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Abstract

This review discusses Operator Inference, a non-intrusive reduced mod-

eling approach that incorporates physical governing equations by defin-

ing a structured polynomial form for the reduced model, and then learns

the corresponding reduced operators from simulated training data. The

polynomial model form of Operator Inference is sufficiently expressive

to cover a wide range of nonlinear dynamics found in fluid mechan-

ics and other fields of science and engineering, while still providing

efficient reduced model computations. The learning steps of Operator

Inference are rooted in classical projection-based model reduction; thus

some of the rich theory of model reduction can be applied to models

learned with Operator Inference. This connection to projection-based

model reduction theory offers a pathway for deriving error estimates

and gaining insights to improve predictions. Furthermore, through for-

mulations of Operator Inference that preserve Hamiltonian and other

structures, important physical properties such as energy conservation

can be guaranteed in the predictions of the reduced model beyond the

training horizon. The key computational steps of Operator Inference

are illustrated in this review through a large-scale combustion example.
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1. Introduction

Learning models from data via automated methods is an increasingly important compo-

nent of computational science and engineering. We distinguish between two different broad

problem settings of learning models from data: (1) the governing equations of the physi-

cal phenomena of interest are unknown and the goal is to discover them from data, and

(2) the governing equations of the physical phenomena are known, high-fidelity numerical

simulations are available but are prohibitively expensive for the task at hand, and the goal

is to learn a computationally efficient surrogate model. This paper addresses the second

problem setting.

The high cost of numerical simulations for complex physical phenomena is a major

limitation to achieving optimization, design, control, data assimilation, and uncertainty

quantification for scientific and engineering systems. These numerical tasks are all so-called

“outer-loop applications” (Peherstorfer et al. 2018) that require repeated simulations for

different inputs, parameters, and configurations. Surrogate models provide approximations

of high-fidelity numerical simulations at greatly reduced costs and play a key role in making

tractable these outer-loop applications. When it comes to approximating high-fidelity nu-

merical simulations of physical phenomena, surrogate models can be categorized into three

types: statistical data-fit models, simplified models, and reduced models. Statistical data-fit

models approximate the input-output maps induced by high-fidelity numerical simulations.

The maps are fit with statistical methods from training data, with the surrogate model

employing a generic functional form that does not explicitly reflect the structure of the

physical governing equations underlying the numerical simulations. While many different

parametrizations of the input-output map have been considered, Gaussian process models

have been particularly successful because they are equipped with error indicators that can

be used for adaptation (Rasmussen & Williams 2006, Forrester et al. 2008).

Learning governing
equations from data:
This review

addresses learning
surrogate models

from data of

high-fidelity
numerical

simulations. For

discussions about
the different

problem setting of

learning governing
equations from data,

we refer to Langley

(1981), Schmidt &
Lipson (2009),

Brunton et al.
(2016b), Raissi &

Karniadakis (2018).

Surrogate models of the second type, simplified models, are obtained by simplifying the

models underlying the high-fidelity numerical simulations to obtain approximations with

reduced costs. For example, nonlinear terms can be linearized, physics can be simplified,

iterative solvers can be terminated early, and coarser grids can be used for discretization.

In-depth domain knowledge about the physics, governing equations, and numerical methods

underlying the simulations is necessary to understand in which situations these simplifica-

tions can be made while maintaining sufficient accuracy.

Reduced models form the third category of surrogate models and encompass elements

of both statistical data-fit and simplified models. Reduced modeling—also referred to as

model reduction—learns patterns from training data of high-fidelity numerical simulations

in order to identify low-dimensional structure, and at the same time it embeds knowledge

of the numerical models and governing equations in the form of the reduced model. In this

sense, reduced modeling is an early example of scientific machine learning, because learn-

ing from data is combined with incorporating physical structure and insights given by the

numerical models used in high-fidelity numerical simulations; see Baker et al. (2019), Swis-

chuk et al. (2019), Duraisamy et al. (2019), Brunton et al. (2020), Karniadakis et al. (2021)

for discussions about scientific machine learning and physics-informed machine learning, as

well as Coveney et al. (2016) and Willcox et al. (2021). A large class of reduced models

Surrogate modeling:
When it comes to

approximating

high-fidelity
numerical

simulations of

physical phenomena,
surrogate models
can be categorized

into three types:
statistical data-fit

models, simplified
models, and reduced

models.

is based on projection, where low-dimensional subspaces that capture the most important

dynamics are learned from data and the governing equations are solved in the subspaces via

projection; see the textbooks and surveys Antoulas (2005), Rozza et al. (2008), Quarteroni

& Rozza (2014), Benner et al. (2015), Hesthaven et al. (2016). Reduced models based on
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projection have a long history in fluid mechanics and represent some of the pioneering work

in the field (Lumley 1967, Sirovich 1987, Holmes et al. 1996, Hall et al. 2000, Dowell &

Hall 2001, Rowley & Dawson 2017). An advantage of reduced modeling techniques is the

availability of rigorous theoretical guarantees in some settings, in particular via a posteriori

error estimation (Prud’homme et al. 2001, Veroy et al. 2002, Hinze & Volkwein 2005, Haas-

donk & Ohlberger 2011, Urban & Patera 2012). A drawback is that reduced models have

been traditionally constructed by intrusive methods that compute the reduced operators

by explicit projection of the governing equations onto the low-dimensional subspace. This

requires access to the numerical operators of the high-fidelity simulations in either assem-

bled form or via routines that provide the action of the operators. As discussed in Ghattas

& Willcox (2021), while this is possible in many settings, it has been a barrier to practical

adoption of model reduction, especially for legacy and commercial numerical tools.

Intrusive methods:
Require access to

the operators of the

high-fidelity
numerical solver

either in assembled

form or via routines
that provide the

action of the

operators on
functions.

Non-intrusive
methods: Have
access to data

generated with
numerical models

and potentially

additional
information such as

structure,

components, and
governing equations

of the systems

described by the
models; however,

have no access to

the operators of the
numerical models in

an intrusive sense.

Instead of constructing reduced models via intrusive procedures, we aim to learn re-

duced models non-intrusively from training data, while maintaining some of the theoretical

guarantees provided by intrusive methods. A major advantage of non-intrusive reduced

modeling is its ease of implementation, because the high-fidelity simulators are used as

data generators only. Structure, knowledge about governing equations, and other physical

insights can still be embedded in a non-intrusive reduced model, but access to the high-

fidelity operators in an intrusive sense is avoided. Furthermore, non-intrusive formulations

offer the flexibility to learn a reduced model from both simulation and experimental data

(see, e.g., Schmid (2010), Hemati et al. (2017)). This is particularly relevant to fluid me-

chanics, where techniques such as particle image velocimetry can provide high-resolution

spatiotemporal flow data.

Non-intrusive reduced modeling can be achieved in various ways. There are methods

that learn only parts of the dynamics of the high-dimensional numerical models as in Gear

et al. (2003). A range of methods learn physics-informed representations obtained from

the high-fidelity numerical simulations (Audouze et al. 2009, Hesthaven & Ubbiali 2018,

Swischuk et al. 2019). In the systems and control community, non-intrusive model reduc-

tion is widely studied and is related to system identification (Ljung 1987). The Loewner

approach leverages the dynamical-system structure of high-fidelity models and fits rational

functions to frequency-response data (Antoulas et al. 2021). The dynamic mode decompo-

sition (DMD) (Rowley et al. 2009, Schmid 2010, Tu et al. 2014, Kutz et al. 2016) best-fits

linear operators to state trajectories; see also the survey by Schmid (2022). Methods based

on Koopman operators have been developed to extend DMD to nonlinear systems (Mezić

2005, Williams et al. 2015, Brunton et al. 2016a), where the challenge is selecting observables

such that the dynamics become close to linear.

In this paper, we discuss reduced modeling with Operator Inference, introduced in

Peherstorfer & Willcox (2016a). Similarly to DMD, Operator Inference fits operators of re-

duced models to data; however, Operator Inference allows for nonlinear terms and thus can

capture nonlinear dynamics. Operator Inference explicitly embeds the underlying physics

through the structured form of the reduced model it learns. In Section 2, we describe the ba-

sic Operator Inference approach. Section 3 demonstrates Operator Inference on the example

of learning a surrogate model for a large-scale computational fluid dynamics (CFD) model

of a combustion process. Section 4 discusses conditions under which Operator Inference

recovers the same reduced models that would be obtained with intrusive projection-based

model reduction, which provides a pathway to carry over the rich theory of intrusive meth-

ods to data-driven modeling with Operator Inference. In Section 5, we delve into structure
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preservation, noting that a major advantage of reduced models compared to statistical data-

fit models is explicit preservation of the structure of the underlying physics and high-fidelity

numerical models. Conclusions are drawn in Section 6.

2. Operator Inference

This section reviews Operator Inference, a non-intrusive method for learning low-

dimensional computationally efficient surrogate models that approximate large-scale, ex-

pensive numerical simulations.

2.1. High-fidelity physics-based numerical models and their structure

This paper considers the large class of scientific and engineering applications governed by

partial differential equations (PDEs). In scientific computing, numerical models for such

systems are typically obtained by discretizing the governing PDEs with numerical methods

such as finite-volume, finite-difference, and finite-element schemes. The resulting numerical

models describe the underlying systems of interest with high fidelity but often entail high

computational costs when used for numerical simulations. In this subsection, we present

a generic form for such models, with emphasis on the structured model form that arises

based on the physical governing equations at hand. In the next subsection, we will see how

Operator Inference exploits this structure to derive data-driven reduced models.

2.1.1. Numerical models. To keep the discussion general, we consider a generic spatially

discretized form of the governing PDEs. That is, we consider numerical models of the form

d

dt
x(t;µ) = f(x(t;µ),u(t);µ) , 1.

where x(t;µ) ∈ RN is the spatially discretized state vector. The dimension of the state is

N ∈ N, which scales with the (typically large) number of degrees of freedom in the spatial

discretization. In the most general case, the state depends on time t and the d′-dimensional

parameter µ ∈ D ⊂ Rd′ . The d-dimensional input u(t) ∈ Rd represents terms such as

time-dependent boundary conditions and source terms. The dynamics are described by the

function f : RN × Rd ×D → RN .

2.1.2. Structure of numerical models. In numerical models of interest in science and engi-

neering, the function f in Equation 1 typically has a particular structure that reflects the

terms in the equations governing the modeled physical processes. In fluid mechanics, exam-

ples of these physical processes are convection, diffusion, and reaction, each of which gives

rise to terms with varying, but known, structural form. As a specific example, consider the

following mathematical model given by Burgers’ equation for convection-diffusion flows

∂

∂t
w(t, ξ;µ) + w(t, ξ;µ)

∂

∂ξ
w(t, ξ;µ)− µ1

∂2

∂ξ2
w(t, ξ;µ) = µ2s(t, ξ) , ξ ∈ Ω , 2.

with solution field w(t, ξ;µ) at time t and spatial coordinate ξ in the spatial domain Ω.

Equation 2 depends on the source term s(t, ξ) and on the parameter µ = [µ1, µ2] ∈ R2,

with the components of µ corresponding to the viscosity, µ1, and source-term parameter,

µ2. Imposing appropriate boundary conditions and discretizing Equation 2 in the spatial

Vector x2 versus the
Kronecker x⊗ x:
The squared vector

of x = [x1, x2]⊤ is

x2 =

x1x1

x1x2

x2x2

 .

The vector x2 is
obtained by
removing all
duplicates due to the

commutativity of
multiplication from

the Kronecker
product

x⊗ x =


x1x1

x1x2

x2x1

x2x2

 .
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domain with, for example, a finite-difference method, yields a system of ordinary differential

equations as given in Equation 1, where in this case the function f has linear-quadratic

structure,

f(x(t;µ),u(t);µ) = A1(µ)x(t;µ) +A2x
2(t;µ) +B(µ)u(t) .

Here, x(t;µ) ∈ RN is the spatially discretized approximation of the state w, which depends

on time t and the parameter vector µ, and u(t) is the spatially discretized representation

of the source term s(t, ξ). The matrix A1(µ) ∈ RN×N arises from discretization of the

linear diffusion term in Equation 2 (that is, A1(µ)x(t;µ) corresponds to the numerical

approximation of the term µ1∂
2
ξw(t, ξ;µ)). The matrix A2 ∈ RN×N2 arises from discretizing

the nonlinear convection term in Equation 2, which has a quadratic dependence on the state.

The squared vector x2(t;µ) contains all components of the Kronecker product x(t;µ) ⊗
x(t;µ) except the duplicates due to commutativity of multiplication. The squared vector

x2(t;µ) has N2 =
(
N+1

2

)
components, which is also the number of columns of A2. The

matrix B(µ) ∈ RN×d maps the effects on the dynamics of the source term and constant

terms such as those arising from discretization of boundary operators.

Just as discretizing Burgers’ equation leads to a numerical model with linear-quadratic

structure, the models of many processes and phenomena lead to a form of f in Equa-

tion 1 that has polynomial structure. For example, heat conduction described by lin-

ear diffusion models leads to linear time-invariant dynamics so that f(x(t;µ),u(t);µ) =

A(µ)x(t;µ) + B(µ)u(t), which is a polynomial of degree one in the state x(t;µ). Other

governing equations in fluid mechanics that lead to polynomial models are the shallow wa-

ter equations, incompressible Navier Stokes equations, and Euler equations (Hughes et al.

1986, Balajewicz et al. 2016, Qian et al. 2020). These examples motivate us to consider

polynomial models,

Note on polynomial
form: Many

numerical models
arising in fluid

mechanics naturally

have polynomial
form. Examples

include the shallow

water equations and
incompressible

Navier-Stokes

equations.
Furthermore, many

non-polynomial

models can be
written in

polynomial form as
in Equation 3 after

variable

transformations are
applied. For

example, the Euler

equations have
quadratic structure

when written in

specific volume
variables.

d

dt
x(t;µ) = f(x(t;µ),u(t);µ) =

∑ℓ

i=1
Ai(µ)x

i(t;µ) +B(µ)u(t) , 3.

where ℓ ∈ N is the degree of the polynomial and xi(t;µ) ∈ RNi contains the components

of the i-times Kronecker product x(t;µ) ⊗ · · · ⊗ x(t;µ) up to the duplicates due to com-

mutativity of multiplication. Notice that the vector xi(t;µ) has Ni =
(
N+i−1

i

)
components

whereas the i-times Kronecker product x(t;µ)⊗· · ·⊗x(t;µ) has N i (“N to the ith power”)

components. For i = 1, . . . , ℓ, the matrix Ai(µ) has size N ×Ni, and B(µ) has size N × d.

Furthermore, in the next subsection we discuss the transformation of governing equations

for an even broader class of systems into the polynomial form of Equation 3.

2.1.3. Lifting of non-polynomial models. The polynomial model form in Equation 3 already

encompasses a large portion of discretized processes in engineering and science; however,

there are also a number of mathematical models that include non-polynomial terms. The

vast majority of those fall into the class of systems that can be written in polynomial form

by leveraging variable transformations. To begin, we note that dynamical system models are

not unique: the same process can be modeled mathematically with different variables, which

can have tremendous impact on computational modeling and analysis. The idea of variable

transformations (referred to as lifting when extra variables are added) to promote model

structure has a long history spanning different communities. In fluid dynamics, variable

Lifting: Refers to the
process of rewriting
a nonlinear model

with different
variables such that

it becomes of

polynomial form,
and at best
quadratic.

transformations have long been recognized as providing useful alternative representations,

such as choosing particular variables to enhance stability properties (Hughes et al. 1986,

Kalashnikova & Barone 2011, Balajewicz et al. 2016, Rezaian & Wei 2020). As another

www.annualreviews.org • 5



classical example, the well-known Cole-Hopf transformation turns the nonlinear Burgers’

equation into a linear equation (Cole 1951, Hopf 1950). In the dynamical systems field,

DMD (Schmid 2010, Rowley et al. 2009) is often used to learn low-dimensional models

from data. Employing variable transformations to use a different choice of variables (called

observables) enables Koopman analysis via extended DMD (Williams et al. 2015, Netto

et al. 2021), which leads to more accurate DMD models. In controller design, feedback

linearization uses a nonlinear state transformation to bring a general nonlinear system

into a structured linear model (Jakubczyk & Respondek 1980, Khalil 2002) which can

then be controlled with classical methods. Bringing nonlinear systems into canonical and

abstract forms can further improve their numerical solution, analysis, and verification, as

seen in Savageau & Voit (1987), Liu et al. (2015), Brenig (2018), Guillot et al. (2019).

Quadratic model structure has seen broad interest in model reduction due to the ad-

vantages of analyzing and simulating quadratic models (versus other nonlinear models). In

the context of optimization, McCormick (1976) is credited with introducing variable sub-

stitutions to achieve quadratic structure so that non-convex optimization problems can be

recast as convex problems in the new variables. In the field of model reduction, lifting to a

quadratic form was introduced by Gu (2011) and subsequently further developed for model

reduction methods that are tailored to quadratic model form (Benner & Breiten 2015, Ben-

ner et al. 2018, Kramer & Willcox 2019, 2022, Liljegren-Sailer & Marheineke 2022). In the

context of Operator Inference, the Lift & Learn method introduced in Qian et al. (2020)

and related work (Swischuk et al. 2020a, McQuarrie et al. 2021b, Qian et al. 2022) uses

lifting transformations to learn quadratic reduced models approximating complex nonlinear

systems, such as combustion dynamics, from lifted data. The quadratic structure can be fur-

ther exploited to equip these learned models with stability guarantees, see Kramer (2021).

These stability guarantees can also be derived and integrated into Operator Inference in

the case of a model with cubic structure, as in Sawant et al. (2023).

How are these lifting transformations identified? In most cases they are readily iden-

tified manually from the form of the governing PDEs. There is active research in algo-

rithms, methods and software for polynomialization (Hemery et al. 2021) and quadratiza-

tion (Hemery et al. 2020, Bychkov & Pogudin 2021). In some cases, the lifting transfor-

mations result in differential algebraic equations, such as for the additive manufacturing

solidification example in Khodabakhshi & Willcox (2022).

In sum, variable transformations and lifting expose polynomial structure in a broad class

of nonlinear systems. In the next subsections, we will see how this polynomial structure is

highly amenable to surrogate modeling via model reduction. It is important to note that

while the variable transformations are derived from the form of the governing PDEs, the

transformations are not applied to the high-fidelity numerical model, but rather to the data

from which the reduced model is learned. This makes variable transformations and lifting

a powerful yet broadly applicable set of tools in approximating complex nonlinear systems.

2.2. Non-intrusive model reduction with Operator Inference

Model reduction differs from other surrogate modeling approaches in the way that the re-

duced model explicitly accounts for the structure of the governing equations. Operator

Inference non-intrusively constructs reduced models via a data-driven regression problem

that learns reduced matrices from snapshot data. The data-driven nature of Operator In-

ference enables the use of variable transformations to expose structure in nonlinear systems.
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Lifting a non-polynomial system

Consider a simple ordinary differential equation with a non-polynomial term and a linear term:

ẋ(t) = ax(t) + e−x(t).

Set x1 = x and take x2 = e−x1 as the auxiliary variable, so that ẋ2 = −x2(ax1 + x2) = −ax1x2 − x2
2. The

lifted system is now in quadratic form, as[
ẋ1(t)

ẋ2(t)

]
=

[
a 1

0 0

][
x1(t)

x2(t)

]
+

[
0 0 0 0

0 0 −a −1

]([
x1(t)

x2(t)

]
⊗

[
x1(t)

x2(t)

])
.

Operator Inference does not simulate the lifted system but instead applies the lifting transformations to

the original state snapshots that have been collected. The lifted snapshots are then used to assemble the

data matrix X. This post-processing step generates snapshots of the lifted state x = [x1, x2]
⊤, from which

Operator Inference learns a (here quadratic) model in the lifted variables.

2.2.1. Surrogate modeling via model reduction. Model reduction typically consists of two

phases. In the offline (training) phase, training data are generated, low-dimensional struc-

ture is identified, and the reduced models are constructed. In the online (evaluation/de-

ployment) phase, the reduced models are used to make rapid predictions, including at new

initial conditions and parameter values that were not sampled during the offline phase. A

wide range of model reduction techniques are surveyed in, e.g., Antoulas (2005), Rozza

et al. (2008), Benner et al. (2015), Hesthaven et al. (2016), Antoulas et al. (2021).

We focus on snapshot-based model reduction methods, which identify a low-dimensional

coordinate system based on analyzing sampled state solutions. We denote a trajectory of

state solutions generated by solving Equation 3 for a parameter µ as

X(µ) = [x(t1;µ), . . . ,x(tK ;µ)] ∈ RN×K , 4.

with the initial condition x(0;µ). The number of time steps in each trajectory is K and

the time steps are 0 = t0 < t1 < t2 < · · · < tK . We assume the time steps to be equidistant

with time-step size δt > 0 in the following to ease exposition, but this is not a requirement

for implementation. The state solution x(tj ;µ) is referred to as the jth snapshot in the

trajectory X(µ). Snapshots are generated for multiple trajectories X(µ1), . . . ,X(µM ) by

solving Equation 1 for training parameters µ1, . . . ,µM and corresponding initial conditions.

2.2.2. Operator Inference basic algorithm. Operator Inference follows three steps. It is

distinctive from other model reduction methods in Step 3, where the reduced model is

constructed by solving a data-driven regression problem that learns reduced-order matrices

from snapshot data.

Step 1. (Snapshot generation.) Trajectories such as given in Equation 4 are col-

lected and then concatenated together with the initial conditions into a snapshot matrix

X = [x(0;µ1),X(µ1), . . . ,x(0;µM ),X(µM )] ∈ RN×M(K+1) . 5.

www.annualreviews.org • 7



If lifting or variable transformations are employed, the transformations are applied to each

snapshot. The snapshots are then concatenated together with the initial conditions (also

transformed into the appropriate variables) into a snapshot matrix. To keep the exposition

simple, we continue to use the symbol X to denote the snapshot matrix, but note that in

some cases the physical variables contained within the snapshots may be transformed and

differ from the native variables of the original nonlinear system Equation 1.

Step 2. (Constructing a low-dimensional basis.) A common approach is to apply

proper orthogonal decomposition (POD), which has a long tradition in fluid mechanics

(Sirovich 1987, Holmes et al. 1996). Computing the POD entails constructing the first n ≪
N left-singular vectors ofX corresponding to the largest singular values, and collecting these

singular vectors as columns in a basis matrix V = [v1, . . . ,vn]. This basis is orthonormal,

V ⊤V = I, and spans an n-dimensional subspace V ⊆ RN . In practice, the snapshot matrix

is often first centered (by subtracting the snapshot mean from each snapshot), and possibly

scaled, before computing the singular vectors. There is a variety of heuristics to choose

the reduced dimension n, with the most common being based on decay of the singular

values; see Benner et al. (2015). The basis matrix V defines a low-dimensional coordinate

system in which we now construct a reduced model. A full-order state is approximated as

x(t;µ) ≈ V x̂(t;µ) where x̂(t;µ) ∈ Rn is the reduced state of dimension n.

POD approximation
in a linear
low-dimensional
subspace: A
full-order state

x(t;µ) ∈ RN is
approximated as

x(t;µ) ≈ V x̂(t;µ)

where the columns
of V = [v1, . . . ,vn]

form the POD basis

of order n and
x̂(t;µ) ∈ Rn is the

reduced state of

dimension n.

Step 3. (Reduced model construction via Operator Inference.) The reduced

model of Equation 1 takes the general form

d

dt
x̂(t;µ) = f̂(x̂(t;µ),u(t);µ) , 6.

with the reduced-order dynamics described by the function f̂ : Rn × Rd × D → Rn. As

discussed above, we consider systems where the governing equations admit the polynomial

form of Equation 3. The corresponding form of the reduced model is then

d

dt
x̂(t;µ) =

∑ℓ

i=1
Âi(µ)x̂

i(t;µ) + B̂(µ)u(t) , 7.

where, following the notation of Equation 3, the vector x̂i ∈ Rni contains the unique

components of the i-times Kronecker product x̂(t;µ) ⊗ · · · ⊗ x̂(t;µ), with ni =
(
n+i−1

i

)
.

The reduced-order matrices Âi(µ) and B̂(µ) will be learned from snapshot data using

Operator Inference, as described in the next three sub-steps.

Step 3a. (Dimension reduction.) Project the (possibly lifted) trajectories X onto

the reduced space V via

X̆(µj) = V ⊤X(µj) , j = 1, . . . ,M , 8.

where X̆(µj) = [x̆(t1;µj), . . . , x̆(tK ;µj)] are the projected trajectories comprising snap-

shots of reduced dimension n. Note that we use the notation x̆ ∈ Rn to denote a projected

snapshot (i.e., x̆ = V ⊤x) in contrast to the notation x̂ ∈ Rn, which denotes a reduced

state computed by solving a reduced model. The difference between these two will become

important in the theoretical analysis in Section 4. Also compute the projected initial con-

ditions, x̆(0;µj) = V ⊤x(0;µj). Additionally, approximate time derivatives (if they are not

given) to obtain, e.g., with fourth-order finite differences and time-step size δt,

x̆′(tk;µj) =
1

12δt

(
−x̆(tk−2;µj) + 8x̆(tk−1;µj)− 8x̆(tk+1;µj) + x̆(tk+2;µj)

)
,

8



with j = 1, . . . ,M , and k = 2, . . . ,K − 2. Here, x̆′(tk;µj) approximates the time derivative
d
dt
x̆(tk;µj). The approximate time derivative x̆′(tk;µj) can be computed with wide finite-

difference stencils that involve many neighbors, corresponding to higher-order accuracy,

because snapshots at all time steps are available.

Dimension reduction:
A trajectory of

snapshots X(µj) is

represented in the
reduced subspace as

X̆(µj) = V ⊤X(µj)
Step 3b. (Learning.) For each training parameter µj with j = 1, . . . ,M , Operator

Inference fits the reduced matrices Â1(µj), . . . , Âℓ(µj), B̂(µj) by minimizing the objective

Jj(Â1(µj), . . . , Âℓ(µj), B̂(µj)) =

K∑
k=1

∥∥∥∥∥
ℓ∑

i=1

Âi(µj)x̆
i(tk;µj) + B̂(µj)uk(µj)− x̆′(tk;µj)

∥∥∥∥∥
2

2

,

9.

as in the optimization problem

min
Â1(µj),...,Âℓ(µj),B̂(µj)

Jj(Â1(µj), . . . , Âℓ(µj), B̂(µj)) . 10.

The optimization problem stated in Equation 10 is a linear least-squares problem that can

be solved efficiently, as discussed in detail in Section 2.2.4.

Operator Inference
learning: Operator

Inference solves a

linear least squares
problem to

determine the

reduced model
operators that best

fit the reduced

snapshot trajectories
X̆(µj) in a

minimum residual
sense.

Step 3c. (Reduced model assembly.) For any of the training parameters µj with

j = 1, . . . ,M , the learned operators Âi(µj), i = 1, . . . , ℓ, and B̂(µj) define a reduced model,

which can then be used to issue predictions at new, unseen initial conditions that have not

been used for training. For a different parameter µ ∈ D \ {µ1, . . . ,µM} that is not in the

training set, the operators Â1(µ), . . . , Âℓ(µ),B(µ) can be obtained via interpolation be-

tween the operators computed in Step 3b. In particular, the interpolation can be performed

on matrix manifolds to preserve the structure of the inferred matrices in the interpolated

matrices (Degroote et al. 2010, Panzer et al. 2010, Amsallem & Farhat 2008).

2.2.3. Regularization and stability of Operator Inference models. Regularization imposes

a bias on the learning process to guide Operator Inference towards meaningful models that

have predictive capabilities and that generalize well to unseen parameters, inputs, and

initial conditions. Regularization is especially helpful when models are misspecified. Data

are also often polluted with numerical noise due to early stopping of iterative solvers, limited

numerical precision, and other perturbations.

Regularization: Adds

a bias that guides
the learning process

to compensate
against too few and

noisy data samples

as well as model
misspecifications.

Tikhonov regularization has been proposed to enhance Operator Inference by preventing

overfitting (Swischuk et al. 2020a, McQuarrie et al. 2021b, Jain et al. 2021). Tikhonov

regularization suggests modifying the optimization problem given in Equation 10 as

min
Â1(µj),...,Âℓ(µj),B̂(µj)

Jj(Â1(µj), . . . , Âℓ(µj), B̂(µj)) +

ℓ∑
i=1

λi∥Âi(µj)∥
2
F + λℓ+1∥B̂(µj)∥

2
F .

11.

There are several techniques to choose regularization coefficients λ1, λ2, . . . , λℓ+1 in the

context of Operator Inference (Swischuk et al. 2020a, McQuarrie et al. 2021b). In McQuar-

rie et al. (2021b), the authors determine the regularization coefficients by both a data-fit

criterion during training and a state constraint that additionally enforces stability in the

training and testing set. Regularizers may often be tailored to the physics of the problem.

For example, bounds on the stability radius of polynomial dynamical-system models can

be derived based on Lyapunov stability theory; see, e.g., Tesi et al. (1994), Chesi (2007),

Kramer (2021). Such bounds are computable in case of polynomial models and depend on

the norms of the learned operators Â1(µj), . . . , Âℓ(µj). This is the motivation for Sawant
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et al. (2023) to propose regularizers that penalize operators Â1(µj), . . . , Âℓ(µj) with large

norms to encourage learning models with large stability bounds. One of the key insights

gained by applying Lyapunov stability theory to models learned with Operator Inference is

that it is beneficial in terms of stability to regularize the quadratic and higher-order terms

only and do not impose a regularizer on the linear term; see Sawant et al. (2023) for details.

2.2.4. Scalability of Operator Inference. For any of the training parameters µj , j =

1, . . . ,M , the operator-inference optimization problem given in Equation 11 can be written

in the form

min
O(µj)

∥D(µj)O(µj)−R(µj)∥
2
F + ∥Γ(µj)O(µj)∥

2
F , 12.

with the inferred operators given as blocks in the matrix O(µj) =

[Â1(µj), . . . , Âℓ(µj), B̂(µj)]
⊤ which has n̄ =

∑ℓ
i=1 ni + d rows and n columns. The

data matrix is

D(µj) = [X̆(µj), X̆
2
(µj), . . . , X̆

ℓ
(µj),U(µj)]

⊤ ∈ RK×n̄ , 13.

where X̆
i
(µj) = [x̆i(t1;µj), . . . , x̆

i(tK ;µj)] ∈ Rni×K for i = 1, . . . , ℓ collects the unique

components of i-times Kronecker products of the projected snapshots and U(µj) =

[u1(µj), . . . ,uK(µj)] ∈ Rd×K collects the input trajectories that were used to generate

the snapshots. The right-hand side matrix, R(µj) = [x̆′(t1;µj), . . . , x̆
′(tK ;µj)]

⊤ ∈ RK×n

collects the approximate time derivatives of the projected snapshots. The matrix Γ(µj) ∈

Motivating the structural form of the learned reduced model

Why is it that the high-dimensional numerical model of the form

d

dt
x(t;µ) =

∑ℓ

i=1
Ai(µ)x

i(t;µ) +B(µ)u(t) , S1.

leads us to learn a reduced-order model of the form

d

dt
x̂(t;µ) =

∑ℓ

i=1
Âi(µ)x̂

i(t;µ) + B̂(µ)u(t) ? S2.

The answer lies in classical intrusive projection-based model reduction methods. If we were to construct an

intrusive projection-based reduced model, we would first approximate the high-dimensional state x(t;µ) ∈
RN in the n-dimensional subspace V spanned by the orthonormal basis V ∈ RN×n: x(t;µ) ≈ V x̂(t;µ), with

x̂(t;µ) ∈ Rn the coordinates in the reduced-order representation. Substituting this approximation into the

full-order model would yield a residual. The Galerkin reduced model would then be obtained by imposing

the condition that the residual be orthogonal to the subspace V, which leads to the reduced dynamical

system, whose reduced-order matrices are the projections of the corresponding full-order matrices onto the

subspace V. That is, in this special case, we have B̂(µ) = V ⊤B(µ), Â1(µ) = V ⊤A1(µ)V , etc.

Operator Inference does not compute the reduced operators via projection ; however, the intrusive pro-

jection framework reveals how projection preserves the structural polynomial form in the reduced model.

Recall that this structural form in turn reflects the terms in the governing PDEs. Thus, it is the PDEs—the

governing laws of physics—that dictate the particular structured form of the reduced model that we learn.

10



A Python package for Operator Inference

Operator Inference for learning polynomial reduced models of dynamical systems is available as a Pypi

python package at https://pypi.org/project/opinf/ under the MIT License. The documentation for

the package includes a discussion of all functionalities such as regularization and post-processing features,

tutorials, installation guide, and references.

Rn̄×n̄ corresponds to the regularization weights of the regularized problem given in Equa-

tion 11. It has only zero entries if no regularization is applied.

Each step of Operator Inference is scalable. The reduction steps (Steps 2 and 3a)

typically entail computing a singular value decomposition, for which highly efficient and

parallel implementations exist. Furthermore, randomized methods have been shown to

scale the reduction step to large data sets; see, e.g., Swischuk et al. (2020a), Farcas, et al.

(2023a, 2022). Randomized methods typically rely on a low-rank structure, which can

be reasonably expected to be present in trajectory data when learning low-dimensional

models is the goal. The learning step (Step 3b) solves the optimization problem defined in

Equation 12, which can be decomposed into n independent linear least-squares problems

with n̄ unknowns each. Each of the independent problems can be solved in parallel. The

optimization problem is a standard least-squares problem, which can again be solved with

scalable implementations of the singular value decomposition. The assembly step (Step 3c)

assembles the reduced model based on the inferred operators, which are low dimensional

and therefore computational costs typically are low.

3. Operator Inference in action

We now walk through the computational procedure of applying Operator Inference to learn

a surrogate model of a large-scale combustion simulation. The results that we show are

drawn from Qian et al. (2022).

3.1. Numerical model of the continuously variable resonance combustor (CVRC)

The CVRC is an experimental combustor at Purdue University (Harvazinski et al. 2015).

We consider a numerical model of the CVRC with three spatial dimensions as used in Qian

et al. (2022), and refer to Wang et al. (2019), Swischuk et al. (2020b), Peherstorfer (2020a),

McQuarrie et al. (2021a) for other surrogate-modeling techniques applied to one- and two-

dimensional models of the CVRC. Models of the CVRC can be simulated with the General

Equation and Mesh Solver (GEMS) code introduced by Harvazinski et al. (2015). Details

about the GEMS setup and reduced modeling for the CVRC are given in Huang et al.

(2019, 2020).

The combustor is cylindrically symmetric around the first coordinate direction and

about 28 cm in the axial direction (Harvazinski et al. 2015). A forcing in the form of a

10% fluctuation in the back pressure at the combustor outlet drives the dynamics. The

forcing frequency is 2000 Hz and the baseline back pressure is 1.1 MPa. The govern-

ing equations are the three-dimensional Navier-Stokes equations with a flamelet/progress

www.annualreviews.org • 11
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Figure 1: Left plot: The percent of energy retained by POD modes provides a heuristic

for selecting the dimension n of Operator Inference models. We keep up to n = 100 basis

vectors to retain up to 95% of the energy. Right plots: The learned Operator Inference

models accurately predict the pressure within only a few seconds of simulation runtime,

whereas the reference numerical model solved with GEMS requires tens of thousands of

CPU hours. Figure modified from Qian et al. (2020) with permission from authors.

variable chemical model. In the GEMS model, there are seven state variables w =

[ρ, ρu1, ρu2, ρu3, ρe, ρZm, ρC]⊤, where ρ is the density, u1, u2, u3 are the velocities in the

three spatial directions, and e is the specific energy. The variables Zm and C are the

mixture mean and reaction progress variable, respectively, of the chemical model. The

governing equations in conservative form are written

∂

∂t
w(t, ξ) +∇ · (F (t, ξ,w)− F v(t, ξ,w)) = s(t, ξ,w) , 14.

where ξ ∈ R3 is the spatial coordinate, t is time, and F and F v are the inviscid and viscous

flux, respectively. The function s is the source term. Details can be found in Qian et al.

(2022). The GEMS code uses the finite volume method to discretize Equation 14 into a

system of ordinary differential equations as given in Equation 1 with state dimension being

N ≈ 18.5×106 (that is, there are approximately 18.5 million equations and unknowns in the

large-scale CFD model). The considered scenario simulates five milliseconds of combustion

dynamics, which takes more than 45,000 CPU hours with GEMS.

3.2. Applying Operator Inference to learn a reduced model of the CVRC

In Qian et al. (2022), Operator Inference learns a reduced model from K = 3, 000 simulated

snapshots collected over the time interval from t = 15 ms to t = 17.999 ms. The learned

reduced models are used to issue predictions a further 2 ms beyond the training horizon,

until t = 20 ms. For this example, there is no parametric variation considered, so the

reduced model does not have a functional dependence on µ.

Step 1. (Snapshot generation.) GEMS is simulated over the training horizon to

generate a trajectory as in Equation 4, comprising K = 3, 000 snapshots. The solutions

12



output by GEMS contain (at each spatial location in the CFD mesh) the primitive flow

variables ρ, u1, u2, u3, and p (where p is pressure), the flamelet/progress variables Zm and

C, the temperature T , and the enthalpy. There are many nonlinear terms in the governing

equations given in Equation 14 and therefore a variable lifting as outlined in Section 2.1.3

is applied to the snapshots. The lifting transforms many—but not all—nonlinear terms

into quadratic form. The lifting transformation is inspired by the quadratic representation

of the compressible Euler equations in the specific volume variables as described in Qian

et al. (2020). Specifically, the GEMS snapshots are post-processed to the lifted variables

ζ = 1/ρ, u1, u2, u3, p, ρZm, ρC, and T . It is important to note that the lifting is applied to

the snapshots obtained from simulating Equation 14 in the original variables. Thus, the

lifting is non-intrusive and does not require modifying the numerical solver.

Step 2. (Constructing a low-dimensional basis.) After centering and scaling the

lifted snapshots, POD is applied to construct a basis. The singular values σ1, . . . , σ3000 of the

scaled snapshots indicate the relative fraction of the energy retained by the n-dimensional

POD basis as ηn = 1−
∑3000

i=n+1 σ
2
i /
∑3000

i=1 σ2
i , which is shown in Figure 1(left). This metric

provides an empirical heuristic for determining the number of basis vectors n. We keep up

to n = 100 basis vectors and thus retain up to 95% of the snapshot energy. In the following,

we consider POD bases with dimensions n ∈ {50, 75, 100} to demonstrate how varying the

dimension affects the reduced model prediction errors.

Step 3a. (Dimension reduction.) The lifted snapshots are projected onto the

reduced space defined by the POD basis as in Equation 8.

Step 3b. (Learning.) After the lifting, most of the variables enter linearly and

quadratically; therefore we learn a polynomial reduced model as in Equation 7 with ℓ = 2

and with an additional term A0 ∈ Rn×1 that is constant in the state variables:

d

dt
x̂(t) = Â1x̂(t) + Â2x̂

2(t) + Â0 + B̂u(t) .

Here, the input u(t) corresponds to the back pressure forcing. Tikhonov regularization

as discussed in Section 2.2.3 is applied, which leads to an optimization problem as given

in Equation 11. The regularization coefficients are selected via sampling such that the

prediction error over the training period is minimized. The optimization problem can be

decomposed into n independent least-squares problems and efficiently solved with scalable

numerical linear algebra packages as discussed in Section 2.2.4.

Step 3c. (Reduced model assembly.) Once the model operators are inferred, they

are assembled into a reduced model, which then can be integrated forward in time with a

second-order Runge-Kutta time-stepping scheme to predict the combustion dynamics.

3.3. Predictive capabilities of Operator Inference models on the CVRC example

Figure 1 (right) shows the pressure at a probe obtained with the learned models for dimen-

sions n = 50, 75, and 100. The probe is located at the downstream combustor boundary.

The predicted pressure is in good agreement in terms of frequency and amplitude with the

reference obtained from the high-dimensional numerical model solved with GEMS. The er-

ror in the prediction is around 2–3%. Notice that the vertical black line in Figure 1 (right)

indicates where the training horizon ends and the prediction horizon begins. Figure 2 shows

spatial fields of the reaction progress variable C. The Operator Inference models have orders

of magnitude fewer degrees of freedom than the reference numerical model and thus smear

out some of the fine-scale features, but provide reasonable predictions of coarse flow features.
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Figure 2: The reaction progress variable (C) field of the CVRC as predicted by GEMS

(N = 18.5M degrees of freedom) and Operator Inference reduced models (n = 50, 75, 100).

The Operator Inference models provide model runtime reduction of up to nine orders of

magnitude. They smear out some of the fine-scale features but provide accurate predictions

of the coarser flow features. Figure from Qian et al. (2020) with permission from authors.

These results also highlight some of the difficulties in achieving accurate surrogate-based

predictions for complex fluid flows, especially when the dynamics are transport-dominated,

as they are here.

This example demonstrates the potential of Operator Inference in learning predictive

models of complex systems. The high-dimensional GEMS numerical model with which

snapshots are generated has over 18 million unknowns and requires tens of thousands CPU

hours to simulate. The simulation runtime of the learned Operator Inference model is

just a few seconds, while providing sufficiently accurate predictions for use in outer-loop

applications such as design and uncertainty quantification.

4. Prediction guarantees for structured Operator Inference models

We now show that some of the rich theory of intrusive model reduction can be applied to

models learned from data with Operator Inference. For ease of exposition, we drop the

dependence on the parameter µ and the input u(t) in this section.

4.1. Recovering projection-based reduced models with re-projection schemes

Data sampling with re-projection (Peherstorfer 2020b) collects state trajectories of the high-

dimensional model that are equivalent to the trajectories of reduced models obtained with

intrusive model reduction. Learning from re-projected trajectories with Operator Inference

guarantees recovery of the very same models that would be obtained with intrusive model

reduction, under certain assumptions. This allows carrying over theoretical results from

intrusive model reduction to data-driven modeling with Operator Inference, including a

posteriori error estimation for certifying predictions.
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Figure 3: Data sampling with re-projection alternates between collecting data and pro-

jecting data onto the subspace V to generate a state trajectory that describes Markovian

dynamics in V. Fitting an Operator Inference model to re-projected trajectories recovers

the same models that are obtained with intrusive model reduction, under mild conditions.

4.1.1. Closure error and Markovian dynamics. Recall the numerical model given in Equa-

tion 3 and a trajectory X as defined in Equation 4. Given a basis matrix V that

spans a space V of dimension n, intrusive model reduction provides the Galerkin re-

duced model d
dt
x̃(t) = f̃(x̃(t)) with f̃(x̃(t)) = V ⊤f(V x̃(t)); see Benner et al. (2015).

Note that the learned model given in Equation 6 with state x̂(t) is not necessarily the

Galerkin reduced model. We denote a trajectory of the Galerkin reduced model as

X̃ = [x̃(t1), . . . , x̃(tK)] ∈ Rn×K , where the k-th column is the state x̃(tk) of the Galerkin

reduced model at time step tk. Notice that the state of the Galerkin reduced model x̃(tk) is

different from the projected state x̆(tk) = V ⊤x(tk); the difference x̃(tk)− x̆(tk) is referred

to as the closure error in the following.

We demonstrate the difference of the projected state trajectories and the trajectories

obtained with intrusive Galerkin reduced models on an example with an autonomous linear

model, which means we consider the model given in Equation 3 with ℓ = 1 and no input

so that d
dt
x(t) = A1x(t). We split the space RN into V, which is spanned by the columns

of the orthonormal basis matrix V , and its orthogonal complement V⊥ with orthonormal

basis matrix V ⊥ so that RN = V ⊕ V⊥. Correspondingly, we split the representation of

a state x(t) as x(t) = V x̆(t) + V ⊥x⊥(t) with the projected state x̆(t) = V ⊤x(t) and its

orthogonal complement x⊥(t) = (V ⊥)⊤x(t). After transformations that are detailed in

Peherstorfer (2020b), we obtain the projected state x̆(t) as

d

dt
x̆(t) = A

∥∥
1 x̆(t)︸ ︷︷ ︸

Markovian term

+

∫ t

0

A
∥⊥
1 e(t−s)A⊥⊥

1 A
⊥∥
1 x̆(s) ds︸ ︷︷ ︸

non-Markovian term

+A
∥⊥
1 etA

⊥⊥
1 x⊥(0) , 15.

with the matrices A
∥∥
1 = V ⊤A1V ,A

∥⊥
1 = V ⊤A1V

⊥ ,A
⊥∥
1 = (V ⊥)⊤A1V and A⊥⊥

1 =

(V ⊥)⊤A1V
⊥. Equation 15 shows that the projected state x̆(t) corresponds to non-

Markovian dynamics in the sense that its dynamics depend on x̆(t) and additionally on

the states of all earlier times than t via the non-Markovian (memory) term. This insight is

well known under the Mori-Zwanzig formalism (Givon et al. 2004, Chorin & Stinis 2006).

Thus, Operator Inference as formulated in Section 2.2.2 fits a Markovian model to data

that represents non-Markovian dynamics. This works well in many cases but can prevent

recovery guarantees for dimensions n < N .

4.1.2. Sampling Markovian dynamics with re-projection for recovering intrusive reduced

models from data. In Peherstorfer (2020b), a sampling scheme is introduced to gener-
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ate trajectories from numerical simulations with a model with high-dimensional states so

that the projected state trajectories describe Markovian dynamics in reduced spaces. The

re-projection scheme is depicted in Figure 3. It alternates between querying the high-

dimensional model and projecting the collected state at the current time step onto V. This
process leads to the re-projected trajectory X̄ = [x̄(t1), . . . , x̄(tK)], which is the same tra-

jectory that a traditional Galerkin reduced model from intrusive model reduction generates.

Thus, re-projected trajectories can be described with zero residual by the Markovian models

we seek in Operator Inference as given in Equation 7. Consider the case that the model

has polynomial structure as in Equation 3. If sufficiently many re-projected states and

their time derivatives are collected, such that the data matrix defined in Equation 13 has

full rank, then fitting an Operator Inference model to re-projected trajectories recovers the

reduced model that is obtained via intrusive projection-based model reduction. As is stated

formally and in more detail in Peherstorfer (2020b), if the data matrix D defined in Equa-

tion 13 has full rank, then Ãi = Âi , B̃ = B̂ for i = 1, . . . , ℓ. Note that Â1, . . . , Âℓ, B̂ are

the matrices learned with Operator Inference for assembling the model given in Equation 7,

whereas Ã1, . . . , Ãℓ, B̃ are the reduced matrices of the Galerkin reduced model obtained

with intrusive model reduction. In this sense, re-projection connects classical, intrusive

model reduction that constructs Ã1, . . . , Ãℓ, B̃ via an intrusive projection step (see side-

box on page 10) with non-intrusive Operator Inference that learns Â1, . . . , Âℓ, B̂ from data.

Thus, it enables carrying over theory from intrusive model reduction to non-intrusive model

reduction.

4.2. Re-projection in action

We now show how Operator Inference with re-projection can be put to use for error estima-

tion (Section 4.2.1) as well as for learning from noisy (Section 4.2.2) and partially observed

state trajectories (Section 4.2.3).

4.2.1. Error estimation for an end-to-end certification of predictions from data. Based on

the recovery guarantee obtained with re-projection, the work Uy & Peherstorfer (2021b)

introduces an a posteriori error estimator for models with linear dynamics. For a wide

range of error estimators developed for intrusive model reduction, the key ingredients are an

efficient computation of the norm of the residual as well as a bound on the largest singular

value of the operators of the high-dimensional models. As Uy & Peherstorfer (2021b)

show, building on the error estimator introduced in Grepl & Patera (2005), Haasdonk &

Ohlberger (2011) from intrusive model reduction, the same principles can be applied to

Operator Inference models. The result is an end-to-end certification of predictions made

with models obtained with Operator Inference from data. For example, based on the

experiment reported in Uy & Peherstorfer (2021b), we show in Figure 4 an error bound for

predicting the average outflow at boundary segments of the spatial domain of a convection-

diffusion problem. As the dimension n of the learned Operator Inference model is increased,

the certificates (shaded in blue) show that the predictions of the quantity of interest with

the learned model can be increasingly trusted.

Other works have considered error estimation and uncertainty quantification for Oper-

ator Inference. In Guo et al. (2022), a Bayesian Operator Inference approach is introduced.

Given the posterior distribution, the predictions can be equipped with confidence intervals

that reflect the uncertainties in the predictions.
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Figure 4: Models learned with Operator Inference from data of certain classes of systems

can be equipped with a posteriori error bounds. The bounds provide accuracy certificates

for predictions made with the learned models. In this example, the certificates become

tighter about the prediction with increasing dimension, which means that predictions can

be increasingly trusted as the dimension of the reduced models is increased.

4.2.2. Learning from noisy state observations with active data collection. In Uy et al.

(2023), Operator Inference with re-projection is investigated in the context of sampling

state trajectories with Gaussian noise using the re-projection scheme. It shows that when

collecting state observations with re-projection from systems polluted with Gaussian noise,

the mean-squared error of the inferred operators can be bounded as

E
[
∥Âi − Ãi∥2F

]
≲

s2

σ2
min(D)

, 16.

where s is the standard deviation of the Gaussian noise, σmin(D) denotes the smallest

singular value of the data matrix D, and Âi and Ãi are the learned and intrusive operator,

respectively, for i = 1, . . . , ℓ. The bound given in Equation 16 holds because of Operator

Inference’s recovery guarantee with re-projection, which again lets the learned model be

related to the projection-based Galerkin reduced model from intrusive model reduction;

this also guarantees the unbiasedness of the learned operators. The ratio s/σmin(D) can

be interpreted as the noise-to-signal ratio, with s corresponding to the noise and σmin(D)

representing the strength of the signal in the observed states. Based on this interpretation

as noise-to-signal ratio, Uy et al. (2023) introduce active Operator Inference, which selects

from a dictionary initial conditions at which to query the high-dimensional model for data;

the initial conditions are selected so that the noise-to-signal ratio is greedily minimized.

The mathematical task underlying the active Operator Inference scheme is sub-selecting

columns of a matrix to maximize the smallest singular value, which is widely studied in

numerical linear algebra with numerous applications in model reduction (Astrid et al. 2008,

Zimmermann & Willcox 2016, Drmač & Gugercin 2016, Peherstorfer et al. 2020).

4.2.3. Learning from partially observed state trajectories. When learning from partially

observed state trajectories, the information that is lost due to partial observations can be

described with a similar concept of Markovian versus non-Markovian dynamics. To see this,

consider a high-dimensional state x(tk) at time tk and consider the observation operator

T ∈ {0, 1}r×N that selects r components of x(tk). The operator T is an orthonormal matrix

that leads to a projection matrix T⊤T that projects a state x(tk) onto the corresponding

subspace T . Analogously to Section 4.1.1, the states can then be decomposed into parts
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that are either in T or in the orthogonal complement of T , which corresponds to observed

and unobserved components, respectively. This means that the observed states play an

analogous role to the projected states in Section 4.1.1 and thus correspond to dynamics

that are non-Markovian in the subspace T . Based on these insights, Uy & Peherstorfer

(2021a) propose to compensate for the lost information due to partially observed states in

Operator Inference by learning reduced models with memory terms so that future state

predictions depend on the current state and the history of previous states. The result is a

reduced model that includes Markovian and non-Markovian terms. Related concepts based

on the Mori-Zwanzig formalism and time-delay embeddings to account for non-Markovian

dynamics are widely used; see Chorin et al. (2002), Li et al. (2014), Le Clainche & Vega

(2017), Pan & Duraisamy (2018), Thiede et al. (2019). The work by Uy & Peherstorfer

(2021a) also introduces a re-projection scheme for partially observed states and it is shown

that non-Markovian terms as in Equation 15 are recovered, under certain assumptions.

4.3. Convergence of learned operators to projected operators

The works Peherstorfer & Willcox (2016a) and Benner et al. (2020) show that structure in

the learning process can be leveraged to derive guarantees from data without re-projection.

These guarantees are of asymptotic nature, however. Under assumptions that can be es-

tablished if the time integration scheme used in the numerical model in Equation 3 is

convergent, it can be shown that for all ϵ > 0 there exists a dimension n ≤ N and a

time-step size δt > 0 such that the difference between the learned operators Â1, . . . , Âℓ, B̂

from time-discrete states and the Galerkin operators Ã1, . . . , Ãℓ, B̃ obtained via intrusive

projection can be bounded as ∥Âi − Ãi∥F ≤ ϵ and ∥B̂ − B̃∥F ≤ ϵ for i = 1, . . . , ℓ. The

result shows that the models learned with Operator Inference converge with n → N to the

reduced models of intrusive model reduction. The result does not imply a convergence rate

and empirical evidence suggests that the error does not decay monotonically with n.

5. Structured solution spaces: Hamiltonian systems

Thus far, we have considered general dynamical systems with polynomial structure as in

Equation 3. However, there is often more structure in the problem that one can exploit

to obtain predictive reduced models. A key tenet in fluid mechanics is the conservation

of derived quantities. For instance, the shallow water equations and a large class of other

wave-type problems can be formulated as Hamiltonian systems that conserve a system’s

energy over time. Hamiltonian models are derived from Hamilton’s principle, so that their

governing equations possess physical, mechanical and mathematical structures in the form

of symmetries, symplecticity, Casimirs, and energy conservation. The conservative nature

and the underlying symplectic structure of Hamiltonian systems are fundamental to their

discretization and numerical treatment and allow for simulations to remain long-term pre-

dictive and stable, a major appeal of using such methods. The aforementioned structures

constrain the solution space and the behavior of these quantities in numerical simulation

provides an important measure of accuracy of the discretized model. Special numerical

approximations that satisfy these constraints are discussed in, e.g., Leimkuhler & Reich

(2004), Hairer et al. (2006), Sharma et al. (2020).

This section demonstrates how Hamiltonian structure can be enforced in the Operator

Inference framework, see Sharma et al. (2022) for more details. Section 5.1 briefly describes
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this structure, and Section 5.2 outlines how such structures can be preserved during learning.

For ease of exposition, we drop the dependence on µ in this section.

5.1. Hamiltonian models

In canonical Hamiltonian dynamical systems, the state is separated via x(t) =

[q(t)⊤, p(t)⊤]⊤ ∈ R2N where q(t) ∈ RN is the generalized position vector, and p(t) ∈ RN

is the generalized momentum vector. This separation of the state is due to their distinct

physical interpretations, and their relation to each other induces the canonical Hamiltonian

structure. Consider a canonical nonlinear Hamiltonian system of the form

d

dt

[
q(t)

p(t)

]
=

[
0 I

−I 0

][
∇qH(q(t),p(t))

∇pH(q(t),p(t))

]
.

In almost all cases, the Hamiltonian can be decomposed as

Hamiltonian model:
Is a model where the
state equation is

derived from a

Hamiltonian scalar
function (an energy)

via Hamilton’s

principle.

H(q(t),p(t)) = Hquad(q(t),p(t)) +Hnl(q(t),p(t)) 17.

where Hquad is quadratic in the states q and p and where Hnl contains the remaining

nonlinear terms. For a Hamiltonian system, its flow map preserves the canonical symplectic

form, and the Hamiltonian is conserved, that is d
dt
H(q(t),p(t)) = 0 for all t > 0.

5.2. Hamiltonian Operator Inference

We consider the situation that we are given the symbolic form of a canonical Hamiltonian

PDE model, and we have simulated data thereof. Our goal is to learn a Hamiltonian re-

duced model from data of that system, so that the learned reduced model: (i) is a canonical

Hamiltonian system; (ii) retains the physical interpretation of the state variables (general-

ized positions and momenta) and the coupling structure; (iii) respects the symmetric prop-

erty of structure-preserving space discretizations. Let q(t1), . . . , q(tK) and p(t1), . . . ,p(tK)

be the solutions of the Hamiltonian high-dimensional numerical model computed with a

structure-preserving numerical integration scheme. We define the snapshot matrices

Q =
[
q(t1), . . . , q(tK)

]
∈ RN×K , P =

[
p(t1), . . . ,p(tK)

]
∈ RN×K . 18.

Assuming that we know the functional form of Hnl, we define the nonlinear forcing fq and

fp as

fq(q,p) =
[
∂Hnl
∂p1

(q1, p1), . . . ,
∂Hnl
∂pN

(qN , pN )
]⊤

,fp(q,p) =
[
∂Hnl
∂q1

(q1, p1), . . . ,
∂Hnl
∂qN

(qN , pN )
]⊤

,

which allows us to compute the forcing snapshot matrices

F q =
[
fq(q(t1),p(t1)), . . . ,fq(q(tK),p(tK))

]
,F p =

[
fp(q(t1),p(t1)), . . . ,fp(q(tK),p(tK))

]
.

Note that these forcing snapshot matrices are computed via a post-processing of the state

snapshot data, and so the approach remains non-intrusive, but exploits knowledge of the

functional form of the governing equations. Next, we compute time-derivative approxima-

tions q′(ti) and p′(ti) from the state trajectory data using a finite difference scheme to build

the snapshot matrices of the time-derivative data

Q′ =
[
q′(t1), . . . , q

′(tK)
]
∈ RN×K , P ′ =

[
p′(t1), . . . ,p

′(tK)
]
∈ RN×K . 19.
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To learn the reduced operators, we project the high-dimensional state trajectories onto low-

dimensional symplectic subspaces and then fit operators to the projected trajectories in a

structure-preserving way. For the symplectic projection step, we choose the cotangent lift

algorithm (see Peng & Mohseni (2016) where also other options are discussed) to generate

a symplectic basis matrix Φ that is used to approximate both the generalized position and

momenta. The following block structure of the symplectic basis matrix retains the physical

interpretation of the reduced state variables:[
q(t)

p(t)

]
≈

[
Φ 0

0 Φ

][
q̆(t)

p̆(t)

]
.

We obtain projections of the trajectory snapshot data, the forcing functions, and the time-

derivative data via the projections onto the symplectic basis matrix, i.e., Q̆ = Φ⊤Q, P̆ =

Φ⊤P , F̆ q = Φ⊤F q, F̆ p = Φ⊤F p, Q̆
′
= Φ⊤Q′, P̆

′
= Φ⊤P ′, which are all real n × K

data matrices. Inspired by the separation of the Hamiltonian functional in Equation 17, we

define the following reduced Hamiltonian Hr in terms of the reduced operators D̂q ∈ Rn×n

and D̂p ∈ Rn×n as

Hr(q̂(t), p̂(t)) =
1

2
q̂(t)⊤D̂qq̂(t) +

1

2
p̂(t)⊤D̂pp̂(t) +Hnl(Φq̂(t),Φp̂(t)). 20.

The equations of motion of the reduced model are then derived from Hamilton’s principle:

˙̂q(t) =
∂Hr

∂p̂
(q̂(t), p̂(t)) = D̂pp̂(t) +Φ⊤fq(Φq̂(t),Φp̂(t)),

˙̂p(t) = −∂Hr

∂q̂
(q̂(t), p̂(t)) = −D̂qq̂(t)−Φ⊤fp(Φq̂(t),Φp̂(t)),

which ensures that the reduced system is a canonical Hamiltonian system. Thus, the reduced

model states are physically interpretable in that they retain the coupling structure and

mechanical meaning of the states. We solve for D̂q and D̂p via the constrained optimization

min
D̂q=D̂

⊤
q ,

D̂p=D̂
⊤
p

∣∣∣∣∣∣∣∣
[
Q̆

′ − F̆ q(Q̆, P̆ )

P̆
′
+ F̆ p(Q̆, P̆ )

]
−

[
0 D̂p

−D̂q 0

][
Q̆

P̆

] ∣∣∣∣∣∣∣∣
F

. 21.

The optimization problem for D̂q and D̂p can be broken down into separate symmetric

linear least-squares problems and, subsequently, the symmetric reduced operators can be

obtained by solving the Lyapunov equations

(Q̆Q̆
⊤
)D̂q + D̂q(Q̆Q̆

⊤
) = Q̆R̂

⊤
p + R̂qQ̆

⊤
, (P̆ P̆

⊤
)D̂p + D̂p(P̆ P̆

⊤
) = P̆ R̆

⊤
p + R̆pP̆

⊤
,

22.

where R̆p = Q̆
′ − F̆ q(Q̆, P̆ ) and R̆p = P̆

′
+ F̆ p(Q̆, P̆ ). The symmetry constraints on D̂q

and D̂p ensure that the learned operators yield structure-preserving reduced models that

are Hamiltonian systems.

Figure 5 depicts a numerical example of the structure-preserving properties that

Hamiltonian Operator Inference can achieve. The test problem is a nonlinear Schrödinger

equation, which in addition to preserving the nonlinear Hamiltonian energy also possesses

quadratic mass and momentum invariants. We refer to Sharma et al. (2022, Sec. 4.3) for
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Figure 5: Hamiltonian Operator Inference reduced models for the nonlinear Schrödinger

equation: Panel (a) shows that the reduced model exhibits bounded energy error; panel (b)

shows that the learned reduced model also exhibits bounded error for the mass invariant;

and panel (c) shows that the reduced model conserves the momentum invariant to machine

precision. These are key indicators of structure preservation. Figure adapted from Sharma

et al. (2022) with permission from Elsevier.

details. Figure 5 plots the errors in the conservation of energy, which is evaluated via

the Hamiltonian of the high-dimensional model as |H(Φq̂(t),Φp̂(t))−H(Φq̂(t0),Φp̂(t0))|.
Conservation of mass and momentum are similarly evaluated; these errors are also plotted

in Figure 5. We see from panel (a) that the Hamiltonian Operator Inference reduced

model exhibits bounded energy error of the high-dimensional Hamiltonian H(·), which is

a key indicator of the structure-preserving property. Panel (b) shows that the learned re-

duced model also exhibits bounded error for the mass invariant and panel (c) shows that

the model exactly (to machine precision) conserves the momentum invariant. These invari-

ants are evaluated as defined in Sharma et al. (2022, Sec. 4.3). We further observe that

the structure-preserving Hamiltonian reduced models show excellent long-term predictive

capabilities, as the models are providing accurate results 400% outside the training interval.

6. Discussion and outlook

Surrogate modeling continues to play an increasingly important role in achieving optimiza-

tion, design, control, data assimilation, and uncertainty quantification for complex physical

systems. Even as computing capabilities continue to increase, the demands for increased

resolution, higher fidelity, and rapid turnaround times will necessitate surrogate models. As

just one example, surrogate modeling is an essential enabler for digital twins, which require

high-fidelity yet rapid and lightweight computations to achieve real-time data assimilation

and control. While automated learning of surrogate models from data is becoming increas-

ingly popular, it remains as critical as ever to rigorously incorporate information about the

physics that underlie the systems of interest. This information, provided by governing equa-

tions, first principles, and theoretical insights, is imperative to derive surrogate models that

generalize well to new, unseen parameter ranges and that provide physically meaningful

predictions even in edge cases and limit states.

In this review, we discussed Operator Inference, a nonlinear reduced modeling approach

that incorporates the physics by defining a structured form for the reduced model, and then

learns the corresponding reduced operators from simulated training data. We demonstrated
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that this structured approach to learning surrogate models connects data-driven modeling

with systems and control theoretic concepts, such as Lyapunov stability theory to validate

models beyond mere empirical evaluations on test data sets. The polynomial structure

of the Operator Inference models also plays a key role in carrying over the rich theory

of traditional intrusive model reduction to data-driven modeling with Operator Inference.

In particular, we discussed conditions under which Operator Inference can provide error

bounds for model predictions and we derived insights to explain and improve predictions

from noisy data and partial observations. We also showed that the fundamental concepts

of Operator Inference are flexible so that energy-preserving models based on Hamiltonian

structure can be learned to predict far into the future (i.e., beyond a training horizon) while

retaining physical meaning of states.

We stress that Operator Inference was designed with ease of use in mind; having a low

barrier to adoption is critical for the success of a computational method in practice. First,

Operator Inference is a non-intrusive approach, which sets it apart from traditional model

reduction methods that are predominantly intrusive and thus typically require rewriting

solvers. The intrusive nature of many model reduction methods has limited their scope and

use in application-driven science and engineering—it often is infeasible to develop reduced-

model solvers from scratch when large-scale codes are involved that have grown over years,

if not decades. Second, the training process in Operator Inference relies on only a few hy-

perparameters that can be selected via cross-validation in a principled way. Third, all steps

in training Operator Inference reduced models are scalable to snapshots with millions of

state components via scalable linear algebra (e.g., randomized algorithms), as demonstrated

in Swischuk et al. (2020a), Farcas, et al. (2022, 2023a). Fourth, the polynomial structure of

Operator Inference models strikes a balance between being sufficiently expressive to cover

a wide range of dynamics found in science and engineering while being manageable for effi-

cient computations. This is in contrast to other nonlinear approaches such as deep neural

network architectures that tend to be more expressive in general but at the same time allow

almost arbitrary architectures with little guidance on how to choose them.

We highlight three avenues of future work, which apply to Operator Inference and also

more generally to learning low-dimensional models from data. First, this review focused on

reduction methods that exploit low-rank structure by constructing low-dimensional linear

subspaces in which to evolve the reduced model state; however, dynamics that are domi-

nated by transport, such as strongly advecting flows and particle systems, are affected by

the so-called Kolmogorov barrier, which states that the error of linear approximations in

low-dimensional spaces decays slowly; see Peherstorfer (2022) for a survey. In the context

of non-intrusive modeling with Operator Inference, it has been proposed to adapt models

during the online phase (Peherstorfer & Willcox 2015, 2016b, Kramer et al. 2017), construct

multiple local subspaces instead of a single global one (Geelen & Willcox 2022), learn on

quadratic manifolds Geelen et al. (2023), and learn and embed spatial shifts when formulat-

ing the Operator Inference problem (Issan & Kramer 2022) to obtain nonlinear reductions

for circumventing the Kolmogorov barrier. More remains to be done, especially regarding

stability, online efficiency, and structure preservation.

A second important avenue of future research is establishing trust in predictions. This

review touched on works that derive probabilistic error bounds and Bayesian formulations

of Operator Inference in Section 4.2.1 but much more work is required to give scientists

and engineers tools that they can trust for high-consequence decisions. An opportunity

is that models are often used within outer-loop applications such as design, control, and
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data assimilation, which means that it may be sufficient to certify the outer-loop result

(e.g., the optimal design, the constructed controller) rather than to provide bounds for the

model predictions. This approach is taken by multifidelity methods that leverage com-

putationally efficient approximate models while keeping limited recourse to the expensive,

high-fidelity models to establish accuracy guarantees (Peherstorfer et al. 2018). In Section 5

we established trust in models by retaining their physical interpretability and long-term sta-

bility. Lagrangian models, another important class of model structures, arise by applying

the Euler-Lagrange equations to a Lagrangian function, which is the difference between

the kinetic and potential energy. Lagrangian models are second-order in time, and many

wave-type problems exhibit Lagrangian structure and have physically interpretable quanti-

ties such as momentum, energy, or vorticity. A famous result by Emmy Noether (Noether

1971) states that there exists an invariant of the motion corresponding to each symmetry of

the system Lagrangian. While Lagrangian structure-preserving models can be learned via

operator inference Sharma & Kramer (2022), more work needs to be done to include iden-

tification of nonlinear terms, more efficient basis constructions (e.g., via online updating)

and extensions to the parametric case.

A third future research direction is the development of methods that incorporate the

downstream design/control task into the learning. This is closely related to goal-oriented

intrusive modeling where, for example, meshes and models are adapted so that quantities

of interest are accurately approximated rather than the high-dimensional states (Becker

& Rannacher 2001, Prudhomme & Oden 1999) and reduced models are constructed with

specific goals in mind (Bui-Thanh et al. 2007, Willcox et al. 2005, Lieberman & Willcox

2013, 2014, Spantini et al. 2017). When it comes to learning from data, the simplicity of a

task can be measured with sample complexity, i.e., how many data samples are required to

achieve a certain accuracy or success. For example, Werner & Peherstorfer (2023b,a) show

that inferring state-feedback controllers for the task of stabilization requires provably fewer

samples than learning models of the system dynamics and subsequently applying control

strategies on the learned models. Similarly, when models will be used in specific contexts

such as within multifidelity computations for solving outer-loop applications, taking this

context into account during model training helps to reduce the number of training samples

that are required; see, e.g., Alsup & Peherstorfer (2022), Farcas, et al. (2023b). Given

that data are scarce and physics are complex in science and engineering applications, it is

important to optimally identify what parts of the system dynamics need to be learned for

solving downstream tasks and exploit this in the training phase.

SUMMARY POINTS

1. Operator Inference is a reduced modeling approach that incorporates physics by

defining a structured polynomial form for the reduced model, and then learns the

corresponding reduced operators from simulated training data.

2. Operator Inference is non-intrusive and therefore has a low barrier to adoption,

which is in contrast to traditional model reduction that is intrusive and so requires

access to operators of the high-fidelity numerical models.

3. The polynomial model form of Operator Inference strikes a balance between being

sufficiently expressive to cover a wide range of nonlinear dynamics found in science

and engineering while providing efficient reduced model computations.

4. Under some conditions, the theory of traditional intrusive model reduction can be
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carried over to data-driven modeling with Operator Inference. This provides error

estimators for model predictions, yields insights to improve predictions from noisy

data and partial observations, and makes it possible to encode Hamiltonian and

other structure for physically meaningful predictions beyond the training horizon.

FUTURE ISSUES

1. Non-intrusive reduced modeling methods with nonlinear approximations are needed

to circumvent the Kolmogorov barrier of physical phenomena dominated by trans-

port, such as strongly advecting flows and wave problems. There is early work on

nonlinear manifold model reduction methods but much more remains to be done

regarding stability, online efficiency, and structure preservation.

2. It remains challenging to provide guarantees and establish trust in predictions of

data-driven models, which is required for high-consequence decisions. Active re-

search directions include certifying model predictions directly with error bounds,

Bayesian approaches, and multifidelity methods to certify outer-loop results using

limited recourse to expensive, high-fidelity models.

3. Given that data are scarce and physics are complex in science and engineering, it is

important to understand how to optimally identify what parts of system dynamics

need to be learned for solving downstream decision tasks and to exploit this in the

training phase.
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