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Improved Small-Signal £,-gain Analysis for Nonlinear Systems

Amy K. Strong!, Reza Lavaei', and Leila J. Bridgeman'!

Abstract—The L»-gain characterizes a dynamical system’s
input-output properties, but can be difficult to determine
for nonlinear systems. Previous work designed a nonconvex
optimization problem to simultaneously search for a continuous
piecewise affine (CPA) storage function and an upper bound
on the small-signal L2-gain of a dynamical system over a
triangulated region about the origin. This work improves
upon those results by establishing a tighter upper-bound on
a system’s gain using a convex optimization problem. By
reformulating the relationship between the Hamilton-Jacobi
inequality and L»-gain as a linear matrix inequality (LMI) and
then developing novel LMI error bounds for a triangulation,
tighter gain bounds are derived and computed more efficiently.
Additionally, a combined quadratic and CPA storage function
is considered to expand the nonlinear systems this optimization
problem is applicable to. Numerical results demonstrate the
tighter upper bound on a dynamical system’s gain.

I. INTRODUCTION

Input-output (IO) stability theory views a dynamical sys-
tem as a mapping between inputs and outputs. One of the
most widely used IO descriptors is the £o-gain of a system,
which bounds the norm of the output with respect to that of
the input. The £,-gain is leveraged in control design through
the Small Gain Theorem [1], the basis of H., control. As
such, the L£,-gain of the system is an essential tool both for
analysis of and control synthesis for dynamical systems.

While the gain of a linear dynamical system can be deter-
mined easily [2], this is a more difficult task for nonlinear
systems. The nonlinear Kalman-Yacubovich-Popov lemma
[3] or relationships between Lo-gain and the Hamilton-
Jacobi equation [4] can provide conditions to determine
Lo-gain. However, these methods require knowledge of a
positive, semi-definite storage function for the system. De-
termining the storage function for a nonlinear system is a
non-trivial task and an active area of research[5][6][7][8][9].

Recent work formulated a nonconvex optimization prob-
lem that bounds the gain of a nonlinear system by searching
for a continuous piecewise affine (CPA) storage function that
satisfies a Hamilton Jacobi Inequality (HJT) [10]. Constraints
were imposed on the function at each vertex of a trian-
gulation to ensure certain properties, leveraging a similar
process in previous work on Lyapunov function synthesis
[6], [7]. The optimization problem in [10] depends on a
specific error term for the HJI constraint that, when imposed
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with the HJT on each vertex of the triangulation, ensures the
inequality holds for the entire region. However, the HJT and
its error term are polynomial in design variables — leading to
a conservative, nonconvex optimization problem that requires
methods like iterative convex overbounding (ICO) to solve.
Moreover, specific requirements on the error bound restricted
the optimization problem to a limited class of nonlinear
systems — notably precluding linear control affine terms.

This paper develops a novel LMI error upper bound to
impose LMI constraints on a CPA function on a triangulation
— convexifying the previous optimization problem. With this,
the HJI can be reformulated as an LMI, creating a convex
optimization problem that determines a CPA storage function
and the global optimum of the gain bound. Further, a convex
optimization problem is developed for a combined quadratic
and CPA storage function, expanding the class of dynamical
systems this work can be applied to. The end result is a
tighter upper bound on the small-signal L£2-gain of nonlinear
dynamical systems than that of [10].

II. PRELIMINARIES

The interior, boundary, and closure of the set 2 C R”
are denoted as °, 62, and €, respectively. The symbol K"
denotes the set of all compact subsets 2 C R™ satisfying
i) ¢ is connected and contains the origin and ii) 2 =
Qo. Scalars, vectors, and matrices are denoted as T, X,
and X, respectively. The notation Z? (Z%) denotes the set
of integers between a and b inclusive (exclusive). The p-
norm of the vector x € R"™ is shown as || - ||,, where
p € Z§°. Let L} represent the normed function space with

the norm |x[[zn = (5~ Hx(t)HPdt)% for p € Z5= and
|[%[|lzn, = sup;>q [[x(t)|]| < co. The extended L, space
is defined as the set of all functions x(t) : [0,00) — R”
for which the truncation to ¢ € [0,7] is in L} V T > 0.
By f € CF, it is denoted that a real valued function, f, s
k-times continuously differentiable over its domain.

The positive definiteness of a matrix is denoted by P > 0,
while positive semi-definite and negative definite and semi-
definite matrices are denoted similarly. Identity and zero
matrices are shown as I and 0. Let 1,, denote a vector of
ones in R™.

The right-hand (left-hand) wupper Dini derivatives
for some function, f is defined as DTf(y) :=
lim supy,_, o LEFRICN=FC) (hm SUPj_yo- f(X+kg(;<))—f(X))’

where k& € R and x = g(x) [7].
A. CPA Functions

In [6],[7], a compact subset of a system’s domain, R"”, is
triangulated, and a constrained linear optimization problem
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is formulated to solve for a CPA Lyapunov function —
affine on each simplex. This work uses a similar process
to determine a positive, semi-definite storage function. The
necessary definitions and tools for triangulation and problem
formulation are listed below.

Definition 2.1: (Affine independence [7]): A collection of
m vectors {Xo, X1,...,Xm} C R™ is affinely independent if
X1 — X0, ..., Xm — Xo are linearly independent.

Definition 2.2: (n - simplex [7]): A simplex, o, is defined
the convex hull of n 4 1 affinely independent vectors,
co{x; }}‘ZO, where each vector, x; € R", is a vertex.

Definition 2.3: (Triangulation [7]): Let T = {o;}["] €
PR™ represent a finite collection of m simplexes, where the
intersection of any two simplexes is a face or an empty set.

Let T = {o;};27. Further, let {x; ;}7_, be 0;’s vertices.
The choice of x; o in o; is arbitrary unless 0 € o, in which
case x;,0 = 0 [7]. The vertices of the triangulation 7 of €2 are
denoted as Eq. Let 7y denote the simplexes in 7 containing
0 and 7Tq\ {0} denotes those in (2 that do not contain 0.

Lemma 1: (Remark 9 [7]) Consider the triangulation 7 =
{oi}ih, where o; = co({x;;}]_), and a set W =
{Wx}xer, C R, where W(x) = Wy, ¥x € E7. For simplex
o, let X; € R™*"™ be a matrix that has x; ; —X; o as its j-th
row and W; € R™ be a vector that has Wy, ; — Wx,, 88
its j-th element. The function W (x) = xTX W, is the
unique CPA interpolation of W on 7T for x € o;.

The following lemma uses Taylor’s Theorem [11] to develop
an error term that compares function g € C? evaluated at
some x € o; to g evaluated at the vertex points of o;.

Lemma 2: (Proposition 2.2 and Lemma 2.3 [6]) Consider
Q € R" and its triangulation 7" = {o;}"7. Let g : Q — R
where g € C2. Then, for any z € 0; = co({xi;}}—) € T,

- Z Ajg(xi;) Z
j=0

7=0
o)

7Ci,gs (D

l\D\H

where {A\;}7_, € R is the set of unique coefficients
satisfying x = >0 Ajx;; with 37 (A; = 1 and 0 <
{>\ -}?:O S 13

cij=n||xi;—xi 0||(m%)7§

Xik—X O||+||Xz,] X 0”) 2)

x—f’ '

The L3-gain is a general 10 descriptor of a mapping
between two Hilbert spaces.

Definition 2.4: (L, stability [1]) A mapping G : L, —
L1, is L, finite gain stable if there exists 71,72 > 0 such
that

and
1) (x)

fiz  max I Do)

p,q,r €LY £€Uz
B. Lo Stability Analysis

1G)-llz, <mllurllz, + 72, 3)

where u € £ and 7 € [0, 00).

Definition 2.5: (Small-signal L,, stability [12]) The map-
ping G : Lip — LI, is L, small-signal finite-gain stable if
there ex1sts Ty > 0 such that (3) is satisfied for all u € E;”e
with supg<;<, lu@®)| < 7y-

The HIJI establishes a relationship between a system’s Lo-
gain and the Hamilton-Jacobi equations [4] and is the key to
relating gain and CPA storage functions in [10].

Theorem 1: ([4]) Consider the smooth system x = f(x)+
g(x)u, y = h(x), where x € R”, y € R, u € R™, and
f(0) = h(0) = 0. Let v > 0 and suppose there is a smooth,
positive semi-definite function V' : R” — R that satisfies the
HII (presented here in LMI form),

VVTf(x) VVTg(x) h'(x)
. —2421 0 |=o )
* * —21

for all x € R™. Then, for all xqg € R™, the system is Lo
stable with gain less than or equal to 7.

The storage function solution to (4) is actually only required
to be locally bounded and positive semi-definite, rather than
smooth [13, Theorem 3.1].

To verify (4), this paper synthesizes a CPA storage func-
tion that is only defined on the bounded set 2 € R™. As
established by [10], the L£o-gain can then only be found on
a subset of (2, so the small-signal properties of the system
are used to ensure the system is unable to leave the subset.
This is accomplished by determining a modified CPA barrier
function (Theorem 2, [10]).

III. MAIN RESULTS

LMIs are a valuable tool used to solve complex control
analysis or synthesis problems through optimization. This
paper develops novel error bounds for an LMI on an n-
simplex, so that this tool can be leveraged for CPA-analysis.
Additionally, an LMI to enforce constraints on a closed ball
about the origin is developed to expand the type of systems
CPA-analysis can be applied to. These bounds are then used
to design two convex optimization problems that bound the
Lo-gain for a given region of the state space. Both optimiza-
tion problems search for storage functions that satisfy (4),
but the second problem uses a discontinuous quadratic and
CPA storage function to include systems with linear control
affine terms (systems with a nonzero B matrix).

A. LMI Error Bounds

This section first develops a positive definite error bound
matrix for an LMI constraint applied to an n—simplex. En-
forcing the LMI constraint plus its error bound on the vertex
points of an n-simplex (xg, ..., X, € o) implies that the LMI
holds for all points within that simplex (x € o). While
[6] established a general error bound for C? vector-valued
functions (Lemma 2), it does not translate automatically to an
LMI that contains C? vector-valued functions. The structure
of an LMI affects its definiteness and is considered in the
following theorem.

Theorem 2: Consider

wo-[i s

where x € R", ¢ : R® - R, ¢ : R® = R™, ¢,( € C?, and
¢ (x) is the k" element of (. Let o := co{x;}7_o be an
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n-simplex in R™. If x = > | A;x; € o, then

L( N2 9
s(Be;+> uzcs 0
M(X) Z Xj ‘<Z)\ 2 J kz::I k J)

7=0 *

:ZAjE(xj) = E(x), ©)

N[

where )
¢ = n mae ;3 [} ™
> ¢(x)
8> wer%%eg DR |’ and 8)
52 ()
> _— . 9
P = q,rGZ{L?EGU 0x(@ ox(r) x-f’ ©)

Moreover, if M(x;)+ E(x;) < 0 holds for all vertex points
of o, then M(x) < 0 for all x € o.

Theorem 2 bounds the difference between M(x) at
any convex combination of vertex points and the convex
combination of the LMI evaluated at each vertex point,
Z;-L:O A;jM(x;). The proof parallels Proposition 2.2 in [6]
by developing remainder terms using Taylor’s theorem, but
exploits the structure of M(x) to establish an LMI error
bound. Note the negative identity matrix in (5) is essential
to enforce negative semi-definiteness.

Proof: By definition, any point x € ¢ can be written as
a convex combination of the vertices, i.e., x = Z?:O AjX;.
Applying Taylor’s Theorem [11, Theorem 14.20] to ¢ and ¢
about x for each vertex point in ¢ results in

3 No(x))= Z/\ ( Vo(x), Ax;)
=0

+(Hg(25,6) A%, ij>)

and
DA )= 30 A (¢R (0)+(V¢ B (), Ax;)
j=0 =0
J J )
+§ <Hc(k) (Zj,c(k) )ij, ij>) .

Here, Ax; = x; — x, H, is the Hessian for ¢, and z; 4 and
z; ¢ are each some convex combination of x; and x. Because
¢ is a vector-valued function, each dimension of {(x) € R™
is separately expanded — represented as element ¢ (%) (x) with
a corresponding Hessian Hyx) for k =1,...,m.

Let E(x)=M(x)— > o AM(x;). In E( ), the summed
zeroth order terms of each function’s Taylor expansion in
Z?:o AjM(x;) cancel with the corresponding terms in
M(x). Furthermore, the summed first order terms of each
expansion become zero, because Z?:o Ai(Vf(x),x; —x)
=(V[(x), 2 j=0 \ix; — x) = (Vf(x),0). Altogether,

—(Hg(z),¢) A%, AXj) % ... *
—(Heax(zjc00)A%5,A%5) 0 ... 0

7<H<(m)(Zj,<(m))AXj’AXj> 0...0

Consider the definition of negative definiteness. Let w=

[w1 wy || where wy € R! and wy € R™ Then,

D [ ] (Hy(20) A, Ax pw)
7<H<(1) (Zj7<(1) )AXJ', AXj>
+w2T wl}.

— <H<(rn) (ZjA,Gm) )AXj, AX]'>

Whether w ' E(x)w is positive or negative depends on
both the values within E(x) and w itself, because of
cross terms. By completing the square on the cross terms
(2w] ATBw; < w{ ATAw; + w, B'Bwy), this depen-
dency is removed to bound E( ) for all w € R™+1:

i [ ( (Hy(z,0) A%, Ax;)
=0
+§:[<H<<k>(zj,<<k>)ij,ij>2D } +wy 21W2
k=1

The expression above can then be simplified by applying
the Cauchy-Schwarz inequality, Lemma 2.3 of [6], and the
bound ||Ax; ||2 < maxyezn [|%; — vag to produce the final
upper bound on w' E(x)w

m

W 22/\ (ﬁcj —|—Z ukc )w1 +wy 2IW2

Hence, w E(x)w < w E(x)w for all w € R™1,
implying (6).

Now suppose that M(x) < 0 must be imposed on all x €
o. By assumption, M(x;)+E(x;) =< 0 holds for each vertex
of o (xg,-..,%n). The set of negative semi-definite LMISs is
a convex cone [14]. By enforcing M(x;) + E(x;) < 0 on
each vertex, the expression Z?:o Aj(M(x;) + E(x;5)) <0
also holds. The LMI M(x) + E(x) < 0 implies M(x) < 0,
because E(x) > 0. Therefore, M(x) <0 forall x € 0. W

Theorem 3: Consider the inequality

C(x)T¢(x) + % (xT0(x)+0(x)'x) <0, (10
where x € R™, 6 : R* — R™, ( : R® = R™, 0, € C?,
6(0) = 0, and ¢(0) = 0. Let B.(0) be a closed ball about
the origin with radius e,

920 (x)
e > 11
b = el £eB, (0) | OxDax(" |x—t (1
92¢(P)
he > R BT
peZT qrel £€B.(0) | 0x(DOx(T) |x=¢

and J4(0) and J¢(0) be the Jacobian of # and (, respectively,
evaluated at x = 0. If

M= %(J9(O)T”f’(0)+(in%ﬂe+e2n2mu?)l) Jg((l)ﬂjo
i (13)

holds, then (10) holds for all z € B.(0).
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Proof: For vector-valued functions, Taylor’s theorem
can be applied to each dimension. By applying Taylor’s
Theorem about the origin,
1_XTHC(1)(Z<(1)) 1
¢(x) :JC(O)X+§ x::(A1+§A2)x::Ax,
_XTHC(m) (Z<<m))
and
M T
X Hg(l)(Zg(l))

1 1
Q(X) :JQ(O)X+§ )(::(B1—|—§B2))(::Bx7

_XTHe(n) (Ze(n))

where each Z(k) and z, are each some convex combi-
nation of x and O for k¥ = 1,...,m and r = 1,...,n.
Then, (10) is equivalently expressed as x' ATAx +
#(x"Bx+x"B'x) < 0. Noting that scalars equal their own
transposes, factoring out x' and x and performing a Schur
complement [14] on ATA results in the LMI
;(B+BT) AT
A -1
Both A5 and By contain x. Therefore, an infinite number of
constraints are needed to enforce M, < 0 for all x € B.(0).
By definition, the LMI M, < 0 is equivalent to
wi 3(B+ BT )wi+2w] Al wotw{ AJ wo—w, Iwy<0
holding for all w=[w; w;f , where w; € R"
and wo € R™. Like in Theorem 2, problematic off-
diagonal terms, in this case Ay, can be bounded
above via Young’s relation [15] to get the inequality
w{ 3(B+BT+A] As)wi+2w]{ Al wo—wj 3wy < 0.
The terms A; A5 and Bs are then bounded above using the
definition of the matrix two-norm and the Cauchy-Schwarz
inequality. Lemma 2.3 from [6] is then applied to the norm
of each Hessian, and the definition of B.(0) is used to
produce an upper bound on (10),

- [I730) 4] -

1
wi g ((Bl+B1T)+(en%ﬂe + eznzm;é)l)“
1
+2WIAIW2*W;—§IW2 <0,

which is equivalent to (13). Then, M, < 0 implies 1\~/I€ =0,
which is equivalent to (10). |
B. Ls-gain Analysis

This section develops convex optimization problems to
bound an input-affine system’s Lo-gain. Theorem 4 covers
when the input-affine term disappears at the origin, while
Theorem 5 allows it to remain nonzero at the origin. This dis-
tinction is important, as all error bounds in the optimization
problem must be zero at the origin to prevent infeasability.
While this always occurs when the input term disappears,
a modified quadratic and CPA storage function (which is
quadratic at the origin) is needed for the nonzero case.

Theorem 4: Consider the constrained mapping G : L5, —
L8, defined by y = Gu,

where f : R" — R”, h : R® — RP, B € R"™™™ g is
a n X m matrix where each kth column g; : R" — R",
and f(0) = 0, g(0) = 0, and h(0) = 0. Let Y = {u €
L5 supg<i<r |[u(t)|| oo < 7} for some 7, > 0 that ensures
x remains in subset  of the state space [10, Theorems 2,
3]. Let B = 0. Suppose that f, g, h € C? for a triangulation,
T = {0}, of a set Q € R". Define a candidate CPA
storage function, V' = {Vx }xeg,. Consider the optimization
problem

L
a>0, (152)
Vi>0 VxeEr, (15b)
|VVill, <li, VieZPT, (15¢)
M,;,; <0, VieZ" Vjell x#0, (15d)

where o = '72, L = {ll}lniq C R™, and

M, ;=

p
YV i)+ 3(Breas ()1 2at) + o x
a=1

g(x:;)VV —2al+ 41 *
h(x;.;) 0 31 x
5] T 2
(171;[%)017] [ﬂi,l N ,u”;,m] 0 0 21
(16)

Further, ¢; ; is defined by (2) when o; € 7y and by (7) when
o; € Tor {0y

2P (x)
i > — 17
P _p,q,rrenza?)féen Ox(@9x(1) Ix=¢ (n
9?h@ (x)
> Zr
Pia Z q,rerg?,}geai Ix( @ Hx (™) x_§' , and (18)
829(17) (X)
ik 2 —k , 19
Hik _p,qﬂ'renzaf')féen 0x(0) 9x(r) |x=¢ (19)

where a € Z5 represents each dimension of the output, and
k € Z7" represents each column of matrix g(x).

If the optimization problem, (15), is feasible, then (4)
holds for all points in 2° and v* = v/a* is an upper bound
on the £5-gain of G in °.

Proof: Note that 3;, p;q, and p; ; exist for all sim-
plexes, because f, g, h € C? and (Q is bounded. Furthermore,
¢i,; is finite for all n-simplexes in 7, because 2 € R"™.
Defining c¢; ; as in (2) when o; € Ty ensures that the error
bound is 0 at the origin.

Constraint 16 is a result of applying Theorem 2 to the
gain LMI, (4), and then using the Schur complement. In
detail, because V is a CPA function, VV is computed
using Lemma 1 and is constant over each n—simplex. When
applying Theorem 2, the error of each function in (4) can
factor VV out, e.g. VV f(x) — VVT 3" Nif(xi) =
VVT(f(x) — Yy Aif(x;)). From Theorem 2, the error
in the off-diagonal terms of the LMI is bounded above

. n m by completing the square. The Cauchy-Schwarz inequal-
x=f(x)+(B+g(x))u xeX R, ucldeR T . . .
Q:{ zg ; (B+g(x)) (14) ity is applied to error terms that interact with V'V, e.%.
=h(x
Y ’ sVVIH(2)Ax;, Axi) < 5 [[VV], [[Hy(2)], [|A%;]5-
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Through equivalence of norms, ||[VV|, < |[VV]|; . The LMI
(4) and its upper bound are then defined as

VVTf(xij)+é, VVTg(xi;) h(xij)
* —20{1—1—%1 0
* * —%I

where

1 - <
€ij=5 (Bic@j(llm DN AED D M?,kC?,j(llli)Q)
a=1 k=1

Schur [14]
Z pz G j(lTl )2 to get the equivalent LMI, (16).

Perform a complement about

By enforcing Constraint 15b on each n—simplex, V'(x)
is a viable storage function for G in the region 2. From
Theorem 2, (4) will hold for all x € Q° for ~*. |

Theorem 5: Consider (14). Suppose that f, g, h € C? for
set 2 € M". Let U={u € L3} supy<,<, [[u(t)||, <r.} for
some 7, > 0 that ensures x remains in subset ¢ of the state
space [10, Theorems 2, 3]. Let B¢ (0) be some ball about the
origin with radius €, and let 7 = {o;}"7 be a triangulation

of Q\ B(0)°. Define a candidate storage function,
TP <
Vix) = X Px Il = (20)
V) il >

where the function is a quadratic near the origin with P =
P’ € R™™ and then, at ||x|| > ¢, becomes the CPA
function V = {VX}XGE?. Consider the optimization problem

min =«
V.,P,a,L,l,
a >0, (21a)
P >0, (21b)
1Plly < Ly, (21c)
M. =0, (21d)
Ve 20 VxeEz, (21e)
IVVill, <L, VieZ]'T, (21f)
M, ; <0, VieZ,'7,Vjelg, 2lg)
where o =42, L = {I;};7, C R", and M, is defined as
w  PB 3,007 Le X 350, I lnZm? el
k=1
«(-5+3)I o0 0 0
* * —%I 0 0
* * * -1 0
* * * * —2I

(22)

Here, w = PJ;(0) + J;(0)TP + (lpen? B + 2e2n?pp?)I,
J,(0) represents the Jacobian of the function, ¢, evaluated
at zero,

and
829(p)(x)
> ——k 22 25
He = keZ]",p,q,r?gZ)%,geBg(o) 0x(D 9x(7) |x=¢ (25)

Further, ¢; ; is given in (7), B;, pi,a and p; are given in
(17), (18), and (19), and the LMI M, ; is defined by (16).

If the optimization problem, (21), is feasible, then (4)
holds for all points in ° and v* = /a* is an upper bound
on the Lo-gain of G in Q°.

Proof: When ||x||, > € and V is a CPA function,
the proof follows similarly to Theorem 4. When ||x|[|, < €,
Constraint 22 creates an upper bound on the HIJI for all x €
B.(0). To develop this constraint, perform a Taylor series
expansion on the HJI about the origin, x ' P f+fTPx+
%XTPQEJTPX + %BTE < 0. For example,

§g=9(x) =B+ [Jg,(0)x ...y, (0)x] +

T
X Hgg) (Zgil)) XTHgﬁ,{) (ng,p)

| =

xH o™ (Z (n) xH o (Z (n)
91 9m 9m

where H o (z (p>) is the Hessian of the pth row and kth

column of g evaluated at a convex combination of x and 0.
Apply Theorem 3 to get the LMI,

@ PB Jn(0)7
* (=$+5)1 0 | =0,
* * —2I

where

1
=PA+A'P +( en ppeJrilanduf et

+1 6n256+l22||.]gk )|l )L

k=1
Perform a Schur complement [14] about terms containing l?)
to get (25).

From Theorem 3, (4) holds for all x € B.(0) for v*. From
Theorem 3.1 [13], if this discontinuous V' is a solution to the
HIJIL, the v* is a valid bound on the Lo-gain of (14). |

After finding an upper bound on a system’s gain, Theorem
5 in [10] can be used to find the small-signal properties of
(14). This determines the largest value r,, > 0 so that the
system remains within £2° — where the gain bound is valid.

IV. NUMERICAL EXAMPLE
Consider the dynamical system
T1 = T2
G: < iy =—sinz; — g + k(xX)u

Yy =Tz,

(26)

where x € R?, u € R, and y € R. Let § be the triangulated
region about the origin; an example of which is shown

2
3. > max 9% @) (x) ‘, (23) in Figure 1. In open-loop, (26) has a Lyapunov function,
T parer; £eB.(0) | Ox(DIx() |x=¢ V(x) = (1 —coszy) + 3. Substituting V(x) into the HJI
821 (x) as a storage function results in the inequality,
e > —— , 24 _
Pe= pezf,q,rrélzaffse35<0> Ix(@) 9x(1) [x=¢ 4 0.523 (v 'k(x)* — 1) <0. (27)
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Fig. 1. Triangulations of the region, €2, about the origin for dynamical
system, G.

Given a k(x), the £o-gain of G can be bounded above.
The numerical examples will show how close the general
purpose, algorithmic search proposed here can come to
the tight bounds achieved through V'(x), representing ad
hoc ingenuity, that cannot necessarily be replicated in all
systems. Two variations of G are considered — comparing
our methodology to analytical techniques of determining Lo-
gain and previous work that established a system’s Lo-gain
iteratively. In each numerical example, the gain bound is
found for increasingly fine triangulations of 2 using the
triangulation refinement process in [16] with toolbox [17].

A. Pendulum

Consider G with k(x)=1, a classic pendulum. Previous
work [10] could not be used to bound a pendulum’s Ls-
gain, because k(x) is a linear control affine term. Therefore,
|9(x)Tg(x)|| _#0 at x=0. Theorem (5) removes this condi-
tion and can be used linear control affine systems.

From (27), the Lo-gain of G satisfies v < 1. Figure 2
shows the result of optimizing (21) for an increasing number
of n-simplexes, as well as the time taken to complete this
convex optimization. The L»-gain bound decreases as the
triangulation becomes more refined, and reaches its lowest at
v < 2.61 when opitmizing over 7304 n-simplexes. Applying
Theorem 5 with Initialization 4 from [10], the small-signal
property for this system was found to be ||u(t)||oo < 0.077.

B. Pendulum with Control Affine Input

The variation k(x) = o is considered here to compare
to [10]. From (27), v < max{x3|xy € Q}. For the given
Q, v < 0.64. Previous work [10] developed a non-convex
optimization problem and solved it using ICO, which only
guarantees convergence to a local minima, creating more
conservative bounds than in (15). In [10], the gain bound was
found to be v < 3.85. In comparison, the best L£5-gain bound
found using the techniques developed in this paper was
v < 0.77 with the small signal property, ||u(t)||oo < 0.2554.
Figure 2 shows the optimal gain bound found when solving
Problem 15 over different numbers of n-simplexes. Even
at the lowest number of n-simplexes, the gain bound still
outperforms [10] with a bound of v < 1.25.

V. DISCUSSION

This work developed two convex optimization problems
to determine the Lo-gain of a dynamical system for a
triangulated region about the origin. By reformulating the

Ls-gain versus Number of Simplexes

A Pendulum
— @— - Penudlum with Control Affine Input
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Optimization Time (s)

=45
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Fig. 2. The L2-gain bound was analyzed for an increasing numbers of
simplexes over 2 for two systems — a pendulum and a pendulum with a
control affine input.

HIJI as an LMI and developing novel LMI error bounds for a
triangulation, the system’s gain can be bounded more tightly
than a previous method, [10]. Moreover, developing an LMI
to enforce an inequality about the origin enabled a combined
quadratic and CPA storage function that can be used on
systems with linear control affine inputs. A limitation of this
methodology is that it can only be applied to bounded regions
of the system’s state space, so future work should consider
methods to expand this technique to the entire state space.
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