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Abstract— The quadratically constrained quadratic program
(QCQP) with stochastic constraints appears in a wide range of
real-world problems, including but not limited to the control
of power systems. The randomness in the constraints prohibits
the application of classic stochastic optimization algorithms. In
this work, we utilize the techniques from the distributionally
robust optimization (DRO) and propose a novel optimization
formulation to solve the QCQP problems under strong du-
ality. The proposed formulation does not contain stochastic
constraints. The solutions to the optimization formulation attain
the optimal objective value among all solutions that satisfy the
stochastic constraints with high probability under the data-
generating distribution, even when only a few samples from the
distribution are available. We design corresponding algorithms
to solve the optimization problems under the new formulation.
Numerical experiments are conducted to verify the theory and
illustrate the empirical performance of the proposed algorithm.
This work provides the first results on the application of DRO
techniques to non-convex optimization problems with stochastic
constraints and the approach can be extended to a broad class
of optimization problems.

I. INTRODUCTION

In a wide range of real-world applications, one needs
to solve the quadratically constrained quadratic programs
(QCQP) with stochastic constraints:

min z7 Moz, st. 2 Mz > &, Viem], (1)

zER™
where M; € R™ "™ are symmetric matrices, £ € = C R™
is a random vector and [m] := {1,...,m} for positive
integer m. The distribution of ¢ is usually unknown and
only a few samples £', ..., &%, which are generated from
the distribution, are available.

In general, the QCQPs are nonconvex and are NP-
hard to solve in the worst case [1]. However, real-world
optimization problems are usually highly structured and it is
possible to reduce the computational complexity by utilizing
their structures. Consider, for example, the optimal power
flow (OPF) problem, which is similar to (1) in that power
flow constraints are nonconvex quadratic functions of bus
voltages. Moreover, such constraints are often stochastic
in nature, as they reflect uncertain variables such as the
power demand and the renewable generation. Many practical
power circuits exhibit zero duality gap as a consequence
of their network structures and admit an exact relaxation
[2]. More generally, problems with specific graph structures
are distinguished from abstract optimization problems and
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several relaxation approaches are proposed to transform the
nonconvex problem to an equivalent convex problem; see
[3]-[5]. One common relaxation approach used in OPF and
other problems is to transform problem (1) to a semi-definite
program (SDP):

Xr%in (Mo, X), st. X =0, (M;, X) > ¢&;, Vi€ [m].
e nxmn
2)

Under suitable conditions on My, ..., M,,, problems (1) and
(2) are equivalent [3] (i.e., the relaxation is tight). Various
optimization solvers are designed to efficiently solve SDP
problems and the solution to the SDP problem (2) provides
a good approximation to the solution to the original non-
convex problem, even when the relaxation is not tight; see
Section 1 of [4] for examples of guarantees on the approx-
imation. In this work, we make the following assumption,
including that such suitable conditions are present.

Assumption 1. Problem (1) is feasible and has a finite
optimal value for all ¢ € Z. In addition, the SDP relaxation
of problem (1) is tight. For all £ € =, Slater’s condition [6]
holds for problem (2).

Although the SDP problem (2) is a convex optimization
problem, its constraints are determined by a random vector &.
The randomness in the constraints prohibits the application
of deterministic convex optimization algorithms or stochastic
optimization algorithms, which are applicable to optimiza-
tion problems that only contain randomness in the objective
function. Existing algorithms for optimization problems with
stochastic constraints find solutions that satisfy the con-
straints in expectation [7], [8]. However, the meaning of the
expectation of constraints is undefined in many applications
and a robust solution that satisfies each constraint with high
probability is desired.

This work presents a new formulation of problem (2),
which support high-probability bounds on the optimal solu-
tion and are developed using tools from distributionally ro-
bust optimization (DRO) [9]. The statistical and optimization
tools from DRO are able to provide efficient bounds on the
worst-case behavior of the stochastic system. In a number of
real-world applications, including but not limited to those in
power systems, some constraints of problem (1) are safety-
related and it is crucial to ensure the satisfaction of those
constraints in the worst case. More specifically, based on the
empirical distribution of &, the new formulation generates a
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solution X* such that
P° [Zie[m]wi ((M;, X*) = &) 20| =5, 3)

for all weight vector! w € R™, where P(+) is the probability
under the data-generating distribution of £ and 8 € [0,1) is
any pre-specified probability. We conjecture that the solution
X* attains the minimal objective value among all X for
which the condition (3) holds. We note that the bound (3)
is stronger than those in [10]. Most existing works on DRO
focused on convex optimization problems; see [9], [11] for a
review. However, in practice, a variety of applications include
non-convex optimization problems. Our work is the first to
provide a bound, as well as the first to apply DRO, to a
nonconvex problem under strong duality.

The paper is organized as follows. In Section II, we first
introduce the DRO formulation of problem (2) and develop
an optimization problem that is based on the quantiles
of &, which is able to provide stronger high-probability
bounds than expectation-based formulations in [7], [8]. We
provide the theoretical guarantees of the solutions to the
new formulation in Section II. Finally, in Section III, we
implement the proposed algorithms to verify the theory and
illustrate the empirical performances. We conclude the paper
in Section IV.

II. QUANTILE-BASED FORMULATION

In this section, we provide a new DRO formulation to
problem (2), which is able to provide stronger theoretical
guarantees than the expectation-based formulations [7], [8]
and avoid their limitations. To apply DRO techniques, we
consider the dual problem of problem (2) with a fixed
instance of &:

max £Xv st My — Z

viM; = 0,
vER™ le[m]

v=>0, 4
where the vector inequality v > 0 means that v; > 0 for all
i € [m]. Since problem (2) is a SDP problem with a finite
optimal value, strong duality holds and solving problems (2)
and (4) are equivalent. Compared with the primal problem
(2), the randomness in the dual problem (4) only appears
in the objective function ¢”v. This property allows the
application of various techniques in stochastic optimization.

Suppose there are S independently and identically dis-
tributed samples, &', ..., &5, from the distribution PY. We
define the empirical distribution of ¢ as

- 1
]P)S = gzie[s]égi,

where J¢ is the Dirac measure at & The goal of the
DRO formulation is to find solutions that satisfy the high-
probability constraint with the form of (3) under the true
distribution P° using the empirical distribution PPg. Since we
want to provide high-probability guarantees, we can directly
enforce the probability bound using the quantiles of (-, &)

A vector w € R™ is called a weight vector if w; > 0 for all i € [m)]
and Zie[m] w; = 1.

as the objective function, where the dual objective function
is

(v, &) =&y,

For all a € [0, 1], we define the a-quantile of (v, &) as

Ga(v,P) :=inf {y | P[y(v,§) <] < a},
Yvey, PeP,

Vv, & € R™.

where we define the dual feasible set as
Vi=<veR™|v>0 M- viM; = 05.
v eR" vz 0= X, tti=of

To deal with the discrepancy between the true distribution
and the empirical distribution, the DRO formulation in [12]
serves as a useful tool. We first define the distributionally
robust predictor.

Definition 1 (Distributionally Robust Predictor). Suppose
that o € [0,1] and r > 0 are constants. For all P’ € P and
input v € V, the distributionally robust predictor is defined
as

qum“(Vv IP)I) ‘= sup {qa(l/7 ]P) | I(IP)/7 ]P) < T} )
PeP
where I(-,) is the relative entropy as defined in [13]. In the
case when P’ = Pg, we denote the distributionally robust
predictor as q, . (+) for the notational simplicity.

In our DRO formulation, the ambiguity set is characterized
by the relative entropy I(-,-). The relative entropy and the
Wasserstein distance are commonly used as a measure of
distance between distributions. However, the large deviation
theory guarantees that the relative entropy between the true
data-generation distribution and the empirical distribution
can be bounded by a value that depends on the sample
size; see [13] for more details. Hence, we can show that
the true distribution is contained in the ambiguity set with
high probability and establish worst-case bounds on the
ambiguity set. As a result, we consider the relative entropy
in the ambiguity set in this work. We note that the above
definition is the opposite to that in Definition 6 of [12],
which considers the infimum of ¢(v,-) under the entropy
constraint. Intuitively, this is because our ultimate goal is to
derive bounds for the primal problem (2) through the dual
problem. Now, we define the corresponding distributionally
robust prescriptor.

Definition 2 (Distributionally Robust Prescriptor). Suppose
that o € [0,1] and r > 0 are constants. For all P’ € P,
the distributionally robust prescriptor U, (P') is a quasi-
continuous function that is a maximizer of

max Q(X,T'(V; P/) s.t.veV. 5

vER™
In the case when P’ = Pg, we denote the distributionally
robust prescriptor as U rpg Jor the notational simplicity.
Moreover, the pair (4
prescriptor pair.

b Vorpe) B8 called the predictor-
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To ensure the existence and the regularity of 7,.(-), we
make the following assumption on the feasible set.

Assumption 2. The feasible set V is compact.

By Proposition 4 of [12], Assumption 2 guarantees that the
function ﬁa,r,fPs exists and is quasi-continuous in P’. More-
over, the pair (4, , .+ 7, . p,) is the strong solution to the
meta-optimization problem (6) in [12]. Namely, ¢, (ﬁr,@s)
is the minimal value among all predictors that are larger than
the population expectation with high probability in S.

Now, we show that the distributionally robust predictor
Qo pg () is also a quantile of y(-,£) under the empirical

distribution Pg.

Lemma 1. For all « € [0,1] and r,S > 0, there exists an
integer k(a,r,S) € [S + 1] such that

Qo r s (V) = Vk(arms) Vi Ps), Vv eV,

where (1) (v; Pg) is the k-th smallest value of {v(v,£%),i €
[SFu{r(»)}.

Proof. We first show that for the predictor g, , 5 (-), the set
of feasible distributions can also be restricted to the set of
distributions that are absolutely continuous with respect to P
except on the set

E'w) ={¢ | v(v,§) =)}

The proof is the same as that of Lemma 2 of [12] except the
bound on the expectation, i.e., the second last inequality in
the proof. To deal with this issue, we only need to prove that
forall v e V,pe [0,1], & € 25, P. < Psand P, € P
such that P, 1 P, it holds that

Qe o[Y(,8)] = Qpr o [v(v, 8], (6)

where

Pi=p Pt (1-p) b, P':=p-Pe+(1-p) Pi.

Let F’(y) and F"(+) be the cumulative distribution function
of (v, £) under the distribution P’ and P”, respectively. By
the definition of the quantile, to prove inequality (6), it is
sufficient to show that

Fi(y) 2 F'(v), Vv,

which is equivalent to

Eeop [1(v(v,€) < 7)) 2 Benrr 1 (v(1:€) <)), Vo,

where 1((v,£) < ) is an indicator function. This can be
proved in the same way as the proof in [12]. As a result,
there exists an integer k € [S + 1] such that ¢, .5 (V) =
Yk (V5 Ps).

Next, we prove that the integer k£ does not depend on v
and ]f”s. Let ]f”n]@s be the worst-case distribution that attains
4,3, (V). Assume without loss of generality that

V(Vagl) < SV(Va§S)~

Denote
pi = I@T’ﬁps (fz)7

Then, the integer k is the solution to

Vi € [5],

:‘*)

Ps+1 = Pr,]@s (_

max
ke[S],peRS+1

1
3.t ; < —— 1 )<
5.0 Zie[k]pl =@ SZiG[S] og(Spi) <
- S i
D=L piz 0 Vie[S+1,
which is independent of v and Pg. Intuitively, k is the small-
est integer such that the probability P, 5 on the smallest &

elements is at least « and the relative entropy constraint is
not violated. O

When there is no confusion about «, r and S, we denote
k := k(«a,r,S) for simplicity and re-write problem (5) as

max Yoy (Vi Ps), st.veV. @)

In the case when k = S+ 1, the evaluation of y(g41)(v; I@’S)
requires the knowledge of =, which may be unknown in
practice. Hence, we focus on the case when k& € [9]
in the remainder of the paper. The distributionally robust
prescriptor 7 5 is a solution to problem (7). To get a
solution for problem (2), we define the Lagrangian function

L(V,X;Ps) = ’}/(k)(V;I@_g) + <AX7 My - ZiE[S]ViMi> .
Then, we consider the mini-max problem

min max L(Z/,X;HADS)7 X = 0.

s.t. v >
XeRnXn peR™ s.t — 07

Then, the dual function to problem (7) is defined as
d(X):= max L(v, X;Ps), st.v>0.
JER™
We make the following assumption on the dual problem.

Assumption 3. The dual problem minx - d(X) is feasible,
i.e., there exists X = 0 such that d(X) < +oc.

The following lemma characterizes the dual function.
Lemma 2. We have d(X) = (My, X) < 400 if and only if
’Y(k)(V§P5’) < Z'e[ ]Vi<Mi,X>, Yv e R™, s.t. v > 0.

em
®)

Proof. We first prove the necessity part. Suppose that there
exists v € R™ such that

v=0, yuv)> Zie[7rL]Vi<MiaX>'
Then, we choose a constant C' > 0 and consider

Ly (Cv, X;Pg)

=C- ’)’(k)(V;IFDS) + <X7 My—-C- Zie[m]ViMi>

=C (W(k)(u;]@’s) —~ Zie[m]ui<Mi,X>) + (Mo, X).
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Letting C' — +o00, we have
d(X) > Ly (Cv, X; Pg) — +oc.

This is a contradiction to the condition that d(X) < +o0.
Then, we prove the sufficiency part. By the condition,

L(k)(V»X;ﬁDS) = V(k)(V;EDS) - Z vi{M;, X) + (Mo, X)

i€[m]

< <M07X>

Therefore, v = 0 is a maximizer of the Lagrangian function
over v and d(X) = (My, X) < +o0. O

Under Assumption 3, we show that the dual problem has
a finite optimal value.

Lemma 3. The dual problem minxyod(X) has a finite
optimal value.

Proof. Under Assumption 3, it suffices to prove that the
following problem has a finite optimal value:
min
XGR’VLX’VL
s.t. d(X) < 400, X = 0.

<M07 X>a

Denote the i-th unit basis of R™ as e; for all ¢ € [m]. If we
choose v = e; for ¢ € [m] in condition (8), it follows that

(M;, X) > &, Vi€ m).

By relaxing the condition d(X) < +oo with the above con-
dition, we get the following relaxation of the dual problem:

min
XcRnXxn

st. (M, X) > P viem], X=o0,

<M07X>7

where fgk) is the k-th smallest value in {&},..., &7}, The
dual problem has a finite optimal value if the relaxed problem
has a finite optimal value. Since the relaxed problem is a SDP
problem, it has the dual problem

max (v, &®), st.veV.

veER™
Since the dual problem is a special case of problem (2), it
is feasible with a bounded optimal value by Assumption 2.
Hence, the duality theory implies that the relaxed problem is
also feasible and has a bounded optimal value. This finishes
the proof. O

As a result, we can choose the primal solution X ks 1O
be an optimum of the dual problem:

Xk,]?s € argmin d(X),
XERHX’I?.

s.t. X = 0. 9

Intuitively, the condition (8) in Lemma 2 implies that the
constraints of problem (2) are satisfied with probability at
least k/S — exp[—rS + 0(5)] under the true data-generation
distribution P°. To be more concrete, we have the following
theorem.

Theorem 4. Suppose that X satisfies the condition (8). For
every weight vector w € R™ and k € [S + 1), it holds that

PO [Ziqm]”i (M, X) — &) > 0}
> a — exp[—rS + o(9)].

(10)

Proof. Choosing v = w in the condition (8), it follows that
for at least k samples in {£’,4 € [S]}, it holds that

Y(w, &) < Zje[m}wﬂMj»X%
By the definition (v, &) = v7¢, it follows that
Zje[m]“j (M, X) —&] > 0.

The condition (11) says that a weighted average of the
constraints is satisfied with weight w;. Therefore, under the
empirical distribution Pg, we have

s |5,y 0. X) -6 20| 2 £

Now, Theorem 10 of [12] implies that

(1)

1 R

lim sup — log {IE”OO [qa(w,IF’O) < 'y(k)(w;]P’S)}} < —r.
S—+o0 S

Combining the last inequality with the definition of a-

quantile, we get

P [Zje[m]wj (X, M;) - &) > O} > a—exp[—rS+o(9)].
This finishes the proof. O

In practice, natural choices of w might include the unit
vectors eq, ..., en,. In this case, Theorem 4 guarantees that
each of the constraints individually is satisfied with the stated
probability. However, w can also be chosen to encode any
constraint “budget” by setting the weights according to the
relative value of the satisfaction (or violation) margin among
the m constraints. The strength of Theorem 4 is that it holds
for any such budget under the unknown true distribution.

By definition, the primal solution X, s satisfies the
condition (8) and thus, it also satisfies the condition in
Theorem 4. In practice, the user may first choose & and then
choose a suitable o and r to maximize the right-hand side
of (10). Given k € [S] and « € [0, k/S], the maximal radius
r such that k(a, 7, S) = k is given by

__k, (Sa\_S—k _ (S1-a)
N A s %\ Te—k )

where we define 0log(0) = 0. Therefore, given the sample
size S > 1 and the parameter k € [S], one wants to solve
the maximization problem

SS
GRS — k) F
The solution of the above problem will maximize the right-
hand side of (10).

Now, we provide an algorithm for the dual problem (9).
The algorithm is based on the cutting-plane method [14] and

* k S—k
=  max o (1l — .
Pk,s a€[0.k/S] ( )
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Algorithm 1 Algorithm for the quantile-based formulation.

1: Input: Matrices My, ..., M,,, empirical distribution ]f”s,
number of iterations t,,,., parameter k € [S].

2: Output: Primal solution X ks

3: Initialize S1 + {e; | 7 € [m]}.

4: for t =1,2,... ta: do

5 Update X; to be a maximizer to the SDP problem:

(My, X),

min
X GR'IL Xn

s.t. Zie[m] Vi<Mi; X> > 'y(k)(u), Yv € St,
X =0.
if condition (8) holds for X; then
break

end if
Find weight vector 7 € R™ that violates (8), i.e.,

Zie[m]DMMmX) <Yy (P).

10: Update St+1 +~— S U {ZN/}
11: end for
12: Return the last iterate of X; as X, Py

R

is described in Algorithm 1. Here, we denote the i-th unit
basis of R™ as e; for all ¢ € [m]. Basically, we approximate
the condition (8) by a finite number of linear constraints

Zz-e[m]”i<Mi’ X) 2w (v), YWwES.

These constraints provide a relaxed condition of (8), which
requires the inequality to hold for all weight vectors v. If the
solution of the relaxed problem X satisfies the condition (8),
it must be an optimal solution to the dual problem (9).
Now, we describe an algorithm to check whether the
condition (8) is satisfied for a given matrix X. In addition,
if condition (8) fails, the algorithm finds a weight vector &
that violates the condition. The algorithm is based on the
following mixed-integer programming (MIP) problem:

min t
zERS tER,VER™

st t+0- 22 Zje[m]Vj ((M;, X) =€),

2 €{0,1}, Vi e [9], Zie[S]zi =k—1,

14 Z 0, de[m]yj = 1,

where C' > 1 is a large enough constant. Although we also
solve an optimization problem with probabilistic constraints,
i.e., problem (2), via the MIP approach, we cannot directly
use the results in [15]. First, their formulation only allows a
joint probabilistic constraint, whereas we require the condi-
tion (8) to hold for all v > 0. Additionally, they assume that
the random vector £ € R™ has a finite support but we only
need £ to have a compact support.

The MIP problem is based on the big-M method [16]. If
the variable z; = 1, since the constant C' is sufficiently large,

there is no constraint on t. Otherwise if the variable z; = 0,
the constraint requires that

t> Zje[m] v; (M, X) =€)

This means that ¢ should be the maximal value of the right-
hand side over all indices ¢ such that z; = 0. With a
given v, to minimize the value of t, z; is equal to one
for indices with the & — 1 smallest values of the right-
hand side. Then, the optimal value of ¢ should be the k-th
smallest value of the right-hand side over all samples. If we
further minimize over the weight vector v, the condition (8)
holds if and only if the optimal value t* is non-negative.
In addition, if ¢t < 0, the corresponding vector v* provides
a weight vector such that condition (8) is violated by X.
Although Algorithm 1 requires solving an MIP problem,
the algorithm runs efficiently in practice and exhibits good
empirical performances in our examples; see more details in
Section III. Since we need to deal with the SDP constraint
X > 0, Algorithm 1 is different with classical cutting-
plane methods, e.g., [17]. Therefore, the convergence of
Algorithm 1 cannot be directly derived from those of existing
cutting-plane methods. We leave the theoretical analysis of
Algorithm 1 to future works.

III. NUMERICAL EXPERIMENTS

In this section, we test Algorithm 1 for the quantile-based
formulation on a synthetic example. For a given dimension n,
we choose m = 2(n—1) and generate matrices My, ..., M,
as follows. Let G be a connected, undirected, acyclic graph
with n nodes. In our experiments, we choose G to be a tree
with n nodes. For each ¢ € {0,...,n — 1}, we define

0, if (k)G
wi,j,kv if (]ak) € g7

where {v; ;1 | ¢ € [n—1],(j,k) € G} are independent
uniform random variables on [0, 1]. Then, we define

(M;)j g = {

Mi+n71 =—-M;, Vi€ [TL — 1]

For the random vector &, its first n—1 entries are independent
uniform random variables on [—1,0]. The last » — 1 entries
of ¢ are equal to the first n — 1 entries. This definition of
My, ..., M,, and & leads to the constraints

£7§ <M7,7X> S—ﬁ,, Vi € [n—l]

We choose graph-structured matrices as they mirror the ob-
jective and constraint functions of OPF and similar network
flow problems. To be more specific, we want to solve the
original QCQP problem (1) in the complex case, namely,

m(icn e Moz, st. 2% Mz > ¢, Vie [m], (12)
zeCn
where v is the conjugate transpose of v for all v € C”.

Since the matrices My, ..., M,, are real symmetric matrices
and the graph G is acyclic, Theorem 6 of [3] guarantees that
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the semi-definite relaxation of problem (12) is tight. Hence,
problem (12) has the same optimal objective value as

Xn%in (Mo, X), st. X =0, (M;, X)>¢&, Vie[m],
e nxn
(13)

where we define (Y, Z) := Re[Tr(Y7Z)] for all matrices
Y, Z € C™*™ and Re is the real part of a complex number.
We note that we implicitly enforce the constraint that X is
a Hermitian matrix in the condition X > 0. As a result,
problem (12) reduces to finding a rank-1 solution

for problem (13), where z* € C”. Suppose that z* = y* +
i - z* for vectors y*, z* € R™ and define

U* — [y* Z*] c RnXQ'
Since matrices My, ..

() Mz = (M;, U*(U*)T), Vie {0}Um].

., M,, are all real matrices, we have

Therefore, finding a rank-1 solution for problem (13) is
equivalent to finding a rank-2 solution for problem (2). We
can apply our cutting-plane algorithm (Algorithm 1) to find
a solution that satisfies the condition (8). Finally, one can
generate the solution for problem (12) by the algorithms in
[18].

To verify the results of Theorem 4, we generate S’ > S
independent samples of £, which are denoted as §~ L ,f s,
For each i € [m], we count the number of samples that
satisfy the constraint

<Mi, Xk,ﬂss> > &l

By theory, we expect at least pj, ¢S’ samples to satisfy the
above condition. We choose the maximal number of itera-
tions tyqe = 100 for Algorithm 1. In all tested examples,
the optimal solution is found and the algorithm terminates
within t,,,, = 100 iterations. The problem size and the
sample size is n = 20 and S = 20, respectively. We use
S’ = 10* samples to verify the results of Theorem 4. We
implement the Algorithm 1 for all quantiles k¥ € [S] and
compare the performances. The algorithms are implemented
in Python 3.10 and MATLAB 2023a environment equipped
with solvers MOSEK 10.0 [19] and Gurobi 10.0 [20].

As a baseline for comparison, we test Algorithm 1 against
the naive approach of requiring that each constraint be sat-
isfied for at least k samples from the empirical distribution.
Specifically, the naive approach chooses the solution of (2)
with &€ = £(®)_ where the i-th element of ¢(*) is the k-th
smallest of {&},...,&°}. As S grows, this naive algorithm
becomes more reliable, but for problems with a small number
of samples and many constraints, it is not guaranteed to be
robust to the true distribution.

The results are summarized in Figure 1. For all k£ € [S],
the output of Algorithm 1 (i.e., X k. ps) satisfies the condition
(8). From the figure, we can see the trade-offs between the
the optimal objective value and the constraint satisfaction
rate, which can be adjusted by choosing the parameter k.

As the high-probability bound becomes stricter with a larger
k, the objective value becomes larger but the constraints are
satisfied by more samples. Hence, both Algorithm 1 and the
naive algorithm exhibit the expected behavior with respect to
k. From the left plot, we can see that the objective values of
Algorithm 1 are larger than those of the naive algorithm. This
is because the naive algorithm enforces a relaxed condition
of (8). In the right plot, we compute the probability that
the solution satisfies a given constraint for the S’ extra
samples. We compare the pointwise (over k) minimum and
the mean satisfaction rate among all m constraints, and we
also compare the rates with the theoretical lower bound pj, 5.
We can see that the satisfaction rate of Algorithm 1 remains
well above the theoretical bound, but the naive method may
drop below as it does at & = 16. To further verify that
condition (8) is satisfied with high probability by the solution
of Algorithm 1, we generate 1,000 random weight vectors
by the uniform distribution on the set of weight vectors.
For all random weight vectors, the solutions of both the
naive algorithm and Algorithm 1 satisfy condition (8). This
observation indicates that both solutions satisfy the condition
with high probability over the uniform distribution of weight
vectors. In addition, we conjecture that if condition (8) is
satisfied by unit vectors, the condition will hold with high
probability over random weight vectors. We leave the proof
of this conjecture to future works.

In addition, Algorithm 1 finds more robust solutions
than the naive algorithm, an advantage most prominent in
the minimum satisfaction rate. The naive algorithm is not
theoretically guaranteed to generate distributionally robust
solutions. As k approaches 7', the performances of the
two algorithms become similar, though this behavior is not
necessarily expected to hold for all problem instances or
choices of weights w. The gap between Algorithm 1 and the
naive algorithm is expected to grow when the sample size S
is small compared to the number of constraints m, or when
the true distribution has a high variance. In other words, as
the empirical distribution approaches the true distribution,
the methods become equivalent. As a summary, the naive
algorithm can efficiently generate robust solutions in some
cases, but Algorithm 1 is theoretically guaranteed and works
better especially when the sample size S is small.

IV. CONCLUSION

In this work, we consider the nonconvex QCQPs with
stochastic constraints under strong duality. Existing stochas-
tic optimization algorithms only allow randomness in the
objective function and thus, they are not applicable. We pro-
pose a new DRO formulation, and we prove that the solution
to the DRO formulation attains the optimal objective value
among all solutions that satisfy the constraints with high
probability under the data-generating distribution, even when
we only have access to a few samples from the distribution.
In addition, we develop corresponding algorithms that solve
the proposed DRO formulation and implement the algorithms
on a few examples to illustrate the empirical performance.
The new formulation is the first result on the application
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of DRO techniques to a nonconvex optimization problem
with stochastic constraints. The approach can be extended
to a broad class of nonconvex optimization problems with
stochastic constraints and generate robust solutions that sat-
isfy the constraints with high probability.
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