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Abstract— The L2-gain characterizes a dynamical system’s
input-output properties, but can be difficult to determine
for nonlinear systems. Previous work designed a nonconvex
optimization problem to simultaneously search for a continuous
piecewise affine (CPA) storage function and an upper bound
on the small-signal L2-gain of a dynamical system over a
triangulated region about the origin. This work improves
upon those results by establishing a tighter upper-bound on
a system’s gain using a convex optimization problem. By
reformulating the relationship between the Hamilton-Jacobi
inequality and L2-gain as a linear matrix inequality (LMI) and
then developing novel LMI error bounds for a triangulation,
tighter gain bounds are derived and computed more efficiently.
Additionally, a combined quadratic and CPA storage function
is considered to expand the nonlinear systems this optimization
problem is applicable to. Numerical results demonstrate the
tighter upper bound on a dynamical system’s gain.

I. INTRODUCTION

Input-output (IO) stability theory views a dynamical sys-

tem as a mapping between inputs and outputs. One of the

most widely used IO descriptors is the L2-gain of a system,

which bounds the norm of the output with respect to that of

the input. The L2-gain is leveraged in control design through

the Small Gain Theorem [1], the basis of H∞ control. As

such, the L2-gain of the system is an essential tool both for

analysis of and control synthesis for dynamical systems.

While the gain of a linear dynamical system can be deter-

mined easily [2], this is a more difficult task for nonlinear

systems. The nonlinear Kalman-Yacubovich-Popov lemma

[3] or relationships between L2-gain and the Hamilton-

Jacobi equation [4] can provide conditions to determine

L2-gain. However, these methods require knowledge of a

positive, semi-definite storage function for the system. De-

termining the storage function for a nonlinear system is a

non-trivial task and an active area of research[5][6][7][8][9].

Recent work formulated a nonconvex optimization prob-

lem that bounds the gain of a nonlinear system by searching

for a continuous piecewise affine (CPA) storage function that

satisfies a Hamilton Jacobi Inequality (HJI) [10]. Constraints

were imposed on the function at each vertex of a trian-

gulation to ensure certain properties, leveraging a similar

process in previous work on Lyapunov function synthesis

[6], [7]. The optimization problem in [10] depends on a

specific error term for the HJI constraint that, when imposed
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with the HJI on each vertex of the triangulation, ensures the

inequality holds for the entire region. However, the HJI and

its error term are polynomial in design variables – leading to

a conservative, nonconvex optimization problem that requires

methods like iterative convex overbounding (ICO) to solve.

Moreover, specific requirements on the error bound restricted

the optimization problem to a limited class of nonlinear

systems – notably precluding linear control affine terms.

This paper develops a novel LMI error upper bound to

impose LMI constraints on a CPA function on a triangulation

– convexifying the previous optimization problem. With this,

the HJI can be reformulated as an LMI, creating a convex

optimization problem that determines a CPA storage function

and the global optimum of the gain bound. Further, a convex

optimization problem is developed for a combined quadratic

and CPA storage function, expanding the class of dynamical

systems this work can be applied to. The end result is a

tighter upper bound on the small-signal L2-gain of nonlinear

dynamical systems than that of [10].

II. PRELIMINARIES

The interior, boundary, and closure of the set Ω ¢ R
n

are denoted as Ωo, ¶Ω, and Ω, respectively. The symbol Rn

denotes the set of all compact subsets Ω ¢ R
n satisfying

i) Ωo is connected and contains the origin and ii) Ω =
Ωo. Scalars, vectors, and matrices are denoted as x, x,

and X, respectively. The notation Z
b
a (Z

b
ā) denotes the set

of integers between a and b inclusive (exclusive). The p-

norm of the vector x ∈ R
n is shown as || · ||p, where

p ∈ Z
∞
1 . Let Ln

p represent the normed function space with

the norm ||x||Ln
p

=
(∫∞

0
||x(t)||pdt

) 1
p for p ∈ Z

∞
1 and

||x||Ln
∞

= suptg0 ||x(t)|| f ∞. The extended Ln
pe space

is defined as the set of all functions x(t) : [0,∞) → R
n

for which the truncation to t ∈ [0, T ] is in Ln
p ∀ T g 0.

By f ∈ Ck, it is denoted that a real valued function, f , is

k-times continuously differentiable over its domain.

The positive definiteness of a matrix is denoted by P { 0,

while positive semi-definite and negative definite and semi-

definite matrices are denoted similarly. Identity and zero

matrices are shown as I and 0. Let 1n denote a vector of

ones in R
n.

The right-hand (left-hand) upper Dini derivatives

for some function, f is defined as D+f(y) :=

lim supk→0+
f(x+kg(x))−f(x)

k

(
lim supk→0−

f(x+kg(x))−f(x)
k

)
,

where k ∈ R and ẋ = g(x) [7].

A. CPA Functions

In [6],[7], a compact subset of a system’s domain, Rn, is

triangulated, and a constrained linear optimization problem
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is formulated to solve for a CPA Lyapunov function –

affine on each simplex. This work uses a similar process

to determine a positive, semi-definite storage function. The

necessary definitions and tools for triangulation and problem

formulation are listed below.

Definition 2.1: (Affine independence [7]): A collection of

m vectors {x0,x1, . . . ,xm} ¢ R
n is affinely independent if

x1 − x0, . . . ,xm − x0 are linearly independent.

Definition 2.2: (n - simplex [7]): A simplex, Ã, is defined

the convex hull of n + 1 affinely independent vectors,

co{xj}nj=0, where each vector, xj ∈ R
n, is a vertex.

Definition 2.3: (Triangulation [7]): Let T = {Ãi}mT

i=1 ∈
R

n represent a finite collection of mT simplexes, where the

intersection of any two simplexes is a face or an empty set.

Let T = {Ãi}mT

i=1. Further, let {xi,j}nj=0 be Ãi’s vertices.

The choice of xi,0 in Ãi is arbitrary unless 0 ∈ Ãi, in which

case xi,0 = 0 [7]. The vertices of the triangulation T of Ω are

denoted as EΩ. Let T0 denote the simplexes in T containing

0 and TΩ\{0} denotes those in Ω that do not contain 0.

Lemma 1: (Remark 9 [7]) Consider the triangulation T =
{Ãi}mT

i=1, where Ãi = co({xi,j}nj=0), and a set W =
{Wx}x∈ET

¢ R, where W (x) = Wx, ∀x ∈ ET . For simplex

Ãi, let Xi ∈ R
n×n be a matrix that has xi,j −xi,0 as its j-th

row and W̄i ∈ R
n be a vector that has Wxi,j

− Wxi,0
, as

its j-th element. The function W (x) = x¦
i X

−1
i W̄i, is the

unique CPA interpolation of W on T for x ∈ Ãi.

The following lemma uses Taylor’s Theorem [11] to develop

an error term that compares function g ∈ C2 evaluated at

some x ∈ Ãi to g evaluated at the vertex points of Ãi.

Lemma 2: (Proposition 2.2 and Lemma 2.3 [6]) Consider

Ω̂ ∈ R
n and its triangulation T = {Ãi}mT

i=1. Let g : Ω̂ → R
n

where g ∈ C2. Then, for any x ∈ Ãi = co({xi,j}nj=0) ∈ T ,
∥∥∥∥∥∥
g(x)−

n∑

j=0

¼jg(xi,j)

∥∥∥∥∥∥
∞

f 1

2
´i

n∑

j=0

¼jci,j , (1)

where {¼j}nj=0 ∈ R is the set of unique coefficients

satisfying x =
∑n

j=0 ¼jxi,j with
∑n

j=0 ¼j = 1 and 0 f
{¼j}nj=0 f 1,

ci,j=n ∥xi,j−xi,0∥(max
k∈Z

n
1

∥xi,k−xi,0∥+∥xi,j−xi,0∥), (2)

and

´i g max
p,q,r∈Z

n
1

max
À∈Ãi

∣∣∣∣
∂2f (p)(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ .
B. L2 Stability Analysis

The L2-gain is a general IO descriptor of a mapping

between two Hilbert spaces.

Definition 2.4: (Lp stability [1]) A mapping G : Lm
pe →

Lq
pe is Lp finite gain stable if there exists µ1, µ2 g 0 such

that

∥(Gu)Ä∥Lp
f µ1 ∥uÄ∥Lp

+ µ2, (3)

where u ∈ Lm
pe and Ä ∈ [0,∞).

Definition 2.5: (Small-signal Lp stability [12]) The map-

ping G : Lm
pe → Lq

pe is Lp small-signal finite-gain stable if

there exists ru > 0 such that (3) is satisfied for all u ∈ Lm
pe

with sup0ftfÄ ∥u(t)∥ f ru.

The HJI establishes a relationship between a system’s L2-

gain and the Hamilton-Jacobi equations [4] and is the key to

relating gain and CPA storage functions in [10].

Theorem 1: ([4]) Consider the smooth system ẋ = f(x)+
g(x)u, y = h(x), where x ∈ R

n, y ∈ R
p, u ∈ R

m, and

f(0) = h(0) = 0. Let µ > 0 and suppose there is a smooth,

positive semi-definite function V : Rn → R that satisfies the

HJI (presented here in LMI form),


∇V ¦f(x) ∇V ¦g(x) h¦(x)

∗ −2µ2I 0
∗ ∗ −2I


 ¯ 0 (4)

for all x ∈ R
n. Then, for all x0 ∈ R

n, the system is L2

stable with gain less than or equal to µ.

The storage function solution to (4) is actually only required

to be locally bounded and positive semi-definite, rather than

smooth [13, Theorem 3.1].

To verify (4), this paper synthesizes a CPA storage func-

tion that is only defined on the bounded set Ω ∈ R
n. As

established by [10], the L2-gain can then only be found on

a subset of Ω, so the small-signal properties of the system

are used to ensure the system is unable to leave the subset.

This is accomplished by determining a modified CPA barrier

function (Theorem 2, [10]).

III. MAIN RESULTS

LMIs are a valuable tool used to solve complex control

analysis or synthesis problems through optimization. This

paper develops novel error bounds for an LMI on an n-

simplex, so that this tool can be leveraged for CPA-analysis.

Additionally, an LMI to enforce constraints on a closed ball

about the origin is developed to expand the type of systems

CPA-analysis can be applied to. These bounds are then used

to design two convex optimization problems that bound the

L2-gain for a given region of the state space. Both optimiza-

tion problems search for storage functions that satisfy (4),

but the second problem uses a discontinuous quadratic and

CPA storage function to include systems with linear control

affine terms (systems with a nonzero B matrix).

A. LMI Error Bounds

This section first develops a positive definite error bound

matrix for an LMI constraint applied to an n−simplex. En-

forcing the LMI constraint plus its error bound on the vertex

points of an n-simplex (x0, ...,xn ∈ Ã) implies that the LMI

holds for all points within that simplex (x ∈ Ã). While

[6] established a general error bound for C2 vector-valued

functions (Lemma 2), it does not translate automatically to an

LMI that contains C2 vector-valued functions. The structure

of an LMI affects its definiteness and is considered in the

following theorem.

Theorem 2: Consider

M(x) =

[
ϕ(x) ·¦(x)
·(x) −I

]
, (5)

where x ∈ R
n, ϕ : Rn → R, · : Rn → R

m, ϕ, · ∈ C2, and

·(k)(x) is the kth element of ·. Let Ã := co{xj}nj=0 be an
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n-simplex in R
n. If x =

∑n
i=0 ¼jxj ∈ Ã, then

M(x)−
n∑

j=0

¼jM(xj) ¯
n∑

j=0

¼j




1
2 (´cj+

m∑
k=1

µ2
kc

2
j ) 0

∗ 1
2I




=

n∑

j=0

¼jE(xj) =: E(x), (6)

where

cj = nmax
Å∈Z

n
0

∥xj−xÅ∥22 , (7)

´ g max
q,r∈Z

n
1 ,À∈Ã

∣∣∣∣
∂2ϕ(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ , and (8)

µk g max
q,r∈Z

n
1 ,À∈Ã

∣∣∣∣
∂2·(k)(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ . (9)

Moreover, if M(xj)+E(xj) ¯ 0 holds for all vertex points

of Ã, then M(x) ¯ 0 for all x ∈ Ã.

Theorem 2 bounds the difference between M(x) at

any convex combination of vertex points and the convex

combination of the LMI evaluated at each vertex point,∑n
j=0 ¼jM(xj). The proof parallels Proposition 2.2 in [6]

by developing remainder terms using Taylor’s theorem, but

exploits the structure of M(x) to establish an LMI error

bound. Note the negative identity matrix in (5) is essential

to enforce negative semi-definiteness.

Proof: By definition, any point x ∈ Ã can be written as

a convex combination of the vertices, i.e., x =
∑n

j=0 ¼jxj .

Applying Taylor’s Theorem [11, Theorem 14.20] to ϕ and ·

about x for each vertex point in Ã results in

n∑

j=0

¼jϕ(xj)=

n∑

j=0

¼j

(
ϕ(x)+ï∇ϕ(x),∆xjð

+ïHϕ(zj,ϕ)∆xj ,∆xjð
)

and
n∑

j=0

¼j·
(k)(xj)=

n∑

j=0

¼j

(
·(k)(x)+ï∇·(k)(x),∆xjð

+
1

2
ïH·(k)(zj,·(k))∆xj ,∆xjð

)
.

Here, ∆xj = xj −x, Hϕ is the Hessian for ϕ, and zj,ϕ and

zj,· are each some convex combination of xj and x. Because

· is a vector-valued function, each dimension of ·(x) ∈ R
m

is separately expanded – represented as element ·(k)(x) with

a corresponding Hessian H·(k) for k = 1, ...,m.

Let Ẽ(x)=M(x)−∑n
j=0 ¼jM(xj). In Ẽ(x), the summed

zeroth order terms of each function’s Taylor expansion in∑n
j=0 ¼jM(xj) cancel with the corresponding terms in

M(x). Furthermore, the summed first order terms of each

expansion become zero, because
∑n

j=0 ¼jï∇f(x),xj − xð
= ï∇f(x),

∑n
j=0 ¼jxj − xð = ï∇f(x), 0ð. Altogether,

Ẽ(x) =
1

2

n∑

j=0

¼j




−ïHϕ(zj,ϕ)∆xj ,∆xjð ∗ . . . ∗
−ïH·(1)(zj,·(1))∆xj ,∆xjð 0 . . . 0

...
...

. . .
...

−ïH·(m)(zj,·(m))∆xj ,∆xjð 0 . . . 0


.

Consider the definition of negative definiteness. Let w=[
w1 w¦

2

]
¦, where w1∈ R

1 and w2∈ R
m. Then,

w¦Ẽ(x)w =

n∑

j=0

¼j

[
−1

2
w¦

1 ïHϕ(zj,ϕ)∆xj ,∆xjðw1

+w¦
2



−ïH·(1)(zj,·(1))∆xj ,∆xjð

...

−ïH·(m)(zj,·(m))∆xj ,∆xjð


w1

]
.

Whether w¦Ẽ(x)w is positive or negative depends on

both the values within Ẽ(x) and w itself, because of

cross terms. By completing the square on the cross terms

(2w¦
1 A

¦Bw2 f w¦
1 A

¦Aw1 +w¦
2 B

¦Bw2), this depen-

dency is removed to bound Ẽ(x) for all w ∈ R
m+1:

w¦Ẽ(x)w f 1

2

n∑

j=0

¼j

[
w¦

1

(
−ïHϕ(zj,ϕ)∆xj ,∆xjð

+

m∑

k=1

[
ïH·(k)(zj,·(k))∆xj ,∆xjð2

])
w1

]
+w¦

2

1

2
Iw2.

The expression above can then be simplified by applying

the Cauchy-Schwarz inequality, Lemma 2.3 of [6], and the

bound ∥∆xj∥22 f maxÅ∈Z
n
0
∥xj − xÅ∥22 to produce the final

upper bound on w¦Ẽ(x)w,

w¦
1

1

2

n∑

j=0

¼j

(
´cj +

m∑

k=1

(µ2
kc

2
j )
)
w1 +w¦

2

1

2
Iw2.

Hence, w¦Ẽ(x)w f w¦E(x)w for all w ∈ R
m+1,

implying (6).

Now suppose that M(x) ¯ 0 must be imposed on all x ∈
Ã. By assumption, M(xj)+E(xj) ¯ 0 holds for each vertex

of Ã (x0, . . . ,xn). The set of negative semi-definite LMIs is

a convex cone [14]. By enforcing M(xj) + E(xj) ¯ 0 on

each vertex, the expression
∑n

j=0 ¼j(M(xj) + E(xj)) ¯ 0
also holds. The LMI M(x) +E(x) ¯ 0 implies M(x) ¯ 0,
because E(x) ° 0. Therefore, M(x) ¯ 0 for all x ∈ Ã.

Theorem 3: Consider the inequality

·(x)¦·(x) +
1

2

(
x¦¹(x) + ¹(x)¦x

)
f 0, (10)

where x ∈ R
n, ¹ : Rn → R

n, · : Rn → R
m, ¹, · ∈ C2,

¹(0) = 0, and ·(0) = 0. Let Bϵ(0) be a closed ball about

the origin with radius ϵ,

´ϵ g max
p,q,r∈Z

n
1 ,À∈Bϵ(0)

∣∣∣∣
∂2¹(p)(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ , (11)

µϵ g max
p∈Z

m
1 ,q,r∈Z

n
1 ,À∈Bϵ(0)

∣∣∣∣
∂2·(p)(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ , (12)

and J¹(0) and J·(0) be the Jacobian of ¹ and ·, respectively,

evaluated at x = 0. If

Mϵ=

[
1
2 (J¹(0)

¦+J¹(0)+(ϵn
3
2 ´ϵ+ϵ2n2mµ2

ϵ)I) J·(0)
¦

∗ − 1
2I

]
¯0

(13)

holds, then (10) holds for all x ∈ Bϵ(0).
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Proof: For vector-valued functions, Taylor’s theorem

can be applied to each dimension. By applying Taylor’s

Theorem about the origin,

·(x) =J·(0)x+
1

2



x¦H·(1)(z·(1))

...

x¦H·(m)(z·(m))


x=:(A1+

1

2
A2)x=:Ax,

and

¹(x) =J¹(0)x+
1

2



x¦H¹(1)(z¹(1))

...

x¦H¹(n)(z¹(n))


x=:(B1+

1

2
B2)x=:Bx,

where each z·(k) and z¹(r) are each some convex combi-

nation of x and 0 for k = 1, . . . ,m and r = 1, . . . , n.
Then, (10) is equivalently expressed as x¦A¦Ax +
1
2 (x

¦Bx+x¦B¦x) f 0. Noting that scalars equal their own

transposes, factoring out x¦ and x and performing a Schur

complement [14] on A¦A results in the LMI

M̃ϵ =

[
1
2 (B+B¦) A¦

A −I

]
¯ 0.

Both A2 and B2 contain x. Therefore, an infinite number of

constraints are needed to enforce M̃ϵ ¯ 0 for all x ∈ Bϵ(0).
By definition, the LMI M̃ϵ ¯ 0 is equivalent to

w¦
1

1
2 (B+B¦)w1+2w¦

1 A
¦
1 w2+w¦

1 A
¦
2 w2−w¦

2 Iw2f0

holding for all w=
[
w¦

1 w¦
2

]¦
, where w1 ∈ R

n

and w2 ∈ R
m. Like in Theorem 2, problematic off-

diagonal terms, in this case A2, can be bounded

above via Young’s relation [15] to get the inequality

w¦
1

1
2 (B+B¦+A¦

2 A2)w1+2w¦
1 A

¦
1 w2−w¦

2
1
2Iw2 f 0.

The terms A¦
2 A2 and B2 are then bounded above using the

definition of the matrix two-norm and the Cauchy-Schwarz

inequality. Lemma 2.3 from [6] is then applied to the norm

of each Hessian, and the definition of Bϵ(0) is used to

produce an upper bound on (10),

w¦
1

1

2

(
(B1+B¦

1 )+(ϵn
3
2 ´ϵ + ϵ2n2mµ2

ϵ)I
)
w1

+2w¦
1 A

¦
1 w2−w¦

2

1

2
Iw2 f 0,

which is equivalent to (13). Then, Mϵ ¯ 0 implies M̃ϵ ¯ 0,
which is equivalent to (10).

B. L2-gain Analysis

This section develops convex optimization problems to

bound an input-affine system’s L2-gain. Theorem 4 covers

when the input-affine term disappears at the origin, while

Theorem 5 allows it to remain nonzero at the origin. This dis-

tinction is important, as all error bounds in the optimization

problem must be zero at the origin to prevent infeasability.

While this always occurs when the input term disappears,

a modified quadratic and CPA storage function (which is

quadratic at the origin) is needed for the nonzero case.

Theorem 4: Consider the constrained mapping G : Lm
2e →

Lp
2e defined by y = Gu,

G :

{
ẋ=f(x)+(B+g(x))u x∈X ∈R

n,u∈U ∈R
m

y=h(x),
(14)

where f : R
n → R

n, h : R
n → R

p, B ∈ R
n×m, g is

a n × m matrix where each kth column gk : Rn → R
n,

and f(0) = 0, g(0) = 0, and h(0) = 0. Let U = {u ∈
Lm
2e| sup0ftfÄ ∥u(t)∥∞ f ru} for some ru > 0 that ensures

x remains in subset Ω of the state space [10, Theorems 2,

3]. Let B = 0. Suppose that f, g, h ∈ C2 for a triangulation,

T = {Ãi}mT

i=1 of a set Ω ∈ R
n. Define a candidate CPA

storage function, V = {Vx}x∈ET
. Consider the optimization

problem

min
V,³,L

³

³ > 0, (15a)

Vx g 0 ∀x ∈ ET , (15b)

∥∇Vi∥1 f li, ∀i ∈ Z
mT

1 , (15c)

Mi,j ¯ 0, ∀i ∈ Z
mT

1 , ∀j ∈ Z
n
0 , x ̸= 0, (15d)

where ³ = µ2, L = {li}mT

i=1 ¢ R
n, and

Mi,j=


∇V¦f(xi,j)+
1
2

(
´ici,j(1

¦
n li)+

p∑
a=1

Ä2i,ac
2
i,j

)
∗ ∗ ∗

g(xi,j)
¦∇V −2³I+ 1

2I ∗ ∗
h(xi,j) 0 − 3

2I ∗
(1¦n li)ci,j

[
µi,1 . . . µi,m

]¦
0 0 −2I



.

(16)

Further, ci,j is defined by (2) when Ãi ∈ T0 and by (7) when

Ãi ∈ TΩ\{0},

´i g max
p,q,r∈Z

n
1 ,À∈Ãi

∣∣∣∣
∂2f (p)(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ (17)

Äi,a g max
q,r∈Z

n
1 ,À∈Ãi

∣∣∣∣
∂2h(a)(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ , and (18)

µi,k g max
p,q,r∈Z

n
1 ,À∈Ãi

∣∣∣∣∣
∂2g

(p)
k (x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣∣ , (19)

where a ∈ Z
p
1 represents each dimension of the output, and

k ∈ Z
m
1 represents each column of matrix g(x).

If the optimization problem, (15), is feasible, then (4)

holds for all points in Ωo and µ∗ =
√
³∗ is an upper bound

on the L2-gain of G in Ωo.

Proof: Note that ´i, Äi,a, and µi,k exist for all sim-

plexes, because f, g, h ∈ C2 and Ω is bounded. Furthermore,

ci,j is finite for all n-simplexes in T , because Ω ∈ R
n.

Defining ci,j as in (2) when Ãi ∈ T0 ensures that the error

bound is 0 at the origin.

Constraint 16 is a result of applying Theorem 2 to the

gain LMI, (4), and then using the Schur complement. In

detail, because V is a CPA function, ∇V is computed

using Lemma 1 and is constant over each n−simplex. When

applying Theorem 2, the error of each function in (4) can

factor ∇V out, e.g. ∇V ¦f(x) − ∇V ¦
∑n

i=0 ¼if(xi) =
∇V ¦(f(x) − ∑n

i=0 ¼if(xi)). From Theorem 2, the error

in the off-diagonal terms of the LMI is bounded above

by completing the square. The Cauchy-Schwarz inequal-

ity is applied to error terms that interact with ∇V, e.g.
1
2∇V ¦ïHf (z)∆xi,∆xið f 1

2 ∥∇V ∥2 ∥Hf (z)∥2 ∥∆xi∥22.
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Through equivalence of norms, ∥∇V ∥2 f ∥∇V ∥1 . The LMI

(4) and its upper bound are then defined as


∇V ¦f(xi,j) + ẽi,j ∇V ¦g(xi,j) h(xi,j)

∗ −2³I+ 1
2I 0

∗ ∗ − 3
2I


 ,

where

ẽi,j=
1

2

(
´ici,j(1

¦
n li) +

p∑

a=1

Ä2i,ac
2
i,j +

m∑

k=1

µ2
i,kc

2
i,j(1

¦
n li)

2
)
.

Perform a Schur complement [14] about

1
2

m∑
k=1

µ2
i,kc

2
i,j(1

¦
n li)

2 to get the equivalent LMI, (16).

By enforcing Constraint 15b on each n−simplex, V (x)
is a viable storage function for G in the region Ω. From

Theorem 2, (4) will hold for all x ∈ Ωo for µ∗.

Theorem 5: Consider (14). Suppose that f, g, h ∈ C2 for

set Ω ∈ R
n. Let U={u ∈ Lm

2e| sup0ftfÄ ∥u(t)∥∞ fru} for

some ru > 0 that ensures x remains in subset Ω of the state

space [10, Theorems 2, 3]. Let Bϵ(0) be some ball about the

origin with radius ϵ, and let T̂ = {Ãi}mT̂

i=1 be a triangulation

of Ω \Bϵ(0)
◦. Define a candidate storage function,

V (x) =

{
x¦Px ∥x∥2 f ϵ

V̄(x) ∥x∥2 > ϵ,
(20)

where the function is a quadratic near the origin with P =
P¦ ∈ R

n×n and then, at ∥x∥ > ϵ, becomes the CPA

function V̄ = {V̄x}x∈E
T̂

. Consider the optimization problem

min
V,P,³,L,lp

³

³ > 0, (21a)

P { 0, (21b)

∥P∥2 f lp, (21c)

Mϵ ¯ 0, (21d)

Vx g 0 ∀x ∈ ET̂ , (21e)

∥∇Vi∥1 f li, ∀i ∈ Z
m

T̂

1 , (21f)

Mi,j ¯ 0, ∀i ∈ Z
m

T̂

1 , ∀j ∈ Z
n
0 , (21g)

where ³ = µ2, L = {li}mT̂

i=1 ¢ R
n, and Mϵ is defined as




É PB Jh(0)
¦ lpϵ

m∑
k=1

∥Jgk(0)∥2 I lpn
3
2m

1
2µϵϵ

2I

∗ (−³
2 + 3

2 )I 0 0 0

∗ ∗ − 3
2I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −2I



.

(22)

Here, É = PJf (0) + Jf (0)
¦P + (lpϵn

3
2 ´ϵ +

1
2ϵ

2n2pÄ2ϵ)I,
Jq(0) represents the Jacobian of the function, q, evaluated

at zero,

´ϵ g max
p,q,r∈Z

n
1 ,À∈Bϵ(0)

∣∣∣∣
∂2f (p)(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ , (23)

Äϵ g max
p∈Z

p
1 ,q,r∈Z

n
1 ,À∈Bϵ(0)

∣∣∣∣
∂2h(p)(x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣ , (24)

and

µϵ g max
k∈Z

m
1 ,p,q,r∈Z

n
1 ,À∈Bϵ(0)

∣∣∣∣∣
∂2g

(p)
k (x)

∂x(q)∂x(r)

∣∣∣
x=À

∣∣∣∣∣ . (25)

Further, ci,j is given in (7), ´i, Äi,a and µi,k are given in

(17), (18), and (19), and the LMI Mi,j is defined by (16).

If the optimization problem, (21), is feasible, then (4)

holds for all points in Ωo and µ∗ =
√
³∗ is an upper bound

on the L2-gain of G in Ωo.

Proof: When ∥x∥2 > ϵ and V is a CPA function,

the proof follows similarly to Theorem 4. When ∥x∥2 f ϵ,

Constraint 22 creates an upper bound on the HJI for all x ∈
Bϵ(0). To develop this constraint, perform a Taylor series

expansion on the HJI about the origin, x¦Pf̃ + f̃¦Px +
2
µ2x

¦Pg̃g̃¦Px+ 1
2 h̃

¦h̃ f 0. For example,

g̃ = g(x) = B+
[
Jg1(0)x . . .Jgm(0)x

]
+

1

2







x¦H
g
(1)
1

(z
g
(1)
1

)

...

x¦H
g
(n)
1

(z
g
(n)
1


x . . .



x¦H

g
(1)
m

(z
g
(1)
m

)
...

x¦H
g
(n)
m

(z
g
(n)
m


x


 ,

where H
g
(p)
k

(z
g
(p)
k

) is the Hessian of the pth row and kth

column of g evaluated at a convex combination of x and 0.

Apply Theorem 3 to get the LMI,


É̃ PB Jh(0)

¦

∗ (−³
2+

3
2 )I 0

∗ ∗ −2I


 ¯ 0,

where

É̃ =PA+A¦P+ (
1

2
ϵ2n2pÄ2ϵ+

1

2
l2pmn3µ2

ϵϵ
4

+lpϵn
3
2 ´ϵ+l2p

m∑

k=1

∥Jgk(0)∥
2
2 ϵ

2)I.

Perform a Schur complement [14] about terms containing l2p
to get (25).

From Theorem 3, (4) holds for all x ∈ Bϵ(0) for µ∗. From

Theorem 3.1 [13], if this discontinuous V is a solution to the

HJI, the µ∗ is a valid bound on the L2-gain of (14).

After finding an upper bound on a system’s gain, Theorem

5 in [10] can be used to find the small-signal properties of

(14). This determines the largest value ru > 0 so that the

system remains within Ωo – where the gain bound is valid.

IV. NUMERICAL EXAMPLE

Consider the dynamical system

G :





ẋ1 = x2

ẋ2 = − sinx1 − x2 + k(x)u

y = x2,

(26)

where x ∈ R
2, u ∈ R, and y ∈ R. Let Ω be the triangulated

region about the origin; an example of which is shown

in Figure 1. In open-loop, (26) has a Lyapunov function,

V (x) = (1− cosx1) +
1
2x

2
2. Substituting V (x) into the HJI

as a storage function results in the inequality,

0.5x2
2

(
µ−1k(x)2 − 1

)
f 0. (27)
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Fig. 1. Triangulations of the region, Ω, about the origin for dynamical
system, G.

Given a k(x), the L2-gain of G can be bounded above.

The numerical examples will show how close the general

purpose, algorithmic search proposed here can come to

the tight bounds achieved through V (x), representing ad

hoc ingenuity, that cannot necessarily be replicated in all

systems. Two variations of G are considered – comparing

our methodology to analytical techniques of determining L2-

gain and previous work that established a system’s L2-gain

iteratively. In each numerical example, the gain bound is

found for increasingly fine triangulations of Ω using the

triangulation refinement process in [16] with toolbox [17].

A. Pendulum

Consider G with k(x)=1, a classic pendulum. Previous

work [10] could not be used to bound a pendulum’s L2-

gain, because k(x) is a linear control affine term. Therefore,∥∥g(x)¦g(x)
∥∥
∞
̸=0 at x=0. Theorem (5) removes this condi-

tion and can be used linear control affine systems.

From (27), the L2-gain of G satisfies µ f 1. Figure 2

shows the result of optimizing (21) for an increasing number

of n-simplexes, as well as the time taken to complete this

convex optimization. The L2-gain bound decreases as the

triangulation becomes more refined, and reaches its lowest at

µ f 2.61 when opitmizing over 7304 n-simplexes. Applying

Theorem 5 with Initialization 4 from [10], the small-signal

property for this system was found to be ||u(t)||∞ f 0.077.

B. Pendulum with Control Affine Input

The variation k(x) = x2 is considered here to compare

to [10]. From (27), µ f max{x2
2|x2 ∈ Ω}. For the given

Ω, µ f 0.64. Previous work [10] developed a non-convex

optimization problem and solved it using ICO, which only

guarantees convergence to a local minima, creating more

conservative bounds than in (15). In [10], the gain bound was

found to be µ f 3.85. In comparison, the best L2-gain bound

found using the techniques developed in this paper was

µ f 0.77 with the small signal property, ||u(t)||∞ f 0.2554.
Figure 2 shows the optimal gain bound found when solving

Problem 15 over different numbers of n-simplexes. Even

at the lowest number of n-simplexes, the gain bound still

outperforms [10] with a bound of µ f 1.25.

V. DISCUSSION

This work developed two convex optimization problems

to determine the L2-gain of a dynamical system for a

triangulated region about the origin. By reformulating the

Fig. 2. The L2-gain bound was analyzed for an increasing numbers of
simplexes over Ω for two systems – a pendulum and a pendulum with a
control affine input.

HJI as an LMI and developing novel LMI error bounds for a

triangulation, the system’s gain can be bounded more tightly

than a previous method, [10]. Moreover, developing an LMI

to enforce an inequality about the origin enabled a combined

quadratic and CPA storage function that can be used on

systems with linear control affine inputs. A limitation of this

methodology is that it can only be applied to bounded regions

of the system’s state space, so future work should consider

methods to expand this technique to the entire state space.
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