Robotic Tutors for Nurse Training: Opportunities for HRI Researchers

Carlos Quintero-Peña,^{1*} Peizhu Qian,^{1*} Nicole M. Fontenot,² Hsin-Mei Chen,² Shannan K. Hamlin,² Lydia E. Kavraki¹ and Vaibhav Unhelkar¹

Abstract—An ongoing nurse labor shortage has the potential to impact patient care well-being in the entire healthcare system. Moreover, more complex and sophisticated nursing care is required today for patients in hospitals forcing hospital-based nurses to carry out frequent training and assessment procedures, both to onboard new nurses and to validate skills of existing staff that guarantees best practices and safety. In this paper we recognize an opportunity for the development and integration of intelligent robot tutoring technology into nursing education to tackle the growing challenges of nurse deficit. To this end, we identify specific research problems in the area of human-robot interaction that will need to be addressed to enable robot tutors for nurse training.

I. Introduction

As the largest hospital workforce, nurses are essential to the overall stability of healthcare organizations and play a vital role in delivering quality patient care. An ongoing nurse labor shortage threatens to disrupt the entire healthcare system and presents a complex challenge: there is a decreasing supply of nurses while the demand for nursing services continues to rise, **creating an ever-widening nurse labor deficit** [1, 2]. According to the Bureau of Labor Statistics, the U.S. healthcare sector has lost approximately a half a million workers since February 2020, with nearly one in five healthcare workers leaving since the COVID-19 pandemic began [3]. This alarming and dire nursing shortage is only projected to worsen in the next decade [4, 5].

At the same time, today's hospitalized patients require more complex medical management and sophisticated nursing care than ever before. As a result, hospital-based nurses are required to undergo extensive, frequent training to ensure safe patient care is provided. The training includes education of nursing skills and periodic skill validation, both of which are currently conducted by expert nurses (Fig. 1). A growing challenge for healthcare facilities is sustaining the current nurse-to-nurse model of training given the nursing labor shortage and large volumes of nurses who require ongoing educational support.

We anticipate that addressing these challenges in nursing (not unlike other fields of medicine) will involve interdisciplinary solutions that merge expertise from healthcare, human factors, and technology. In particular, we (a multidisciplinary team of nurses, nurse scientists, roboticists, and AI researchers) envision the development of **intelligent robotic**

{carlosq,pqian,kavraki,vaibhav.unhelkar}@rice.edu {nfontenot,hchen5,shamlin}@houstonmethodist.org

Fig. 1. A nurse educator (human expert) training nurse trainees with the aid of humanoid robot patients.

tutors that assist expert nurses in both education and assessment of nursing skills (Fig. 2). In this paper, we translate our need-driven vision to research problems for human-robot interaction (HRI) researchers and practitioners. Our goal is to invite the HRI (and more broadly AI and robotics) community to address these research problems and enable development of robotic tutors for nurse training.

II. RELATED WORK: ROBOTS IN NURSING

Hospital-based nurses are no stranger to technology and already employ several technological solutions to triage patients, monitor patient health, and maintain electronic health records [6, 7]. Robots are also being introduced to assist nurses in hospitals, with considerable commercial activity in the field [8–12]. These robots hold the potential to support nurses in some routine tasks, allowing them to spend more time on patient care, increasing quality of care, and improving patient health outcomes [13]. In pilot studies, robots have been shown to successfully fetch items, disinfect rooms, and help reduce hospital associated infections [14–16].

Our vision is informed by this growing work on robots in nursing but differs in its focus. While the aforementioned robots focus on assisting nurses as they are supporting patients, we consider robot-assisted *nurse training*. Recent survey articles highlight the challenges that robots could help address in nursing education [17, 18]. Dante et al. [19] in detailed survey identify that two main robotic technologies are currently being explored in nursing education: humanoid robot patients and remote-presence robots. While important

^{*}Authors contributed equally and are ordered randomly.

¹ Rice University.

² Houston Methodist Academic Institute. {carlosq,pqian,kavraki,vaibhav.unhelkar}@rice.edu

Problem 1 Problems 2 & 3 Problems 4 & 5 Nurse's knowledge mastery level Change change Ones injection change change Ones injection change c

Fig. 2. Schematic representing key research problems that will need to be addressed during the development of robot tutors for nurse training. We envision interactive robot tutors that maintain task models of nursing procedures (Problem 1), assess nurse trainees' skills using perception (Problem 2) and human modeling algorithms (Problem 3), and help accelerate nursing skill acquisition by providing personalized feedback (Problems 4 and 5).

and synergistic, these systems differ from the proposed vision of robotic tutors. As detailed in the following sections, we propose research and development of interactive robot tutors that observe nurse trainees using their sensors, assess their skills using human modeling algorithms, and provide feedback to accelerate skill acquisition.

Such robot tutors hold the potential to reduce the time to acquire nursing skills and enable nurse educators to train a larger cohort of nurses. Studies that aim at measuring nurses' attitudes toward robots [20] will need to be carried out in order to help guide how robot tutors are introduced to nurses and mitigate any potential side effects associated with their use.

Currently, nursing pedagogy does not discuss robots or their potential influence on the nursing workflow [13, 21]; instead nurses are expected to learn about new technology on the job. Along with their direct benefit for skill acquisition, we expect introducing robots in nursing education would also help the nursing community form more accurate mental models of prospective robotic assistants.

III. ROBOTS FOR SKILL ASSESSMENT

The ability to assess a trainee's skill is essential to effectively tutor them. Thus, first we describe potential of interactive robots for objective assessment of nursing skills.

Many important nursing procedures (such as central line dressing change, subcutaneous injection and others) require long sequences of subtasks in which nurses manipulate specialized medical objects and interact with patients. Currently, when validating a nurse's skill on such medical procedures, an expert nurse (human educator) observes and determines if a standardized protocol was followed by the nurse trainee. To ensure that assessments are done objectively, nurse educators typically utilize checklists and need to observe the trainee for the entire duration of the procedure. Nursing procedures can have multiple subtasks and involve off-nominal scenarios, thereby making the assessment process highly time-intensive. Moreover, many nursing skills are required to be validated annually which is especially challenging for larger hospitals.

For instance, a hospital with over 2000 nurses will require up to 20 nurse educators daily for more than a month to observe every nurse's skills. Not only does this model require extensive specialty nurse resources, it removes the expert nurse from the patient's bedside for up to 4 hours each day.

We posit that an intelligent robot tutor – equipped with a task model of the nursing procedure, an appropriate perception module, and algorithms for modeling and monitoring task-oriented human behavior – can help in objective assessment of such physically grounded nursing skills. Our hypothesis is informed by other fields of medicine (e.g., surgery) that have already begun exploring AI-assisted objective assessment of skills using off-the-shelf sensors and machine learning algorithms. Robot-assisted nurse assessment would not only reduce the number of nurse educators needed for periodic assessment of nursing skills but also reduce the time nurses are away doing non-patient care activities. Next, we highlight three research problems that will need to be addressed to realize such a system.

A. Problem 1: Specifying Task Models of Nursing Procedures

To objectively assess a trainee's ability to perform a medical procedure, a robot tutor will first require a computational model of the procedure. The robot will need to know the subtasks that constitute the procedure, the objects (e.g., medical instruments) relevant to the particular sub-task, the sequence of actions that the nurse needs to take for completing the subtask, and the appropriate response in off-nominal scenarios. The wide diversity of procedures, objects, actions and their relationship in the medical domain makes the problem of task representation for nursing procedures particularly challenging. We anticipate mathematical models and description languages used in the areas of planning and robotics - such as the Planning Domain Definition Language (PDDL) [22], Markov Decision Processes (MDP) [23], Hierarchical Task Networks (HTN) [24], and Petri Nets [25] - will be useful starting points.

For instance, PDDL-inspired models have been used to represent tasks in the nursing workflow [26, 27]. However,

to capture the diversity in nursing procedures and hospitalspecific practices novel techniques that enable nursing domain experts to translate their domain knowledge into robotinterpretable computational models will need to be developed. In the HRI community, there is already a strong and growing body of work on robot learning from human teachers [28], advances which can help address this need.

B. Problem 2: Perceiving the Nurse Training Environment and Activities

Given the task model of a nursing procedure, a robot tutor can gain the understanding of its success criteria. However, to assess whether the criteria are met, it needs additional capabilities to observe a training session (both the nurse actions and the environment) and ground such observations to its task model, i.e., map the information obtained through its sensors to a known representation in the task model. Realizing this requirement can be viewed as a domain-specific case of the robot perception and grounding problem. To meet this requirement, solutions for nursing can utilize off-the-shelf sensors (e.g., cameras and physiological sensors) and build upon continued advances in machine learning algorithms for scene perception and activity recognition [29, 30]. However, a critical bottleneck in direct application of existing techniques is the necessity of large datasets to train learned models [31].

We expect research on scene perception and activity grounding from *small datasets* through *multimodal and active sensing* particularly relevant for nursing. By utilizing sensors placed on the robot (e.g., cameras, LIDARs), on the nurse (e.g., heart rate monitors), and in the training environment, multimodal perception techniques can help provide a richer context. For instance, Inoue et al. provide a smartphone-based dataset for nursing activity and use it recognize nursing activities. Research on active sensing [33], which utilize the ability of the robot to obtain measurements from multiple perspective and through human-robot communication, will also be important given that nursing activities can often be subject to occlusions from a single perspective.

C. Problem 3: Characterizing Learning Curves of Nurse Trainees

Lastly, given the ability to model and perceive the nursing procedure, a robotic tutor will need to translate the perceived information into objective assessment of nurse trainees' skill level. To meet this requirement, we expect research on human modeling and, in particular, knowledge tracing to be particularly relevant. Knowledge tracing refers to when a machine models the knowledge of a student as they interact with computer-based tutors, such as an intelligent tutoring system (ITS). One of the most widely used techniques is Bayesian Knowledge Tracing (BKT) [34]. BKT models a learner's knowledge mastery level using a Hidden Markov Model (HMM), which updates the probability of a learner knowing the knowledge through the learner's response to questions from the tutor. Other dynamic probabilistic models have also been explored for knowledge tracing, such as Performance Factors Analysis [35], Learning Factors Analysis (LFA)

framework [36], and Knowledge Graph [37]. Recent work has also explored the use of neural networks in knowledge tracing [38, 39]. For using a robot as an objective evaluator of nursing skills, interactive knowledge tracing solutions that build upon these techniques and utilize human-robot communication seem particularly promising.

IV. ROBOTS FOR SKILL TRAINING

In addition to serving as an assessment aid, a robotic tutor can also help provide feedback to accelerate nurse trainees' skill acquisition. Currently, one nurse educator provides faceto-face education to up to 20 nurses at a time. This training model requires significant involvement of expert nurses when large volumes of nurse trainees need the identical education. For example, when a new device is introduced into the clinical environment, every nurse will require instruction on how to use it. Robot-assisted education would allow for more nurses to be educated in a shorter time frame and provide opportunities for personalized learning. Widespread utilization of the device impacting patient care and outcomes would happen sooner. We envision robotic nurse tutors as learning aids, similar to how self-guided videos and checklists are currently used. This approach aims to augment (and not replace) the educational process between instructors and learners. Careful pedagogical designs will be required to ensure that training for nursing skills is provided effectively by the team of human instructors and robotic tutors.

Related to robotic tutors, virtual intelligent tutoring systems are being explored for nursing education [26, 27, 40, 41]. Unlike traditional ITS which primarily provide audiovisual feedback, robotic tutors through their physical embodiment can endow both physical and audiovisual interactions. In other domains, the ability to provide multimodal feedback has been shown to produce significant cognitive benefits and achieving learning outcomes that are similar to those of human tutors on restricted tasks [42–44]. In this section, we discuss the additional challenges that need to be addressed to bring forth these benefits for training nursing skills.

A. Problem 4: Designing Personalized Feedback

The fourth challenge is determining what to teach; in other words, determining how to generate instructions to improve nurses' knowledge of a task. This problem of selecting good examples and generating instructions to explain a task is highly related to the research field of explainable AI (XAI), especially task-oriented XAI which is often seen in explaining robot behavior. Solutions for describing sequential decisionmaking behavior of autonomous agents and (more recently) robots include providing users with local examples and/or a global summary of the behavioral policy [45–49]. Such methods take a task model as input and output selected instructions. For example, authors in [49] describe the task using a Markovian policy and algorithmically select (state, action)-pairs that highlight the robot's strategies to complete a task. Similarly, given a nursing task, an essential problem to address is how to algorithmically generate instructions that can help nurses learn the optimal way of completing tasks as quickly as possible.

Research in pedagogy is also highly relevant, which categorizes teaching strategies based on the use of direct versus indirect instructions [50–52]. Direct instructions are teachercentered, involve clear teaching objectives and consistent classroom organizations; indirect instructions are student-centered and encourage independent learning. There is a rich body of work on intelligent tutoring system (ITS), which is developed to provide independent learning opportunities for students through expert-designed materials, as a combination of direct and indirect learning-and-teaching, that can help inform the development of robotic tutors for nurse training.

B. Problem 5: Communicating Feedback in a User-Interpretable Manner

The second challenge, closely followed after what to teach, is how to teach. For tutoring of nursing skills, information can be delivered to humans using a variety of modalities (e.g., text, images, augmented/virtual reality) and types (e.g., natural language explanations, template-based explanations, demonstrations). The design space for delivering the instructions is rich. We envision three categories of help actions that a robot tutor can take: no action (observing the nurse's activities), giving a verbal hint, and performing a physical action (e.g., providing demonstrations or creating novel scenarios that require objects manipulation). To determine which help action is more effective and efficient, reward and cost functions are needed for evaluating the estimated learning outcomes of different help actions and the cost of each help actions (e.g., time, space, resource).

Unique to robot tutors – unlike other tutoring systems such as ITS – is their ability to perform actions that can modify the state of the world around the nurse trainee. This capability can be used to provide demonstrations of certain critical tasks and to physically create realistic scenarios in physically simulated environments, a feature that is currently limited only to human tutors. To realize such behavior, a robot needs to reason over both discrete decisions (what to do) and continuous parameters (how to do it). Task and Motion Planning (TAMP) [53, 54] and multimodal planning [55] algorithms provide methods to tackle these problems through a layered planning approach. Discrete reasoning is performed through symbolic planning [22], while continuous parameters (i.e., how to grasp or put down an object) are computed using motion planning [56].

Although tremendous advances have been made in the TAMP community, these techniques are still largely limited by modeling choices and assumptions, such as uncertainty in the robot's actions and perception, and limitations in the robot's capabilities. Further work along this direction will help enrich the space of tutoring modalities and enable effective communication of tutoring feedback.

V. CONCLUSION

In this position paper, we highlight a novel need-driven opportunity for HRI researchers: development of robotic

tutors for nurse training. Towards this opportunity, we highlight specific research problems and application areas for researchers working on human activity recognition, human-robot communication, task and motion planning, interactive user interfaces, among others. Our goal is that this preliminary analysis will motivate novel solutions for training nurses (and more broadly addressing the nursing shortage) from the HRI community.

Developing mature and robust solutions for this novel application will require contributions from both the academia and industry. Preliminary work, particularly for Problems #1, #3, and #4, will largely involve academic research to demonstrate benefit of robotic tutors in proof-of-concept nursing scenarios. Problems #2 and #5 involve components that are already part of commercial robotic systems; increased focus on these components in the nursing context will help accelerate transition to practice. Moreover, the list of research problems described in the preceding sections is not meant to be exhaustive. We expect further work in this area will motivate additional problems (and solutions) across different technology readiness levels.

Concurrently, within the nursing community, there is growing interest in understanding and characterizing the role of AI and robots in nursing and nurses' perspective towards this novel technology [6, 57]. We expect that this cross-disciplinary effort will contribute to this understanding and enable the next generation of nurses to better calibrate their trust in robotic systems.

VI. ACKNOWLEDGMENTS

This work was supported in part by NSF award #2222876, the Houston Methodist Hospital, and Rice University.

REFERENCES

- [1] R. A. Smiley, C. Ruttinger, C. M. Oliveira, L. R. Hudson, R. Allgeyer, K. A. Reneau, J. H. Silvestre, and M. Alexander. "The 2020 national nursing workforce survey". In: *Journal of Nursing Regulation* 12.1 (2021), S1–S96.
- S. P. Juraschek, X. Zhang, V. Ranganathan, and V. W. Lin. "United States registered nurse workforce report card and shortage forecast".
 In: American Journal of Medical Quality 27.3 (2012), pp. 241–249.
- [3] E. Wager, K. Amin, C. Cox, and P. Hughes-Cromwick. What impact has the coronavirus pandemic had on health employment? Peterson-KFF Health System Tracker, 2021.
- [4] M. Marć, A. Bartosiewicz, J. Burzyńska, Z. Chmiel, and P. Januszewicz. "A nursing shortage-a prospect of global and local policies". In: *International nursing review* 66.1 (2019), pp. 9–16.
- [5] L. M. Haddad, P. Annamaraju, and T. J. Toney-Butler. "Nursing shortage". In: StatPearls [Internet] (2020).
- [6] N. Robert. "How artificial intelligence is changing nursing". In: *Nursing management* 50.9 (2019), p. 30.
- [7] F. Stokes and A. Palmer. "Artificial intelligence and robotics in nursing: ethics of caring as a guide to dividing tasks between AI and humans". In: *Nursing Philosophy* 21.4 (2020), e12306.
- [8] T. E. Kirschling, S. S. Rough, and B. C. Ludwig. "Determining the feasibility of robotic courier medication delivery in a hospital setting". In: *American Journal of Health-System Pharmacy* 66.19 (2009), pp. 1754–1762.
- [9] R. Bloss. "Mobile hospital robots cure numerous logistic needs". In: Industrial Robot: An International Journal (2011).
- [10] E. Ackerman. "Diligent Robotics Bringing Autonomous Mobile Manipulation to Hospitals". In: IEEE Spectrum (2018).

- [11] M. Kangasniemi, S. Karki, N. Colley, and A. Voutilainen. "The use of robots and other automated devices in nurses' work: An integrative review". In: *International journal of nursing practice* 25.4 (2019), e12739.
- [12] E. Ackerman. "Akara Robotics Turns TurtleBot Into Autonomous UV Disinfecting Robot". In: IEEE Spectrum (2020).
- [13] M. Tietze and S. McBride. Robotics and the Impact on Nursing Practice. 2020.
- [14] Z. Li, P. Moran, Q. Dong, R. J. Shaw, and K. Hauser. "Development of a tele-nursing mobile manipulator for remote care-giving in quarantine areas". In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2017, pp. 3581–3586.
- [15] S. Abubakar, S. K. Das, C. Robinson, M. N. Saadatzi, M. C. Logsdon, H. Mitchell, D. Chlebowy, and D. O. Popa. "Arna, a service robot for nursing assistance: System overview and user acceptability". In: 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE. 2020, pp. 1408–1414.
- [16] H. Worlikar, V. V. Vadhiraj, A. Murray, J. O'Connell, C. Connolly, J. Walsh, and D. O'Keeffe. "Is it feasible to use a humanoid robot to promote hand hygiene adherence in a hospital setting?" In: *Infection Prevention in Practice* (2021), p. 100188.
- [17] N. Maalouf, A. Sidaoui, I. H. Elhajj, and D. Asmar. "Robotics in nursing: a scoping review". In: *Journal of Nursing Scholarship* 50.6 (2018), pp. 590–600.
- [18] A. Romero, J. De La Hoz, and J. González. "Robots in nursing education: a bibliometric analysis". In: *Journal of Physics: Conference Series*. Vol. 1391. IOP Publishing. 2019, p. 012129.
- [19] A. Dante, C. La Cerra, V. Masotta, V. Caponnetto, L. Bertocchi, A. Marcotullio, F. Ferraiuolo, C. M. Alfes, and C. Petrucci. "The use of robotics to enhance learning in nursing education: a scoping review". In: Methodologies and Intelligent Systems for Technology Enhanced Learning, 11th International Conference 11. Springer. 2022, pp. 217– 226.
- [20] H. S. Kang, I. S. Koh, K. Makimoto, and M. Yamakawa. "Nurses' perception towards care robots and their work experience with socially assistive technology during COVID-19: A qualitative study". In: Geriatric Nursing 50 (2023), pp. 234–239.
- [21] M. McAllister, K. Kellenbourn, and D. Wood. "The robots are here, but are nurse educators prepared?" In: *Collegian* 28.2 (2021), pp. 230– 235
- [22] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and D. Wilkins. PDDL The Planning Domain Definition Language. Tech. rep. Yale Center for Computational Vision and Control, 1998.
- [23] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
- [24] K. Erol, J. Hendler, and D. S. Nau. "HTN planning: Complexity and expressivity". In: AAAI. Vol. 94. 1994, pp. 1123–1128.
- [25] W. Reisig. Petri nets: an introduction. Vol. 4. Springer Science & Business Media, 2012.
- [26] M. Abuazizeh, T. Kirste, and K. Yordanova. "Computational state space model for intelligent tutoring of students in nursing subjects". In: Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments. 2020, pp. 1–7.
- M. Abuazizeh, K. Yordanova, and T. Kirste. "Affect-Aware Conversational Agent for Intelligent Tutoring of Students in Nursing Subjects".
 In: *Intelligent Tutoring Systems*. Ed. by A. I. Cristea and C. Troussas. Cham: Springer International Publishing, 2021, pp. 497–502.
- [28] S. Chernova and A. L. Thomaz. "Robot learning from human teachers". In: Synthesis lectures on artificial intelligence and machine learning 8.3 (2014), pp. 1–121.
- [29] M. S. Hutchinson and V. N. Gadepally. "Video Action Understanding". In: *IEEE Access* 9 (2021), pp. 134611–134637.
- [30] H. Wang. "Deeply-learned and spatial-temporal feature engineering for human action understanding". In: Future Generation Computer Systems 123 (2021), pp. 257–262.
- [31] N. Kawaguchi, N. Ogawa, Y. Iwasaki, K. Kaji, T. Terada, K. Murao, S. Inoue, Y. Kawahara, Y. Sumi, and N. Nishio. "HASC Challenge: Gathering Large Scale Human Activity Corpus for the Real-World Activity Understandings". In: *Proceedings of the 2nd Augmented Human International Conference*. AH '11. Tokyo, Japan: Association for Computing Machinery, 2011.

- [32] S. Inoue et al. About Third Nurse Care Activity Recognition Challenge. https://abc-research.github.io/nurse2021/ learn/. Accessed: 2023-01-29. 2023.
- [33] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos. "Revisiting active perception". In: Auton. Rob 42 (2018), pp. 177–196.
- [34] A. T. Corbett and J. R. Anderson. "Knowledge tracing: Modeling the acquisition of procedural knowledge". In: *User Modeling and User-Adapted Interaction* 4 (2005), pp. 253–278.
- [35] P. I. Pavlik, H. Cen, and K. R. Koedinger. "Performance Factors Analysis A New Alternative to Knowledge Tracing". In: Proceedings of the 2009 Conference on Artificial Intelligence in Education: Building Learning Systems That Care: From Knowledge Representation to Affective Modelling. NLD: IOS Press, 2009, pp. 531–538.
- [36] H. Cen, K. Koedinger, and B. W. Junker. "Learning Factors Analysis -A General Method for Cognitive Model Evaluation and Improvement". In: International Conference on Intelligent Tutoring Systems. 2006.
- [37] J. Yang and B. Zhang. "Artificial Intelligence in Intelligent Tutoring Robots: A Systematic Review and Design Guidelines". In: Applied Sciences 9 (May 2019), p. 2078.
- [38] C. Piech, J. Spencer, J. Huang, S. Ganguli, M. Sahami, L. Guibas, and J. Sohl-Dickstein. *Deep Knowledge Tracing*. 2015.
- [39] S. Minn, J.-J. Vie, K. Takeuchi, H. Kashima, and F. Zhu. Interpretable Knowledge Tracing: Simple and Efficient Student Modeling with Causal Relations. 2021.
- [40] C. Koutsojannis, J. Prentzas, and I. Hatzilygeroudis. "A web-based intelligent tutoring system teaching nursing students fundamental aspects of biomedical technology". In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 4. IEEE. 2001, pp. 4024–4027.
- [41] M. Hospers, E. Kroezen, A. Nijholt, R. op den Akker, and D. Heylen. "An agent-based intelligent tutoring system for nurse education". In: Applications of Software Agent Technology in the Health Care Domain (2003), pp. 143–159.
- [42] D. Leyzberg, S. Spaulding, M. Toneva, and B. Scassellati. "The physical presence of a robot tutor increases cognitive learning gains". In: Proceedings of the annual meeting of the cognitive science society. Vol. 34, 2012.
- [43] D. Leyzberg, S. Spaulding, and B. Scassellati. "Personalizing robot tutors to individuals' learning differences". In: ACM/IEEE International Conference on Human-Robot Interaction. Mar. 2014, pp. 423–430.
- [44] T. Belpaeme, J. Kennedy, A. Ramachandran, B. Scassellati, and F. Tanaka. "Social robots for education: A review". In: *Science Robotics* 3 (Aug. 2018), eaat5954.
- [45] Y. Zhan, A. Fachantidis, I. Vlahavas, and M. E. Taylor. "Agents Teaching Humans in Reinforcement Learning Tasks". In: *Interna*tional Conference on Autonomous Agents and Multiagent Systems. 2014.
- [46] D. Amir and O. Amir. "HIGHLIGHTS: Summarizing Agent Behavior to People". In: AAMAS. 2018.
- [47] S. H. Huang, D. Held, P. Abbeel, and A. D. Dragan. "Enabling Robots to Communicate their Objectives". In: *Autonomous Robots* 43.2 (Feb. 2019).
- [48] M. S. Lee, H. Admoni, and R. Simmons. "Machine Teaching for Human Inverse Reinforcement Learning". In: Frontiers in Robotics and AI 8 (2021), p. 188.
- [49] P. Qian and V. Unhelkar. "Evaluating the Role of Interactivity on Improving Transparency in Autonomous Agents". In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems. AAMAS '22. Virtual Event, New Zealand: International Foundation for Autonomous Agents and Multiagent Systems, 2022, pp. 1083–1091.
- [50] L. Julien-Schultz, N. Maynes, and C. Dunn. "Managing Direct and Indirect Instruction: A Visual Model to Support Lesson Planning in Pre-Service Programs". In: *The International Journal of Learning:* Annual Review 17 (2010), pp. 125–140.
- [51] K. A. Nguyen, J. Husman, M. A. T. Borrego, P. Shekhar, M. J. Prince, M. DeMonbrun, C. J. Finelli, C. Henderson, and C. K. Waters. "Students' Expectations, Types of Instruction, and Instructor Strategies Predicting Student Response to Active Learning". In: *International Journal of Engineering Education* 33 (2017), pp. 2–18.
- [52] T. Ruutmann and H. Kipper. "Teaching Strategies for Direct and Indirect Instruction in Teaching Engineering". In: 2011 14th International Conference on Interactive Collaborative Learning. 2011, pp. 107–114.

- [53] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. "An incremental constraint-based framework for task and motion planning". In: *International Journal of Robotics Research* 37.10 (2018), pp. 1134–1151.
- [54] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez. "Integrated Task and Motion Planning". In: Annual Review of Control, Robotics, and Autonomous Systems 4.1 (2021), pp. 265–293.
- [55] K. Hauser and V. Ng-Thow-Hing. "Randomized multi-modal motion planning for a humanoid robot manipulation task". In: *The Interna*tional Journal of Robotics Research 30.6 (2011), pp. 678–698.
- [56] L. E. Kavraki, P. Svestka, J. C.-. Latombe, and M. H. Overmars. "Probabilistic roadmaps for path planning in high-dimensional configuration spaces". In: *IEEE Transactions on Robotics and Automation* 12.4 (1996), pp. 566–580.
- [57] C. Buchanan, M. L. Howitt, R. Wilson, R. G. Booth, T. Risling, M. Bamford, et al. "Predicted influences of artificial intelligence on nursing education: Scoping review". In: *JMIR nursing* 4.1 (2021), e23933.