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Abstract

Multilevel Stein variational gradient descent is a method for particle-based vari-
ational inference that leverages hierarchies of surrogate target distributions with
varying costs and fidelity to computationally speed up inference. The contribution
of this work is twofold. First, an extension of a previous cost complexity analysis
is presented that applies even when the exponential convergence rate of single-
level Stein variational gradient descent depends on iteration-varying parameters.
Second, multilevel Stein variational gradient descent is applied to a large-scale
Bayesian inverse problem of inferring discretized basal sliding coefficient fields of
the Arolla glacier ice. The numerical experiments demonstrate that the multi-
level version achieves orders of magnitude speedups compared to its single-level
version.

Keywords: Multi-fidelity and multilevel methods, surrogate modeling, Bayesian
inference, Stein variational gradient descent, ice sheet inverse problems
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1 Introduction

Bayesian inference is a ubiquitous and flexible tool for updating a belief (i.e., learn-
ing) about a quantity of interest when data are observed, which ultimately can be
used to inform downstream decision-making. In particular, Bayesian inverse problems
allow one to derive knowledge from data through the lens of physics-based models.
These problems can be formulated as follows: given observational data, a physics-based
model, and prior information about the model inputs, find a posterior probability dis-
tribution for the inputs that reflects the knowledge about the inputs in terms of the
observed data and prior. Typically, the physics-based models are given in the form of
an input-to-observation map that is based on a system of partial differential equations
(PDEs). The computational task underlying Bayesian inference is approximating pos-
terior probability distributions to compute expectations and to quantify uncertainties.
There are multiple ways of computationally exploring posterior distributions to gain
insights, reaching from Markov chain Monte Carlo to variational methods [1–3].

In this work, we make use of Stein variational gradient descent (SVGD) [4], which
is a method for particle-based variational inference, to approximate posterior distri-
butions. It builds on Stein’s identity to formulate an update step for the particles that
can be realized numerically in an efficient manner via a reproducing kernel Hilbert
space. There are various extensions to SVGD such as exploiting curvature informa-
tion of the target distribution with a corresponding Newton method [5] as well as
using adaptive kernels as in [6, 7]. Specifically for Bayesian inverse problems, SVGD
has been extended to take advantage of low-dimensional structure [8] in the posterior
distribution [9] and the model states [10]. Much effort has been put into understand-
ing the convergence and statistical properties of SVGD and its variants. The study
of convergence of SVGD was sparked primarily by [11, 12], which showed that in the
mean-field limit SVGD follows a gradient flow with respect to the Kullback-Leibler
(KL) divergence. Similar results were later shown for the chi-squared divergence in [13].
Pre-asymptotic convergence results in both the number of samples and the discrete-
time setting remains open, but progress in this direction has been made in [14]. There
also has been work on understanding and improving the performance of SVGD in high
dimensions [15].

We focus on the multilevel extension of SVGD (MLSVGD), which was introduced
in [16] and leverages hierarchies of approximations of a target posterior distribution
with varying costs and fidelity to computationally speed up inference. Such approx-
imations can be obtained via, e.g., coarse and fine discretizations of the governing
equations of the physics-based models as well as surrogate models [17] and simplified-
physics models [18]. Multilevel methods have a long tradition in scientific computing
and computational statistics. The MLSVGD approach is motivated by multi-fidelity
and multilevel methods such as multilevel and multi-fidelity Monte Carlo [19–23] and
Markov chain Monte Carlo (MCMC) methods [24–26]. The MLSVGD also shares
similarities with multilevel sequential Monte Carlo [27–30] and importance sampling
[17, 29, 31], multilevel particle filters [32], multilevel preconditioning [33–35], and mul-
tilevel ensemble Kalman methods [36, 37], which all use hierarchies of surrogate models
to generate samples sequentially. The work [16] provides a cost complexity analysis
of MLSVGD that shows speedups compared to single-level SVGD; but it relies on an
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exponential convergence rate of SVGD with a fixed parameter and thus is limited in
scope.

In this work, we contribute an analysis of MLSVGD that applies when the param-
eter of the convergence rate depends on the MLSVGD iteration. The finding is that
the same cost complexity is achieved as in the fixed-parameter setting as long as mild
conditions on the parameter can be made. We also show how the constants in the
cost complexity change and that MLSVGD achieves speedups over single-level SVGD
when the constants in the convergence rate of SVGD lead to a slow error decay. This is
directly applicable to Bayesian inverse problems, where we show that the assumptions
of the cost complexity analysis are satisfied in typical settings.

We numerically demonstrate MLSVGD on a Bayesian inverse problem of inferring
a discretized basal sliding coefficient field from velocity observations at the surface
of the Arolla glacier [38]; see also [39]. The numerical setup builds on FEniCS [40]
and hIPPYlib [41–44], which allows for fast gradient-based inference via adjoints. The
numerical results show that MLSVGD performs inference at a fraction of the cost
of inference with SVGD and that it leads to higher quality particles with respect to
the maximum mean discrepancy (MMD) [45] than samples obtained with a variant of
MCMC.

The manuscript is organized as follows. In Section 2 we outline preliminaries on
Bayesian inverse problems, SVGD, and previous work on MLSVGD. Section 3 intro-
duces extended cost complexity bounds for MLSVGD that apply in more general
settings. In Section 4 we demonstrate improvements by several factors in terms of com-
putational savings of MLSVGD over SVGD for inferring the basal sliding coefficient
in the Arolla glacier ice model. We conclude in Section 5.

2 Preliminaries

In this section, Bayesian inverse problems are reviewed and it is discussed how they
are related to sampling from a target distribution with, e.g., SVGD and MLSVGD.

2.1 Bayesian inverse problems

Let G : Θ → Rq denote a parameter-to-observable map and consider noisy data
y = G(θ∗)+η, where η ∼ N(0,Γ) with known noise covariance matrix Γ ∈ Rq×q and
θ∗ ∈ Θ ⊂ Rd. Given a prior π0 : Θ → R, the target posterior density is

π(θ) ∝ exp

(
−1

2
∥y −G(θ)∥2Γ−1

)
π0(θ) , (1)

where ∥v∥2Γ−1 =
〈
v, Γ−1v

〉
. In many computational science and engineering applica-

tions, the parameter-to-observable map G depends on the solution of an underlying
system of PDEs, which means that it cannot be evaluated directly. Instead, one must
resort to a numerical method that discretizes the underlying PDE problem to approx-
imately evaluate G. Let G(ℓ) be such an approximate parameter-to-observable map,
where the index ℓ denotes the fidelity and corresponds to, e.g., the mesh width or
number of grid points. The larger ℓ, the more accurate the approximation G(ℓ) of G
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in the following. The corresponding low-fidelity posterior is

π(ℓ)(θ) ∝ exp

(
−1

2

∥∥∥y −G(ℓ)(θ)
∥∥∥2
Γ−1

)
π0(θ) . (2)

Increasing the level ℓ, gives rise to a sequence of densities (π(ℓ))∞ℓ=1 that converges
pointwise π(ℓ)(θ) → π(θ) for every θ ∈ Θ so that the sequence of random variables

θ(ℓ) ∼ π(ℓ) converges weakly to θ ∼ π.
Our aim is to compute quantities of interest of the form

Eπ[f ] =

∫
Θ

f(θ)dπ(θ) , (3)

for given test functions f : Θ → R. Because π is not readily available, one typically
selects a sufficiently accurate G(L) and approximates the quantity of interest with
respect to the corresponding density π(L),

Eπ(L) [f ] =

∫
Θ

f(θ)dπ(L)(θ) . (4)

A well-established approach to estimate (4) using Monte Carlo involves drawing

samples θ[1], . . . , θ[N ] of the distribution with density π(L) and computing

f̂ =
1

N

N∑
i=1

f(θ[i]) . (5)

For example, the samples θ[1], . . . , θ[N ] may be i.i.d. or come from a realization of
an ergodic Markov chain. This gives rise to two sources of error with respect to the
quantity of interest (3). The first source of error is the Monte Carlo error of estimating
the expectation in (4) with (5), while the second source of error is due to using the
deterministic approximation G(L) of G, and thus π(L) instead of π. The Monte Carlo
error can be controlled with the number of samples N . The second error is controlled
by the level L, which can be selected via, e.g., the Hellinger distance, whose square is
given by

dHell (µ1, µ2)
2
=

1

2

∫
Θ

(√
µ1(θ)−

√
µ2(θ)

)2
dθ ,

so that
dHell

(
π(L), π

)
≤ ϵ

holds for some tolerance ϵ > 0. The Hellinger distance is particularly useful because it
is a metric on the space of probability measures, allowing to separate the deterministic
error due to the fidelity and the statistical error due to sampling, and can be bounded
from above by the KL divergence, defined by

KL (µ1 || µ2) =

∫
Θ

log

(
µ1(θ)

µ2(θ)

)
µ1(θ) dθ ,
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using Pinsker’s inequality

2dHell (µ1, µ2)
2 ≤ KL (µ1 || µ2) . (6)

2.2 Stein variational gradient descent

We now briefly review SVGD [4] that aims to derive a sequence of distributions to
minimize the KL divergence with respect to the target density π(L). Once convergence
has been reached, the quantity of interest (3) can be estimated using particles of the
distribution.

Let H be a reproducing kernel Hilbert space (RKHS) with positive definite kernel
K : Θ×Θ → R of functions g : Θ → R and let Hd ≃ H×· · ·×H be the corresponding
RKHS of vector fields g = (g1, . . . , gd) : Θ

d → Rd. Define the KL functional

Jµ(g) = KL
(
(I− g)#µ || π(L)

)
,

where (I− g)#µ denotes the pushforward measure of µ under the map I− g, so that
if θ ∼ µ, then θ − g(θ) ∼ (I − g)#µ, with I : Rd → Rd being the identity map and
g ∈ Hd. From the particle point of view, SVGD starts with an initial particle θ0 ∼
µ0 and evolves it according to the gradient dynamics, also known as the mean-field
characteristic flow [12],

θ̇t = −∇Jµt
(0)(θt) , (7)

where µt denotes the density of θt at time t ≥ 0. The gradient∇Jµ(0) can be computed
using the following relation derived in [4]

∇Jµ(0) (θ) = −Ez∼µ

[
K(z,θ)∇ log π(L)(z) +∇1K(z,θ)

]
, (8)

where ∇1 denotes the gradient with respect to the first argument. The density µt is
the solution of the nonlinear Fokker-Planck equation corresponding to the particle
evolution (7)

∂tµt(θ) = −∇ ·
(
µt(θ)Ez∼µt

[
K(z,θ)∇ log π(L)(z) +∇1K(z,θ)

])
. (9)

Much of the analysis of SVGD revolves around understanding the solution µt to
the, potentially high-dimensional, nonlinear PDE (9). One key result that arises due
to the gradient flow dynamics (9) is that the KL divergence KL

(
µt || π(L)

)
converges

to zero and it was shown in [11, Theorem 3.4] that for a solution µt of (9) with
KL
(
µ0 || π(L)

)
< ∞, it holds that

d

dt
KL
(
µt || π(L)

)
= −D(µt || π(L))2 , (10)

where

D(µ || ν) = max
g∈Hd

{
Eθ∼µ[∇ log ν(θ)⊤g(θ) +∇ · g(θ)] : ∥g∥H ≤ 1

}
5



is the Stein discrepancy, guaranteeing that the KL divergence from the target decreases
monotonically. The result (10) provides motivation for considering a monotone con-
vergence behavior as in Assumption 5 later. The Stein discrepancy D(µ || ν) = 0 if
µ = ν, but the converse may only be valid if the space H is sufficiently rich and can
otherwise result in a biased estimate of the quantity of interest (3).
Remark 1. There is a strong connection between SVGD and the unadjusted Langevin
algorithm [46] in the sense that the Langevin algorithm evolves a density that mini-
mizes the KL divergence in the Wasserstein metric as opposed to a SVGD that uses
a kernelized Wasserstein metric [13].

2.3 Multilevel Stein variational gradient descent

The work [16] introduced a multilevel variant of SVGD and showed that one can
achieve a cost complexity reduction by integrating the continuous-time mean-field flow
(7) with successively more accurate and more expensive-to-evaluate low-fidelity den-
sities π(1), . . . , π(L) as opposed to integrating only with respect to the high-fidelity
density π(L). The analysis in [16] of the cost complexity relied on the following
assumptions.
Assumption 1. The costs cℓ of integrating (9) in time with target density π(ℓ) for a
unit time interval are bounded as

cℓ ≤ c0s
γℓ , ℓ ∈ N ,

with constants c0, γ > 0 independent of ℓ and s > 1.
Assumption 2. There exists α, k0, k1 > 0 independent of ℓ such that KL

(
µ0 || π(ℓ)

)
≤

k0 for all ℓ ∈ N and

KL
(
π(ℓ) || π

)
≤ k1s

−αℓ , ℓ ∈ N ,

where s is the same constant independent of ℓ as in Assumption 1 and µ0 is the initial
distribution.
Assumption 3. There exists a rate λ > 0 such that for any initial distribution ν0

KL
(
νt || π(ℓ)

)
≤ e−λtKL

(
ν0 || π(ℓ)

)
, ℓ ∈ N , (11)

holds, where νt solves the mean-field SVGD equation (9) at time t.
Single-level SVGD derives an approximation µSL such that dHell

(
µSL, π

)
≤ ϵ, by

selecting a high-fidelity approximation π(L) with

dHell

(
π(L), π

)
≤ ϵ/2 (12)

and then integrating (9) with respect to π(L) for time TSL(ϵ)

TSL(ϵ) = min
{
t ≥ 0 : dHell

(
µt, π

(L)
)
≤ ϵ

2

}
. (13)

6



This leads to the cost of single-level SVGD

cSL(ϵ) = cL(ϵ)TSL(ϵ) ,

where the cost cL(ϵ) depends on ϵ through the level L that is selected such that (12)
holds. In the remainder of this manuscript, for brevity, we drop the explicit dependence
L = L(ϵ) and similarly TSL = TSL(ϵ) when ϵ is fixed. The following upper bound for
the cost complexity of single-level SVGD was derived in [16, Proposition 2].
Proposition 1. If Assumptions 1–3 hold, then the costs of single-level SVGD to
obtain µSL with

dHell

(
µSL, π

)
≤ ϵ ,

is bounded as

cSL(ϵ) ≤
2c0s

γ

λ

(√
2k1
ϵ

)2γ/α

log


√

KL
(
µ0 || π(L)

)
√
2ϵ

 , (14)

with high-fidelity level

L =

⌈
1

2α
logs

(√
2k1
ϵ

)⌉
. (15)

From (14), a higher initial KL divergence KL
(
µ0 || π(L)

)
or a slower convergence

rate (small λ) for SVGD will result in a larger cost complexity to obtain the single-level
SVGD approximation of π(L).

In contrast to single-level SVGD, the MLSVGD method introduced in [16] first
integrates with respect to the cheapest and least accurate lowest fidelity density π(1)

for time T1 > 0 to obtain density µ
(1)
T1

, which serves as an initial density for the next

level and so on until the highest level L is reached. For ℓ = 1, . . . , L, let µ
(ℓ)
Tℓ

be the

solution of (9), with the low-fidelity density π(ℓ) replacing the target π, at time Tℓ

with initial density µ
(ℓ)
0 = µ

(ℓ−1)
Tℓ−1

where the times Tℓ are given by

Tℓ = min

{
t ≥ 0 : KL

(
µ
(ℓ)
t || π(ℓ)

)
≤ ϵ2ℓ

2

}
, (16)

where ϵ1 ≥ ϵ2 ≥ . . . ≥ ϵL and ϵL ≤ ϵ is a sequence of tolerances. Then, the continuous-
time MLSVGD approximation is defined as

µML = µ
(L)
TL

,

which gives the cost of MLSVGD as

cML(ϵ) =

L∑
ℓ=1

cℓTℓ ,
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where both L and Tℓ will depend on ϵ. Since the KL divergence does not satisfy
the triangle inequality, the following assumption for MLSVGD ensures that the KL
divergence between levels converges as well, which is different from Assumption 2.
Assumption 4. There exists a constant k2 > 0 independent of ℓ such that
KL
(
π(ℓ−1) || π(ℓ)

)
≤ k2s

−αℓ , where α is the same rate as in Assumption 2.
With these additional assumptions one can derive the cost complexity for

MLSVGD [16, Proposition 4] below.
Proposition 2. If Assumptions 1–4 hold and Rℓ ≤ k3s

−αℓ and

ϵℓ =
√

2k1s
−αℓ/2 ,

where

Rℓ =

∫
Rd

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
π(ℓ−1)(θ)

π(ℓ)(θ)

)
dθ , (17)

then the costs of MLSVGD to have dHell

(
µML, π

)
≤ ϵ can be bounded as

cML(ϵ) ≤
c0s

2γ

λγ log(s)
log

(
sα +

k2 + k3
k1

)(√
2k1
ϵ

)2γ/α

. (18)

The cost complexity of MLSVGD scales at most as O(ϵ−2γ/α), whereas the cost
complexity for single-level SVGD has an additional log ϵ−1 factor. Furthermore, the
bound (18) is independent of the KL divergence of the initial density µ0 and instead
only depends on the constant k2 that measures the KL divergence between successive
levels.

3 Further analysis of MLSVGD

We now extend the analysis of MLSVGD to apply in settings where SVGD exhibits
an exponential convergence rate with a varying parameter.

3.1 Cost bound for MLSVGD

We now consider a relaxed assumption on the convergence rate that includes having
λ(t) ≥ 0 depend on time t so that the multiplicative factor in (11) becomes e−λ(t)t.
The following assumption formalizes the time-dependent convergence factor as r(t),
which includes the case with factor e−λ(t)t.
Assumption 5. There exists a decreasing function r : [0,∞) → [0, 1] such that
r(0) = 1, limt→∞ r(t) = 0, and for an initial distribution ν0

KL
(
νt || π(ℓ)

)
≤ r(t)KL

(
ν0 || π(ℓ)

)
, ℓ ∈ N ,

holds, where νt is the solution of the mean-field SVGD equation (9) at time t.
When Equation (10) holds, the KL divergence is monotone decreasing, and for

any fixed ℓ ∈ N and initial distribution ν0, the inequality in Assumption 5 is satisfied.
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Assumption 5 is stronger in that it requires the inequality to hold uniformly for all
levels ℓ and initial distributions ν0. The uniformness implies that there exists a λ > 0
with λ(t) ≥ λ so that the analysis of [16] applies. However, we obtain a tighter bound
in terms of constants in the following. In the case where r is not invertible due to a
discontinuity, we define

r−1(ϵ) = min {t ∈ [0,∞) : r(t) ≤ ϵ} . (19)

We now derive a result analogous to Proposition 1.
Proposition 3. If Assumptions 1,2,5 hold, then the costs of SVGD to obtain µSL with

dHell

(
µSL, π

)
≤ ϵ ,

is bounded as

cSL(ϵ) ≤ c0s
γLTSL ≤ c0s

γ(2k1)
γ/αr−1

(
ϵ2

2KL
(
µ0 || π(L)

)) ϵ−2γ/α . (20)

Proof. By the triangle inequality for the Hellinger distance we have that

dHell

(
µSL, π

)
≤ dHell

(
µSL, π(L)

)
+ dHell

(
π(L), π

)
,

so we will bound both of these terms independently by ϵ/2. By inequality (6), it is
sufficient to bound the KL divergence because

dHell

(
µSL, π(L)

)
≤

√
KL
(
µSL || π(L)

)
2

, (21)

and similarly for dHell

(
π(L), π

)
. By Assumption 2 choose L to be

L =

⌈
1

α
logs

(
2k1
ϵ2

)⌉
≤ 1

α
logs

(
2k1
ϵ2

)
+ 1, (22)

so that

dHell

(
π(L), π

)
≤

√
KL
(
π(L) || π

)
2

≤
√

k1s−αL

2
≤ ϵ

2
. (23)

The time needed to integrate with SVGD to achieve dHell

(
µSL, π(L)

)
≤ ϵ/2 is

TSL = min
{
t ≥ 0 : dHell

(
µt, π

(L)
)
≤ ϵ

2

}
.
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Again by inequality (6),

TSL ≤ min

{
t ≥ 0 : KL

(
µt || π(L)

)
≤ ϵ2

2

}
.

Now by Assumption 5, the rate function r is invertible, or by applying the def-
inition (19) of r−1, and the time needed to integrate with SVGD to achieve
dHell

(
µSL, π(L)

)
≤ ϵ/2 is bounded as

TSL ≤ r−1

(
ϵ2

2KL
(
µ0 || π(L)

)) . (24)

With Assumption 1, the total cost to integrate until time TSL at level L is therefore
bounded as

cSL(ϵ) ≤ c0s
γLTSL ≤ c0s

γ(2k1)
γ/αr−1

(
ϵ2

2KL
(
µ0 || π(L)

)) ϵ−2γ/α .

Remark 2. If the Hellinger distance is split differently so that

dHell

(
π(L), π

)
≤ δϵ

and
dHell

(
µSL, π(L)

)
≤ (1− δ)ϵ

for δ ∈ (0, 1), as opposed to δ = 1/2, then by following the same steps as in the proof
of Proposition 3, one can derive a bound that is analogous to (20) but with different
constants. Since r(t) and the initial KL divergence are unknown in general, it is not
practical to optimize δ and we choose δ = 1/2 for simplicity.

As in Proposition 1 we see that the cost complexity depends on the tolerance ϵ,
the KL divergence of the initial distribution µ0 from the high-fidelity density π(L),
as well as the SVGD convergence rate. Because the rate function r is decreasing,
its inverse r−1 is also decreasing and so a larger initial KL divergence will require a
longer integration time. We also derive a new cost complexity for the more general
convergence behavior for MLSVGD in the following proposition.
Proposition 4. If Assumptions 1, 2, 4, and 5 hold and Rℓ ≤ k3s

−αℓ, then by setting
ϵℓ =

√
2k1s

−αℓ/2 for ℓ = 1, . . . , L, the costs of MLSVGD to have dHell

(
µML, π

)
≤ ϵ

can be bounded as

cML(ϵ) ≤
c0s

2γ(2k1)
γ/α

sγ − 1
r−1

(
1

sα + (k2 + k3)/k1

)
ϵ−2γ/α . (25)
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Proof. As in Equation (22) in the proof of Proposition 3 we select the level L as

L =

⌈
1

α
logs

(
2k1
ϵ2

)⌉
≤ 1

α
logs

(
2k1
ϵ2

)
+ 1, (26)

so that dHell

(
π(L), π

)
≤ ϵ/2. Note that by setting ϵℓ =

√
2k1s

−αℓ/2 for ℓ = 1, . . . , L
in (16) we have that

ϵ2L
2

= k1s
−αL ≤ ϵ

2
,

by the choice of the high-fidelity level L (22).
By Assumption 1, the total cost for MLSVGD is bounded by

cML(ϵ) ≤
L∑

ℓ=1

c0s
γℓTℓ , (27)

where it remains to bound the integration times Tℓ at each level. By Assumption 5
and Equation (28), we have

KL
(
µ
(ℓ)
Tℓ

|| π(ℓ)
)
≤ r(Tℓ)KL

(
µ
(ℓ−1)
Tℓ−1

|| π(ℓ)
)

= r(Tℓ)
(
KL
(
µ
(ℓ−1)
Tℓ−1

|| π(ℓ−1)
)
+KL

(
π(ℓ−1) || π(ℓ)

)
+Rℓ

)
,

(28)

giving a recursive bound on the KL divergence in terms of the KL divergence at the
previous level. By the definition (16) of the integration times Tℓ at level ℓ, we know
that

KL
(
µ
(ℓ)
Tℓ

|| π(ℓ)
)
≤ ϵ2ℓ

2
, (29)

is satisfied for each level ℓ = 1, . . . , L. Using (29) at level ℓ− 1 gives

KL
(
µ
(ℓ)
Tℓ

|| π(ℓ)
)
≤ r(Tℓ)

(
ϵ2ℓ−1

2
+ KL

(
π(ℓ−1) || π(ℓ)

)
+Rℓ

)
. (30)

Note that by (29) we know that the left-hand-side of (30) is guaranteed to be bounded
above by ϵ2ℓ/2, but the same is not necessarily true for the right-hand-side which is an
upper bound. Instead define T ′

ℓ as

T ′
ℓ = min

{
t ≥ 0 : r(t)

(
ϵ2ℓ−1

2
+ KL

(
π(ℓ−1) || π(ℓ)

)
+Rℓ

)
≤ ϵ2ℓ

2

}
, (31)

for each level ℓ = 1, . . . , L, which is finite by the assumption that r(t) → 0 (Assump-
tion 5). By (30) and because r is monotonically decreasing we know that Tℓ ≤ T ′

ℓ .
Solving directly gives

T ′
ℓ ≤ r−1

(
ϵ2ℓ

ϵ2ℓ−1 + 2KL
(
π(ℓ−1) || π(ℓ)

)
+ 2Rℓ

)
. (32)
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We now use the fact that r−1 is decreasing as well as Assumption 4 and the assumption
that Rℓ ≤ k3s

−αℓ to bound

r−1

(
ϵ2ℓ

ϵ2ℓ−1 + 2KL
(
π(ℓ−1) || π(ℓ)

)
+ 2Rℓ

)
≤ r−1

(
ϵ2ℓ

ϵ2ℓ−1 + 2k2s−αℓ + 2k3s−αℓ

)
.

Therefore, by substituting ϵℓ =
√
2k1s

−αℓ/2 (and similarly for ϵℓ−1) we can bound T ′
ℓ ,

and hence Tℓ, with

Tℓ ≤ r−1

(
2k1s

−αℓ

2k1sαs−αℓ + 2k2s−αℓ + 2k3s−αℓ

)
.

Simplifying gives the bound

Tℓ ≤ r−1

(
1

sα + (k2 + k3)/k1

)
, (33)

which is independent of the tolerance ϵ. The total cost can now be bounded by

cML(ϵ) ≤
L∑

ℓ=1

c0s
γℓr−1

(
1

sα + (k2 + k3)/k1

)
, (34)

which we may again compute explicitly

cML(ϵ) ≤ c0s
γr−1

(
1

sα + (k2 + k3)/k1

)
sγL − 1

sγ − 1

≤ c0s
γr−1

(
1

sα + (k2 + k3)/k1

)
sγL

sγ − 1
,

(35)

and we have again added 1 in the numerator of the last term for convenience. Substi-
tuting the upper bound (22) on the level L and simplifying terms gives the final upper
bound on the improved cost complexity of the MLSVGD approximation µML

cML(ϵ) ≤
c0s

2γ(2k1)
γ/α

sγ − 1
r−1

(
1

sα + (k2 + k3)/k1

)
ϵ−2γ/α . (36)

By setting r(t) = e−λt as in Assumption 3, one can recover the cost complexities
stated in Section 2.3. When compared to (20), if SVGD is slow to converge then the
MLSVGD can spend most of the integration time at the lower levels, which can be
faster to integrate, in order to find a good initial density for integrating with respect to
the highest level L and so potentially achieve speedups. In contrast, if SVGD converges
quickly then the low-fidelity densities will be less beneficial and both costs will be
comparable.
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3.2 Cost complexity for Bayesian inverse problems

The results from Section 3.1 are applicable in Bayesian inverse problem settings.
Recall that typically in Bayesian inverse problems, the sequence of posterior distribu-
tions (π(ℓ)) is obtained via a sequence of approximate parameter-to-observable maps
(G(ℓ))∞ℓ=1 with G(ℓ)(θ) → G(θ) pointwise for every θ ∈ Θ, so that the sequence of den-
sities (π(ℓ)) converges pointwise as well. As shown in [16], the following assumption
on the parameter-to-observable maps ensures that the KL divergences of the densities
converges as required in Assumptions 2 and 4.
Assumption 6. The error of the approximate parameter-to-observable G(ℓ) map at
level ℓ ≥ 1 is bounded by ∥∥∥G(θ)−G(ℓ)(θ)

∥∥∥
L2(π0)

≤ b0s
−αℓ , (37)

where α, b0 > 0 and s > 1 are constants with s the same as in Assumption 1 and
∥·∥L2(π0)

is the L2 norm over π0.

As long as the SVGD approximations µ
(ℓ)
Tℓ

remain absolutely continuous at each
level with respect to the prior density π0, the remainders Rℓ defined in (17) can be
bounded and thus the cost bound with the same rate as in Proposition 4 applies for
approximating the Bayesian posterior; see [16, Theorem 1]. We now state this result
formally.
Proposition 5. Let Assumptions 1, 5,and 6 hold. Furthermore, assume that there
exists a constant b3 > 0 independent of ℓ such that

µ
(ℓ)
Tℓ

(θ) ≤ b3π0(θ) , θ ∈ Θ , (38)

for all ℓ ≥ 1. Then, the cost complexity of finding µML with dHell

(
µML, π

)
≤ ϵ is

cML(ϵ) ≤
c0s

2γ(3b1b2b0)
γ/α

sγ − 1
r−1

(
1

sα + (1 + sα)(4 + 3b3/b2)

)
ϵ−2γ/α , (39)

where the constants

b1 = sup
ℓ≥1

∥∥∥Γ−1
(
2y −G(ℓ−1) −G(ℓ)

)∥∥∥
L2(π0)

(40)

and

b2 = sup
ℓ≥1

1

Zℓ
(41)

are independent of ϵ.

Proof. Because Assumption 6 holds, by [16, Lemmas 7 and 8] we know that Assump-
tions 2 and 4 hold with k1 = 3

2b0b1b2 and k2 = 3
2b0b1b2(1 + sα). Thus, we just need

to verify that Rℓ ≤ k3s
−αℓ holds for a constant k3 to apply Proposition 4. Using

13



definitions given in (1) and (17), we make the following transformations

Rℓ =

∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
π(ℓ−1)(θ)

π(ℓ)(θ)

)
dθ

=

∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
Zℓ exp

(
− 1

2∥y −G(ℓ−1)(θ)∥2Γ−1

)
Zℓ−1 exp

(
− 1

2∥y −G(ℓ)(θ)∥2Γ−1

)) dθ

=

∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
exp

(
− 1

2∥y −G(ℓ−1)(θ)∥2Γ−1

)
exp

(
− 1

2∥y −G(ℓ)(θ)∥2Γ−1

) ) dθ,

(42)

where Zℓ and Zℓ−1 are the normalizing constants of π(ℓ) and π(ℓ−1), respectively, so
that

Zℓ =

∫
Θ

exp

(
−1

2
∥y −G(ℓ)(θ)∥2Γ−1

)
π0(θ) dθ . (43)

The last line of (42) follows from the fact that∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)
log

(
Zℓ

Zℓ−1

)
dθ = 0 (44)

since Zℓ

Zℓ−1
is constant in θ and π(ℓ−1) and µ

(ℓ−1)
Tℓ−1

both integrate to one. Simplifying

the expression for Rℓ gives

Rℓ =
1

2

∫
Θ

(
µ
(ℓ−1)
Tℓ−1

(θ)− π(ℓ−1)(θ)
)(

∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

)
dθ .

(45)
By taking the absolute value and applying the triangle inequality we have that

Rℓ ≤
1

2

∫
Θ

∣∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣µ(ℓ−1)
Tℓ−1

(θ) dθ

+
1

2

∫
Θ

∣∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣π(ℓ−1)(θ) dθ .

(46)

Additionally, since

exp

(
−1

2
∥y −G(ℓ)(θ)∥2Γ−1

)
≤ 1 ,

we have

π(ℓ)(θ) =
1

Zℓ
exp

(
−1

2
∥y −G(ℓ)(θ)∥2Γ−1

)
π0(θ) ≤

1

Zℓ
π0(θ) . (47)
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Therefore, by combining (47) for π(ℓ−1)(θ) ≤ π0(θ)/Zℓ−1 with (38) we get

Rℓ ≤
1

2

∫
Θ

∣∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣µ(ℓ−1)
Tℓ−1

(θ) dθ

+
1

2

∫
Θ

∣∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣π(ℓ−1)(θ) dθ

≤ b3
2

∫
Θ

∣∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣π0(θ) dθ

+
1

2Zℓ−1

∫
Θ

∣∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣π0(θ) dθ .

(48)

Re-writing the expression inside the absolute value in the integrand gives∣∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣
=

∣∣∣∣∥∥∥G(ℓ)(θ)−G(ℓ−1)(θ) +G(ℓ−1)(θ)− y
∥∥∥2
Γ−1

− ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣∣
=

∣∣∣∣ 〈G(ℓ)(θ)−G(ℓ−1)(θ), Γ−1(G(ℓ)(θ)−G(ℓ−1)(θ))
〉

+ 2
〈
G(ℓ)(θ)−G(ℓ−1)(θ), Γ−1(G(ℓ−1)(θ)− y)

〉 ∣∣∣∣
=
∣∣∣〈G(ℓ)(θ)−G(ℓ−1)(θ), Γ−1(G(ℓ)(θ) +G(ℓ−1)(θ)− 2y)

〉∣∣∣
≤
∥∥∥G(ℓ)(θ)−G(ℓ−1)(θ)

∥∥∥ · ∥∥∥Γ−1(2y −G(ℓ)(θ)−G(ℓ−1)(θ))
∥∥∥ ,

(49)

where we have applied the Cauchy-Schwarz inequality to obtain the last line. From
the Cauchy-Schwarz inequality on L2(π0)∫

Θ

∣∣∣∥y −G(ℓ)(θ)∥2Γ−1 − ∥y −G(ℓ−1)(θ)∥2Γ−1

∣∣∣π0(θ) dθ

≤
∫
Θ

∥∥∥G(ℓ)(θ)−G(ℓ−1)(θ)
∥∥∥ · ∥∥∥Γ−1(2y −G(ℓ)(θ)−G(ℓ−1)(θ))

∥∥∥π0(θ) dθ

≤
∥∥∥G(ℓ) −G(ℓ−1)

∥∥∥
L2(π0)

·
∥∥∥Γ−1(2y −G(ℓ) −G(ℓ−1))

∥∥∥
L2(π0)

≤ b1

∥∥∥G(ℓ) −G(ℓ−1)
∥∥∥
L2(π0)

≤ b1

∥∥∥G−G(ℓ)
∥∥∥
L2(π0)

+ b1

∥∥∥G−G(ℓ−1)
∥∥∥
L2(π0)

.

(50)

From Assumption 6 we have

b1

∥∥∥G−G(ℓ)
∥∥∥
L2(π0)

+ b1

∥∥∥G−G(ℓ−1)
∥∥∥
L2(π0)

≤ b0b1s
−αℓ(1 + sα) ,
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and therefore

Rℓ ≤
1

2
b0b1(1 + sα) (b3 + b2) s

−αℓ, (51)

so that Rℓ ≤ k3s
−αℓ with k3 = b0b1

2 (b2 + b3) (1+ sα). Thus, Proposition 4 applies and
gives the bound (39).

4 Numerical example: Ice sheet modeling of the
Arolla glacier

To demonstrate the applicability and performance of MLSVGD, we formulate and
solve an inverse problem governed by a Stokes ice sheet model. In particular, we
infer the basal sliding coefficient field from pointwise surface velocity observations.
The problem formulation and adjoint-based derivatives computation follows the work
in [38]. The numerical computations are carried out in Python using FEniCS [40] and
hIPPYlib [41–44]. All reported runtimes were measured on Intel Xeon Platinum 8268

24C 205W 2.9GHz Processor. The computation of the gradients ∇ log π(ℓ)(θ
[j]
t ) was

parallelized over 32 cores.

4.1 Nonlinear Stokes forward model

For the numerical studies, we use an ice sheet model problem that uses the Arolla (Haut
Glacier d’Arolla) geometry and setup from the ISMIP-HOM benchmark collection [39].
That is, the glacier is considered a sliding mass of ice whose velocity is determined
primarily by the force of gravity and the friction against the underlying rock. The ice
flow is modeled as a non-Newtonian, viscous, incompressible fluid. The velocity field
u over the domain Ω ⊂ R2, as shown in Figure 1, is governed by the following Stokes
equations

∇ · u = 0, in Ω ,

−∇ · σu = ρg, in Ω .
(52)

The boundary conditions along the top and bottom of the glacier are given as

n⊤ (σun+ ωu) = 0, on Γb ,

Tσun+ exp(β)Tu = 0, on Γb ,

σun = 0, on Γt .

(53)

The density of the ice is ρ = 910 [kg/m3] and the downwards gravitational force is
g = (0,−9.81) [m/s2]. For the boundary conditions, Γb represents the bottom part
of the domain where the ice slides across the bedrock and Γt represents the top part
of the domain; see Figure 1. The vector n represents the outward unit normal vector
and T = I− nn⊤ is the tangential projection. In the first boundary condition where
n⊤ (σun+ ωu) = 0 on Γb we set the parameter ω = 106 and is meant to approximate
the no out-flow condition u · n = 0, which is difficult to enforce directly due to the
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curvature of the domain Ω. The stress tensor is

σu = τu − Ip,

with pressure p and deviatoric stress tensor

τu = 2η(u)ϵ̇(u) ,

with effective viscosity

η(u) =
1

2
A− 1

n ϵ̇
1−n
2n

II
.

The constants are Glen’s flow law exponent n = 3 and the flow rate factor A =
10−16 [Pa−na−1] (Pascals and years, respectively). The strain rate tensor is

ϵ̇ =
1

2

(
∇u+∇u⊤) ,

as well as the second invariant

ϵ̇II =
1

2
tr
(
ϵ̇2u
)
,

where tr denotes the trace operator. The parameter of interest is the log basal sliding
coefficient field β : [0, 5000] → R, which models the friction of the ice sheet across the
underlying bedrock and relates tangential traction to the tangential velocity.

To solve (52), we discretize (52)–(53) using Taylor-Hood finite elements on a tri-
angular mesh where the velocity is discretized with quadratic Lagrange elements and
the pressure is discretized with linear Lagrange elements. We consider one high-fidelity
model and two low-fidelity models by coarsening the mesh. The high-fidelity forward
model F (3) (L = 3) maps the log basal sliding coefficient field β to the velocity field
solution u using 3,602 and 501 degrees of freedom for the velocity and pressure com-
ponents, respectively. The coarsest low-fidelity model F (1) uses 448 and 73 degrees of
freedom for the velocity and pressure and the second low-fidelity model F (2) uses 1002
and 151 degrees of freedom, respectively. To solve the discretized PDE we use a con-
strained Newton solver with the gradient tolerance set to 10−6. The wall-clock time
for evaluating each model (gradient of log posterior descibed in the next section) is
estimated by averaging over 100 total evaluations and is approximately 0.100 seconds
for ℓ = 1, 0.206 seconds for ℓ = 2, and 1.106 seconds for the high-fidelity model L = 3.

4.2 Problem setup

We are interested in inferring a discretized log basal sliding coefficient field β, which
effectively determines the velocity of the ice as it slides along the bedrock. We discretize
the coefficient field β : [0, 5000] → R with a vector β ∈ Rd (d = 25) that we aim
to infer from data of the parameter-to-observable map. The parameter vector β ∈
R25 corresponds to 25 equally-spaced pointwise evaluations of the coefficient field
β throughout the domain [0, 5000]. In particular, let I int denote the interpolation
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Fig. 1 The domain Ω of Haut Glacier d’Arolla from the ISMIP-HOM benchmark collection [39].
The red dots represent the location of the measurements. (Top) The coarsest mesh used by the
lowest fidelity model with ℓ = 1. (Middle) A refined mesh used by the low-fidelity model with ℓ = 2.
(Bottom) The finest mesh used by the high-fidelity model L = 3.
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operator that maps a vector β ∈ R25 to its piecewise linear interpolant β̄ : [0, 5000] →
R defined at the nodes xi = 5000(i − 1)/24 by β̄(xi) = βi for i = 1, . . . , 25. Given
the piecewise linear interpolant β̄, the forward models F (ℓ) for ℓ = 1, 2, 3 map the
parameter to the corresponding velocity field u. Finally, the observation operator Bobs

maps the solution u of (52), given by the output of the forward models F (ℓ), to a
20 dimensional vector of horizontal and vertical velocity measurements at 10 sensor
locations throughout the right side of the domain along the top of the glacier as shown
in Figure 1. The full parameter-to-observable map G(ℓ) : R25 → R20 is

G(ℓ) = Bobs ◦ F (ℓ) ◦ I int, ℓ = 1, 2, 3.

Now consider the true parameter vector β∗ = [β∗
1 , . . . , β

∗
25]

⊤ ∈ R25 as given by
taking pointwise evaluations

β∗
i = βtrue(xi) , xi = 5000(i− 1)/24 , i = 1, . . . , 25 , (54)

where

βtrue(x) = log


1000 + 1000 sin

(
3πx
5000

)
+ ζ if 0 ≤ x < 2500,

1000
(
16− x

250

)
+ ζ if 2500 ≤ x < 4000,

1000 + ζ if 4000 ≤ x < 5000 ,

and ζ = 10−6 is a small positive constant to ensure that the log basal coefficient field
remains bounded. We generate synthetic observations y ∈ R20 with

y = G(L+1)(β∗) + η, η ∼ N(0,Γ) ,

where the noise covariance matrix Γ is diagonal with σvertical = 3 and σhorizontal = 18
corresponding to the vertical and horizontal velocity measurements, respectively. The
Euclidean norm of the observation is ∥y∥2 ≈ 623.254 and the Frobenius norm of the
covariance matrix is ∥Γ∥F ≈ 57.706, leading to a signal-to-noise ratio of approximately
∥y∥2 / ∥Γ∥F ≈ 10.8. Here the level L + 1 (a further refinement of the high-fidelity
mesh) is used to compute the observed data y. The prior π0 is Gaussian with diagonal
covariance matrix 0.05I25×25, where I25×25 ∈ R25×25 is the identity matrix. The mean
of the prior is perturbed from the true parameters β∗ ∈ R25 by adding a mean-zero
normal random vector with covariance equal to the prior’s covariance. The starting
distribution for SVGD and MLSVGD is the 25-dimensional standard normal distri-
bution. The gradients of the log posterior density are computed using adjoints with
hIPPYlib [41–43]. Our quantity of interest is the mean of the posterior distribution

Eπ(L) [β] and we compute a reference value β̂
Ref

by using the preconditioned Crank-
Nicolson (pCN) method [47]. We run 100 independent chains and use a burn-in period
of 10,000 samples for each chain to obtain 107 total samples. The parameter (denoted
by β in the work [47]) in the pCN algorithm, which scales the variance of the proposal
distribution, is set to 10−2. The parameter was chosen by a grid search over values
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ranging from 10−3 to 0.5 to find the value giving an asymptotic acceptance rate closest
to 25% (the acceptance rate for 0.01 approaches 24.38%).

4.3 SVGD algorithm with approximate gradients

Consider an empirical measure

µ̂(N)
τ =

1

N

N∑
i=1

δ
θ
[i]
τ
, (55)

given by an ensemble of particles {θ[i]
τ }Ni=1 with {θ[i]

0 }Ni=1 ∼ µ0 and where δx represents
the Dirac-mass at x. Practical SVGD implementations alternate between using the
ensemble of particles {θ[i]

τ }Ni=1 at time τ to estimate the gradient (8) and using the
estimated gradient to update the ensemble to obtain µ̂τ+1. The gradient is estimated
with Monte Carlo from the current ensemble of particles as

ĝτ (θ; {θ[1]
τ , . . . , θ[N ]

τ }) = − 1

N

N∑
i=1

K(θ[i]
τ ,θ)∇ log π(L)(θ[i]

τ ) +∇1K(θ[i]
τ ,θ) . (56)

The SVGD algorithm then reuses the ensemble of particles and updates them
according to the approximate gradient with step size δ as

θ
[j]
τ+1 = θ[j]

τ − δĝτ (θ; {θ[1]
τ , . . . , θ[N ]

τ }) , j = 1, . . . , N . (57)

Because the Hellinger distance from the high-fidelity density π(L) at iteration τ is
unknown, the integration time given by (13) cannot be determined practically. Instead
the stopping criteria is that the average norm of the gradient ḡτ , defined as

ḡτ =
1

N

N∑
j=1

∥∥∥ĝτ (θ
[j]
τ ; {θ[1]

τ , . . . , θ[N ]
τ })

∥∥∥ ,

decreases below the predetermined threshold ϵ. The convergence of µ̂τ to π(L) can
no longer be measured in the KL divergence because at each iteration the measure
µ̂τ is no longer absolutely continuous with respect to the target π(L). Moreover, the
convergence properties as the number of particles N → ∞ remains an open question.

For a practical MLSVGD algorithm, an outer loop is performed over the levels
ℓ = 1, . . . , L with the inner loop given by the SVGD updates (57). At each intermediate
level ℓ < L the gradients (56) are obtained by replacing the high-fidelity density π(L)

with the low-fidelity density π(ℓ). Again, we cannot monitor the KL divergence to the
target π(ℓ) at each level ℓ as required by (16). Thus, the stopping criteria for when to
terminate the SVGD iterations at the current level and proceed to the next level is
that the norm of the gradient ḡτ decreases below the threshold ϵ.
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4.4 Numerical results

In the following we compare the performance of MLSVGD and SVGD. We run both
SVGD and MLSVGD with N = 1, 000 particles, set a step size of δ = 0.05, and use
a Gaussian radial basis function kernel with the bandwidth parameter set to h = 0.1.
The bandwidth parameter is kept constant, but is comparable to the one obtained
from using the median heuristic presented in [4].

4.4.1 Number of iterations and runtime of SVGD and MLSVGD

Figure 2 shows that with a gradient tolerance of ϵ = 10−2, MLSVGD achieves a
speedup of a factor of five over SVGD despite requiring more iterations. Note that
reducing the gradient norm below ϵ = 10−2 corresponds to a relative reduction of
the gradient norm of more than four orders of magnitude. The results presented in
Figure 2 are consistent with the numerical examples presented in [16]. The runtime
improvement of MLSVGD over SVGD is a result of most of the iterations being
performed on the lowest fidelity model with the coarsest mesh. MLSVGD quickly
converges to the low-fidelity posterior π(1), which serves as a good initial distribution
for the following two levels whereas SVGD requires many iterations at the high-fidelity
level resulting in high computational costs. The two plots in the right column of
Figure 2 show that both algorithms give accurate estimates of the quantity of interest
in terms of the relative error

rel(β) =

∥∥∥β − β̂
Ref
∥∥∥
2∥∥∥β̂Ref

∥∥∥
2

, (58)

where β is the mean of the particles and β̂
Ref

is the reference posterior mean com-
puted with MCMC. The results suggest that the mean of the distributions of particles

{θ[j]
t }Nj=1 is converging to the mean of the high-fidelity target posterior π(L).

4.4.2 Speedups

MLSVGD recovers an approximation of the parameter β∗, with relative error below
10−2, in less than a quarter of the time compared to SVGD because the low fidelity
posteriors provide a good initialization. Figure 3 compares the inferred parameter
means from MLSVGD and SVGD after fixed amounts of training time. After two
hours MLSVGD has recovered the parameters whereas SVGD has not recovered them
even after eight hours. We also note that the coordinates of β corresponding to the
right side of the domain are recovered much faster due to the location of the velocity
observation points shown in Figure 1. Figure 4 shows the final parameter uncertainty
estimates with shaded regions indicating ±2 standard deviations for both MLSVGD
and SLSVGD. The MLSVGD standard deviations match the SLSVGD standard devi-
ations well. Moreover, Figure 5 shows the inferred velocity field u by solving (52)
with the inferred parameter mean after approximately eight hours of run time over 32
cores. We see that the velocity field obtained with the MLSVGD inferred parameter
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Fig. 2 (a) The average gradient norm ḡτ vs. iteration for MLSVGD and SVGD with a tolerance
of ϵ = 10−2. (b) The relative error (58) of MLSVGD and SVGD compared to an MCMC reference
vs. iteration. (c) The average gradient norms vs. the actual runtime in hours over 32 cores. (d) The
relative error vs. actual runtime.

mean closely matches the velocity field obtained with the ground truth reference value
of the mean. On the other hand, SVGD fails to recover the correct velocity field within
the same amount of time. Again we see that the left side of the domain is inaccurate
due to the parameter in this region not yet being accurate. Note that the magnitude
of the velocity is overestimated for SVGD which is consistent with the fact that the
parameter is underestimated since the parameter controls the frictional forces to resist
the downward pull of gravity.

4.4.3 Sample quality

Particles obtained with SVGD tend to be evenly spread out due to the repulsive
interaction between particles given by the kernel. We measure sample quality with the
maximum mean discrepancy (MMD)

MMD[µ, ν]2 = sup
∥f∥H≤1

(Eµ[f ]− Eν [f ])
2
,
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Fig. 3 (Left) Snapshots of the MLSVGD inferred parameter mean (red) at different times. (Right)
Snapshots of the SVGD inferred parameter mean (blue) at the same times. In each plot the solid
light gray curve shows the reference value.
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Fig. 4 The final MLSVGD and SLSVGD parameter estimates with shaded regions indicating ±2
estimated standard deviations.

where H is the reproducing kernel Hilbert space with kernel K [45]. The MMD is zero
if and only if the distributions µ = ν. In practice one cannot evaluate the expectations
exactly, so the following estimator [45, Eq. 5] is often used instead

M̂MD
(
{xi}Ni=1, {yj}Mj=1

)2
=

1

N2

N∑
i=1

N∑
i′=1

K(xi,xi′) +
1

M2

M∑
j=1

M∑
j′=1

K(yj ,yj′)

− 2

NM

N∑
i=1

M∑
j=1

K(xi,yj) , (59)

where {xi}Ni=1 ∼ µ and {yj}Mj=1 ∼ ν. To compute the MMD from the target distribu-

tion π(L) we use pCN with β = 0.01 again to draw samples. We use a burn-in period
of 20,000 samples and then run 100,000 more iterations taking every 5th sample for
20,000 samples total. These 20,000 samples serve as proxy samples from target poste-
rior π(L). Figure 6 shows the estimated MMD for MLSVGD, SVGD, and MCMC. We
see that MLSVGD gives samples with comparable quality to SVGD due to the repul-
sive interaction between particles, and both SVGD and MLSVGD outperform MCMC
(pCN) with the same sample size (N = 1, 000).

5 Conclusion

We provided an extension of the analysis of the MLSVGD method and demonstrated
with a Bayesian inverse problem of inferring a discretized basal sliding coefficient field
that MLSVGD scales well to larger settings than the ones considered in prior work
[16]. In particular, MLSVGD provides particles of comparable quality as SVGD but
at greatly reduced computational costs in our numerical example. There are several
avenues of future research. One is combining MLSVGD with the likelihood-informed
projections introduced in [9], which is especially useful in high-dimensional Bayesian
inverse problems, where typically data inform only low-dimensional subspaces of the
potentially high-dimensional spaces of the quantities of interest. Another direction of
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(c) MLSVGD inferred velocity field (d) SVGD inferred velocity field

Fig. 5 (a) The true velocity field given by β∗, which is defined (54). The color indicates the mag-
nitude of the velocity in [m a−1] (meters per year). (b) The reference velocity field computed using

β̂
Ref

of the posterior mean. (c) The velocity field corresponding to the inferred parameters using
MLSVGD after eight hours. (d) The velocity field corresponding to the inferred parameters using
SVGD with equivalent costs as MLSVGD (eight hours of runtime).
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Fig. 6 The estimated
squared MMD using
the estimator (59). The
MLSVGD approximation
has a comparable MMD
to the single-level SVGD
with the high-fidelity
model only. Both have a
lower MMD than MCMC
suggesting higher quality
samples.
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future work concerns balancing the number of particles on each level. In the presented
form, MLSVGD uses the same number of particles on each level, in contrast to multi-
level Monte Carlo methods that use more samples on coarse levels and fewer on finer
levels. It remains an open question how to realize different number of samples on each
level in MLSVGD.
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