
   
 

   
 

Size spectra in freshwater streams are consistent across temperature and 1 

resource supply 2 

 3 
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 5 

The study explores the individual size distribution (ISD) pattern in ecological 6 

communities, characterized by a negative correlation between individual body size and 7 

abundance (N ~ Mλ). The parameter λ denotes the rate of decline in relative abundance 8 

from small to large individuals. Despite known influences of temperature and resource 9 

availability on body size, their effects on λ remain diverse. Leveraging data from 2.4 10 

million individual body sizes in continental freshwater streams, the research the 11 

hypothesis that λ varies as a function of temperature and resource supply. Surprisingly, 12 

despite varied environmental conditions and complete species turnover, minimal 13 

variation in λ (mean = -1.2, sd = 0.04) was observed, with no discernible impact from 14 

temperature or resource supply. The unexpected λ value of -1.2 suggests a higher-than-15 

expected relative abundance of large individuals, challenging assumptions of metabolic 16 

scaling at 0.75 and implying large subsidy inputs to large predators. Simulation and 17 

mesocosm experiments support a metabolic scaling coefficient of ~0.4 for freshwater 18 

macroinvertebrates. The findings underscore remarkable consistency of individual size 19 

distributions in freshwater streams, likely driven by shallow metabolic scaling and large 20 

subsidies to large consumers. 21 

 22 

A common pattern in ecological communities is the negative relationship between individual 23 

body size and abundance, described by a power law N ~ Mλ 1–4. This pattern is known as the 24 

individual size distribution (ISD)5, where λ is the rate of decline in relative abundance from 25 
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small to large individuals. The ISD is a powerful tool for assessing changes in 26 

spatiotemporally and taxonomically disparate ecosystems 3,6–8. This is because λ is thought to 27 

vary as a function of trophic transfer efficiency, predator-prey mass ratio, and metabolism-28 

mass scaling, universal processes across ecosystems 4,9–11. Temperature and resource 29 

availability have been shown to alter λ, but the direction and magnitude of their effects are 30 

varied. Here, we leverage 2.4 million individual body sizes from freshwater streams spanning 31 

natural gradients of temperature and resource availability to estimate changes in λ at a 32 

continental scale. Despite broad environmental conditions and complete species turnover, we 33 

find little variation in λ (mean = -1.2, sd = 0.04) and no change with temperature or resource 34 

supply. The value of λ = -1.2 represents higher than expected relative abundance of large 35 

individuals. The only way to achieve this is by relaxing the assumption that metabolic scaling 36 

is 0.75 and by assuming subsidy inputs to large predators. We support these hypotheses with 37 

a simulation study and mesocosm experiment that suggests a metabolic scaling coefficient of 38 

~0.4 for freshwater macroinvertebrates. Our results emphasize remarkable uniformity in the 39 

prevalence of larger individuals within freshwater streams, persisting across both spatial and 40 

temporal dimensions. A critical next step is to understand the mechanisms for upholding the 41 

constancy of λ under varying environmental conditions. 42 
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Main 43 

Earth supports ~550 gigatons of living carbon biomass 12,13 and a fundamental 44 

challenge for ecologists is to understand how that biomass is distributed across scales from 45 

individuals to ecosystems 14. The individual size distribution (ISD) is a common method for 46 

describing how biomass is distributed across individuals within communities 5,15 and is driven 47 

by the flow of energy through food webs 3,16–18. Size-based assessments, such as the ISD, are 48 

emerging as a powerful tool to bridge individual-level physiological processes to ecosystem-49 

level patterns 18, complementing more traditional taxonomic or trophic approaches 3,19. This 50 

is because many fundamental aspects of an organism’s biology are controlled by body size, 51 

including metabolic rate, life history, diet breadth, and trophic position 5,20,21. Therefore, 52 

changes in the ISD reflect changes in fundamental attributes of a community, providing a 53 

measure of variation in ecosystem structure and function (Fig. 11–4). 54 

The ISD is described by a power law, N ~ M λ, where N is abundance and M is 55 

individual body mass. Metabolic scaling theory predicts that the exponent λ is generated by 56 

interactions of three ecosystem-level variables: trophic transfer efficiency (α), predator-prey 57 

mass ratio (β), and metabolic scaling (γ)4,9–11, such that: 𝜆	 + 1 = !"#!"$
!"#!"%

+ 𝛾   (Eq. 1). Given 58 

typical values of a, β, and γ, the exponent λ tends to be negative, ranging from about -1 to -2, 59 

underscoring a remarkably consistent ecological pattern across Earth's diverse ecosystems 3,6–60 

8. Owing to the apparent consistency of the ISD, body size distributions have been suggested 61 

as a "universal indicator" of ecological status18. Consequently, ecologists have increasingly 62 

used it to indicate fundamental changes in community structure and ecosystem function in 63 

response to anthropogenic impacts, including over-fishing and environmental pollution8,16,22.  64 

 Experimental and empirical results have also shown that λ varies in response to 65 

temperature, though the magnitude and direction of change is inconsistent. Increasing 66 

temperature is predicted to favor smaller organisms23,24 leading to more negative (or 67 
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“steeper”) values of λ and this has been observed empirically25–28. However, λ has also 68 

increased (“shallower”) in response to temperature4  or had no response29. One explanation 69 

for the inconsistent response of λ to temperature is compensatory effects of resource supply at 70 

the base of the food web4. Increasing temperature induces higher metabolic costs, leading to 71 

reduced trophic transfer efficiency and a subsequent selection for smaller body sizes. But 72 

these effects can be counteracted by increases in resource supply4,20,30. However, how 73 

temperature and resources interact to affect λ is almost completely overlooked31.  74 

Testing how λ responds to temperature and resource supply at the macroecological 75 

scale is logistically challenging because it requires data-intensive measures of individual 76 

body sizes, accurate (daily or sub daily) temperature measures, as well as estimates of 77 

resource supply (gross primary production, allochthonous subsidies)4,32. Here, we overcome 78 

these challenges by using data from the National Ecological Observatory Network (NEON). 79 

NEON is a continental scale ecological sampling program that uses standardized, automated 80 

sensor measurements coupled with observational field data and biological collections 81 

repeated across seasons (spring, summer, autumn), years (from 2015 to present), and space 82 

(across North America). Specifically, we examined the response of 133 ISD’s using 83 

individual fish and macroinvertebrate body sizes collected from 22 freshwater streams in 84 

North America that varied by 25°C in mean annual temperature and by orders of magnitude 85 

in resource supply (i.e., gross primary production and litter input). 86 

 87 

Consistent λ’s across temperature and resource supply gradient 88 

Across the 133 samples, λ ranged from -1.47 to -1.14 (posterior median) with an average of -89 

1.22 (Fig. 3a; 95% CrI: -1.24 to -1.2). There was no evidence that λ varied with temperature 90 

(Fig. 3a; marginal slope: -0.002 (95% CrI: -0.03 to -0.02), posterior median (95% CrI), gross 91 

primary production (Fig. S1; marginal slope: -0.0002 (95% CrI: -0.03 to 0.03)), organic 92 
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matter (Fig. S1g; marginal slope: 0.004 (95% CrI: -0.01 to 0.03)), or their interactions (Fig. 93 

3b). These results diverge from predictions of metabolic scaling theory, which predicts λ to 94 

decline at elevated temperatures26. The theoretical prediction arises from the tendency of 95 

body size to decline at higher temperatures, as individual energy demand increases, unless 96 

there is a compensatory increase in resource supply26,31. If such a compensatory increase 97 

explained these results, one would anticipate a negative temperature effect in multiple 98 

regression after adjustment for resource supply. No such effect was found (Fig. S1). In fact, 99 

environmental variables were not reliably associated with λ under any model formulation, 100 

including univariate, two-way, and three-way interactions (Fig. S1). Despite extensive 101 

testing, our findings indicated that λ only marginally decreases with rising temperature, 102 

specifically under circumstances characterized by high gross primary productivity (GPP) and 103 

high organic matter (OM). It is noteworthy, however, that this combination of temperature 104 

and resource conditions are extremely rare  in NEON streams (Fig 3c). 105 

 106 

λ is larger than expected from theory 107 

While it is clear that λ was invariant to environmental conditions, it is less clear why 108 

NEON streams converged to a λ of -1.22 as compared to the theoretically predicted value of -109 

1.95. For example, we can use Eq. 1 to predict λ using standard values of trophic transfer 110 

efficiency (α), predator prey mass ratio (β), and metabolic scaling (γ). In practice, γ is 111 

assumed to be 0.75, α = 0.1, and β = 104 11,20. Using those values and solving Eq. 1 generates 112 

a prediction of λ 	= -1.95, far lower than our empirical estimate of -1.2. The metabolic scaling 113 

coefficient γ is particularly important as it is commonly assumed to be fixed at -0.7511,20. 114 

Under this assumption, λ	= -1.2 can only be achieved by adjusting trophic transfer efficiency 115 

(α) or the predator-prey mass ratio (β). To examine possible values of these parameters in our 116 

samples, we used Monte Carlo simulation in which α and β were randomly drawn from 117 
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probability distributions based on published values from the literature (Table S1). As shown 118 

in Fig. 4a, the most extreme combinations α and β yield λ’s no higher than about -1.6, slightly 119 

smaller than the smallest empirical value in our samples (-1.47). 120 

 An alternative solution is to modify Eq. 1 to include the influence of terrestrial 121 

subsidies to large organisms such as fish. Such subsidies (e.g., falling leaves and insects) are 122 

common in freshwater streams and help explain how streams can support more predators than 123 

expected from macroinvertebrate secondary production alone33. Terrestrial subsidies have 124 

been shown to cause a 0.2 to 0.5 unit increase in λ in freshwater streams32,34 . Similarly, 125 

detrital subsidies from pelagic to benthic marine food webs led to shallower λ in benthic 126 

compared with pelagic food webs19. Adding subsidies to our simulations yielded λs that      127 

are still far away from the empirical median (simulated λ median of -1.6 instead of -1.2; Fig. 128 

4a). 129 

Only by relaxing the assumption of 0.75 metabolic scaling were we able to recapture 130 

the empirical distributions using simulations of Eq. 1 (Fig. 4a). The results suggest that λs of 131 

-1.2 can only be achieved by assuming γ ~0.2 to 0.5, instead of 0.75, along with adding 132 

subsidy effects of 0.2 to 0.5. Surprisingly, we are not aware of any studies measuring γ for 133 

freshwater invertebrates or fish at community-level, though values of γ in the range of 0.2 to 134 

0.5 have been reported for other marine invertebrates at species-level35. To test this further, 135 

we conducted a metabolic scaling experiment using 24 large outdoor freshwater mesocosms 136 

and a naturally colonizing community of macroinvertebrates. Strikingly, the experiment 137 

revealed γ to be ~0.4 across a range of taxa, temperature, and predation scenarios (Fig. 4b), 138 

consistent with the simulation predictions explaining λ	in North American freshwater streams 139 

(Fig. 4a).  140 

Stream food webs deviate from the anticipated ISD λ value of ~ -2, and exhibit 141 

metabolic scaling exponents that differ from the expected value of 0.75. Our findings endorse 142 
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the existence of shared constraints that govern the size structure of geographically distributed 143 

stream food webs. These constraints likely stem from commonalities in the size scaling of 144 

metabolism20 and the trade-offs between the between the number of individuals at each size 145 

and the amount of energy flow they can sequester in stream ecosystems. 146 

 147 

Conclusions 148 

The most important result of this work is the invariance of size spectra across a wide 149 

natural environmental gradient of temperature and resource supply in North American 150 

freshwater streams. The fact that this invariance occurs at macroecological scales and over 151 

years of repeated data collection suggest potential constraints in the ecological processes that 152 

generate size spectra in streams. The influence of temperature and resource availability on λ 153 

appears negligible, suggesting stable community size structure across extensive spatial scales, 154 

aligning with findings from previous studies15. Our results demonstrate a consistently higher 155 

proportion of large individuals across various environmental conditions. 156 

 Prior studies of the change in λ with temperature have predominantly focused on 157 

individual taxonomic groups (e.g., phytoplankton25, macroinvertebrates27, fish36) or restricted 158 

size ranges36. Furthermore, these investigations are confined spatially and temporally4,25,37, 159 

with distinct patterns emerging in different seasons (e.g., April vs. October), with many 160 

studies concentrating on relatively narrow intervals. Specifically, the most restricted range 161 

was approximately ~4°C25,36,37 followed by ~10 degrees4,28, and the widest being ~15°C27. 162 

We incorporate these various study characteristics into a comparison with the current results 163 

in Fig. 5. It shows the variation in reported change in λ with temperature, but also relatively 164 

small effect sizes as noted in macroinvertebrate communites27. These characteristics do not 165 

indicate shortcomings in the studies but underscore the challenges in extrapolating findings to 166 
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comprehend the broader taxonomic, spatial, and temporal shifts in the size spectrum of 167 

ecological communities. 168 

Indeed, when we re-ran our analyses on macroinvertebrates or fish separately, we 169 

found that λ declined with temperature for macroinvertebrates (Fig. S2b) and was more 170 

variable for fish (Fig. S2c), reconfirming previous studies on individual taxonomic 171 

groups27,36. An explanation for this is that the ISD for fish is not independent of invertebrates 172 

and vice versa, since they are trophically connected in size-structured food webs. 173 

Consequently, excluding either fish or invertebrates from the analysis results in the omission 174 

of the largest individuals (fish) and/or the most abundant small individuals 175 

(macroinvertebrates). This limitation may hinder the ability to scale taxonomically discrete 176 

size distributions up to the community level. Such influences are noticeable in marine food 177 

webs, where the presence or absence of macroinvertebrates has influenced conclusions drawn 178 

about the size distribution38. 179 

Another possible explanation is that TTE, PPMR and metabolic scaling are also 180 

invariant across temperature and resources, since the ISD arises from these factors. This 181 

would be consistent with previous empirical research in marine food webs39, which observed 182 

the absence of systematic variations in PPMR and TTE across different temperature and 183 

resource conditions. Alternatively, as our simulations demonstrate (Fig. 4a), there are 184 

multiple combinations of TTE, PPMR, metabolic scaling, and subsidies that can generate the 185 

empirical λ values shown here. This implies that the variables driving λ can vary 186 

systematically with temperature without necessarily changing λ. For example, the biomass of 187 

larger consumers is expected to decline with increasing temperature23, which should reduce the 188 

PPMR. In addition, warmer temperatures can reduce TTE due to a reduction in the nutritional 189 

value of individual prey31. If warming has the same relative effect on log10(PPMR) and 190 

log10(TTE), then there would be no net change in their ratio, leading to constant λ. In contrast, 191 
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unequal changes in the PPMR and TTE can yield steeper λ40 by limiting the amount of energy 192 

available to larger consumers. 193 

Our study reveals that size spectra in freshwater streams remain consistent across 194 

temperature and resource gradients. Because our results occur in relatively unimpacted 195 

streams across broad temperature gradients, they likely reflect a macroecological pattern, but 196 

do not discount potential future effects of climate change28. In other words, comparing 197 

communities across spatial temperature gradients is different than observing an individual 198 

community respond to rapid environmental warming. The main challenge moving forward is 199 

understanding the fundamental principles behind this stability and forecasting future trends. 200 

Our approach not only aids in uncovering factors influencing larger-scale community 201 

processes but also holds promise for predicting ecosystem dynamics across different 202 

environments and scales.  203 
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Tables 204 

Table 1. Mean annual (± sd) values of temperature (°C) and gross primary 

production (GPP, gC/m2/y), along with standing stock organic matter (OM, 

AFDM/m2), at the 22 NEON sites in this study. Values are averaged over 

multiple years for temperature and GPP using sensor readings from NEON. 

For OM, values are calculated directly from benthic samples.  

Site Temperature GPP OM 
ARIK 12 ± 8 1728 ± 396 5 ± 4 
BIGC 10 ± 5 727 ± 194 4 ± 2 
CARI 1 ± 2 353 ± 44 3 ± 1 
GUIL 21 ± 2 4235 ± 1573 3 ± 4 
HOPB 9 ± 7 541 ± 198 5 ± 5 
KING 12 ± 5 1919 ± 580 92 ± 126 
LECO 13 ± 5 1402 ± 387 3 ± 1 
MART 8 ± 4 891 ± 312 5 ± 1 
OKSR 1 ± 3 420 ± 256 4 ± 2 
REDB 6 ± 4 821 ± 326 1 ± 2 
WALK 14 ± 3 403 ± 40 46 
WLOU 2 ± 3 351 ± 88 19 ± 7 
LEWI 13 ± 4 4828 ± 823 377 ± 418 
TECR 6 ± 5 350 ± 182 35 ± 21 
BLUE 16 ± 4 7925 ± 2536 2 ± 0 
CUPE 23 ± 1 3344 ± 298 1 ± 1 
MCDI 13 ± 7 1573 ± 1205 5 ± 8 
MCRA 7 ± 4 1719 ± 308 7 ± 4 
POSE 12 ± 7 250 ± 48 12 ± 13 
PRIN 17 ± 7 2479 ± 557 20 ± 23 
SYCA 19 ± 6 11957 ± 4169 18 ± 16 
BLDE 4 ± 5 907 ± 270 5 ± 4 
   205 
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Figures 206 

 207 

Fig. 1 | The theoretical basis for Individual Size Distribution (ISD) scaling in ecosystems is underpinned 208 

by several empirical studies and theories in ecology. a. At the community level, λ consistently exhibits a 209 

negative pattern between -1 and -2. While the individual impacts of temperature and resource supply on the ISD 210 

have been extensively investigated, their combined or synergistic effects remain largely unexplored. In this 211 

study, we propose that λ varies in response to temperature and resource supply. Our hypothesis is that 212 

temperature and resource supply interact to shape λ across food webs. b. Our study centers on the NEON 213 

continental-scale data collections (e.g., 2,468,683 individual sizes), from both fish (157 species) and 214 

macroinvertebrates (1,155 species). c. Theory predicts that λ should decline with increasing temperature. 215 

However, these effects can be mitigated by an increase in resource supply, as demonstrated by previous studies 216 

and theory4,20,30. The range of λ spans from ~ -1 to -2, where smaller λ values (e.g., -2, represented by dark 217 

purple, indicating high resource supply) signify less efficient trophic transfer, supporting relatively fewer large 218 

organisms compared to ecosystems with higher λ values (e.g., -1.5, -1, represented by green to yellow colors, 219 

indicating high temperature). 220 
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 221 

Fig. 2 | Variation in temperature and correlations of temperature, gross primary production (GPP), and 222 

organic matter (OM) across NEON stream sites (n = 22). a. NEON sampling sites span a wide range of mean 223 

annual temperatures (1 to 24°C). Each sampling site is a point on the map, with cooler temperatures indicated by 224 

shades of blue and warmer temperatures depicted by shades of yellow. b. Variation in environmental variables. 225 

Values for temperature and GPP are annual means. Values for organic matter represent standing stocks averaged 226 

across 2-4 samples per site. 227 
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  228 

Fig. 3 | Relationships of the ISD across mean annual stream temperature, annual gross primary 229 

production (GPP), and organic matter (OM). a. Mean annual temperature is not related to the ISD exponent 230 

(marginal relationship from a multiple regression model). b. Temperature causes no change in ISD across 25th, 231 

50th, and 75th quantiles of organic matter (OM; facet columns) and gross primary production (GPP; facet rows). 232 

The temperature range (23°C) covers ~90% of the global temperature gradient in stream ecosystems (~25°C)41. 233 

In addition, OM estimates of our data are consistent with the two order of magnitude range in streams of North 234 

America42, as well GPP estimates, with a range from 300 to 11000 g C m-2 yr-1, that is more than twice the 235 

observed GPP in North America43. c. Using our model predictions, λ is predicted to decrease slightly with 236 

increasing temperature only under conditions of high GPP and high OM. But, as shown by the white dots 237 

representing empirical measures, these combinations of conditions do not exist in our data set. Conversely, 238 

decreasing temperature leads to an increase in λ, but again, exclusively under high GPP and high OM 239 

conditions. No changes in λ were observed under other environmental conditions; the value of λ remained 240 

constant.  241 
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 242 

Fig. 4| Empirical ISD’s in streams can only be explained by shallower metabolic scaling and subsidies. a) 243 

Simulations of λ from four conditions of the model: 𝜆	 + 1 = #$%!"&
#$%!"'

+ 𝛾 + 	𝛿, where α is the predator-prey mass 244 

ratio, β is trophic transfer efficiency, γ is the metabolic scaling exponent, and δ is the effect of ecological 245 

subsidies32,34. Histograms represent four simulations from this equation with different parameter inputs (Table 246 

S1), ranging from a Standard Model20 with ε fixed at 0.75 to model 4 that incorporates shallow metabolic 247 

scaling ε and ecological subsidies. Parameter inputs are described in Table S1. Only the model with subsidies 248 

and shallow metabolic scaling match the empirical lambdas. b) To test shallow metabolic scaling (α), we 249 

measured metabolic scaling in 414 macroinvertebrates from freshwater mesocosms. The regression line and 250 

shading show the median slope of 0.39 (95% CrI: 0.36 to 0.43), substantially shallower than the theoretical 251 

expectation of 0.75 (solid reference line), and in line with the value needed to match empirical lambdas in the 252 

simulation study.   253 
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 254 

Fig. 5 | Variation in literature estimates of the ISD-temperature relationship compared to the current 255 

work. The current NEON-based analysis is in yellow. Individual lines show the change in lambda across 9 256 

additional studies. Lambda on the y-axis is centered to the mean for each study to make the different approaches 257 

in reporting and estimating lambda comparable. The figure shows several large temperature ranges (~15 degrees 258 

C), with most studies having relatively narrow ranges (~5 C), with particular focus on temperate streams around 259 

12 C. Lambda values were estimated figures, tables, or summary statistics in the corresponding study. 128, 228, 260 

337 (April estimate), 437 (October estimate), 54, 627, 725 (community), 825 (phytoplankton only). 261 

 262 

Methods 263 

Body Size Data 264 

We analyzed size spectra using 2,468,683 individual body masses of fish and 265 

macroinvertebrates collected by the National Ecological Observatory Network (NEON) 266 

between 2016 and 2021. This included 64,940 measures from 157 fish species and 2,403,743 267 
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measures from 1,155 macroinvertebrates taxonomic groups (typically genus or species). The 268 

samples were collected once or twice per year at each of 23 sites, resulting in a total of 123 269 

unique collection events.  270 

 271 

Macroinvertebrates 272 

NEON collected macroinvertebrate data via fixed-area samplers (e.g., Surber/Core/Kicknet) 273 

and measured insect body lengths to the nearest mm along with estimates of their density 274 

(no/m2). The macroinvertebrate data are available as data product DP1.20120.001 (NEON 275 

2023). While the samplers vary, all mesh sizes are the same (243 um). Measurements of 276 

macroinvertebrate lengths spanned from 1 to 86 mm, subsequently converted to dry mass 277 

employing published taxon-specific length-mass regressions44. These regressions included 278 

genus-specific species in some instances. After converting to dry mass, we excluded insects 279 

that were smaller than 0.0026 mg DM, as previous analyses showed these sizes to be under 280 

sampled32.  281 

 282 

Fish 283 

Fish were collected from each site twice per year (typically) using 3-pass removal 284 

electrofishing. The fish data are available as data product DP1.20107.001 (NEON 2022). For 285 

each collection, the first 50 fish per taxon were measured for total length in mm and wet mass 286 

in mg45. The remaining fish were tallied as a bulk count per species (without mass measures).  287 

Using the three-pass depletion data, we estimated fish population density (no/m2) in each 288 

collection using a multinomial Poisson depletion model46. We specified the model in R using 289 

the ubms package47. The response variable was the number of fish caught per pass and the 290 

predictor variable was the collection id (site+date+reach unique ID). The model resulted in a 291 

population estimate for each collection, which we converted to no/m2 by dividing each 292 
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estimate by the sampled area. We then multiplied that population estimate by the relative 293 

abundance of each fish species, resulting in an estimated density (no/m2) of each fish species 294 

in each collection. Finally, we merged those estimates with the dry mass measurements and 295 

resampled the dry mass measures with replacement, weighted by the relative abundance of 296 

each fish species (in units of number of individuals/10,000 m2). Weighting by no/10,000m2 297 

instead of no/m2 was necessary to ensure that enough body sizes were sampled (i.e., no/m2 298 

was typically <1). For each collection, we then summed the total number of individual body 299 

sizes, along with their density estimates, resulting in a dataset containing individual size 300 

estimates and their associated density for each collection. 301 

 302 

Combining fish and macroinvertebrates 303 

Fish and macroinvertebrates were collected on different dates, with macroinvertebrates 304 

collected three times per year and fish collected twice. Therefore, to combine fish and 305 

macroinvertebrate samples, we limited the data to only collections that occurred within 30 306 

days of each other. For example, if macroinvertebrates were collected on June 10 and fish 307 

collected on June 20, those samples were treated as one. If more than one sample was in this 308 

window (e.g., another fish collection on June 21), we included only the most recent 309 

collection.  The resulting data set contains body sizes ranging nine orders of magnitude 310 

(0.003 to 200,000 mg) along with their densities. We used this dataset to estimate individual 311 

size distributions, total community biomass.  312 

 313 

Environmental Data 314 

Temperature 315 

To estimate mean annual stream temperature for each of the 22 sites, we obtained water 316 

temperature readings collected every four hours from 2016 to 2021 using the NEON data 317 
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product DP1.20053.001 (NEON 2023b). We removed data that did not pass quality checks as 318 

noted by NEON. We also removed data that appeared unreasonably low (< -5°C) or high (> 319 

50°C). Some data for Alaskan streams is missing when the water is frozen. For those data, we 320 

assumed a temperature of 0°C. The resulting dataset contained 93,930 temperature readings. 321 

To reduce the data size for modeling, we estimated the mean weekly temperature and 322 

modeled that as a function of date and site using a generalized additive model with a 323 

Gaussian likelihood and year as a varying intercept. Mean weekly temperature was centered 324 

prior to modeling. This approach allowed us to have a posterior distribution of temperature 325 

predictions on each day over three years. From that posterior distribution, we calculated the 326 

mean annual temperature and standard deviation (Table 1) for each site. 327 

 328 

Gross Primary Production 329 

We estimated regimes of annual gross primary production (GPP, g C m-2 y-1) through a 330 

multistep ensemble model process (Supplemental Materials). Daily time series of NEON 331 

sensor-based data for temperature (DPI # 20053.001), stream discharge (DPI # 332 

DP4.00130.001), and oxygen concentration (DPI # DP1.20288.001) were checked for data 333 

quality flags and visually inspected to identify potential errant data. We then estimated daily 334 

GPP from cleaned time series with maximum likelihood estimation through 15 different 335 

methods using the `streamMetabolizer` package48. Methods varied in respect to discharge–336 

gas exchange, photosynthetic rate–light, and photosynthetic rate–temperature relationships. 337 

From this model suite, we first calculated root mean squared error (RMSE) based on 338 

pointwise differences between predicted and observed daily oxygen series. This model suite 339 

was reduced by removing models that yielded unreasonably high estimates based on mean 340 

daily GPP (>13,000 g C m-2 y-1), correlation coefficients >0.95 between reaeration and 341 

ecosystem respiration, and particularly poor fits based on RMSE. From this filtered model 342 
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suite, we created an ensemble model weighted by relative RMSE. Finally, to develop a 343 

general model of the GPP regime at each site, we fit a hierarchical generalized additive model 344 

(GAMM) to ensemble estimated GPP by ‘day of year’ with ‘year’ treated as a random effect 345 

term. We summed the estimated ‘day of year’ fixed effect to quantify annual GPP for all 346 

sites. Annual GAMMs were fit with the `brms` package49 with smoothing functions from the 347 

`mgcv`50. 348 

 349 

Organic Matter 350 

We estimated the standing stock of organic matter from 49 unsorted bulk benthic samples in 351 

the NEON biorepository (at least two samples per site)51. The samples were collected at the 352 

same time as macroinvertebrate samples, using the same collection techniques (i.e., Surber 353 

sampler, core sampler). We obtained the raw samples from NEON and first removed 354 

macroinvertebrates. We dried the remaining organic matter at 60 °C for >48 hours to bring to 355 

a constant mass before determining the initial mass. We then combusted samples at 500 °C 356 

for four hours before reweighing to determine total organic matter mass. Samples were scaled 357 

to areal mass (g m-2) based on sampler area. 358 

 359 

Metabolic scaling experiment 360 

We conducted a mesocosm experiment, mirroring stream conditions, wherein factorial 361 

combinations of two temperature levels (natural vs. heated) and two predation regimes (with 362 

predation vs. without predation) were implemented. A sample of macroinvertebrates was 363 

collected from each tank 30 days after water first flowed through them. This timeframe was 364 

chosen as it allows for ongoing changes in community composition, with the size spectra 365 

expected to stabilize around an equilibrium within the specified experimental period of 30 366 

days.  367 
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To determine the general metabolic scaling of the community, 𝑀$, we computed the 368 

metabolic rate based on individual macroinvertebrates gathered from each tank. Using 369 

oxygen consumption as an indicator for standard metabolic rate, we followed established 370 

methods52. Macroinvertebrates were subjected to a 24-hour starvation period prior to 371 

measuring oxygen consumption to eliminate the energetic costs of specific dynamic action 372 

and minimize the accumulation of excretory products. 373 

Subsequently, each individual was placed in a transparent glass vial containing 20 mL 374 

of oxygenated, filtered water. After one hour, we measured the reduction in oxygen 375 

concentration within each vial using oxygen sensors (e.g., PSt3, PreSens, Regensburg, 376 

Germany) and a portable oxygen meter equipped with a fiber-optic cable (e.g., Fibox 4 trace, 377 

PreSens, Regensburg, Germany). Corrections were made for changes in oxygen 378 

concentrations in control vials (without macroinvertebrates), and individual metabolic rates 379 

were standardized to milligrams of oxygen consumed per liter per hour (mg L-1 hour-1). 380 

Furthermore, after respirometry measurement, each individual was dried and 381 

measured for individual mass on a microbalance, enabling the assessment of the relationship 382 

between metabolic rate and body size. 383 

 384 

Data Analysis 385 

To examine how size spectra varied as a function of temperature and resources, we used a 386 

Bayesian generalized linear mixed model with a truncated Pareto likelihood. A description 387 

and justification of this modelling approach for ISD’s is given in53. The model structure was: 388 

𝑥&'() 	~	𝑓 +𝑥'(); 	𝜆'() , 𝑥*&+()* , 𝑥*,-()* , 𝑐𝑜𝑢𝑛𝑡𝑠&'()4 389 

𝜆'() 	= 	𝑎	 + 	𝛃𝐙	 +	𝛾' +	𝛾( 	+ 	𝛾) 390 

where	𝑥&'() is the ith body size from sample j in site k and year l. The likelihood f(…) is a 391 

truncated Pareto with a single free parameter	𝜆'(), the exponent of the ISD. 𝑥*&+()* and 392 
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𝑥*,-()* are the minimum and maximum body sizes in each sample, site, and year. Each body 393 

size has a corresponding density in units of number per m2, represented by countsijkl, as 394 

described in54. 𝜆'() 	is modeled as a linear function of an intercept 𝛼 and 𝛃𝐙 represents the 395 

single, two, and three-way interactions of the Z predictors of mean annual temperature, mean 396 

annual GPP, and standing stock organic matter. All predictors were standardized as z-scores 397 

prior to fitting. Varying intercepts are included for individual sample (𝛾'), site 𝛾(), and year 398 

(𝛾)). To improve sampling efficiency, the varying intercepts were modeled using non-399 

centered parameterization, which is excluded here for clarity, but is present in the Stan model 400 

code: https://github.com/jswesner/neon_size_spectra-slim. 401 

Priors for the intercept were Normal(-1.5, 0.2), chosen based on a previous analysis of 402 

ISD values in NEON streams27. Priors for each β parameter were set to Normal(0, 0.1). Priors 403 

for the q varying intercepts were Normal(0, sq), with each sq hyperprior set to 404 

Exponential(7). These priors were chosen based on prior predictive simulation55 to center the 405 

prior probabilities of λ between about -2 to -1 while still allowing probabilities at very large 406 

(e.g., 1) or small values (e.g., -4) (Fig. S3). 407 

To test the metabolic scaling relationship, we used a gaussian linear mixed model 408 

with log10 respiration (centered at zero) rate as the response variable, log10 dry mass (centered 409 

at zero), heat (presence/absence), and fish (presence/absence), and their interactions as 410 

predictor variables, and mesocosm tank as a varying intercept. Priors for the intercept were 411 

Normal(0, 1). The prior for the marginal slope between log10 respiration and log10 dry mass 412 

was Normal(0.75, 2), and all other priors for the regression parameters were Normal(0, 1).  413 

We fit all models in rstan via the brms and isdbayes packages in R. Each model had 4 414 

chains with 2000 iterations, where the first 1000 were discarded as warm-up. Model fit was 415 

checked using posterior predictive checks and prior influence was checked using prior 416 

predictive simulation. 417 
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Supplementary Information 560 

Table S1. Parameters of four simulation scenarios of factors that explain lambda: 

Predator Prey Mass Ratio (PPMR), Trophic Efficiency (TE), Metabolic Scaling 

Coefficient (MS), and Ecological Subsidies. The mean, median, and sd are derived from 

10,000 simulations for each parameter with the following probability distribution 

functions in R: PPMR = rlnorm(10000, 12, 3), TE = rbeta(10000, 7, 60), MS = 

rbeta(10000, 12, 25), Subsidies = rbeta(10000, 14, 15). In models 1-3, at least one 

parameter is fixed (e.g., MS is assumed to be 0.75 in models 1 and 3).  

Parameter Model Constant Mean 
Media
n SD 

PPMR (α) 1) Standard Model No 107 105 4E+08 
TE (β) No 0.1 0.1 0.04 
MS (ε) Yes 0.75 0.75 0 
Subsidies (δ) Yes 0 0 0 

      
PPMR (α) 2) Standard Model + Shallow 

Metabolic Scaling 
No 107 105 4E+08 

TE (β) No 0.1 0.1 0.04 
MS (γ) No 0.4 0.4 0.09 
Subsidies (δ) Yes 0 0 0 

      
PPMR (α) 3) Standard Model + Subsidies No 107 105 4E+08 
TE (β) No 0.1 0.1 0.04 
MS (γ) Yes 0.75 0.75 0 
Subsidies (δ) No 0.4 0.4 0.08 

      
PPMR (α) 4) Standard Model + Shallow 

Metabolic Scaling + Subsidies 
No 107 105 4E+08 

TE (β) No 0.1 0.1 0.04 
MS (γ) No 0.4 0.4 0.09 
Subsidies (δ) No 0.4 0.4 0.08 
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 563 
Fig. S1| Posterior distributions of fixed effects parameters from seven models estimating change in λ 564 

across environmental predictors. Models contain either univariate (a-c), two-way interactions (d-f), or a three-565 

way interaction (g) of temperature (“temp”), gross primary production (‘gpp”) or organic matter standing stock 566 

(“om”). All variables were standardized with z-scores prior to analysis. GPP add organic matter were log10 567 

transformed prior to standardization. Parameters containing temperature are highlighted in yellow. All models 568 

contained variating intercepts of year, site, and sample, which is abbreviated with elipses (…). The median, 50, 569 

and 95% Credible Intervals are shown by the dot, thick bar, and thin bar, respectively. 570 
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 571 

Figure S2 | Community-wide results differ from individual taxa results. a-c) Invariance 572 

of the ISD for the community (a) does not hold when only analyzed for invertebrates (b). For 573 

fish (c), the level of replication (number of individual fish per sample) is lower, and the 574 

relationship more uncertain than a or b. Lines are posterior medians and shading is the 95% 575 

Credible interval. Dots in a-c are sample-specific lambdas predicted from varying intercepts 576 

in each model.   577 
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Figure S3 | Two-hundred simulations from the prior predictive distribution (a) 579 

compared to the fitted posteriors (b). Both models show the relationship between λ and 580 

temperature with GPP and organic matter set to their median values. 581 

 582 

We checked the implications of our priors using prior predictive simulation. The result is 583 

shown in Fig. S3, indicating that the priors largely limit λ to values between ~-2 to -1, but 584 

allow for a wide range of possible relationships with mean annual temperature. By 585 

comparison, the posterior (Figure S1b) remains in a much more constricted space. The 586 

difference between the prior and posterior is an index of how much information was learned 587 

from the data.  588 
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