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In recent work, Azadkia and Chatterjee (Ann. Statist. 49 (2021) 3070–3102) laid out an ingenious approach to defin-
ing consistent measures of conditional dependence. Their fully nonparametric approach forms statistics based on
ranks and nearest neighbor graphs. The appealing nonparametric consistency of the resulting conditional depen-
dence measure and the associated empirical conditional dependence coefficient has quickly prompted follow-up
work that seeks to study its statistical efficiency. In this paper, we take up the framework of conditional random-
ization tests (CRT) for conditional independence and conduct a power analysis that considers two types of local
alternatives, namely, parametric quadratic mean differentiable alternatives and nonparametric Hölder smooth al-
ternatives. Our local power analysis shows that conditional independence tests using the Azadkia–Chatterjee coef-
ficient remain inefficient even when aided with the CRT framework, and serves as motivation to develop variants
of the approach; cf. Lin and Han (Biometrika 110 (2023) 283–299). As a byproduct, we resolve a conjecture of
Azadkia and Chatterjee by proving central limit theorems for the considered conditional dependence coefficients,
with explicit formulas for the asymptotic variances.

Keywords: Conditional independence; graph-based test; rank-based test; nearest neighbor graphs; local power
analysis

1. Introduction
Conditional (in)dependence is a fundamental statistical concept that plays a central role in statistical
inference and theory (Dawid, 1979, 1980). Testing conditional independence is nowadays a routine
task in graphical modeling (Maathuis et al., 2019), causal discovery (Peters, Janzing and Schölkopf,
2017), feature selection (Koller and Sahami, 1996), and many other statistical applications. Formally,
the problem of interest is to test for three random vectors X,Y,Z the hypothesis

H0 : Y and Z are conditionally independent given X, (1)

based on a finite sample of size n from the joint distribution of (X,Y,Z). It is customary to denote the
conditional independence by Y ⊥⊥ Z | X .

In contrast to the discrete/categorical case or favorable parametric settings such as multivariate nor-
mality, the general problem of testing (1) when X is continuous is a remarkably challenging task
(Bergsma, 2004, Neykov, Balakrishnan and Wasserman, 2021, Shah and Peters, 2020). A number of
attempts have been made to provide nonparametric solutions, and notable examples include Linton and
Gozalo (1997) (on conditional cumulative distribution functions); Su and White (2007, 2008, 2014) (on
conditional characteristic functions, conditional probability density functions, and smoothed empirical
likelihood ratios, respectively); Huang (2010) (on maximal nonlinear conditional correlation); Fuku-
mizu et al. (2008), Zhang et al. (2011), Doran et al. (2014), and Strobl, Zhang and Visweswaran (2019)
(on kernel-based conditional dependence); Póczos and Schneider (2012) and Runge (2018) (on condi-
tional mutual information); Székely and Rizzo (2014) and Wang et al. (2015) (on conditional distance
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correlation); Song (2009) and Cai, Li and Zhang (2022) (based on Rosenblatt transformation); Bergsma
(2004, 2011) and Veraverbeke, Omelka and Gijbels (2011) (copula-based); Hoyer et al. (2009), Peters,
Janzing and Schölkopf (2011), Shah and Peters (2020), and Petersen and Hansen (2021) (regression-
based); Canonne et al. (2018) and Neykov, Balakrishnan and Wasserman (2021) (binning-based).

For the important special case where Y is a random scalar (and hence denoted in regular font by Y ),
Azadkia and Chatterjee (2021) introduced a novel and rather different conditional dependence measure
whose estimate ingenuously combines ideas from rank statistics, nearest neighbor graphs and asso-
ciated minimum spanning trees for data sets. The dependence measure and estimate were shown to
possess the following four appealing properties:

(1) the conditional dependence measure takes values in [0,1], is 0 if and only if Y ⊥⊥ Z | X , and is 1
if and only if Y is almost surely (a.s.) equal to a measurable function of Z given X ;

(2) the estimate has a simple expression and can be computed in O(n log n) time;
(3) the estimate is fully nonparametric and has no tuning parameter;
(4) the estimate is consistent as long as Y is not a.s. equal to a measurable function of X .

The new approach has quickly caught attention. First follow-up work studies extensions to topological
spaces and multidimensional Y and explores connections to general random graphs; see Deb, Ghosal
and Sen (2020) and Huang, Deb and Sen (2022). Moreover, for the case of unconditional dependence,
analyses were conducted to better understand the statistical power of the approach. These analyses treat
the very closely related coefficient presented by Chatterjee (2021); see Cao and Bickel (2020), Shi,
Drton and Han (2022a), and Auddy, Deb and Nandy (2023).

In this paper, we study the statistical efficiency of Azadkia–Chatterjee’s conditional dependence co-
efficient in testing the hypothesis of conditional independence from (1). Azadkia and Chatterjee (2021)
themselves did not pursue using their coefficient for inferential problems such as testing. To imple-
ment a test, we employ the conditional randomization test (CRT) framework developed in Candès et al.
(2018); see Berrett et al. (2020) for a related proposal. The CRT framework assumes that the condi-
tional distribution of Y given X is known, and thus the null distribution of any conditional dependence
coefficient can be approximated by simulation.

Local power analyses for tests rely on a choice of local alternatives. In the context of this paper, an
important subtlety lies in the fact that in order to be relevant for a CRT-based Azadkia–Chatterjee-
type test, the conditional distribution of Y given X should be identical between the null and local
alternatives. Two such families of local alternatives are considered in this manuscript:

(a) the joint density of (X,Y,Z) in the alternative is assumed to be “smoothly” changing to the
null in the sense of quadratic mean differentiability (Lehmann and Romano, 2005, Defini-
tion 12.2.1). This is akin to parametric settings, and such families of local alternatives have
been explored in studies of rank- and graph-based tests in related statistical problems (Bhat-
tacharya, 2019, Cao and Bickel, 2020, Shi et al., 2022). The critical detection boundary in such
cases is known to be at root-n;

(b) the conditional distribution of (Y,Z) given X is assumed to be Hölder smoothly changing with
regard to X . This is akin to nonparametric settings, and the case we will consider is an extension
of the one that has been examined by Neykov, Balakrishnan and Wasserman (2021). There, as
X,Y,Z are all random scalars, the critical detection boundary is n−2s/(4s+3), where s denotes
the Hölder smoothness exponent.

The local power analyses we report on in this manuscript provide, in both of the above scenarios,
examples that show that the CRT-based Azadkia–Chatterjee-type test is unfortunately unable to achieve
the critical detection boundary, i.e., the sum of type-I and type-II errors will not decrease to zero
along the boundary. We emphasize here that the power of CRT-based Azadkia–Chatterjee-type test
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cannot simply be boosted to achieve the detection boundary by using the additional information coming
from the CRT framework, in view of the Hájek representation theorem; compare Equation (S4) in
Shi, Drton and Han (2022b). Our theoretical analysis thus echoes the empirical observations made in
Huang, Deb and Sen (2022) and calls for developing new variants of the tests that use an increasing
number of nearest neighbors when constructing the nearest neighbor graphs; see Bhattacharya (2019,
Proposition 1), Deb, Ghosal and Sen (2020, Remark 4.3), and in particular, a recent work by Lin
and Han (2023) on boosting the power of Chatterjee’s original proposal which however cannot be
directly applied to multidimensional cases. These conclusions are also connected to related claims
made by Stone (1977, Corollary 3), Biau and Devroye (2015), and Berrett, Samworth and Yuan (2019,
Theorems 1 and 2) in other settings of nonparametric statistics.

Our local power analysis in Case (a) is built on the innovative new work of Deb, Ghosal and Sen
(2020), who developed a general framework to study normalized graph-based dependence measures
(combined with rank- and kernel-based ones) that invokes a Berry–Esseen theorem for dependency
graphs (Chen and Shao, 2004). In order to complete our analysis of the local power, however, an addi-
tional ingredient is needed, namely, we have to prove the existence as well as calculate the asymptotic
variance of the (unnormalized) Azadkia–Chatterjee conditional dependence coefficient. To obtain this
crucial result we use asymptotic techniques devised for 1-nearest neighbor graphs in Henze (1987)
and Devroye (1988). This part of our derivations shall occupy the main body of the proofs of our local
power results. Our analysis covers as a special instance the case of full independence and, thus, resolves
a conjecture of Azadkia and Chatterjee (2021) about a central limit theorem (CLT) for their statistic
under full independence; see Section 3 ahead for details.

Our local power analysis in Case (b), on the other hand, is based on a brute-force calculation of
the mean and variance of the Azadkia–Chatterjee conditional dependence coefficient along a special
non-standard local alternative sequence that serves as the “worst case” in the minimax lower bound con-
struction of Neykov, Balakrishnan and Wasserman (2021). This involves handling permutation statistics
for which permutation randomness is not (though close to) uniform over all possible rearrangements, a
notoriously difficult task. Interestingly, in a very recent preprint, Auddy, Deb and Nandy (2023) did re-
lated calculations in analyzing the local power of Chatterjee’s rank correlation coefficient (Chatterjee,
2021) against a different family of non-standard local alternative sequences; see the proof of their The-
orem 2.1. It appears, though, that the techniques used are substantially different from the ones present
here, which of course also differs through the focus on conditional (in-)dependence.

The rest of the paper is organized as follows. Section 2 reviews the conditional dependence coeffi-
cient proposed by Azadkia and Chatterjee (2021), denoted ξn, as well as the conditional randomization
test framework proposed by Candès et al. (2018). Section 3 presents the asymptotic normality of ξn
under independence. Local power analyses of CRTs based on ξn, in the two cases of alternatives are
presented in Section 4 and Section 5, respectively. A brief conclusion is provided in Section 6. The
proof of Theorem 4.4 is given in Section 7, with auxiliary results and remaining proofs deferred to the
supplement (Shi, Drton and Han, 2024).

Notation. For an integer n ≥ 1, let ⟦n⟧ := {1,2, . . . ,n}. A set consisting of distinct elements x1, . . . , xn is
written as either {x1, . . . , xn} or {xi}ni=1. The corresponding sequence is denoted [x1, . . . , xn] or [xi]ni=1.
For a sequence of vectors v1, . . . ,vk , we use (v1, . . . ,vk ) as a shorthand for (v⊤1 , . . . ,v⊤k )

⊤. For a vec-
tor v ∈ Rd , ∥v∥ stands for the Euclidean norm. The symbols ⌊·⌋ and ⌈·⌉ denote the floor and ceiling
functions, respectively. The notation 1(·) is used for the indicator function. For any real-valued random
vectors U and V , the (induced) probability measure, cumulative distribution function, and the proba-
bility density function of U (if existing) are denoted as PU , FU , and qU , respectively; the conditional
probability density function of U given V (if existing) is written as qU |V . In the following, the terms
“absolutely continuous” and “almost everywhere” (shorthanded as “a.e.”) are with respect to Lebesgue
measure.
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2. Conditional dependence measures and tests

In the sequel, let Y ∈ R be a random scalar, and let X ∈ Rp and Z ∈ Rq be two random vec-
tors, all defined on the same probability space. The goal is to test (1) based on observations
(X1,Y1,Z1), . . . ,(Xn,Yn,Zn) that consist of n independent copies of the triple (X,Y,Z). Note that the
joint distribution of (X,Y,Z) need not be continuous.

2.1. Conditional dependence measures and coefficients

Azadkia and Chatterjee (2021) proposed the following measure of conditional dependence between Y
and Z given X :

ξ = ξ(Y,Z | X) :=

∫
E
[
Var

{
P
(
Y ≥ y

%%X,Z ) %%X} ]
dPY (y)∫

E
[
Var

{
1
(
Y ≥ y

) %%X} ]
dPY (y)

. (2)

The following proposition describes the appealing properties we pointed out in the introduction.

Proposition 2.1 ((Azadkia and Chatterjee, 2021, Theorem 2.1)). Suppose that Y is not a.s. equal to
a measurable function of X . Then ξ is well-defined and belongs to the interval [0,1]. Moreover, ξ is a
consistent measure of conditional dependence with tailored extremal properties in the sense that ξ = 0
if and only if Y and Z are conditionally independent given X , and ξ = 1 if and only if Y is a.s. equal to
a measurable function of Z given X .

The dependence measure ξ clearly extends an earlier introduced measure of marginal dependence
between Y and (a random scalar) Z , namely,

ξDSS = ξDSS(Y,Z) :=

∫
Var

{
P
(
Y ≥ y

%% Z ) }dPY (y)∫
Var

{
1
(
Y ≥ y

) }
dPY (y)

, (3)

which Dette, Siburg and Stoimenov (2013) introduced for continuous distributions and Chatterjee
(2021) considered in general. The quantities ξ and ξDSS share similar properties: (i) the consistency
in measuring dependence is natural as the numerator (a nonnegative scalar) is zero if and only if either
Y is independent of Z (for ξDSS), or Y is independent of Z given X (for ξ); (ii) the self-normalization
structure yields tailored extremal properties as the numerator is always upper bounded by the denom-
inator; (iii) both the numerator and the denominator involve the indicator 1(Y ≥ y), which motivates
estimation using the ranks of the Yi’s and their regression on the Zi’s or (X i,Z i)’ to account for the
conditioning in each term.

Both Chatterjee (2021) and Azadkia and Chatterjee (2021) advocate a 1-nearest neighbor (1-NN)
approach to performing the aforementioned regression; note that in one dimension 1-NN is obviously
corresponding to working with ranks. In detail, let

Ri :=
n∑
j=1

1
(
Yj ≤ Yi

)
(4)
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be the rank of Yi among Y1, . . . ,Yn, and define

N(i) :=
{

j ! i : X j is the nearest neighbor of X i
}
,

M(i) :=
{

j ! i : (X j,Z j ) is the nearest neighbor of (X i,Z i)
}
, (5)

to be the indices of the nearest neighbors of X i and (X i,Z i), respectively. Here, nearest neighbors
are determined by Euclidean distance and possible ties in distance are broken at random. Azadkia and
Chatterjee’s conditional dependence coefficient is then defined as

ξn = ξn
( [
(X i,Yi,Z i)

] n
i=1

)
:=

∑n
i=1{min(Ri,RM(i)) − min(Ri,RN (i))}∑n

i=1{Ri − min(Ri,RN (i))}
. (6)

Although not at all immediate at first sight, Azadkia and Chatterjee (2021) showed that ξn is a
strongly consistent estimator of ξ as long as the latter is well-defined. We summarize the fact in the
following proposition.

Proposition 2.2 ((Azadkia and Chatterjee, 2021, Theorem 2.2)). As long as Y is not a.s. equal to a
measurable function of X , it holds that ξn converges to ξ a.s. as n →∞.

Remark 2.3. The intuition behind the convergence is by no means transparent. We refer the readers of
interest to Chatterjee (2021, Section 8) and the following heuristic argument:

E
[
n−1{R1 − min(R1,RN (1))}

]
≈ E

[
FY (Y1) − min{FY (Y1),FY (YN (1))}

]

= E
[ ∫ {

1(Y1 ≥ t) − 1(Y1 ≥ t)1(YN (1) ≥ t)
}

dPY (t)
]

≈ E
[ 1

2

∫ {
1(Y1 ≥ t) − 1(YN (1) ≥ t)

}2
dPY (t)

]
,

with

E{1(Y1 ≥ t) − 1(YN (1) ≥ t)}2 ≈ 2E[Var{1(Y1 ≥ t) | X1}].
Here the last step is intrinsically performed using an 1-NN regression.

2.2. Conditional randomization tests

Next we introduce the conditional randomization test (CRT) framework of Candès et al. (2018). This
framework is designed for settings where the conditional distribution of Y given X is known or can be
accurately inferred from a large out-of-sample data set. See also Berrett et al. (2020, Section 2.2) for
an illustration of application scenarios of this framework. In the sequel, we use Q ≡ Q(· | x) to denote
the Markov kernel used in the algorithm implementing the test of conditional independence. Ideally, Q
is (very close to) the conditional distribution of Y given X = x.

The CRT framework leverages that under H0 the conditional distribution of Y given (X,Z) is the
same as that of Y given X . This yields the following observation: if Q equals the conditional distribution
of Y given X = x and Y (1) is drawn independently from Q(· | X), then the two triples (X,Y,Z) and
(X,Y (1),Z) are equal in distribution under H0. In contrast, any difference between the distributions of
(X,Y,Z) and (X,Y (1),Z) will manifest itself as evidence against H0.
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Algorithm 1: Conditional randomization test (CRT)
Input: Data

[
(X i ,Yi , Z i)

] n
i=1, the chosen conditional distribution Q, test statistic ψn, number of simulations B, and

significance level α ∈ (0, 1).
for b = 1, . . . , B do

Draw a sample
[
Y
(b)
i

] n
i=1 from the product distribution

⊗n
i=1 Q(· | X i), independent of the observed

[
(Yi , Z i)

] n
i=1

and conditionally on
[
X i

] n
i=1.

end
Output: CRT p-value defined as

pCRT = (1 + B)−1
[
1 +

B∑
b=1

1
{
ψn

( [
(X i ,Y

(b)
i , Z i)

] n
i=1

)
≥ ψn

( [
(X i ,Yi , Z i)

] n
i=1

) } ]
.

The CRT is then

TQ,ψn
α

( [
(X i ,Yi , Z i)

] n
i=1

)
= 1(pCRT ≤ α).

To make the idea practical, consider a real-valued test statistic ψn defined on the range of[
(X i,Yi,Z i)

] n
i=1. Let B be a chosen number of Monte Carlo simulations. Then in each round

b ∈ ⟦B⟧, one independently draws a new copy Y (b)
i from Q(· | X i) for i ∈ ⟦n⟧, and calculates

ψn
( [
(X i,Y

(b)
i ,Z i)

] n
i=1

)
. The CRT then examines the difference between the distributions of (X,Y,Z)

and (X,Y (1),Z) by comparing the observed test statistic ψn
( [
(X i,Yi,Z i)

] n
i=1

)
to the simulated values

ψn
( [
(X i,Y

(b)
i ,Z i)

] n
i=1

)
. The procedure is detailed in Algorithm 1.

2.3. CRT using the Azadkia–Chatterjee coefficient

We will be concerned with the CRT that is obtained by taking the test statistic ψn in Algorithm 1 to
be ξn, the Azadkia–Chatterjee conditional dependence coefficient. The resulting test for significance
level α is denoted by TQ,ξn

α ; here Q is added to highlight the dependence of the implementation on the
chosen conditional distribution Q.

Remark 2.4. Berrett et al. (2020, Section 2.2) argued that in many cases the unlabeled data, i.e., data
on (X,Y ) but without the Z component, are plentiful, but labeled data on (X,Y,Z) jointly are scarce.
In such cases, it is natural to assume that one not only knows (or may very accurately estimate) the
needed conditional distribution but also the joint distribution of (X,Y ). When the distribution of (X,Y )
is known, the only term to be estimated from data is the numerator in (2); the denominator in (2) only
depends on the distribution of (X,Y ).

However, we would like to emphasize that, in view of the Hájek representation theorem as given in
Equation (S4) in Shi, Drton and Han (2022b), replacing each Ri by nFY (Yi) in ξn will not result in an
(asymptotic) improvement of ξn. In detail, although it is tempting to define an “oracle version” of ξn
that uses more information as

̂
ξn =

̂
ξn

( [
(X i,Yi,Z i)

] n
i=1

)
:=

n−1 ∑n
i=1[min{FY (Yi),FY (YM(i))} − min{FY (Yi),FY (YN (i))}]∫

E[Var{1(Y ≥ y) | X}]dPY (y)
,

this change will not increase the CRT’s power (asymptotically), at least in all settings considered in this
paper.
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Later, in Sections 4–5, we shall study in detail the test based on ξn. However, some preliminary
results deserve to be documented first. In the following, let PQ be the family of all joint distributions
for (X,Y,Z) such that Y is not a.s. equal to a measurable function of X and the conditional distribution
of Y given X = x coincides with a given (non-trivial) Markov kernel Q.

Proposition 2.5 (Control of size and consistency). Fix a Markov kernel Q for Y given X .

(i) The test TQ,ξn
α is valid in the sense that for any P(X ,Y ,Z) ∈ PQ satisfying H0, denoting PH0 :=

P⊗n
(X ,Y ,Z) as the corresponding product measure, it holds for any n ≥ 1 that

PH0(T
Q,ξn
α = 1) ≤ α;

notice that no assumption concerning the number of simulations B is required at all.
(ii) In addition, TQ,ξn

α is consistent in the sense that for any P(X ,Y ,Z) ∈ PQ violating H0, denoting
PH1 as the corresponding product measure, we have

lim
n→∞

PH1(T
Q,ξn
α = 1) = 1

as long as the number of simulations B tends to infinity as n →∞.

Remark 2.6. Of note, Petersen and Hansen (2021, Corollary 23) and Lundborg, Shah and Peters (2022,
Theorem 4), among many others, proved uniform consistency of their conditional independence tests
against particular subsets of alternative hypotheses. Their results are established via some careful non-
asymptotic analysis of the test statistic along such local alternatives. It will be a statistically and also
technically very interesting question to examine whether TQ,ξn

α also enjoys similar properties. This is
still an open problem.

3. Asymptotic normality under independence

In this section we consider the asymptotic behavior of ξn under independence of Y and (X,Z), which
constitutes a special subfamily of the conditional independence hypothesis H0 that our subsequent
theoretic analysis shall be built on. In this (unconditional) independence scenario we then consider the
coefficient ξn from Section 2 as well as a variant introduced in Azadkia and Chatterjee (2021).

In detail, Azadkia and Chatterjee (2021) also examined the case when p = 0, i.e., X has no compo-
nent. In this case, the conditional dependence measure ξ from (2) reduces to the unconditional depen-
dence measure defined analogous to ξDSS from (3); here the dimension of Z is not necessarily one.
They then introduced the following coefficient ξ#

n, which extends the original proposal of Chatterjee
(2021, Eqn. (1)) to higher dimension q ≥ 1:

ξ#
n :=

∑n
i=1{n min(Ri,RM(i)) − L2

i }∑n
i=1 Li(n − Li)

. (7)

Here Ri and M(i) are defined in (4) and (5), respectively, with the understanding that X’s part in (5) is
removed since it is of no component, and Li :=

∑n
j=1 1

(
Yj ≥ Yi

)
.

Azadkia and Chatterjee (2021) conjectured that under independence between Y and Z ,
√

nξ#
n obeys

a CLT. Building on results of Deb, Ghosal and Sen (2020), we are able to derive the following theorem
that, in particular, gives an affirmative answer to this conjecture under (absolute) continuity.
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Theorem 3.1 (Asymptotic normality).

(i) Assume that Y ∈ R is continuous and independent of (X,Z) ∈ Rp+q . In addition, assume (X,Z)
is absolutely continuous admitting a density continuous over its support. We then have as,
n →∞,

√
nξn

d−→ N
(
0,

4
5
+

2
5

{
qp+q + qp

}
+

4
5

{
op+q + op

} )
,

where for any integer d ≥ 1, qd and od are positive constants depending only on d. Their
values are

qd :=
{
2 − I3/4

( d + 1
2
,
1
2

) }−1
, Ix(a,b) :=

∫ x

0 ta−1(1 − t)b−1dt∫ 1
0 ta−1(1 − t)b−1dt

, (8)

od :=
∫
Γd;2

exp
[
− λ

{
B(w1, ∥w1∥)∪ B(w2, ∥w2∥)

} ]
d(w1,w2), (9)

Γd;2 :=
{
(w1,w2) ∈ (Rd)2 : max(∥w1∥, ∥w2∥) < ∥w1 − w2∥

}
,

where B(w1,r) is the ball of radius r centered at w1, and λ(·) is the Lebesgue measure.
(ii) Assume Y ∈ R is continuous and independent of Z ∈ Rq . In addition, assume Z is absolutely

continuous. We then have, as n →∞,

√
nξ#

n
d−→ N

(
0,

2
5
+

2
5
qq +

4
5
oq

)
.

Remark 3.2. The asymptotic variance of
√

nξn (or
√

nξ#
n) under independence between Y and (X,Z)

(or Z) is seen to be distribution-free, i.e., its value will not change with the particular distribution
of P(X ,Y ,Z) as long as the (absolute) continuity conditions in Theorem 3.1 hold. This (asymptotic)
distribution-freeness is in line with similar observations made earlier for related problems such as
two-sample goodness-of-fit tests, where Friedman and Rafsky (1979) extended Wald and Wolfowitz
(1940)’s rank-based run test to multivariate spaces via minimum spanning trees; see, also, Henze
(1988), Liu and Singh (1993), Henze and Penrose (1999), and Bhattacharya (2019) for other notable
results along that track, and Devroye et al. (2018), Gamboa et al. (2022), Lin and Han (2022, 2023) for
more related work.

Remark 3.3. It may be interesting to note that the asymptotic variance of
√

nξ#
n is strictly larger than

2/5, the asymptotic variance of the rank correlation from Equation (1) in Chatterjee (2021). How-
ever, this observation should not be interpreted as an advantage of Chatterjee’s rank correlation over√

nξ#
n in terms of statistical efficiency. As a matter of fact, both are powerless when used for testing

independence; cf. Shi, Drton and Han (2022a, Theorem 1) and Theorem 4.4 ahead.

Remark 3.4. In order to derive the above CLTs for ξn and ξ#
n, we adopt techniques devised in Deb,

Ghosal and Sen (2020). We highlight here some of these technical ingredients of our proof. Deb, Ghosal
and Sen (2020) were focused on establishing general asymptotic results for graph-based statistics with
an additional self-normalization step. In the present context of our Theorem 3.1, following Deb, Ghosal
and Sen (2020, Theorem 4.1), it is readily shown that

√
nξn

/ {
V̂ar(ξn)

}1/2 d−→ N(0,1),
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for some data-based normalization statistic V̂ar(ξn). Our main focus, accordingly, can be understood
as proving the existence as well as deriving the value of the limit of V̂ar(ξn) as n →∞. This problem
was not touched upon in Deb, Ghosal and Sen (2020) for a good reason, but is crucial for our analysis
of the power ahead. To fill the gap, our proof draws on the remarkable techniques developed in Henze
(1987) and Devroye (1988), which will be detailed blow.

The asymptotic variances of ξn and ξ#
n may look mysterious but they are in fact connected to the

behavior of nearest neighbor graphs. We present here a series of results that illustrate this connection.
The first is a well-known result by Bickel and Breiman (1983, Corollary S1) on maximum degrees in
1-NN graphs.

Lemma 3.5 (Maximum degree in nearest neighbor graphs). Let w1, . . . ,wn be any collection of n
distinct points in Rd . Then there exists a constant Cd depending only on the dimension d such that w1
is the nearest neighbor of at most Cd points from {w2, . . . ,wn}.

The notation Cd , representing a constant upper bound of the maximum degree, will be used through-
out the manuscript. For convenience, we take Cd as the smallest constant for which the property in
Lemma 3.5 holds.

In the following, consider a sample [W i]ni=1 comprised of n independent copies of a random vector
W ∈ Rd . Let Gn be the associated directed nearest neighbor graph (NNG), i.e., Gn has vertex set ⟦n⟧
and contains a directed edge from i to j whenever W j is a nearest neighbor of W i . We write E(Gn) for
the edge set of Gn.

The parameter qd in Theorem 3.1 comes from the following crucial result of Devroye (1988, Theo-
rem 2).

Lemma 3.6 (Expected number of nearest-neighbor pairs). As long as W is absolutely continuous,
we have

E
(

1
n

#
{
(i, j) distinct : i → j, j → i ∈ E(Gn)

} )
−→ Vd

Ud
= qd,

where Vd is the volume of the unit ball in Rd , and Ud is the volume of the union of two unit balls in
Rd whose centers are a unit distance apart. The explicit value of qd shown in (8) is given by Li (2011,
Equation (3)).

The parameter od in Theorem 3.1, on the other hand, comes from the following new lemma, which
is developed in this manuscript. The lemma builds on an earlier result of Henze (1987).

Lemma 3.7. As long as W is absolutely continuous, we have

E
(

1
n

#
{
(i, j, k) distinct : i → k, j → k ∈ E(Gn)

} )
−→ od,

where od = dd;2 is a special case of dd;r , a quantity defined in Lemma 3.8 below.

The next lemma is due to Henze (1987, Theorem 1.4, Corollaries 1.5 and 1.6).
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Lemma 3.8 (Expected number of vertices of specified degree). Let d−
j be the in-degree of vertex W j

in Gn, i.e., d−
j := #{i : i → j ∈ E(Gn)}. If W is absolutely continuous with a density continuous a.e.,

then for any integer k ∈ [0,Cd], we have

E
( 1

n
#{ j : d−

j = k}
)
−→ pd;k and Var(d−

1 ) −→ dd;2,

where

pd;k =
1
k!

Cd−k∑
u=0

1
u!
(−1)udd;k+u, 0 ≤ k ≤ Cd,

and

dd;0 = dd;1 = 1, dd;r =

∫
Γd;r

exp
[
− λ

{ r⋃
i=1

B
(
wi, ∥wi ∥

) } ]
d(w1, . . . ,wr ),

Γd;r =
{
(w1, . . . ,wr ) ∈ (Rd)r : ∥wi ∥ < min

1≤ j≤r :j!i
∥wi − w j ∥,1 ≤ i ≤ r

}
, 2 ≤ r ≤ Cd .

Notice that pd;k ∈ [0,1] is a constant only depending on d and k.

Remark 3.9. We note that in Theorem 3.1(i), a slightly stronger condition (continuity over its support)
is required for the density function in order to establish CLTs. This additional requirement is made for
handling the “cross terms” of 1-NN graphs built on [(X i,Z i)]ni=1 and [X i]ni=1 separately (cf. Lemma 7.4
ahead as an analogue of Lemmas 3.6–3.8 for the cross terms). Such cross terms are not present in
Devroye (1988) and Henze (1987). Roughly speaking, we will prove that the two 1-NN graphs built
on [(X i,Z i)]ni=1 and [X i]ni=1 are nearly independent from each other. The proof of Lemma 7.4 adopts
Devroye’s and Henze’s ideas but involves further analysis.

4. Power analysis: Parametric case

This section investigates the local power of the proposed tests for quadratic mean differentiable classes
of alternatives (Lehmann and Romano, 2005, Definition 12.2.1), for which we show that the CRT based
on Azadkia and Chatterjee ξn possesses only trivial power in n−1/2 neighborhoods.

We begin with a set of local alternatives
{
q∆(x, y, z) : |∆| < ∆∗

}
, ∆∗ > 0, (10)

where for each |∆| < ∆∗, q∆(x, y, z) is a joint density with respect to the Lebesgue measure. We then
make assumptions on the set in (10). In the following, E0(·) is understood to be the expectation operator
with regard to the density function q0(x, y, z) obtained for ∆ = 0.

Assumption 4.1. It is assumed that

(i) q0(x, y, z) is such that Y and Z are conditionally independent given X ;
(ii) for all |∆| < ∆∗, ∫

q∆(x, y, z)dz = qX ,Y (x, y),
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where qX ,Y (·, ·), the density of P(X ,Y), is fixed and equal to the product of densities of PX and
PY , and invariant with regard to ∆;

(iii) the score function

4ℓ∆(x, y, z) :=
∂

∂∆
log q∆(x, y, z)

exists at ∆ = 0, and the family {q∆(x, y, z)}|∆ |<∆∗ is quadratic mean differentiable (QMD) at
∆ = 0 with score function 4ℓ0, that is,

∫ (√
q∆(x, y, z) −

√
q0(x, y, z) −

1
2
∆ 4ℓ0(x, y, z)

√
q0(x, y, z)

) 2
d(x, y, z) = o(∆2)

as ∆→ 0;
(iv) E0{ 4ℓ0(X,Y,Z)2} > 0 (Assumption (iii) implies E0{ 4ℓ0(X,Y,Z)2} < ∞ and E0{ 4ℓ0(X,Y,Z)} =

0);
(v) E0{ 4ℓ0(X,Y,Z) | X,Z} = 0 almost surely;

(vi) E0{| 4ℓ0(X,Y,Z)|4+ϵ } <∞ for some fixed constant ϵ > 0;
(vii) 4ℓ0(x, y, z) cannot be written as h1(y) + h2(x, z).

Example 4.2 (Rotation alternatives). Suppose that X∗ ∈ Rp , Y∗ ∈ R, and Z∗ ∈ Rq are centered and
jointly normally distributed random variables such that Y∗ is independent of (X∗,Z∗). Then Assump-
tion 4.1 holds for rotation alternatives given as

(
X,Y,Z

)
=
(
X∗,Y∗,Z∗ + ∆

(
AX∗ +BY∗) ) ,

where A ∈ Rq×p,B ∈ Rq×1 are deterministic matrices, and B is nonzero.

Example 4.3 (Farlie alternatives). Suppose that X∗ ∈ Rp , Y∗ ∈ R, and Z∗ ∈ Rq are absolutely con-
tinuous random variables such that Y∗ is independent of (X∗,Z∗). Then Assumption 4.1 holds for the
(generalized) Farlie alternatives (see Kössler and Rödel (2007, Sec. 1.1.5) for the one-dimensional case)
that are defined as

q∆
(
x, y, z

)
:= qY∗

(
y
)
q(X∗ ,Z∗)

(
x, z

) [
1 + ∆

{
1 − 2FY∗

(
y
) } {

1 − 2F(X∗ ,Z∗)
(
x, z

) } ]
.

For a local power analysis for an alternative set under the listed assumptions, we examine the asymp-
totic power along a respective sequence of alternatives obtained as

H1,n(∆0) : ∆ = ∆n, where ∆n := n−1/2∆0 (11)

with some constant ∆0 ! 0. In this local model, testing the null hypothesis of independence reduces to
testing

H0 : ∆0 = 0 versus H1 : ∆0 ! 0.

We obtain the following theorem on the local power of the discussed tests. The result demonstrates the
trivial power claimed for ξn in the beginning of this section.

Theorem 4.4 (Power analysis for ξn). Suppose that the considered set of local alternatives in (10)
satisfies Assumption 4.1 and constitutes a subset of PQ. Then for any sequence of alternatives given in
(11), for any fixed constant ∆0 > 0,
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(i) assuming the number of simulations B for the CRT tends to infinity as n →∞, it holds that

lim
n→∞

PH1,n(∆0)(T
Q,ξn
α = 1) ≤ α;

(ii) in contrast, there exists a test Topt
α such that for any α, β ∈ (0,1), as long as ∆0 is sufficiently

large, it holds that

lim
n→∞

PH0(T
opt
α = 1) ≤ α and lim

n→∞
PH1,n(∆0)(T

opt
α = 1) ≥ 1 − β,

while for small ∆0 the total variation distance vanishes as

lim
∆0→0

lim
n→∞

TV(H1,n(∆0),H0) = 0,

and hence

lim
∆0→0

lim
n→∞

inf
Tα ∈Tα

PH1,n(∆0)(Tα = 0) ≥ 1 − α.

Here the infimum is taken over all size-α tests.

Remark 4.5. We give a rigorous proof of Theorem 4.4(i) in Section 7.1. The main idea is to first derive
the joint limiting null distribution of

√
nξn and the log likelihood ratio between two hypotheses, and

then to use Le Cam’s third lemma. In addition to Theorem 3.1(i), combining results from Azadkia
and Chatterjee (2021), we are able to prove joint asymptotic normality with deterministic variance of√

nξn and the log likelihood ratio; in particular, zero asymptotic covariance between
√

nξn and the log
likelihood ratio is the technical reason why the CRT-based Azadkia–Chatterjee-type test is inefficient
in the quadratic mean differentiable class.

Remark 4.6. The phenomenon that a (1-NN) graph-based test has zero asymptotic efficiency has
been encountered also in other situations. For example, the lack of power of the Wald–Wolfowitz runs
test is a classic result in the literature (Hájek, Šidák and Sen, 1999, p. 102). A systematic analysis of
this phenomenon in the two-sample test context was done recently in Bhattacharya (2019) and similar
analyses for Chatterjee’s 1-NN tests of unconditional independence were performed in Cao and Bickel
(2020), Shi, Drton and Han (2022a), and Auddy, Deb and Nandy (2023).

5. Power analysis: Nonparametric case
In this section, we conduct local power analyses of the proposed tests within the Hölder smooth class
inspired by the work of Neykov, Balakrishnan and Wasserman (2021). In this class, the conditional
distribution of (Y,Z) is allowed to change more dramatically (beyond the limit of QMD classes estab-
lished in Section 4) as X changes. In the sequel, following the settings treated in Neykov, Balakrishnan
and Wasserman (2021), we consider X ∈ [0,1]p , Y ∈ [0,1], and Z ∈ [0,1] to be continuous random
vector/variables.

5.1. Rate of convergence

Let E[0,1]p+2 be the set of all absolutely continuous distributions (X,Y,Z) ∈ [0,1]p+2 such that the
randomness of the triplet can be understood as first sampling X from a density qX with support [0,1]p ,
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and then sampling Y and Z from a conditional distribution q(Y ,Z) | X of support [0,1]× [0,1] for (almost)
all X . Let P0 ⊆ E[0,1]p+2 be the subset for which Y ⊥⊥ Z | X , and let P1 = E[0,1]p+2\P0.

Next we separately define the two Hölder classes of density functions, belonging to P0 (the null
class) and P1. Our main interest is on exponents s that are close to 0, representing those conditional
distributions of (Y,Z) that change possibly very roughly with the values of X .

Definition 5.1 (Null Hölder class). Let P0(L, s) ⊆ P0 with L > 1 and s ∈ (0,1] be the collection of
joint distributions of (X,Y,Z) such that, for all x, x ′ ∈ [0,1]p , y, y′, z, z′ ∈ [0,1], we have%%%qY | X (y | x) − qY | X (y | x ′)

%%% ≤ L∥x − x ′∥s

and
%%%qZ | X (z | x) − qZ | X (z | x ′)

%%% ≤ L∥x − x ′∥s .

Definition 5.2 (Alternative Hölder class). Let P1(L, s) ⊆ P1 with L > 1 and s ∈ (0,1] be the collection
of joint distributions of (X,Y,Z) such that, for all x, x ′ ∈ [0,1]p , y, y′, z, z′ ∈ [0,1], we have%%%q(Y ,Z) | X (y, z | x) − q(Y ,Z) | X (y, z | x ′)

%%% ≤ L∥x − x ′∥s,
%%%q(Y ,Z) | X (y, z | x) − q(Y ,Z) | X (y′, z′ | x)

%%% ≤ L
(
|y − y′ |s + |z − z′ |s

)
,

and L−1 ≤ qY ,Z | X (y, z | x) ≤ L.

To obtain the rate of convergence for ξn under P0(L, s) as well as P1(L, s), we establish the following
two results. The first is a proposition that extends Theorem 4.1 in Azadkia and Chatterjee (2021), which
focused on the Lipschitz class with s = 1. The second result is a lemma that shows that the distributions
in P0(L, s) and P1(L, s) satisfy the conditions in the proposition.

Proposition 5.3. Restricted to this proposition, Z ∈ Rq is allowed to be multidimensional. Suppose
then that Y is not a.s. equal to a measurable function of X and that

(i) there are universal constants C1 > 0 and s ∈ (0,1] such that for any t ∈ R, x, x ′ ∈ Rp , and
z, z ′ ∈ Rq ,%%%P(Y ≥ t | X = x,Z = z) − P(Y ≥ t | X = x ′,Z = z ′)

%%% ≤ C1

(
∥x − x ′∥s + ∥ z − z ′∥s

)
,

and
%%%P(Y ≥ t | X = x) − P(Y ≥ t | X = x ′)

%%% ≤ C1

(
∥x − x ′∥s

)
;

(ii) there exists a universal constant C2 > 0 such that P(∥X ∥ ≥ C2) = 0 and P(∥Z ∥ ≥ C2) = 0.

Then, as n →∞,

ξn − ξ =OP

( (log n)p+q+1

ns/(p+q)

)
.

Lemma 5.4.

(i) If P(X ,Y ,Z) ∈ P0(L, s) for a fixed L > 1 and s ∈ (0,1], then for all x, x ′ ∈ [0,1]p , y, y′, z, z′ ∈
[0,1], we have %%%qY | (X ,Z)(y | x, z) − qY | (X ,Z)(y | x ′, z′)

%%% ≤ L∥x − x ′∥s .
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(ii) If P(X ,Y ,Z) ∈ P1(L, s) for a fixed L > 1 and s ∈ (0,1], then for all x, x ′ ∈ [0,1]p , y, y′, z, z′ ∈
[0,1], we have%%%qY | (X ,Z)(y | x, z) − qY | (X ,Z)(y | x ′, z′)

%%% ≤ L ′
(
∥x − x ′∥s + |z − z′ |s

)

for some L ′ ≤ 2L4.

Combining Lemma 5.4 with Proposition 5.3 gives the following corollary.

Corollary 5.5. Suppose P(X ,Y ,Z) ∈ P0(L, s), or P(X ,Y ,Z) ∈ P1(L, s) with Y not a.s. equal to a measur-
able function of X . Then as n →∞,

ξn − ξ =OP

( (log n)p+q+1

ns/(p+q)

)
.

Remark 5.6. Huang, Deb and Sen (2022) proposed a measure of conditional dependence and a coef-
ficient estimating the measure in general spaces by generalizing Azadkia and Chatterjee (2021)’s idea.
In particular, they also explored the rate of convergence of such a coefficient in their Theorem 3.3, and
mentioned that the rate of convergence may be arbitrarily slow without a smoothness assumption on
the conditional distribution (Huang, Deb and Sen, 2022, Remark 8). While their Assumptions 4–8 are
made for general spaces and the analysis techniques are not substantially different, ours are specifically
designed to facilitate the local power analysis to be presented in the next section. We thus decide to still
document these results for easy reference.

5.2. Power analysis

Fix L > 1 and s ∈ (0,1]. We consider now the problem of testing

H0 : P(X ,Y ,Z) = P0 ∈ P0(L, s)

against a sequence of local alternatives,

H1,n : P(X ,Y ,Z) = P1,n ∈ P1(L, s).

Corollary 5.7. Assume both P0 and {P1,n,n = 1,2, . . .} belong to PQ, and ξ(P1,n), the conditional
dependence measure ξ under the local alternative P1,n, satisfies that

ξ(P1,n)! n−s/(p+1)+δ

for some (arbitrarily small) constant δ > 0. Further assume that the number of simulations B tends to
infinity as n →∞. Then

lim
n→∞

PH1,n (T
Q,ξn
α = 1) = 1.

We observe that unfortunately, even as the Hölder exponent s is small, the threshold n−s/(p+1) is
(from a worst case perspective) not the critical boundary in the studied nonparametric class. The fol-
lowing theorem shall confirm it rigorously. To this end, we consider a simplified setting when p = 1, so
X,Y,Z ∈ R. Define the class

P1(ϵ ; L, s) :=
{
q ∈ P1(L, s) : inf

q0∈P0
∥q − q0∥1 ≥ ϵ

}
,
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where ∥q − q0∥1 :=
∫
|q(x, y, z) − q0(x, y, z)|d(x, y, z). Consider testing

H0 : P(X ,Y ,Z) = P0 ∈ P0(L, s)

against the following particular sequence of local alternatives:

H1,n(∆0) : P(X ,Y ,Z) = P1,n(∆0) ∈ P1(∆0n−2s/(4s+3); L, s)
}
.

Theorem 5.8. For any s ∈ (0,1], there exist

P0 ∈ P0(L, s) and P1,n(∆0) ∈ P1(∆0n−2s/(4s+3); L, s)

such that P(X ,Y) ∈ PQ does not vary under both the null and local alternatives, and

(i) assuming the number of simulations B tends to infinity as n →∞, for any ∆0 > 0 and α < 0.1,
it holds that

lim sup
n→∞

PH1,n(∆0)(T
Q,ξn
α = 1) ≤ βα,

where βα < 1 is a constant only depending on α;
(ii) if further s ∈ [1/4,1], then there exists a test Tbin

α such that, for any α, β ∈ (0,1), as long as ∆0
is sufficiently large,

PH0(Tbin
α = 1) ≤ α and lim

n→∞
PH1,n(∆0)(Tbin

α = 1) ≥ 1 − β;

in contrast, as ∆0 becomes small,

lim
∆0→0

lim
n→∞

TV(H1,n(∆0),H0) = 0.

Remark 5.9. Our proof of Theorem 5.8(i) is different from the approach we used to prove Theo-
rem 4.4(i). It depends on the fact that

√
nξn has the same asymptotic mean and variance under a null

hypothesis and a special non-standard local alternative sequence constructed in Neykov, Balakrishnan
and Wasserman (2021). We show this in a direct calculation.

6. Conclusion
In this manuscript, we explore the use of Azadkia–Chatterjee’s conditional dependence coefficient in
inferential tasks. Specifically, we adopt the framework of conditional randomization tests in order to
study the power of Azadkia–Chatterjee-type tests of conditional independence. Our analyses take up
two types of local alternatives: First, a rather general quadratic mean differentiable class and second,
a rougher Hölder class. In these settings, we prove that the CRT-based Azadkia–Chatterjee test is
unfortunately statistically inefficient.

The current analyses are focused on the situation when X and Y are independent, which makes the
required analysis of permutation statistics mathematically tractable. Indeed, while it would be natural
and interesting to also study cases where X and Y are dependent, entirely new technical tools would
need to be developed to attack this problem. This said, we conjecture that the inefficiency of Azadkia–
Chatterjee-type test persists for more general local alternatives, with X and Y are dependent.

Finally, the inefficiency we demonstrate motivates further efforts to develop variants of the consid-
ered approach. One possible avenue would be to develop tests that use modified versions of Azadkia–
Chatterjee’s conditional dependence coefficient, in which one uses k-nearest neighbor graphs with k
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allowed to tend to infinity as the sample size n increases; in the unconditional setting recent progress
in this direction was made by Lin and Han (2023). Another interesting topic for future research would
be a generalization of the coefficient to the setting where all of X,Y,Z are multivariate.

7. Proof of Theorem 4.4

7.1. Proof of Theorem 4.4(i)

Proof of Theorem 4.4(i). The proof is divided into three steps. The first step reviews Le Cam’s third
lemma and introduces graph theoretic notions. The second step derives the distribution of ξn under the
local alternative. The third step computes the local power.

Step I-1. To derive the local alternative distribution of ξn, we will use Le Cam’s third lemma (van
der Vaart, 1998, Theorem 7.2 and Example 6.7). The lemma states that if under the null hypothesis,

(√
nξn,

1√
n

n∑
i=1

4ℓ0(X i,Yi,Z i)
)

d−→ N
( (

0
0

)
,

(
σ2 τ
τ I0

) )
(12)

where σ2,τ are fixed constants and I0 := E{ 4ℓ0(X,Y,Z)2} equals the Fisher information for ∆ at 0, then
under the local alternative hypothesis, we have

√
nξn

d−→ N(∆0τ,σ
2).

In order to employ the Cramér–Wold device to prove (12) for some σ2 and τ, we need to show that
under the null, for any real numbers a and b,

a
√

nξn + bn−1/2
n∑
i=1

4ℓ0(X i,Yi,Z i)
d−→ N

(
0,a2σ2 + 2abτ + b2I0

)
. (13)

To this end, first notice that Azadkia and Chatterjee (2021, Theorem 9.1) show

1
n2

n∑
i=1

{Ri − min(Ri,RN (i))}
a.s.−→

∫
E[Var{1(Y ≥ t) | X}]dPY (t).

Therefore, by Slutsky’s theorem, it suffices to establish (12) for
√

nξ̂n instead of
√

nξn, where

ξ̂n :=
n−2 ∑n

i=1{min(Ri,RM(i)) − min(Ri,RN (i))}∫
E[Var{1(Y ≥ t) | X}]dPY (t)

. (14)

Moreover, consider the “oracle” version of ξ̂n defined as
̂
ξn :=

n−1 ∑n
i=1[min{FY (Yi),FY (YM(i))} − min{FY (Yi),FY (YN (i))}]∫

E[Var{1(Y ≥ t) | X}]dPY (t)
. (15)

We have the following lemma for ξ̂n and
̂
ξn. This result and lemmas given later in this section are

derived in the supplement.
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Lemma 7.1. Under the null hypothesis,
√

nξ̂n −
√

n
̂
ξn = oP(1).

Thus we only need to show

a
√

n
̂
ξn + bn−1/2

n∑
i=1

4ℓ0(X i,Yi,Z i)
d−→ N

(
0,a2σ2 + 2abτ + b2I0

)
. (16)

The idea of proving (16) is to first show a conditional central limit result,

a
√

n
̂
ξn + bn−1/2

n∑
i=1

4ℓ0(X i,Yi,Z i)
%%%Fn

d−→ N
(
0,a2σ2 + 2abτ + b2I0

)

for almost every sequence [(Xn,Zn)]n≥1, (17)

where Fn denotes the σ-field generated by (X1,Z1), . . . ,(Xn,Zn), i.e., for almost every ω of the prob-
ability space supporting the (X i,Z i)’s,

a
√

n
̂
ξn

( [ (
X i(ω),Yi,Z i(ω)

) ] n
i=1

)
+ bn−1/2

n∑
i=1

4ℓ0
(
X i(ω),Yi,Z i(ω)

) d−→ N(0,a2σ2 + 2abτ + b2I0)

(Ledoux and Talagrand, 1991, Theorem 10.14), and then deduce the desired unconditional central limit
result (16), and thus (13).

Step I-2. To show (17), we introduce the language of graph theory. We write

Sn = a
√

n
̂
ξn + bn−1/2

n∑
i=1

4ℓ0(X i,Yi,Z i)

= aγ−1n−1/2
n∑
i=1

min{FY (Yi),FY (YM(i))} − aγ−1n−1/2
n∑
i=1

min{FY (Yi),FY (YN (i))}

+ bn−1/2
n∑
i=1

4ℓ0(X i,Yi,Z i)

= aγ−1n−1/2
n∑
i=1

∑
j:i→j∈E(Gn)

K∧(Yi,Yj ) − aγ−1n−1/2
n∑
i=1

∑
k:i→k∈E(GX

n )
K∧(Yi,Yk)

+ bn−1/2
n∑
i=1

4ℓ0(X i,Yi,Z i),

where for all Y independent of X ,

γ :=
∫

E[Var{1(Y ≥ t) | X}]dPY (t) =
∫

E[Var{1(Y ≥ t)}]dPY (t) =
1
6
,

Gn is the directed nearest neighbor graph (NNG) of the vertices [(X i,Z i)]ni=1, GX
n is the directed nearest

neighbor graph (NNG) of the vertices [X i]ni=1, and K∧(y1, y2) :=min{FY (y1),FY (y2)}. Next we define

Vi;1 := n−1/2
{
6a

∑
j:i→j∈E(Gn)

K∧(Yi,Yj ) − 6a
∑

k:i→k∈E(GX
n )

K∧(Yi,Yk)
}
,
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Vi;2 := n−1/2b 4ℓ0(X i,Yi,Z i), and Vi :=Vi;1 +Vi;2, (18)

such that Sn can be written as
∑n

i=1 Vi . Observe that, since
[
Yi
] n
i=1 is independent of

[
(X i,Z i)

] n
i=1

under the null,

E(Vi;1 | Fn) = n−1/2
[
6aE

{
K∧(Yi,YM(i))

%%%Fn

}
− 6aE

{
K∧(Yi,YN (i))

%%%Fn

} ]

= n−1/2
{
6a(1/3) − 6a(1/3)

}
= 0,

E(Vi;2 | Fn) = E
{
4ℓ0(X i,Yi,Z i)

%%%Fn

}
= 0, by Assumption 4.1(v),

and E(Vi | Fn) = aE(Vi;1 | Fn) + bE(Vi;2 | Fn) = 0.

To establish a conditional central limit theorem for Sn, we make use of the following lemma.

Lemma 7.2. It holds that

sup
z∈R

%%%Pr
( Sn√

Var(Sn | Fn)
≤ z

%%%Fn

)
−Φ(z)

%%% ≤ 75C5(1+ϵ )
p+q

E(∑n
i=1 |Vi |2+ϵ | Fn)

{Var(Sn | Fn)}(2+ϵ )/2 a.s., (19)

where Cp+q is a constant depending only on p + q.

To control the right-hand side of (19), we get by the “cr -inequality” that

E
( n∑
i=1

|Vi |2+ϵ
%%%Fn

)
≤ 21+ϵ

{
E
( n∑
i=1

|Vi;1 |2+ϵ
%%%Fn

)
+ E

( n∑
i=1

|Vi;2 |2+ϵ
%%%Fn

) }
.

Here

nϵ/2E
( n∑
i=1

|Vi;1 |2+ϵ
%%%Fn

)
≤ |6a|2+ϵ and nϵ/2E

( n∑
i=1

|Vi;2 |2+ϵ
%%%Fn

)
a.s.−→ E

{
|b 4ℓ0(X,Y,Z)|2+ϵ

}
,

where the former follows from |Vi;1 | ≤ |6a|n−1/2 and the latter from the strong law of large numbers
and Assumption 4.1(vi).

Step II. In order to show (17), in view of (19), it suffices to show

Var(Sn | Fn)
a.s.−→ a2σ2 + 2abτ + b2I0. (20)

for some fixed σ2 > 0 and τ, and recall I0 := E{ 4ℓ0(X,Y,Z)2}. We proceed in two sub-steps. We will
first compute Var(Sn | Fn), then claim Var(Sn | Fn) − Var(Sn)

a.s.−→ 0 and determine the limit value of
Var(Sn) accordingly.

Step II-1. Set

γ1;a := E
[{

6aK∧(Y,Y ′) − 2a
}2]
, γ2;a := E

[{
6aK∧(Y,Y ′) − 2a

} {
6aK∧(Y,Y ′′) − 2a

} ]
,

γ∗4;a,b(x, z) := E
[{

6aK∧(Y,Y ′) − 2a
} {

b 4ℓ0(x,Y, z)
} ]
, γ4;a,b := E

{
γ∗4;a,b(X,Z)

}
,

γ∗5;b(x, z) := E
[{

b 4ℓ0(x,Y, z)
}2]
, γ5;b := E

{
γ∗5;b(X,Z)

}
, (21)
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where Y ′ and Y ′′ are independent copies of Y . We obtain

Var(Sn | Fn) = E(S2
n | Fn) =

n∑
i=1

E(V2
i | Fn) +

∑
i!j

E(ViVj | Fn),

where

n∑
i=1

E(V2
i | Fn) = n−1

n∑
i=1

{
2γ1;a − 2

∑
j:i→j∈E(Gn)∩E(GX

n )
γ1;a

− 2
∑

(j ,k):i→j∈E(Gn),i→k∈E(GX
n ), j!k

γ2;a + γ
∗
5;a,b(X i,Z i)

}
, (22)

and
∑
i!j

E(ViVj | Fn)

= n−1
{ ∑

(i, j) distinct
i→j , j→i∈E(Gn)

γ1;a +
∑

(i, j ,k) distinct
i→k , j→k∈E(Gn)

or i→j , j→k∈E(Gn)
or i→k , j→i∈E(Gn)

γ2;a +
∑

(i, j) distinct
i→j , j→i∈E(GX

n )

γ1;a +
∑

(i, j ,k) distinct
i→k , j→k∈E(GX

n )
or i→j , j→k∈E(GX

n )
or i→k , j→i∈E(GX

n )

γ2;a

− 2
∑

(i, j) distinct
i→j∈E(Gn), j→i∈E(GX

n )

γ1;a − 2
∑

(i, j ,k) distinct
i→k∈E(Gn), j→k∈E(GX

n )
or i→j∈E(Gn), j→k∈E(GX

n )
or i→k∈E(Gn), j→i∈E(GX

n )

γ2;a

+ 2
∑

(i, j) distinct
j→i∈E(Gn)

γ∗4;a,b(X i,Z i) − 2
∑

(i, j) distinct
j→i∈E(GX

n )

γ∗4;a,b(X i,Z i)
}
. (23)

Step II-2. We employ the following result.

Lemma 7.3.

Var(Sn | Fn) − Var(Sn)
a.s.−→ 0. (24)

Then it remains to prove

Var(Sn)→ a2σ2 + 2abτ + b2I0 (25)

for some fixed σ2 > 0 and τ; notice (24) and (25) will imply (20). To this end, in addition to Lemmas 3.6
and 3.8, we also need the following lemma, which is a “covariance” version of Lemmas 3.6 and 3.8.

Lemma 7.4. Let [W i]ni=1 = [(X i,Z i)]ni=1 be a sample comprised of n independent copies ofW = (X,Z),
with X ∈ Rp and Z ∈ Rq . Let Gn be the directed nearest neighbor graph (NNG) of the vertices [W i]ni=1,
and let GX

n be the directed nearest neighbor graph (NNG) of the vertices [X i]ni=1. If random vector W
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is absolutely continuous with a Lebesgue density f that is continuous, then

E
(
n−1

∑
(i, j) distinct

i→j∈E(Gn)∩E(GX
n )

1
)
→ 0, (26)

E
(
n−1

∑
(i, j) distinct

i→j∈E(Gn), j→i∈E(GX
n )

1
)
→ 0, (27)

and E
(
n−1

∑
(i, j ,k) distinct

i→k∈E(Gn), j→k∈E(GX
n )

1
)
→ 1. (28)

Adding (22) and (23) together, we obtain

Var(Sn) = E
(
2n−1

n∑
i=1

γ1;a

)
− E

(
2

∑
(i, j) distinct

i→j∈E(Gn)∩E(GX
n )

γ1;a

)

− E
(
2n−1

∑
(i, j ,k) distinct

i→j∈E(Gn),i→k∈E(GX
n )

γ2;a

)
+ E

{
n−1

n∑
i=1

γ∗5;a,b(X i,Z i)
}

+ E
(
n−1

∑
(i, j) distinct

i→j , j→i∈E(Gn)

γ1;a

)
+ E

(
n−1

∑
(i, j ,k) distinct

i→k , j→k∈E(Gn)
or i→j , j→k∈E(Gn)
or i→k , j→i∈E(Gn)

γ2;a

)

+ E
(
n−1

∑
(i, j) distinct

i→j , j→i∈E(GX
n )

γ1;a

)
+ E

(
n−1

∑
(i, j ,k) distinct

i→k , j→k∈E(GX
n )

or i→j , j→k∈E(GX
n )

or i→k , j→i∈E(GX
n )

γ2;a

)

− E
(
2n−1

∑
(i, j) distinct

i→j∈E(Gn), j→i∈E(GX
n )

γ1;a

)
− E

(
2n−1

∑
(i, j ,k) distinct

i→k∈E(Gn), j→k∈E(GX
n )

or i→j∈E(Gn), j→k∈E(GX
n )

or i→k∈E(Gn), j→i∈E(GX
n )

γ2;a

)

+ E
{
2n−1

∑
(i, j) distinct
j→i∈E(Gn)

γ∗4;a,b(X i,Z i)
}
− E

{
2n−1

∑
(i, j) distinct
j→i∈E(GX

n )

γ∗4;a,b(X i,Z i)
}
. (29)

The first term is 2γ1;a. The second term tends to 0 by Equation (26) in Lemma 7.4. For the third term,
we have

E
(
2n−1

∑
(i, j ,k) distinct

i→j∈E(Gn),i→k∈E(GX
n )

γ2;a

)
= 2γ2;aE

(
n−1

∑
(i, j) distinct

i→j∈E(Gn),i→j"E(GX
n )

1
)
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= 2γ2;aE
(
1 − n−1

∑
(i, j) distinct

i→j∈E(Gn),i→j∈E(GX
n )

1
)
→ 2γ2;a,

where the last step is by Equation (26). The fourth term is γ5;a. The fifth term tends to γ1;aqp+q by
Lemma 3.6. The sixth term can be rewritten as

γ2;aE
(
n−1

∑
(i, j ,k) distinct

i→k , j→k∈E(Gn)

1 + n−1
∑

(i, j ,k) distinct
i→j , j→k∈E(Gn)

1 + n−1
∑

(i, j ,k) distinct
i→k , j→i∈E(Gn)

1
)

= γ2;aE
(
n−1

∑
(i, j ,k) distinct

i→k , j→k∈E(Gn)

1 + n−1
∑

(i, j) distinct
i→j∈E(Gn), j→i"E(Gn)

1 + n−1
∑

(i, j) distinct
i→j"E(Gn), j→i∈E(Gn)

1
)

= γ2;aE
{
n−1

∑
(i, j ,k) distinct

i→k , j→k∈E(Gn)

1 +
(
1 − n−1

∑
(i, j) distinct

i→j , j→i∈E(Gn)

1
)
+
(
1 − n−1

∑
(i, j) distinct

i→j , j→i∈E(Gn)

1
) }

→ γ2;a

(
op+q + 2 − 2qp+q

)
,

where the last step is by Lemmas 3.7 and 3.6. Similarly, the seventh and eighth terms tend to γ1;aqp
and γ2;a(op + 2 − 2qp), respectively. The ninth term tends to 0 by Equation (27) in Lemma 7.4. The
tenth term is equal to

2γ2;aE
(
n−1

∑
(i, j ,k) distinct

i→k∈E(Gn), j→k∈E(GX
n )

1 + n−1
∑

(i, j ,k) distinct
i→j∈E(Gn), j→k∈E(GX

n )

1 + n−1
∑

(i, j) distinct
i→k∈E(Gn), j→i∈E(GX

n )

1
)

= 2γ2;aE
(
n−1

∑
(i, j ,k) distinct

i→k∈E(Gn), j→k∈E(GX
n )

1 + n−1
∑

(i, j) distinct
i→j∈E(Gn), j ̸→i∈E(GX

n )

1 + n−1
∑

(i, j) distinct
i ̸→j∈E(Gn), j→i∈E(GX

n )

1
)

= 2γ2;aE
{
n−1

∑
(i, j ,k) distinct

i→k∈E(Gn), j→k∈E(GX
n )

1

+
(
1 − n−1

∑
(i, j) distinct

i→j∈E(Gn), j→i∈E(GX
n )

1
)
+
(
1 − n−1

∑
(i, j) distinct

i→j∈E(Gn), j→i∈E(GX
n )

1
) }

→ 2γ2;a{1 + (1 − 0) + (1 − 0)} = 6γ2;a,

where the second last step is by Lemma 7.4. For the last two terms in Equation (29), we obtain

E
{
n−1

∑
(i, j) distinct
j→i∈E(Gn)

γ∗4;a,b(X i,Z i)
}
= E

{
n−1

n∑
i=1

γ∗4;a,b(XM(i),ZM(i))
}

= E
{
γ∗4;a,b(XM(1),ZM(1))

}
= E

[
E
{
γ∗4;a,b(XM(1),ZM(1))

%%% M(1)
} ]
= γ4;a,b,
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and similarly

E
{
n−1

∑
(i, j) distinct
j→i∈E(GX

n )

γ∗4;a,b(X i,Z i)
}
= γ4;a,b .

Thus the last two terms are canceled out. Plugging all terms back into (29) yields

Var(Sn)→ γ1;a

{
2 +

(
qp+q + qp

) }
+ γ2;a

{
− 4 − 2

(
qp+q + qp

)
+
(
op+q + op

) }
+ γ5;b .

In addition,

γ1;a = 2a2, γ2;a = 4a2/5, γ5;b = b2I0.

Therefore,

Var(Sn)→ a2
{ 4

5
+

2
5

(
qp+q + qp

)
+

4
5

(
op+q + op

) }
+ b2I0.

This completes the proof of (17) and thus (13) and (12) with

σ2 :=
4
5
+

2
5

(
qp+q + qp

)
+

4
5

(
op+q + op

)
and τ := 0.

Finally, by Le Cam’s third lemma, under {Pn,∆n }n≥1,

√
nξn

( [
(X i,Yi,Z i)

] n
i=1

)
d−→ N(0,σ2).

Moreover, we also have
√

nξn
( [
(X i,Y

(b)
i ,Z i)

] n
i=1

)
d−→ N(0,σ2).

Step III. Since B tends to infinity as n → ∞, without loss of generality, we assume B > α−1 − 1.
With the shorthand notation

ξ(b)n ≡ ξn
( [
(X i,Y

(b)
i ,Z i)

] n
i=1

)
and ξ◦n ≡ ξn

( [
(X i,Yi,Z i)

] n
i=1

)
,

the test

TQ,ξn
α := 1

( 1 +
∑B

b=1 1(ξ(b)n ≥ ξ◦n)
1 + B

≤ α
)

can be restated as

TQ,ξn
α = 1

(√
nξ◦n >

√
nξ[1+B−⌊α(1+B)⌋]

n

)
, (30)

where ξ[1]n ,ξ
[2]
n , . . . ,ξ

[B]
n is a rearrangement of ξ(1)n ,ξ

(2)
n , . . . ,ξ

(B)
n such that

ξ[1]n ≤ ξ[2]n ≤ · · · ≤ ξ[B]n .

Write Φσ(·) and Φ−1
σ (·) for the cumulative distribution function and quantile function of the normal

distribution with mean zero and variance σ2. We wish to prove

√
nξ[1+B−⌊α(1+B)⌋]

n
p−→Φ−1

σ (1 − α). (31)
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Using Theorem 3.1 in Hoeffding (1952), it suffices to prove

B−1
B∑

b=1
1(
√

nξ(b)n ≤ y) p−→Φσ(y),

which is immediate from

B−1
B∑

b=1
1(
√

nξ(b)n ≤ y)
%%%Fn

p−→Φσ(y) for almost every sequence [(Xn,Zn)]n≥1.

We obtain that

lim
n→∞

PH1,n(∆0),Q
(
TQ,ξn
α = 1

)
= lim

n→∞
PH1,n(∆0),Q

(√
nξ◦n >

√
nξ[1+B−⌊α(1+B)⌋]

n

)

= lim
n→∞

PH1,n(∆0),Q
(√

nξ◦n > Φ
−1
σ (1 − α)

)
= α.

This completes the proof.

7.2. Proof of Theorem 4.4(ii)

Proof of Theorem 4.4(ii). Given that Y is independent of X , the conditional independence between Y
and Z given X is equivalent to the (unconditional) independence between Y and W = (X,Z).

To test the independence between Y ∈ R1 and W ∈ Rp+q , we will adopt the test proposed in Shi,
Drton and Han (2022c, Equation (13)); see Deb and Sen (2023) for a similar result. We will briefly
illustrate the idea.

Let (Y1,W 1), . . . ,(Yn,W n) be independent copies of (Y,W ). Let F(n)
Y ,± and F(n)

W ,± be the empirical
center-outward distribution functions as defined in Hallin et al. (2021, Definition 2.3) for {Yi}ni=1 and
{W i}ni=1, respectively. We define the test statistic

M̂n := n · dCov2
n

(
[F(n)

X ,±(X i)]ni=1,[F
(n)
Y ,±(Y i)]ni=1

)
,

where the (sampled) distance covariance dCov2
n(·, ·) is given in Székely and Rizzo (2013, Definition 1),

and then form the test

Topt
α := 1

(
M̂n > q1−α

)
, q1−α := inf

{
x ∈ R : P

( ∞∑
k=1

λk (ξ2
k − 1) ≤ x

)
≥ 1 − α

}
.

Here, λk , k ∈ Z+, are the non-zero eigenvalues of the integral equation given by Shi, Drton and Han
(2022c, Equation (12)) and depend only on p + q, and [ξk]∞k=1 is a sequence of independent standard
Gaussian random variables. Further details can be found in Shi, Drton and Han (2022c).

By Theorem 3.1 in Shi, Drton and Han (2022c),

lim
n→∞

PH0(T
opt
α = 1) ≤ α,

and by Theorem 5.3 in Shi et al. (2022), for sufficiently large ∆0,

lim
n→∞

PH1,n(∆0)(T
opt
α = 1) ≥ 1 − β.
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Finally, we prove that

lim
∆0→0

lim
n→∞

TV(H0,H1,n(∆0)) = 0.

Equation (2.20) in Tsybakov (2009) states that total variation and Hellinger distances satisfy

TV(H1,n(∆0),H0) ≤ HL(H1,n(∆0),H0).

It is also known (Tsybakov, 2009, p. 83) that

1 − HL2(H1,n(∆0),H0)
2

=
(
1 − HL2(P1,n(∆0),P0)

2

) n
.

Lehmann and Romano (2005, Example 13.1.1) show that, under Assumption 4.1,

n × HL2(P1,n(∆0),P0))→
∆2

0IX (0)
4

;

notice that here the definition of HL2(Q,P) differs from that in Lehmann and Romano (2005, Defini-
tion 13.1.3) by a factor of 2. Therefore,

HL2(H1,n(∆0),H0)
2

−→ 1 − exp
{
−
∆2

0IX (0)
8

}
.

where the right-hand side tends to 0 as ∆0 → 0. The last assertion is a direct corollary of the fact that
the sum of probabilities of Type I error and Type II error has the following lower bound:

inf
T

{
PH0 (T = 1) + PH1,n(∆0)(T = 0)

}
= 1 − TV(H1,n(∆0),H0)

(Lehmann and Romano, 2005, Theorem 13.1.1). This completes the proof.
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