q⌦n)  n·TV(P,Q); see, e.g., Lemma B.8(i)
in [45]. This completes the proof of part (a). Part (b) has been
proved in Theorem 6.2 in [15]. ⇤

C. Proof of Theorem 3
First we need a technical lemma, whose proof will be given

in Section V ahead.
Lemma 17 (A generalized version of Lemma B.2 in the

supplemental of [15]): Let {Xi, i 2 [n]} be an i.i.d. sample
generated from the mixture distribution hQ in (1). Let bQ be
defined in (3), and hobs(x) = n�1

Pn
i=1 1Xi=x for x 2 N.

Then for any � 2 (0, 1) and ✏ 2 (0, 1), there exists some
C = C(✏, ✓⇤) > 0 such that for any n � 1,

�����

1X

x=0

bx

�
hobs(x)� hQ(x)

�
�����  C max

x�0
|bx|

r
1

n1�✏�1+✏

and�����

1X

x=0

bx

⇣
hobs(x)� h bQ(x)

⌘�����  C max
x�0

|bx|
r

1
n1�✏�1+✏

hold with probability at least 1� � uniformly over {bx} ⇢ R.

Proof of Theorem 3: By definition of W1, we have

W1(Q1, Q2) = sup
`2Lip1

Z
`(dQ1 � dQ2)

= sup
`2Lip1,`(0)=0

Z
`(dQ1 � dQ2).

To control each
R
`(dQ1�dQ2), define the following approx-

imation function of `(✓):

✓ 7! b̀(✓) :=
kX

x=0

bxf(x|✓), where bx 2 R and ✓ 2 [0, ✓⇤];

here the integer k and the values {bx}k
x=0 will be specified

later. Recall that hQ(x) =
R

f(x|✓)dQ(✓). Then since Q and
bQ are both supported on [0, ✓⇤], direct calculation yields that

Z
`(✓)d

�
Q(✓)� bQ(✓)

�

=
Z ✓⇤

0
`(✓)d

�
Q(✓)� bQ(✓)

�

=
Z ✓⇤

0

�
`(✓)� b̀(✓)

�
d
�
Q(✓)� bQ(✓)

�

+
kX

x=0

bx

�
hQ(x)� h bQ(x)

�

 2k`� b̀k1 +
���

kX

x=0

bx

�
hQ(x)� hobs(x)

����

+
���

kX

x=0

bx

�
hobs(x)� h bQ(x)

����,

where k` � b̀k1 = sup✓2[0,✓⇤] |`(✓) � b̀(✓)| and hobs(x) =
n�1

Pn
i=1 1Xi=x. This implies

W1(Q, bQ)  sup
`2Lip(1)

n
2k`� b̀k1+

���
kX

x=0

bx

�
hQ(x)�hobs(x)

����

+
���

kX

x=0

bx

�
hobs(x)� h bQ(x)

����
o

. (14)

By Lemma 17, for any � 2 (0, 1/2) and ✏ 2 (0, 1), there exists
some C1 = C1(✏, ✓⇤) > 0 such that the sum of the last two
terms in (14) is upper bounded by

C1 max
x�0

|bx|/
p

n1�✏�1+✏

uniformly over {bx} with probability at least 1 � 2�. The
bound on maxx�0 |bx|, as we discuss next, depends on the
tail of 1/w(x).

(i) If 1/w(x)  Cx
2 for some constant C2 > 1 and all x � 0,

it follows from Lemma 12 that for any k 2 Z+ and 1-Lipschitz
function `(✓) on [0, ✓⇤], there exists an approximation
b̀(✓) =

Pk
x=0 bxf(x|✓) with {bx}k

x=0, such that max✓2[0,✓⇤]

|`(✓)� b̀(✓)|  C3/k and

max
x2[0,k]

|bx|  Ck
3 /w(k)  (C2C3)k,
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where C3 > 0 is independent of k and `. Hence it follows
from (14) that

W1(Q, bQ)  2C3/k + C1(C2C3)k/
p

n1�✏�1+✏,

for any n � 1 with probability at least 1�2�. Taking k = k(n)
such that (C2C3)k = nc for some small positive constant c
specified later, it follows that

W1(Q, bQ)  2C3/k(n) + C1n
c/
p

n1�✏�1+✏

= 2C3/k(n) + C1n
c+✏/2�1/2/

p
�1+✏.

Note that (C2C3)k(n) = nc implies k(n) = c log n/
log(C2C3). Letting ✏ = 1/4 and c = 1/8, it follows that

W1(Q, bQ) 2C3 log(C2C3)/(c log n)+C1n
c+✏/2�1/2/

p
�1+✏

16C3 log(C2C3)/ log n + C1n
�1/4/�5/8.

Therefore, for sufficiently large n (depending on ✓⇤),
there exists a positive constant C4 = C4(✓⇤) such that
EW1(Q, bQ)  C4/ log n by integrating the tail estimate.

(ii) If 1/w(x)  (C5x)C5x for some C5 > 0 and all x � 1,
it follows from Lemma 12 that any 1-Lipschitz function `(✓)
on [0, ✓⇤] can be approximated by b̀(✓) =

Pk
x=0 bxf(x|✓)

such that max✓2[0,✓⇤] |`(✓)� b̀(✓)|  C3/k, and

max
x

|bx|  Ck
3 /w(k)  (C5(C3)1/C5k)C5k  (C6k)C6k

for k � 1, where C6 = C6(✓⇤) is a constant. Hence it follows
that

W1(Q, bQ)  2C3/k + (C6k)C6kC1/
p

n1�✏�1+✏,

for any n � 1 with probability at least 1 � 2�. Taking k =
k(n) satisfying (C6k)C6k = nc for a small positive constant
c specified later, it follows that

W1(Q, bQ)  2C3/k(n) + C1n
c+✏/2�1/2/

p
�1+✏.

Since (C6k)C6k = nc is equivalent to log(C6k) exp(log
(C6k)) = c log n, it follows that log(C6k(n)) = W (c log n)
and hence k(n) = exp(W (c log n))/C6, where W (·) is the
Lambert W function. Using the expansion

W (x) = log x� log log x + o(1), as x !1,

there exists a constant C7 > 0 such that

exp(W (x)) � x/(2 log x) for x � C7.

Therefore, for sufficiently large n, we have

k(n) � c log n

2C6 log(c log n)
. (15)

As a result,

W1(Q, bQ)  {4C3C6 log(c log n)}/(c log n)
+C1n

c+✏/2�1/2/
p
�1+✏,

with probability at least 1 � 2�. Letting c = 1/8, ✏ = 1/4,
we have

W1(Q, bQ) . log log n/ log n + n�1/4��5/8.

Therefore, for sufficiently large n (depending on ✓⇤), it follows
that EW1(Q, bQ) . log log n/ log n by integrating the tail
estimate. ⇤

D. Proof of Theorem 7

Proof of Theorem 7: This proof is divided into three steps.
Step 1: In the first step, we prove that for any � > 0,

integer k > 1, and any ` 2 Lip(1) on [�✓⇤, ✓⇤] with `(0) = 0,
there exist a positive constant C4 = C4(✓⇤,�) and a set of
coefficients

n
bx 2 R, x = 0, . . . , 2k

o

such that

sup
✓2[0,✓⇤]

���`�(✓)� `�(0)�
X

0x2k

bxf(x|✓)
���

 C4

nh
✓⇤�

p
ek

i�k
+

X

x�k+1

w(x)✓x
⇤

o
,

where we recall that `�(✓) := [` ⇤ ��](✓) and �� is the
probability density function of N� .

For any k = 1, 2, . . ., let qk(✓) :=
Pk

x=0 w(x)✓x be a
truncation of the function ✓ 7! 1/g(✓) =

P1
x=0 w(x)✓x on

[0, ✓⇤]. Noting that 1/g(✓) is monotonically non-decreasing
with respect to ✓, one can then readily verify that

Rk(✓) := g(✓) ·
n 1

g(✓)
� qk(✓)

o

= g(✓) ·
X

x�k+1

w(x)✓x

 g(0) ·
X

x�k+1

w(x)✓x
⇤

whenever ✓ 2 [0, ✓⇤].
Let pk(✓) be the degree-k polynomial achieving the approx-

imation bound in Lemma 11. We then have

sup
✓2[�✓⇤,✓⇤]

���`�(✓)� `�(0)� pk(✓)
���  C5e� ·

h
2✓�1
⇤ �

p
ek

i�k
,

(16)

where C5 = C5(✓⇤) > 0. Then there exists a set of coefficients
{bx 2 R, x = 0, 1, . . . , 2k} such that

pk(✓)qk(✓) =
2kX

x=0

bxw(x)✓x.

Then we have g(✓)pk(✓)qk(✓) =
P2k

x=0 bxf(x|✓), and the
proof in this step is complete by noting that

sup
✓2[0,✓⇤]

���`�(✓)� `�(0)� pk(✓)qk(✓)g(✓)
���

= sup
✓2[0,✓⇤]

���`�(✓)� `�(0)� pk(✓)
⇥
1�Rk(✓)

⇤���

 2 sup
✓2[0,✓⇤]

���`�(✓)� `�(0)� pk(✓)
���

+ sup
✓2[0,✓⇤]

���`�(✓)� `�(0)
��� · sup

✓2[0,✓⇤]

���Rk(✓)
���

(⇤)
 C52e� ·

h
2✓�1
⇤ �

p
ek

i�k
+ 2(✓⇤+�)g(0) ·

X

x�k+1

w(x)✓x
⇤ .

(17)
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Here in (⇤) we use the fact that, as `(0) = 0 and ` 2 Lip(1),

sup
✓2[0,✓⇤]

|`�(✓)|  sup
|✓|✓⇤

|`�(✓)|

= sup
|✓|✓⇤

���
Z
`(✓ � ✓1)��(✓1)d✓1

���


Z

(✓⇤ + |✓1|)��(✓1)d✓1  ✓⇤ + �.

Step 2: In this step, we upper bound maxx2{0,1,...,2k} |bx|.
Let

er(✓) := pk(✓⇤✓)qk(✓⇤✓) :=
2kX

x=0

ebxw(x)✓x

be a rescaled version of pk(✓)qk(✓), so that ebx = ✓x
⇤bx. Then

by Lemma 14, it holds that for each 0  x  2k,

|ebx|w(x)  (2k)x

x!
sup
|✓|1

|er(✓)|

 (2k)x

x!
sup

|✓|✓⇤

pk(✓) · sup
|✓|✓⇤

qk(✓).

Since

sup
|✓|✓⇤

qk(✓)  1/g(✓⇤)

and by (16),

sup
|✓|✓⇤

pk(✓)  C

for some positive constant C only depending on ✓⇤ and �,
it follows that

max
0x2k

|bx|  C6 max
0x2k

(2k)x

w(x)✓x
⇤x!

 C6 max
0x2k

1
w(x)

· max
1x2k

1
✓x
⇤
· max
0x2k

(2k)x

x!

where C6 = C6(✓⇤,�) > 0. Combining the above inequality
with

max
0x2k

1/✓x
⇤ 

⇣
max{1, 1/✓⇤}

⌘2k

and

max
0x2k

(2k)x/x!  e2k,

it follows that

max
0x2k

|bx|  C6 ·
⇣
e · max{1, 1/✓⇤}

⌘2k
· max
0x2k

1
w(x)

.

Step 3: In this step we prove the claim of the theorem.
Recall that

W �
1 ( bQ, Q) = sup

`

Z
`d[ bQ ⇤N�]� `d[Q ⇤N�],

where ` 2 Lip(1) with `(0) = 0. It further holds that

W �
1 ( bQ, Q)

= sup
`2Lip(1):`(0)=0

Z
`d[ bQ ⇤N�]� `d[Q ⇤N�]

= sup
`2Lip(1):`(0)=0

Z
(`�(✓)� `�(0))[d bQ� dQ]

= sup
`2Lip(1):`(0)=0

Z n
`�(✓)� `�(0)�

X

0x2k

bxf(x|✓)
o

[d bQ� dQ]

+ sup
`2Lip(1):`(0)=0

Z X

0x2k

bxf(x|✓)[d bQ� dQ]

:= (I) + (II).

By Step 1, we have

(I)  2C4

nh
2✓�1
⇤ �

p
ek

i�k
+

X

x�k+1

w(x)✓x
⇤

o
. (18)

Next we bound (II). Recall that

hobs(x) :=
nX

i=1

1(Xi = x)/n.

We have
Z X

0x2k

bxf(x|✓)[d bQ(✓)� dQ(✓)]


���

X

0x2k

bx[h bQ(x)� hobs(x)]
���

+
���

X

0x2k

bx[hobs(x)� hQ(x)]
���.

It follows from Lemma 17 that for an arbitrary � 2 (0, 1)
and an arbitrary ✏ 2 (0, 1), there exists a constant C7 =
C7(✏, ✓⇤) > 0 such that with probability at least 1� �
������

X

0x2k

bx

⇥
hobs(x)� hQ(x)

⇤
������
+

������

X

0x2k

bx

h
hobs(x)�h bQ(x)

i
������

 C7 max
0x2k

|bx|
r

1
n1�✏�1+✏

uniformly over all {bx}2k
x=0. Consequently, we have

(II)  C8 max
0x2k

|bx|
.p

n1�✏�1+✏

with probability at least 1 � � for some constant C8 =
C8(✏, ✓⇤) > 0. Note that max0x2k |bx| has been upper
bounded in Step 2.

Putting together the estimates for (I) and (II), we have that
with probability at least 1 � �, W �

1 (Q, bQ) is upper bounded
by

h
2✓�1
⇤ �

p
ek

i�k
+

X

x�k+1

w(x)✓x
⇤

+
⇣
e · max{1, 1/✓⇤}

⌘2k
· max1x2k 1/w(x)p

n1�✏�1+✏
(19)

up to a constant depending on �, ✓⇤ and ✏.

(i) If 1/w(x)  C1Cx
2 , (19) becomes

[2✓�1
⇤ �

p
ek]�k +

X

x�k+1

w(x)✓x
⇤ + C2k

9 /
p

n1�✏�1+✏,
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where C9 := e · max{1, 1/✓⇤} · max{1, C2} is a positive
constant. For the second term, it follows from Corollary
1.1.10 in [46] that for any R 2 (✓⇤, ✓r) there exists some
constant C10 = C10(R) > 0 such that w(x)  C10/Rx for
all x = 0, 1, 2 . . ., and hence

X

x�k+1

w(x)✓x
⇤  C10

X

x�k+1

(✓⇤/R)x

 C10 · (✓⇤/[R� ✓⇤]) · [✓⇤/R]k

for any k = 1, 2, . . . . Therefore, the second term dominates
the first term in (19), and (19) becomes

[✓⇤/R]k + C2k
9 /
p

n1�✏�1+✏.

The proof is then complete by letting C2k
9 = n↵ for some

↵ 2 (0, 1/2�✏/2). The final bound is then n�
(1�✏) log(R/✓⇤)

2 log(R/✓⇤)+4 log C9

for any ✏ 2 (0, 1).

(ii) If c1cx
2xc3x  1/w(x)  C1Cx

2 xC3x, (19) becomes

[2✓�1
⇤ �

p
ek]�k + (C11k)�c3k + (C12k)2C3k/

p
n1�✏�1+✏

for some positive constants C11 and C12 and the proof is then
complete by letting (C12k)2C3k = n↵ for some ↵ 2 (0, 1/2�
✏/2). The final bound is then n�

(1�✏)/2
1+max{4C3,2C3/c3} . ⇤

E. Proof of Remark 10

Proof of Remark 10: (i) For the Poisson mixture,
we have 1/w(x) = x! with

p
2⇡x (x/e)x e

1
12x+1 < x! <p

2⇡x(x/e)xe
1

12x from Stirling’s approximation. Therefore,
it satisfies the assumption (ii) in Theorem 7 with c3 = C3 = 1.
It then follows from the arguments in the end of the proof of
Theorem 7 that the rate is

(1� ✏)/2
1 + max{4C3, 2C3/c3}

=
1� ✏

10
.

(ii) For the negative binomial mixture with

f(x|✓) = (1� ✓)r

✓
x + r � 1

x

◆
✓x, r > 0,

we have

1/w(x) = 1/

✓
x + r � 1

x

◆
 1 and ✓r = 1.

Therefore, it satisfies the assumption (i) in Theorem 7 with
C2 = 1. By taking

R = (✓⇤ + ✓r)/2 = (✓⇤ + 1)/2,

it then follows from the arguments in the end of the proof of
Theorem 7 that the rate is

(1� ✏) log[(✓⇤ + 1)/(2✓⇤)]
2 log[(✓⇤ + 1)/(2✓⇤)] + 4 log C9

 (1� ✏)
2 + 4 log[C9]/ log[1/✓⇤]

.

The proof is then completed by noting that C9 = e ·
max{1, 1/✓⇤} · max{1, C2} = e/✓⇤. ⇤

V. PROOFS OF AUXILIARY RESULTS

A. Proof of Lemma 11

By rescaling, we assume that a = �1 and b = 1. For any
integer r � 1, let

W r
1([a, b]) :=

n
 : [a, b] ! R :  (r�1) is absolutely continuous and

the essential supremum of  (r) on [a, b] is finite
o

be the Sobolev space on [a, b]. Then it is readily verifiable that
for any ` 2 Lip(1) and �2 > 0,

`�(✓)� `�(0) = (` ⇤ ��)(✓)� (` ⇤ ��)(0),

when restricted on [a, b], belongs to W r
1([a, b]). Hence by

Lemma 13, we have that for any integer k > r, there exists
some polynomial pk of degree k such that

sup
✓2[a,b]

���`�(✓)� `�(0)� pk(✓)
���  C1k

�r!
�
`(r)� , k�1

�
,

In the above inequality, C1 = C1(a, b) > 0 is a constant and

!( , t) := sup
✓1,✓2:|✓1�✓2|t

| (✓1)�  (✓2)|

is the modulus of continuity of function  at radius t. To bound
the righthand side of the above display, note that, with Hn(·)
denoting the n-th Hermite polynomial (page 775 in [47]),
we have

`(r)� (✓) =
Z
`(✓1)�(r)

� (✓ � ✓1)d✓1

= ��r(�1)r

Z
`(✓ � ✓1)��(✓1)Hr

�
✓1/�

�
d✓1,

where the second equality follows from the derivative identity
for the normal density (page 785 in [47]). Hence for any
✓1, ✓2 such that |✓1 � ✓2|  k�1, we have

��`(r)� (✓1)� `(r)� (✓2)
��

 ��r

Z
|`(✓1 � ✓)� `(✓2 � ✓)|��(✓)|Hr(✓/�)|d✓

 ��rk�1

Z
��(✓)|Hr(✓/�)|d✓

= ��rk�1

Z
�1(✓)|Hr(✓)

��d✓

 ��rk�1[
Z
�1(✓)H2

r (✓)d✓]1/2

= ��rk�1
p

r!.

It further follows from the Stirling’s formula
p

r! p
err+1/2e�r that

��`(r)� (✓1)� `(r)� (✓2)
��  ��rk�1

p
err+1/2e�r.

Using r < k, we hence obtain

sup
✓2[a,b]

|`�(✓)� `�(0)�pk(✓)|  C1
p

e(
p

e�k/
p

r)�rr1/4k�1

 C1
p

e(
p

e�
p

k)�rk�3/4.
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By rescaling, we then have for any a  0, b � 0 it follows
that

sup
✓2[a,b]

|`�(✓)� `�(0)� pk(✓)|

 C1([b� a]/2)r+1pe(
p

e�
p

k)�rk�3/4

 C1(b� a)
p

e

2
·
h2
p

e�
p

k

b� a

i�r
k�3/4.

Now taking r = k � 1, we have

sup
✓2[a,b]

|`�(✓)� `�(0)� pk(✓)|  C1e� ·
h2
p

e�
p

k

b� a

i�k
k�1/4

and accordingly complete the proof. ⇤

B. Proof of Lemma 17

Whenever there is no ambiguity, let hobs, h bQ, and hQ also
represent distributions with respect to corresponding probabil-
ity mass functions x 7! hobs(x), x 7! h bQ(x), and x 7! hQ(x).
This proof consists of two steps. In the first step, we prove
that both
�����

1X

x=0

bx

�
hobs(x)�hQ(x)

�
����� and

�����

1X

x=0

bx

⇣
hobs(x)� h bQ(x)

⌘�����

can be upper bounded by KL(hobs, hQ), where KL is the
Kullback-Leibler divergence. In the second step, we upper
bound KL(hobs, hQ) by truncation arguments.

Step 1: It follows from the triangle inequality and Pinsker’s
inequality that
�����

1X

x=0

bx

�
hobs(x)� hQ(x)

�
�����  max

x�0
|bx| ·

���hobs � hQ

���
1

 max
x�0

|bx|
r

1
2
· KL(hobs, hQ),

where khobs � hQk1 represents the total variation distance
between distributions hobs and hQ. Analogously, we have
�����

1X

x=0

bx

⇣
hobs(x)� h bQ(x)

⌘�����  max
x�0

|bx|
r

1
2
· KL(hobs, h bQ)

 max
x�0

|bx|
r

1
2
· KL(hobs, hQ),

where the last inequality follows from the fact that, by defini-
tion,

bQ = argmax
eQ

nX

i=1

log h eQ(Xi)

= argmax
eQ

1X

x=0

hobs(x) log h eQ(x) = argmin
eQ

KL(hobs, h eQ).

Step 2: Suppose C1 = C1(✓⇤) is the smallest positive
integer larger than ✓⇤g(0)(1/g)0(✓⇤). Define

Ti := Xi1(Xi  C1 � 1) + C11(Xi � C1) for all i 2 [n].

Let tQ be the probability mass function of T1 and let tobs be
the sample version of tQ, i.e.

x 7! tQ(x) :=P (T1 = x) and x 7! tobs(x) :=
1
n

nX

i=1

1(Ti = x),

for x 2 {0, . . . , C1}. Note that

tQ(x)=hQ(x) and tobs(x)=hobs(x) for x = 0, . . . , C1�1

and

tQ(C1) =
X

x�C1

hQ(x), tobs(C1) =
X

x�C1

hobs(x).

Hence it follows that

KL(hobs, hQ)

=
C1�1X

x=0

tobs(x) log
tobs(x)
tQ(x)

+
X

x�C1

hobs(x) log
hobs(x)
hQ(x)

= KL(tobs, tQ)� tobs(C1) log
tobs(C1)
tQ(C1)

+
X

x�C1

hobs(x) log
hobs(x)
hQ(x)

,

where tobs and tQ are viewed as distributions with respect to
corresponding probability mass functions of x 7! tQ(x) and
x 7! tobs(x).

If tobs(C1) = 0, then

tobs(C1) log
tobs(C1)
tQ(C1)

= 0.

Otherwise it follows from the inequality

log(1 + x)  x for x > 0

that

�tobs(C1) log
tobs(C1)
tQ(C1)


X

x�C1

n
hQ(x)� hobs(x)

o
.

Analogously, we have

X

x�C1

hobs(x) log
hobs(x)
hQ(x)


X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
+

X

x�C1

n
hobs(x)� hQ(x)

o

and hence

� tobs(C1) log
tobs(C1)
tQ(C1)

+
X

x�C1

hobs(x) log
hobs(x)
hQ(x)


X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
.

Step 2(a): We first upper bound
P

x�C1
(hobs(x) �

hQ(x))2/hQ(x). Fix an arbitrary ✏ 2 (0, 1) and choose a
� > 0 in (1 � ✏, 1). Define A := ↵(1��)/3, where ↵ :=
(✓⇤ + ✓r)/(2✓⇤) > 1. Note that ↵✓⇤ < ✓r and we have
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1/g(✓) =
P1

x=0 w(x)✓x < 1 for all ✓ 2 [0,↵✓⇤]. It then
follows from Hölder’s inequality that

n1�✏
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)

= n1�✏
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
A�xAx

 n1�✏

0

@
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
A�x/�

1

A
�

·

0

@
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
Ax/(1��)

1

A
1��

.

It further follows from A > 1 that

n · E
n X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
A�x/�

o

=
X

x�C1

(1� hQ(x))A�x/�


X

x�C1

A�x/� =
A�C1/�

1�A�1/�
< 1

and hence for an arbitrary � 2 (0, 1), we have

n
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
A�x/�  A�C1/�

1�A�1/�

1
�

with probability at least 1� �. Therefore, with probability at
least 1� �, we have

0

@
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
A�x/�

1

A
�


✓

A�C1/�

1�A�1/�

1
n�

◆�

 1⇣
↵

1��
3� � 1

⌘�
1

(n�)�
,

where the last inequality follows from C1 � 1. On the other
hand,

X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
Ax/(1��)

 2
X

x�C1

(hobs(x))2

hQ(x)
↵x/3 + 2

X

x�C1

hQ(x)↵x/3.

We first show that the second term on the righthand side is
bounded, which is true if

X

x�C1

hQ(x)↵x  g(✓⇤)
.

g(↵✓⇤).

Since
P1

x=0 g(✓)w(x)✓x = 1 and 1/g(✓) =
P1

x=0 w(x)✓x,
it follows from

(1/g)0(✓) =
1X

x=1

xw(x)✓x�1 > 0

and

(1/g)00(✓) =
1X

x=2

x(x� 1)w(x)✓x�2 > 0

that g(·) is monotonically decreasing on [0, ✓⇤] and (1/g)0(·)
is monotonically increasing on [0, ✓⇤]. Therefore, it follows
from

log f(x|✓) = � log(1/g(✓)) + x log ✓ + log w(x)

that
d(log f(x|✓))

d✓
=

1
✓

(x� ✓g(✓)(1/g)0(✓))

� 1
✓

(x� ✓⇤g(0)(1/g)0(✓⇤)) �
1
✓

(x� C1) � 0

for all x � C1. Therefore we have

hQ(x) =
Z ✓⇤

0
f(x|✓)dQ(✓)  sup

✓2[0,✓⇤]
f(x|✓) = f(x|✓⇤)

and
X

x�C1

hQ(x)↵x 
X

x�C1

f(x|✓⇤)↵x


X

x�0

f(x|✓⇤)↵x =
g(✓⇤)
g(↵✓⇤)

< 1.

We now switch to the first term. For any fixed k > 0, define
An to be the event

An :=
n

hobs(x) > khQ(x)↵x/3 for some x � C1

o
.

Then, it follows from Markov’s inequality that

P (An) 
X

x�C1

P (hobs(x) > khQ(x)↵x/3)

 1
k

X

x�C1

E{hobs(x)} 1
hQ(x)↵x/3

 1
k

1
↵1/3 � 1

.

Thus, P (An) can be made arbitrarily small by choosing k
large enough and on the complement of An we have

X

x�C1

(hobs(x))2

hQ(x)
↵x/3  k2

X

x�C1

hQ(x)↵x  k2 g(✓⇤)
g(↵✓⇤)

.

Therefore, for an arbitrary � 2 (0, 1), we have
X

x�C1

(hobs(x))2

hQ(x)
↵x/3  g(✓⇤)

g(↵✓⇤)

✓
1
�

1
↵1/3 � 1

◆2

with probability at least 1��. Thus, for an arbitrary � 2 (0, 1),
with probability at least 1� �, it follows that
n X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
A

x
1��

o1��

 21�� ·
n g(✓⇤)

g(↵✓⇤)

✓
1
�

1
↵1/3�1

◆2

+
g(✓⇤)
g(↵✓⇤)

o1��
 C2

�2�2�
,

where C2 = C2(✓⇤) = {2 · g(✓⇤)[1/(↵1/3 � 1)2 +
1]/g(↵✓⇤)}1�� is a constant. For an arbitrary � 2 (0, 1/2),
with probability at least 1� 2�, it follows that

n1�✏
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)

 n1�✏ 1⇣
↵

1��
3� � 1

⌘�
1

(n�)�

C2

�2�2�

= n1�✏�� C2⇣
↵

1��
3� � 1

⌘�
1

�2��
.
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Thus, by letting � go to 1� ✏, we have
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)
 C2⇣

↵
✏

3(1�✏) � 1
⌘1�✏

1
n1�✏

1
�1+✏

.

As a result, for arbitrary � 2 (0, 1/2) and ✏ 2 (0, 1), with
probability at least 1� 2�, we have

KL(hobs, hQ)  KL(tobs, tQ) +
X

x�C1

(hobs(x)� hQ(x))2

hQ(x)

 KL(tobs, tQ) + C3
1

n1�✏

1
�1+✏

,

where C3 = C3(✏, ✓⇤) = C2/(↵
✏

3(1�✏) � 1)1�✏.
Step 2(b): We then upper bound KL(tobs, tQ). It follows

from [48] that with probability at least 1� �,

KL(tobs, tQ)  C1 + 1
2n

log
4n

C1 + 1
+

1
n

log
3e

�
,

and hence for any ✏ 2 (0, 1) and � 2 (0, 1/3), with probability
at least 1� 3�,

KL(hobs, hQ)  1
n�1+✏

(3C1 log(2n) + C3n
✏) .

Therefore, it follows that there exists a constant C4 =
C4(✏, ✓⇤) such that for any n � 1

KL(hobs, hQ)  C4

n1�✏�1+✏

holds with probability at least 1 � 3� for any ✏ 2 (0, 1) and
� 2 (0, 1/3). Therefore,

�����

1X

x=0

bx

⇣
hobs(x)� h bQ(x)

⌘�����  max
x�0

|bx|
r

C4

2n1�✏�1+✏

holds for all n � n1 with probability at least 1 � 3� for any
✏ 2 (0, 1) and � 2 (0, 1/3). ⇤

C. Proof of Lemma 12
This proof consists of two steps. In the first step, we prove

the existence of b̀ and upper bound sup✓2[0,✓⇤] |b̀(✓) � `(✓)|.
In the second step, we upper bound coefficients of b̀, i.e.,
max0xk |bx|.

Step 1: It follows from
P1

x=0 f(x|✓) = 1 thatP1
x=0 g(✓)w(x)✓x = 1 and hence g(✓) > 0 for ✓ 2 [0, ✓⇤].

As a consequence, 1/g(✓) =
P1

x=0 w(x)✓x on [0, ✓⇤].
Since ✓ 7!

P1
x=0 w(x)✓x is a continuous function on

[�✓⇤, ✓⇤] taking the value w(0) > 0 at ✓ = 0 (recall the
convention 00 = 1), there exists some ✓0 2 (0, ✓⇤] such
that ✓ 7!

P1
x=0 w(x)✓x is strictly positive on [�✓0, ✓⇤]. For

✓ 2 [�✓0, 0), define 1/g(✓) :=
P1

x=0 w(x)✓x and `(✓) :=
�`(�✓). Then ✓ 7! `(✓) is a 1-Lipschitz function on [�✓0, ✓⇤]
and for any ✓1, ✓2 2 [�✓0, ✓⇤], we have

|`(✓1)/g(✓1)� `(✓2)/g(✓2)|
 |`(✓1)/g(✓1)�`(✓2)/g(✓1)| + |`(✓2)/g(✓1)� `(✓2)/g(✓2)|
 |✓1 � ✓2|{1/g(✓⇤) + ✓⇤(1/g)0(✓⇤)},

using the fact that both ✓ 7! 1/g(✓) and ✓ 7! (1/g)0(✓) achieve
their maxima at ✓⇤. This implies ✓ 7! `(✓)/g(✓) is Lipschitz

with constant 1/g(✓⇤) + ✓⇤(1/g)0(✓⇤). Therefore, it follows
from Jackson’s theorem (see Lemma 15) that there exists a
polynomial

Pk
x=0 vx✓x of degree k � 1 such that

sup
✓2[�✓0,✓⇤]

|`(✓)/g(✓)�
kX

x=0

vx✓
x|  C1/k,

where C1 > 0 is independent of k and ` and vx 2 R for all
x = 0, . . . , k. Let bx := vx/w(x) for 0  x  k (this is
well-defined since w(x) > 0 for x 2 Z). Then with b̀(✓) :=Pk

x=0 bxg(✓)w(x)✓x =
Pk

x=0 bxf(x|✓), it holds that

sup
✓2[�✓0,✓⇤]

���`(✓)� b̀(✓)
��� 

C1

k
· sup

✓2[�✓0,✓⇤]
g(✓)  C2

k
,

where C2 > 0 does not depend on k and `.
Step 2: To bound the coefficients {bx}0xk, we first define

a polynomial

✓ 7! r(✓) :=
kX

x=0

vx(✓0✓)x on [�1, 1]

and note that

sup
✓2[�1,1]

|r(✓)| = sup
✓2[�✓0,✓0]

��
kX

x=0

vx✓
x
��

 C1/k + sup
✓2[�✓0,✓0]

|`(✓)/g(✓)|

 C1/k + ✓0/g(✓0),

using the fact that ✓ 7! 1/g(✓) achieves its maximum at ✓0.
We then apply Lemma 14 on the polynomial r(✓), and it
follows that

|vx|✓x
0  max

|✓|1
|r(✓)| · kx/x!  C3k

x/x!,

where C3 > 0 does not depend on k and `. Hence

|bx| = |vx|/w(x)  C3 · (k/✓0)x/
�
x!w(x)

�

and

max
x2[0,k]

|bx|  C3 · max
x2[0,k]

(k/✓0)x

x!w(x)

 C4 ·
(k/✓0)k

k!
· max
0xk

1/w(x)

 C4 · (e/✓0)k · max
0xk

1/w(x),

where C4 > 0 does not depend on k and `. It follows from
Corollary 1.1.10 in [46] that w(x)  C5/✓x

⇤ for all x 2 N and
some constant C5 � 1 depending only on w(·) and ✓⇤ and
hence

(e/✓0)k/w(k) � (✓⇤e/✓0)k/C5 � ek/C5 > 1

for all sufficiently large k. ⇤
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