N
Check for
Updates

BONES: Near-Optimal Neural-Enhanced Video Streaming

LINGDONG WANG, University of Massachusetts Amherst, USA
SIMRAN SINGH, New Jersey Institute of Technology, USA

JACOB CHAKARESKI, New Jersey Institute of Technology, USA
MOHAMMAD HAJIESMAILI, University of Massachusetts Amherst, USA
RAMESH K. SITARAMAN, University of Massachusetts Amherst, USA

Accessing high-quality video content can be challenging due to insufficient and unstable network bandwidth.
Recent advances in neural enhancement have shown promising results in improving the quality of degraded
videos through deep learning. Neural-Enhanced Streaming (NES) incorporates this new approach into video
streaming, allowing users to download low-quality video segments and then enhance them to obtain high-
quality content without violating the playback of the video stream. We introduce BONES, an NES control
algorithm that jointly manages the network and computational resources to maximize the quality of experience
(QoE) of the user. BONES formulates NES as a Lyapunov optimization problem and solves it in an online
manner with near-optimal performance, making it the first NES algorithm to provide a theoretical performance
guarantee. Comprehensive experimental results indicate that BONES increases QoE by 5% to 20% over state-
of-the-art algorithms with minimal overhead. Our code is available at https://github.com/UMass-LIDS/bones.

CCS Concepts: « Networks — Network resources allocation; - Information systems — Multimedia
streaming,.

Additional Key Words and Phrases: adaptive bitrate streaming, Lyapunov optimization, neural enhancement,
super-resolution

ACM Reference Format:

Lingdong Wang, Simran Singh, Jacob Chakareski, Mohammad Hajiesmaili, and Ramesh K. Sitaraman. 2024.
BONES: Near-Optimal Neural-Enhanced Video Streaming. Proc. ACM Meas. Anal. Comput. Syst. 8, 2, Article 19
(June 2024), 28 pages. https://doi.org/10.1145/3656014

1 INTRODUCTION

Video content dominates the Internet, accounting for more than 65% of its traffic volume [35].
However, accessing high-quality video content is often hindered by insufficient and unstable
network bandwidth between the video server and video player (i.e., client). This challenge of high-
quality video streaming is even more significant when delivering higher-resolution or immersive
videos, such as 4K/8K videos, 360-degree videos, and volumetric videos.

The traditional approach to maximizing the user’s quality of experience (QoE) is to use an adaptive
bitrate (ABR) algorithm. An ABR algorithm typically runs within the video player and ensures
that the video plays back continuously (i.e., without rebuffering) at the highest possible quality

Authors’ addresses: Lingdong Wang, lingdongwang@umass.edu, University of Massachusetts Amherst, Amherst, Mas-
sachusetts, USA; Simran Singh, s.singh.xzy@gmail.com, New Jersey Institute of Technology, Newark, New Jersey, USA; Jacob
Chakareski, jacobcha@njit.edu, New Jersey Institute of Technology, Newark, New Jersey, USA; Mohammad Hajiesmaili,
hajiesmaili@cs.umass.edu, University of Massachusetts Amherst, Amherst, Massachusetts, USA; Ramesh K. Sitaraman,
ramesh@cs.umass.edu, University of Massachusetts Amherst, Amherst, Massachusetts, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2476-1249/2024/6-ART19

https://doi.org/10.1145/3656014

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

HTTPS://ORCID.ORG/0009-0007-4672-2243
HTTPS://ORCID.ORG/0000-0002-0867-2528
HTTPS://ORCID.ORG/0000-0003-2428-9518
HTTPS://ORCID.ORG/0000-0001-9278-2254
HTTPS://ORCID.ORG/0000-0003-0558-6875
https://doi.org/10.1145/3656014
https://orcid.org/0009-0007-4672-2243
https://orcid.org/0000-0002-0867-2528
https://orcid.org/0000-0003-2428-9518
https://orcid.org/0000-0003-2428-9518
https://orcid.org/0000-0001-9278-2254
https://orcid.org/0000-0003-0558-6875
https://doi.org/10.1145/3656014
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656014&domain=pdf&date_stamp=2024-05-29

19:2 Lingdong Wang et al.

(i.e., bitrate). To achieve this goal, the ABR algorithm downloads lower-quality video segments
when the available network bandwidth is low to prevent rebuffering and downloads higher-quality
segments when the bandwidth is high. There has been extensive research on developing ABR
algorithms for decades, with many known algorithms such as BOLA, Dynamic, Festive, MPC,
Pensieve, etc [19, 22, 29, 38, 39, 50].

Neural-Enhanced Streaming (NES). Traditional video streaming relies on transmitting videos
from the server to the client at the highest possible quality while ensuring continuous playback [6,
7, 43]. However, recent advances in machine learning open up a new possibility of transmitting
videos from the server to the client at low quality, and then neurally enhancing the video quality
via deep-learning techniques at the client. Some examples of such neural enhancement include
super-resolution [26, 27], frame interpolation[37, 52], video inpainting [41, 53], video denoising
[13, 42], point cloud upsampling [24, 51], and point cloud completion [20]. NES methods incorporate
this new approach into video streaming, enabling a tradeoff between communication resources for
transmitting high-quality videos and computational resources for neural enhancement. Unlike ABR
algorithms that only decide the quality of the video segment to download, an NES control algorithm
decides on both the download quality and the enhancement option, for each video segment. NES
is particularly advantageous in improving the worst-case user experience under poor network
conditions. Additionally, it allows video providers or clients to save bandwidth by lowering the
transmission bitrate and performing enhancement afterward.

Prior work on NES. While not as extensively studied as ABR algorithms, recent works on
NES use reinforcement learning (RL) [12, 36, 48, 54, 56] or heuristic approaches [55, 57]. However,
these methods do not have theoretical guarantees for their performance. Further, prior works only
consider one enhancement option during inference, usually the one bringing the highest quality
gain in real-time. This restricts the possible design space of enhancement options and disregards
the broader benefits of utilizing diverse enhancements over a longer time horizon. Finally, existing
NES methods are complex to deploy and slower to converge. For example, RL-based methods have
high training costs but may still not adapt well to real-world scenarios [46]. Other approaches that
rely on model predictive control (MPC) compute a large rigid decision table or heuristically solve
an NP-hard problem, leading to an intractable solution [50, 57].

Our NES algorithm. To rectify the above shortcomings, we propose Buffer-Occupancy-based
Neural-Enhanced Streaming (BONES), a client-side NES algorithm for on-demand video streaming.
Specifically, BONES downloads video segments from a video provider’s server to a client device and
then enhances these segments opportunistically using local computational resources. To ensure
efficient scheduling of the available bandwidth and computational resources, BONES operates within
a novel parallel-buffer system model and solves a Lyapunov optimization problem online. It has
a provable near-optimal performance and exploits all available enhancement methods during
inference, resulting in superior performance. Besides, BONES has a simple control algorithm with
explainable parameters, making it easier to deploy in production systems.

Our Contributions. We make the following contributions in our work:

(1) Joint optimization of download and enhancement decisions. BONES generalizes the Lyapunov
optimization approach of the ABR algorithm BOLA [38, 39] to the NES problem of scheduling
both bandwidth and computational resources. Our proposed parallel-buffer system model
and online control algorithm allow for optimizing the download and enhancement decisions
jointly while conducting the actual respective operations asynchronously, which largely
contributes to the performance enhancements enabled by our framework.

(2) Theoretical guarantees and simple algorithm design. BONES is the first NES algorithm with a
provable guarantee on its performance. Specifically, BONES achieves QoE that is provably

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:3

enhance enhance
decision operation
dowhl.oad playback
decision playback enhancement buffer
download
download decision
operation
video P download buffer video download enhanced
segment segment operation segment

download buffer

Fig. 1. System models of the traditional ABR algorithm (left) and BONES (right).

within an additive factor of the offline optimal solution. Besides enhanced performance,
BONES has the advantages of linear time complexity and simplicity in deployment.

(3) Simulation environment and prototype system implementation. We implement an efficient
simulation environment for large-scale evaluation of NES algorithms, along with a prototype
system for real-world examination. Our code is publicly released to advance research in
related fields.

(4) Superior experimental performance with low overhead. Using extensive experiments, we com-
pare BONES with existing methods under six enhancement settings and four network trace
datasets. Our experimental results demonstrate that BONES increase QoFE by 3.56% to 13.20%
in our simulation evaluation and 4.66% to 20.43% in our prototype evaluation. In comparison
to the default ABR algorithm of the dash.js video player [40], BONES can improve its QoE by
7.33%, which is equivalent to increasing the average visual quality by 5.22 in the VMAF score.
BONES only incurs minimal costs and offers three trade-off options between performance and
overhead. The options range from less QoE improvement with zero overhead to maximum
benefit with an additional 310-KB download size and 0.68-second startup latency.

2 PROBLEM FORMULATION

We now propose a system model and pose the optimization solved by BONES. The main notations
used in this paper are summarized in Tab. 1.

2.1 System Model

Modern video streaming works by temporally partitioning the video into segments, where each
segment plays for a fixed amount of time (say, 4 seconds). The video player sequentially downloads
each segment from a video server and renders the segment on the viewer’s device. To reduce the
chance of rebuffering (i.e., freezing), each segment is downloaded and stored in a download buffer
ahead of when it needs to be rendered. Each segment is encoded in multiple qualities. And an
ABR algorithm chooses the quality to download in an online fashion with the goal of reducing
rebuffering events and optimizing the QoE. As noted earlier, an NES algorithm also performs neural
enhancements for downloaded segments prior to their rendering.

We show the system model of a traditional ABR algorithm within the video player and contrast
that with the system model of BONES in Fig. 1. Relative to a traditional ABR system that solely
schedules bandwidth resources with one download buffer, our NES system also incorporates an
extra buffer and control flow to manage computational resources. In the BONES system model, the
download buffer stores video segments that have been downloaded, and the enhancement buffer
stores enhancement tasks waiting for computational resources. We first introduce the download
process in the lower branch and then the enhancement process in the upper branch.

Suppose the video segment is indexed by n € [N], and the time slot is indexed by k € [Kn],
where Ky represents the index of the slot where the N-th (last) segment of the video content is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:4 Lingdong Wang et al.

Table 1. Summary of main notations.

Notation | Description

e the k-th time slot

K, index of the time slot where the n-th segment is downloaded
Tk duration of time slot #;

d; binary indicator to select the i-th download bitrate

e; binary indicator to select the j-th enhancement method
Q%(t) | download buffer level at time slot #;
Q°(tx) | enhancement buffer level at time slot #
u?(i,t) | download utility of the i-th bitrate in time slot #;
u®(i, j, tx) | enhancement utility of the j-th method for the i-th bitrate in time slot #
4(i, j, tr) | timely enhancement utility of the j-th method for the i-th bitrate in time slot #;
P duration of a video segment
B;(ty) the i-th download bitrate in time slot #;
Si(tr) size of the video segment with the i-th bitrate in time slot #;
w(ty) average bandwidth in time slot #;
t°(i,j) | processing time to enhance a segment with the i-th bitrate using the j-th method
Tend playback finishing time

\4 parameter to control the trade-off between Lyapunov drift and penalty
ol maximum download buffer capacity
Umax maximum utility of a video segment
Tinin minimum time slot duration
Tiax maximum time slot duration
U total utility of the n-th video segment
On rebuffering time to download the n-th video segment
Y hyper-parameter to control the trade-off between utility and smoothness
B hyper-parameter to linearly control V'

downloaded. At the beginning of each time slot #;, BONES makes both download and enhancement
decisions for the next video segment.

The download decision determines whether to download the next segment in this time slot and at
which bitrate to download it. Formally, we represent the possible choices for this decision variable
using a vector d = (ds, - - -, dr), where the indicator d; € {0, 1}, 211-21 d; < 1, where I denotes the
number of possible download bitrate options. In particular, }}; d; = 0 indicates no download, while
d; = 1 indicates that the next segment will be downloaded at the i-th available bitrate B;(#) at time
slot t. A high download bitrate improves the video quality but consumes more network bandwidth,
leading to a longer download time.

If the decision is to download, the segment will be retrieved at the desired bitrate and then
added to the end of the download buffer, as illustrated in Fig. 1. The next time slot will commence
immediately after the completion of the download. If there is no download to be performed in
the present time slot, BONES waits for A milliseconds and starts the next slot. The video content is
played back at a constant rate from the download buffer. However, if the download buffer is empty,
the playback will freeze until new content is available, which results in rebuffering and negatively
impacts the quality of experience (QoE) of the user.

Let p be the time duration for a video segment to be played back, expressed in milliseconds.
Assume that the i-th download option has been selected, i.e., d; = 1. Then, the segment’s size in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:5

bits can be expressed as S;(tx) = B;(tx)p. Next, let w(t;) denote the average network bandwidth
during time slot #; in Kbps. We can then compute the duration of time slot #, i.e., the download
time of the segment as Ty = S;(tx)/w(tx) milliseconds. Note that Ty also captures the length of
downloaded content consumed by the client due to video playback during time slot t. Finally, let
Q%(t;) denote the download buffer level, i.e., the total length of segments remaining in the buffer.
We can formulate the download buffer dynamic as follows:

Q" (tn) = max [Q(t0) ~ T, 0| +) dip. 1)

At the start of time slotty, we also decide whether to enhance the video segment and which
enhancement method to apply. The enhancement decision is defined as a vector e = (ey,-- - , ej),
where the indicator e; € {0, 1}. But slightly different from the download decision, we have Zle ej =
1, where J denotes the number of possible enhancement methods. We set the first enhancement
method (e;) as "no enhancement” with zero finishing time and zero effect and e; = 1 indicates that
the j-th available enhancement method will be applied to the video segment. An enhancement
method using a larger deep-learning model typically offers greater quality improvement but takes
more time to complete due to higher computational complexity.

A video segment will be pushed into the enhancement buffer at the same time as it is pushed into
the download buffer. When doing so, we are actually registering a new computation task to enhance
this segment with the chosen enhancement method, and letting this task wait for resources in the
enhancement buffer. The length of the video segment in the enhancement buffer is set to be the
expected time required to finish its enhancement, denoted by ¢ (i, j). This computation time #€ (i, j)
is a function of the download option i and the enhancement option j, as both the downloaded video
quality and enhancement method can affect the computation speed. The estimated computation
time is derived by profiling the enhancement method on the client device. Since the playback
duration of a segment is usually different from the processing time of its enhancement task, a video
segment often has different lengths in the two buffers, as illustrated in Fig. 1.

It is important to note that, though the enhancement decision is made before a segment enters
the enhancement buffer, the actual computation for the enhancement takes place when the video
segment leaves the buffer. This enables BONES to optimize download and enhancement decisions
jointly but perform the actual operations asynchronously in a non-blocking manner, which leads to
superior performance. This approach also allows us to use the Lyapunov optimization framework
[32] which can synchronously control multiple queues in a renewal process.

The departure of a segment from the enhancement buffer indicates the completion of its enhance-
ment task. The enhancement buffer has the same departure rate as the download buffer, because in
1 second, we will playback 1-second video content and complete a 1-second computational task.
Every video segment must go through both download and enhancement buffers to become an
enhanced segment before playback. But the enhanced segment could be the same as the original if
"no enhancement” is selected. Let the enhancement buffer level Q°(#;) capture the aggregate length
of computational tasks waiting in the buffer measured in milliseconds. Now, we can formulate the
temporal evolution of the enhancement buffer as:

Q° (tian) = max [Q°(1) = Tiu 0] + Y die; (i,). @
ij

2.2 Optimization Objective

There are three main goals in video streaming - improve video quality, reduce the rebuffering ratio,
and avoid buffer overflow. Similarly to BOLA [38, 39], we incorporate these three goals into a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:6 Lingdong Wang et al.

Lyapunov optimization problem. To improve the video quality, we aim to maximize a time-average
utility function defined as

L Bk df (o te) + diejac (i, g, 1) }
= lim
N—ooo E{Tend}

_ limgy—oo BB Ak diw? (i) + diejii® (i, j 1) } ®3)

limgy oo 2B {242 T}

where u? (i, t;) is the base utility of a video segment, i€ (i, j, ;) is the extra utility obtained by neural
enhancement, and T.pq is the playback finishing time. While the proposed algorithm works for any
size of the video sequences, in our theoretical analysis, we further assume there are infinite video
segments, i.e., N — oco. Because the gap between the total playback time and total download time is

the time to drain all the content out of the download buffer, we have E {T.,q} —E {Zlk(fl Tk} < Qd

max’>

where Q2. is the maximum download buffer capacity. Since Q2. is finite, we further have
E{Tena}

KN
k=1 Tk

the last formula in Eq. (3). The final utility function is the expected sum of the download and
enhancement utility in each time slot, averaged by the expected time slot duration.

Different from existing myopic NES methods that only consider the present time slot, we allow for
selecting non-real-time enhancements and buffering of computation tasks over a longer time hori-

limg, —o0 = 1. Based on this equation and the theory of renewal processes [16], we derive

zon. However, we must make sure that the enhancement of a segment is finished before its playback.
Utilizing the property that the two buffers have the same departure rate, we know that an enhance-
ment requiring t¢(i, j) to finish will miss the playback deadline if Q¢(x) +X;; die;jt(i, j) > 04 (ty.).
So we abandon such options by assigning them a negative infinity utility. The final enhancement
utility function is expressed in Eq. (4), where u°(i, j) represents an enhancement method’s util-
ity improvement pre-measured by the video provider and transmitted to the client via metadata.
Specially, we have t°(i, 1) = 0,u®(i, 1, t) = 0, Vi, k for the "no enhancement" option.

— 00, Q°(tx) +) die;t“ (i,) > Q (1),
ij (4)

(i, j, ty) =
u®(i, j), otherwise.

In order to reduce the rebuffering ratio, we aim to maximize the time-average playback smooth-
ness function defined in Eq. (5). In particular, by maximizing the ratio of the total video length
2kij diejp and the total playback time Tend, we are minimizing their difference, i.e., the total re-
buffering time.

s g Ak dieiph
B N—-ooo E{Tend}
~ limg,, —c0 ﬁE {Zkij diejp} ®

limgy e 728 {2 T

To prevent buffer overflow, we require both buffers to be rate stable, which is a relaxation of the
strict buffer constraint. Rate stability ensures that the expected input rate is not greater than the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:7

expected output rate. We then establish the download buffer constraint as

1 1
lim —E dipp < lim —E T ¢ 6

and the enhancement buffer constraint as

1 . 1
K}lvlgoo EE {; diejt (l,])} < K]l\]lgoo I<_NE {; Tk} . (7)

Finally, we formulate the neural enhancement problem as

max @+ys, s.t, Constraints (6), (7), (8)
e

where the goal is to maximize the streaming session’s utility and smoothness under buffer con-
straints. The hyper-parameter y controls the trade-off between the smoothness and utility objectives.
Note that our optimization target can be reduced to that of BOLA by setting e; = 1 (always choosing
"no enhancement"). This implies that our method can function as a neural enhancement streaming
algorithm when enhancement is available or a conventional ABR algorithm, otherwise.

3 BONES: CONTROL ALGORITHM AND THEORETICAL ANALYSIS
3.1 Control Algorithm

We develop an efficient online algorithm called BONES to compute the download and enhancement
decisions. Solving problem (8) optimally in an online fashion is not practically feasible since the
future values of the network bandwidth are uncertain. However, we show that BONES is within
an additive factor of the offline optimal solution to the problem (8). Inspired by the Lyapunov
optimization framework for renewal frames [31, 32] and BOLA, BONES greedily minimizes the
time-average drift-plus-penalty for each time slot. Specifically, the objective function involves the
Lyapunov drift, defined as

Op(te) = Q%(t)). dip + Q°(te)) die;t* (i, j),)
i ij

and a penalty function defined as

Op(ti) = — |) diu (i, te) + diejii® (i j, te) + ydip | (10)
ij
We also need to divide our objective by the time slot duration Ty = S;(#)/w(#), but the random
variable w(t;) can be omitted in the optimization.
Altogether, the optimization problem that BONES aims to solve in each time slot is given below:
min 200 t) + VOp(, j. tie)
de 2 diSi(te)
st,d; € {0,1} Vi, Z d;
ej € {0,1} V], ZEJ' =1,

where V is a trade-off factor between the Lyapunov drift and the penalty. Note that BONES relies
solely on the download and enhancement buffer levels Q%(#;) and Q°(t) in its operation without
using any information about the available network bandwidth. Thus, BONES is a “buffer-occupancy-
based” method.

(11)

IA

1’

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:8 Lingdong Wang et al.

Algorithm 1: BONES: A joint control algorithm for download and enhancement decisions

Input: computation time matrix T¢ € Rixj , total utility matrix U € RN**J segment size
matrix § € RNY*! | maximum download buffer capacity Q¢ , maximum utility tmay,
segment duration p, hyper-parameters y and 8
1 Initialize O € RPV, V= BU(Q%wx=P)P)/ (ttmaxtyp)
2 forn € [1,N] do

3 t < current timestamp
4 forie [1,I] do
5 for j € [1,]] do
6 Oli, j] « (Q*(p +Q*(NT°[i, j1 = V(U[n.i, jl +yp))/Sln, i]
7 if Q°(t) + T¢[i, j] > Q%(t) then
s | Ol j] < —eo
9 end
10 end
11 end
12 i’,j' < argmin; ; O
13 download the n-th segment with the i’-th bitrate, wait until the download finishes at ¢’
14 if Q¢(t') + T¢[i’,j’] > Q%(t’) then
15 ‘ j <0
16 end
17 push the n-th segment into the enhancement buffer to enhance it with the j’-th method
18 push the n-th segment into the download buffer
19 Atsleep — maX[Qd(t,) +p- ngx’ 0]
20 wait for time Afgleep
21 end

We present the basic control algorithm of BONES in Algorithm 1. The algorithm receives a
matrix of computation time T¢ € RY measured locally, a matrix of total utility U € RN*/*/ from
metadata, a matrix of segment size S € Rfj *I from metadata, and some constant numbers and
hyper-parameters as indicated in the input argument of Algorithm 1. The entries of the total utility
matrix include the aggregate values of the download utility u¢ and the enhancement utility u, for
each segment and enhancement option, i.e., U[n, i, j] = ug(i) + uy, (i, j). Note that BONES can also
run with average utility and segment size if per-segment data is unavailable.

Concretely, the BONES algorithm operates as follows. The algorithm firstly computes V according
to Eq. (13) (Line 2 in Algorithm 1). Then for each video segment, BONES solves Eq. (11) by traversing
all possible combinations of download and enhancement options and choosing the one with the
minimum objective score (Lines 3 - 13). BONES downloads the video segment at the bitrate given by
the solution and waits for the completion of the download. Once the segment is downloaded, BONES
will check whether the previously-decided enhancement option is still applicable and pushes a
computation task to the enhancement buffer only if it can be finished on time (Lines 15 - 18). BONES
also pushes the video segment into the download buffer. Further, BONES will pause downloading
until the download buffer can hold one more segment (Lines 20 - 21). Note that the stopping
criterion here is implemented differently from the theory. This is because we can know exactly
when BONES should stop downloading and how long it should sleep, by assigning V a special upper
bound. The impact of different values of V on the performance of BONES will be discussed in Sec. 3.3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:9

[0 download LR [download LR + enhance [download HR [0 no download

Basic Faster Computation Higher y Lower B

60 60 60 60
o 50 50 50 50
o
3 40 40 40 40
3
]
£ 30 30 30 30
o
8
£20 20 20 20
2
=
10 10 10 10

0

0 0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Download Buffer Level (s) Download Buffer Level (s) Download Buffer Level (s) Download Buffer Level (s)

Fig. 2. The decision plane of BONES. Parameter settings from left to right are as follows. “Basic™ yp = 10, f = 1,
1X computation speed. “Faster Computation”: 2x computation speed. “Higher y”: yp = 50. “Lower ”: f = 0.5.

BONES has a time complexity of O(I]) in each iteration, where I and J are the numbers of possible
choices for bitrate and enhancement options. Besides, the computation of objective scores can be
fully parallelized. As a result, BONES runs efficiently in real-time and is easy to deploy. Based on the
primary control algorithm here, we propose two additional heuristics in Sec. 5.3 to further improve
the practical performance of BONES.

3.2 Decision Plane of BONES

To better understand our algorithm, we depict its 2D decision plane with respect to buffer levels
under a hypothetical scenario involving two types of low-resolution (LR) segments and high-
resolution (HR) segments. And there is only one type of enhancement method for LR segments.
We present four variants of BONES decision planes in Fig. 2 under different parameter settings.
Interpreting the decision plane of BONES. Starting from the lower left corner of a decision plane,
the download buffer is empty and the viewer is in urgent need of content. In this case, BONES selects
to quickly download LR segments without initiating enhancements. As the download buffer level
increases, BONES still downloads LR segments but has time to enhance them and achieve higher
visual quality. Once the download buffer level is high enough, BONES can pursue the highest quality
by downloading HR segments since enhancement can never be perfect (enabling less quality than
HR). When the download buffer is almost full, BONES suspends further downloading to prevent
buffer overflow. According to Eq. (4), BONES will stop enhancing segments if the enhancement
buffer level is close to the download buffer level, so it will never enter the upper left white triangle.
If enhancements are unavailable on the device, the orange region vanishes and the control plane
becomes a 1D function of the download buffer level, which implies BONES is reduced to BOLA. To
conclude, this simple scenario demonstrates that BONES consistently exhibits reasonable behavior.
The impact of system parameters. Fig. 2 also illustrates the impact of system settings and hyper-
parameter settings on the decisions of BONES. Compared with the “Basic” setting, we increase the
computation speed by 2x in “Faster Computation” as if BONES runs on more powerful computational
hardware. In this case, the area of downloading and enhancing LR segments increases, meaning
that neural enhancement becomes more desirable with more computational resources available.
Recall that BONES has 2 hyper-parameters — y and 5. Parameter y trades off between visual
quality and playback smoothness (rebuffering ratio) in Eq. (8). In practice, we tune y together with
the constant segment duration p. Parameter f linearly controls V, the trade-off factor between
Lyapunov drift and penalty in BONES optimization objective Eq. (11). In the “Higher y” setting, we
increase yp from 10 to 50, making BONES prefers a lower rebuffering ratio than higher visual quality.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:10 Lingdong Wang et al.

As a result, BONES increases the area of downloading LR segments and requests download bitrate in
a more conservative manner. In the “Lower ” setting, we decrease f from 1 to 0.5, suppressing the
penalty term in the optimization objective Eq. (11). Due to the diminishing return effect of visual
quality, each bit in an LR video segment provides more visual quality scores than that of an HR
segment. Therefore, the penalty term in Eq. (11) prefers downloading LR segments and performing
enhancements (see the structure of utility divided by segment size). On the opposite, the Lyapunov
drift term prefers HR segments. This explains why BONES will download more HR segments as a
consequence of lower f and V in this setting. We also provide empirical evidence of how BONES is
affected by its hyper-parameters in Sec. 5.4.

3.3 Performance Bound

In this subsection, we rigorously analyze the performance of BONES and establish near-optimal
guarantees. The analysis shares the same high-level logical flow with BOLA, but since BONES
introduces the addition of an enhancement buffer, there are important differences in the details of
the analysis. Theorem 1 bounds the size of the download buffer and shows that BONES does not
violate the buffer capacity. Secondly, Theorem 2 bounds the performance of BONES with respect to
that of the offline optimal solution.

d _
THEOREM 1. Assume Q?(0) = 0,0°(0) = 0, and0 < V < % , where un.x denotes the

maximum utility. Then, the following holds: Q% () < V”""“‘;# +p,and Q%(tx) < Q4.

We present a proof in Appendix A. Theorem 1 shows that the download buffer level has a finite
bound of O(V) and will never exceed the maximum capacity. The intuition here is to design a
special upper bound for V, which ensures BONES to select "no download" if the download buffer
level is higher than Q% — p. In this way, BONES will download only when the download buffer
can accept one more segment. Since the enhancement buffer is a virtual queue without any storage
space, its occupancy is not a concern.

In order to prove the performance bound of BONES, we first show that there exists an optimal
stationary i.i.d. algorithm independent of the buffer occupancy for problem Eq. (8), achieving the
objective " + y5*. Based on that, we can derive the following theorem.

Tmin < T < Thay, Yk, and t

max>

THEOREM 2. Assume t¢ < t€

< toax Tmin, Tmax are finite. Then, we
have:

P2 + (tr‘ilax)z + 2TminTmax

2V Tinin

(12)

W +ys > at+yst -
where i’ +y§’ is the objective score of BONES.

Proofs for the existence of the offline optimal and Theorem 2 are given in Appendix B. While
BONES can achieve an objective @’ + y§’ for Eq. (8), the optimal algorithm can achieve @* + y5*.
Theorem 2 shows that the performance gap of BONES toward this optimal algorithm is finitely
bounded by O(1/V). In other words, BONES can achieve near-optimal performance.

Results in the above theorems show that the performance of BONES depends on the value of
parameter V. In the implementation of BONES, we use a hyper-parameter § € [0, 1] to linearly
control V as follows.

— ﬁ(leax _P)P (13)
Umax +YP

Putting together the results in Theorems 1 and 2, one can observe that BONES has a O(V,1/V)

trade-off between the download buffer level and the performance gap toward the optimal algorithm.

It means one can increase V to improve the performance of BONES. Empirical results in Sec. 5.4

v

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:11

verify this theoretical observation, showing that the QoE of BONES increases with V. However,
increasing V will increase the buffer level, thus increasing the time delay between downloading a
segment and playing it back. Live streaming can be negatively affected by such behavior, but it
may not be as much of an issue in on-demand video streaming. Besides, there is an upper cap for V'
to prevent buffer overflow.

4 EXPERIMENTAL EVALUATION
4.1 Performance Metric

To evaluate the overall performance of video streaming algorithms, we report the experimental
results using a commonly-used notion of QoE that includes visual quality, quality oscillation, and
rebuffering ratio. More formally, we have

1 X ;N el
oFE = — U, — o Upe1 — Un| — ap— , 14
Q anz;n lN_1;|n+1 nl ZN;QZSn ()

where u,, is the total utility of a segment summing up the download utility u? and the enhancement
utility u¢. And ¢, is the rebuffering time for each segment. The first term in Eq. (14) represents the
average visual quality, the second term represents the average quality oscillation, and the third
term is the average rebuffering time per segment. This notion of QoE is widely used in prior work,
e.g., MPC-based methods [30, 46, 50, 57] and RL-based methods [29, 48].

Although ABR-only algorithms typically assume utility (visual quality) as a function of bitrate, it
is not a suitable metric in NES systems. This is because bitrate only applies to compressed videos,
not raw pixels after computational processing. Therefore, we choose the VMAF score [1] as the
visual quality metric in our experiments, which is closer to human vision than other objective
metrics like PSNR or SSIM. VMAF score ranges from 0 to 100, the higher, the better. We assign
the highest-resolution video segments with a maximum score of 100 and invalid enhancement
options with negative infinity scores. We measure the rebuffering time in milliseconds. And we
set the trade-off factors a; = 1, #; = 0.1 as in method [57], meaning that 1 QoE score is equivalent
to the average visual quality of 1 VMAF score, average quality oscillation of 1 VMAF score, or
per-segment rebuffering time of 10 milliseconds (0.25% rebuffering ratio in our case).

4.2 Implementation Details

We develop a unified simulation environment for both ABR and NES algorithms to efficiently
examine their performance. Our simulator extends Sabre [38], which was used to evaluate BOLA.
Our simulation environment and all its algorithms are implemented using Python. And all deep-
learning methods are implemented by PyTorch. We use a 636-second 30-fps video “Big Buck Bunny”
for streaming. The video is chunked into 4-second segments and encoded in 5 resolutions of
240p/360p/480p/720p/1080p with bitrate of 400/800/1200/2400/4800 Kbps.

Table 2. Details of network trace datasets.

Dataset 3G 4G | FCC-SD | FCC-HD
Mean Bandwidth (Kbps) 1184 | 31431 6081 17127
Standard Variance of Bandwidth (Kbps) | 818 | 14058 | 11615 4018
Number of Traces 86 40 1000 1000

We evaluate algorithms using four network trace datasets from Sabre, including 3G traces [34],
4G traces [44], and two subsets of FCC traces [14]. These datasets are widely used, and different

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:12 Lingdong Wang et al.

studies have adopted different subsets [48, 50, 57]. We exclude those 3G traces with an average
bandwidth lower than 400 Kbps, the lowest option on our bitrate ladder. We present numerical
details of our testing datasets in Tab. 2.

4.3 Enhancement Settings

Table 3. Enhancement model details. From left to right: #layers, #channels, upscale factor, model size (KB).

Model Quality 240p 360p 480p 720p
low 20,9,4,43 20,8,3,36 20,4,2,12 6,2,1,2
NAS-MDSR medium | 20,21,4,203 | 20,18,3,157 | 20,9,2,37 6,7,1,5

high 20,32,4,461 | 20,9,3,395 | 20,18,2,128 | 6,16,1,17
ultra 20,48,4,1026 | 20,42,3,819 | 20,26,2,259 | 6,26,1,41
low 3,6,4,34 3,6,3,29 3,6,2,26 -
medium | 5,12,4,111 5,12,3,103 5,12,2,96 -
high 6,32,4,760 6,32,3,736 | 6,32,2,719 -
ultra 6,64,4,2824 | 6,64,3,2777 | 6,64,2,2743 -

IMDN

We utilize five enhancement settings (six, if “no enhancement” is counted) to demonstrate
that BONES can manage any enhancement method with any amount of computational power. We
first adopt the pervasively-used enhancement method NAS-MDSR [15, 47, 48], a content-aware
Super-Resolution (SR) model that can overfit one individual video and upscale any resolution to
1080p. We further assume that the client-side computational hardware is an Nvidia GTX 1080ti
GPU card. Under this setting, there are five enhancement quality levels (no enhancement, low,
medium, high, and ultra) for each of the four low-resolution download options (240p, 360p, 480p,
and 720p). More details about the deep-learning model can be found in Tab. 3. Besides, the visual
quality and computation speed of each enhancement option are illustrated in Fig. 3, where zero
computation speed implies the enhancement is not applicable. Generally, as the download bitrate
and the enhancement quality level increase, the visual quality will increase and the computation
speed will decrease. However, our algorithm does not rely on this being true.

240p 4724 5091 53.75 5595 240p 65.98 6539 60.85 54.46
§ 360p 64.02 71.04 7378 7645 77.18 § 360p 56.39 50.94 46.75 54.40
° °
(] (]
§4SOp 76.80 79.94 8160 84.09 84.93 §4BOp 40.03 35.03 30.41 44.50
S <
2 2
8 720p 90.10 69.15 9147 9068 91.26] 720p 2527 2199 21.06 28.65

1080p 100.00 100.00 100.00 100.00 100.00 1080p

no low medium high ultra no low medium high ultra
Enhancement Option Enhancement Option
(a) Visual quality (VMAF). (b) Computation speed (fps).

Fig. 3. Enhancement performance under NAS-MDSR setting.

Beyond NAS-MDSR, we adopt IMDN [21] as another SR enhancement method. We offer 4 quality
levels for 240p, 360p, and 480p videos to upsample them to 1080p. The low and medium quality
levels are based on the IMDN-RTC structure, while the high and ultra levels are based on the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:13

vanilla IMDN. Model details of IMDN can also be found in Tab. 3. As for the training technique,
we explore both content-agnostic IMDN and content-aware IMDN. A content-agnostic IMDN is
trained over a generic video dataset DIV2K [2]. Such a generic model can enhance any video but
bring less quality improvement. In comparison, content-aware IMDN is trained over our target
video to overfit its content. This strategy offers better enhancement performance but introduces
overhead in training cost and startup latency. A more detailed discussion exists in Sec. 5.5. The
computational hardware for IMDN is either GTX 2080ti or GTX 3060ti GPU card. Altogether, we
create 4 enhancement settings for IMDN by traversing all combinations of training techniques and
computational hardware.

4.4 Comparison Algorithms
We compare BONES with the following ABR-only algorithms:

(1) BOLA [39] makes download decisions by solving a Lyapunov optimization problem only
related to the buffer level.

(2) Dynamic [38] switches between BOLA and a throughput-based algorithm based on carefully-
designed heuristic rules.

(3) FastMPC [50] formulates bitrate adaptation as an MPC optimization problem and makes
download decisions according to a pre-computed solution table.

(4) Buffer-based method [19] chooses bitrate using a piecewise linear function of buffer level.

(5) Throughput-based method [22] chooses the maximum bitrate under the estimated network
bandwidth.

(6) Pensieve [29] uses deep RL to make download decisions. We train the RL agent on 10,000
randomly selected FCC traces [14] using the Asynchronous Advantage Actor-Critic (A3C)
algorithm with identical training settings as in the original paper.

We further augment ABR-only algorithms with a greedy enhancement strategy, denoted by
the symbol * on the right of the algorithm names. Specifically, we let the ABR algorithms make
download decisions while simultaneously choosing the enhancement option that brings the most
utility improvement in real-time. To avoid interrupting playback, enhancements will only be applied
if it can be finished on time. This greedy enhancement strategy is simple and will not affect the
download performance of ABR algorithms. However, it only leads to sub-optimal performance
because the download decision maker and the enhancement decision maker share no knowledge
with each other. Beyond ABR algorithms, we also compare BONES with the following NES algorithms:

(1) NAS [48] controls both download and enhancement processes using an RL agent. The NAS
RL agent is designed and trained similarly to Pensieve’s, with the additional consideration of
a greedy real-time enhancement strategy. We did not reproduce the scalable model download
approach in NAS, which can be viewed as providing more enhancement options.

(2) PreSR [57] solves an MPC problem online with the heuristic to pre-fetch and enhance only
“complex” segments of the video.

5 SIMULATION RESULTS

5.1 Overall Performance

We present the simulation results of BONES and other benchmark methods averaged across all
network trace datasets in Tab. 4 and Fig. 4. In Tab. 4, we report the QoE score defined in Eq. (14) as
well as its three components (visual quality, quality oscillation, rebuffering ratio). The results are
grouped under six settings, one setting without enhancement, and five with different enhancement
settings, one with NAS-MDSR, and four with IMDN as discussed in Sec. 4.3. We provided visual
representations of the three QoE components for each method under two enhancement settings

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:14

Lingdong Wang et al.

Table 4. Overall performance comparison under different enhancement settings. Evaluated metrics include
visual quality (VMAF), quality oscillation (VMAF), rebuffering rate (%), and composite QoE. * denotes the
ABR method is augmented with greedy enhancement. BONES achieves the highest QoE under all applicable
settings. The optimal results are marked in bold.

Method ‘ Qual. ‘ Osc. ‘ Rebuf. ‘ QoE Method ‘ Qual. ‘ Osc. ‘ Rebuf. ‘ QoE
No Enhancement NAS-MDSR, Content-Aware, GTX 1080ti
BOLA 82.90 | 4.05 | 2.21 69.98 BOLA * 85.45 | 3.66 | 2.21 72.93
Dynamic 84.62 | 3.73 | 243 | 71.14 | Dynamic* 86.62 | 343 | 243 | 73.44
FastMPC 87.90 | 3.33 | 4.22 67.65 FastMPC* 89.70 | 3.22 | 4.22 | 69.56
Buffer 85.27 | 410 | 293 69.44 Buffer” 87.47 | 3.66 | 293 | 72.07
Throughput 80.10 | 3.59 1.93 68.77 Throughput* 83.43 | 3.33 1.93 72.36
Pensieve 89.23 | 4.01 4.17 68.50 Pensieve” 91.16 | 3.47 4.17 70.96
NAS - - - - NAS 89.20 | 440 | 292 | 73.08
PreSR - - - - PreSR 89.24 | 4.17 | 4.65 | 66.45
BONES - - - - BONES 89.23 | 3.07 | 252 | 76.05
IMDN, Content-Agnostic, GTX 2080ti IMDN, Content-Aware, GTX 2080ti
BOLA * 83.99 | 392 | 2.21 71.20 BOLA * 84.84 | 3.76 | 2.21 72.22
Dynamic* 85.62 | 3.63 2.43 72.25 Dynamic* 86.11 | 3.49 2.43 72.87
FastMPC* 88.46 | 3.27 4.22 68.26 FastMPC* 88.88 | 3.33 4.22 68.63
Buffer® 86.09 | 3.97 | 293 70.39 Buffer* 86.83 | 3.78 | 2.93 | 71.32
Throughput | 81.76 | 3.45 | 1.93 | 70.57 | Throughput* | 82.59 | 3.35 | 1.93 | 71.50
Pensieve* 89.90 | 3.79 | 4.17 69.39 Pensieve® 90.19 | 3.71 4.17 69.76
NAS 88.18 | 4.66 | 2.92 71.81 NAS 88.35 | 457 | 292 | 72.06
PreSR 88.65 | 4.39 4.57 65.95 PreSR 88.79 | 4.20 4.51 66.53
BONES 88.40 | 352 | 2.80 | 73.64 BONES 88.97 | 3.47 | 2.55 | 75.29
IMDN, Content-Agnostic, GTX 3060ti IMDN, Content-Aware, GTX 3060ti
BOLA * 84.85 | 3.77 | 2.21 72.21 BOLA * 84.75 | 3.83 | 2.21 72.05
Dynamic* 86.39 | 349 | 243 73.14 Dynamic* 86.49 | 3.42 | 243 | 73.32
FastMPC* 89.12 | 3.15 | 4.22 69.06 FastMPC* 89.17 | 3.21 | 4.22 | 69.03
Buffer” 86.91 | 3.80 | 293 71.38 Buffer” 86.77 | 3.85 | 293 | 71.19
Throughput* 82.58 | 3.36 1.93 71.48 Throughput* 83.46 | 3.34 1.93 72.38
Pensieve” 90.50 | 3.60 | 4.17 | 70.18 Pensieve” 91.05 | 3.50 | 4.17 | 70.83
NAS 88.98 | 4.39 | 292 72.88 NAS 89.17 | 438 | 292 | 73.08
PreSR 89.18 | 4.11 | 4.63 66.53 PreSR 88.85 | 4.20 | 4.52 | 66.55
BONES 88.49 | 337 | 2.64 | 74.52 BONES 89.38 | 3.12 | 247 | 76.36

earlier in Fig. 4. Among ABR-only algorithms, we find that Dynamic, the default ABR algorithm
of dash.js video player [40], reaches the best balance between the three metrics and achieves the
highest QoE. Yet BONES can still improve its QoE by up to 7.33%, which is equivalent to increasing
the average visual quality by 5.22 VMAF score or decreasing the rebuffering ratio by 1.30%.

By augmenting ABR-only algorithms with the greedy enhancement strategy, their QoE benefits
from the additional usage of computational resources. The greedy enhancement strategy will not
affect the download behavior of an ABR algorithm, thus keeping its rebuffering ratio unchanged.
But by upgrading the low-quality downloaded segments, neural enhancement increases the visual
quality and reduces quality oscillation, leading to an average of 2.81% QoFE improvement across
all kinds of augmentations. However, this enhancement strategy is decoupled from the download

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:15

BOLA Buffer BOLA* Buffer* Pensieve* PreSR
Dynamic Throughput Dynamic* Throughput* NAS BONES
FastMPC Pensieve FastMPC*
NAS-MDSR, Content-Aware, GTX 1080ti IMDN, Content-Agnostic, GTX 2080ti
J 4.5 1
4.5 oeo‘ eo” ‘
I £) & e
< 4.0+ < 4.01
e .o
& 3.5 & 3.51
[()]
£ £
@ 3.01 | 5 3.01
= ' E
a a
& 2.5 2251
2.0 2.0
80.0 825 850 87.5 90.0 92.5 78 8 82 84 8 88 90 92
Visual Quality (VMAF) Visual Quality (VMAF)

Fig. 4. Performance comparison under two enhancement settings. The error bar represents the average visual
quality oscillation. Higher quality, lower oscillation, and lower rebuffering ratio are better. * denotes the ABR
method is augmented with a greedy enhancement strategy.

decision and thus leads to sub-optimal performance. In contrast, BONES makes joint decisions and
outperforms all the augmented ABR algorithms.

As for NES methods, we find that both NAS and PreSR perform well under high-bandwidth
scenarios but poorly if the network condition is weak. In Sec. 5.2, we further scrutinize the robustness
of different algorithms under different network trace datasets. Our experimental results suggest that
it’s hard for NAS to adapt to data distribution far from the training set. Similarly, [46] reports that
RL-based methods have limited generalization ability and may not adapt to heavy-tailed real-world
network traces. In comparison, BONES is a control-theoretic algorithm that does not require any
learning process, making it easy and robust to deploy under versatile scenarios.

We note that the unsatisfactory performance issue of PreSR comes from its reliance on sub-optimal
heuristics. PreSR formulates an NP-hard MPC optimization problem and solves it heuristically
online. As a result, PreSR can perform even worse than its backbone method FastMPC, as it only
explores limited solutions in the decision space. In contrast, our method BONES is guaranteed to
outperform its backbone BOLA, which is theoretically shown in Sec. 3.1 and empirically verified
here.

By studying the four variants of IMDN enhancement settings, we find that the content-aware
model performs better than the content-agnostic one as it overfits the content of a specific video.
Nevertheless, content-aware enhancement requires costly training toward an individual video and
increases the startup latency due to model downloading before video streaming. We postpone the
detailed overhead analysis to Sec. 5.5. Besides, we find that the performance of neural enhancement
increases with better computational hardware (GTX 3060ti than GTX 2080ti), which is intuitive
since more computational resources enable more powerful enhancements.

In conclusion, our method BONES consistently outperforms existing ABR and NES methods by
3.56% to 13.20% in QOE averaged across all network conditions and all enhancement settings.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:16 Lingdong Wang et al.

T T e
5 X o BN BN = 9 ZN\ BN
bigdls Boe (AN EiS N Gpn ER LN S
4 ' [] ’4/ [[T /\ [] I‘{/\ -III’{/
365 ’\ -u»’{%\ ’N 1 %\ 70 ’\ - l"%\ 70 ’N -nm-"%%

gg = iWE 5§ =N N E N

15

i
XX
N

—
AN
A,

X

LD
X

AN

vz

1.0

Oscillation (VMAF)
ARRRRREENI
....;i......
DN
XX

g
ol gen

LI
NN
IO
I
NN
e

g bl B |] =slize
e BN -Ery
i | ANE
1. NSl \ | i o« AN i\

gNEiE v s B | AN EEs

90

80 b
’4

70

NN
]
!Ill

i

HERNRENI
A
LM

s,

60

Fig. 5. Performance comparison on different network trace datasets. BONES consistently deliver high QoE
across diverse network conditions, including challenging ones.

5.2 Sensitivity to Network Condition

To investigate the sensitivity of different algorithms to the network conditions, we further break
down the results under the NAS-MDSR enhancement setting in Tab. 4 across four different network
traces and report them in Sec. 5.2. Based on the results, we find that the performance of video
streaming algorithms varies drastically with network conditions. For example, the throughput-based
algorithm outperforms others on the low-bandwidth 3G dataset due to its conservative request of
bitrate. However, this behavior does not generalize well to high-bandwidth conditions. Especially
the throughput-based method performs worst on the FCC-SD dataset because the high variance
of bandwidth leads to a misprediction of throughput. On the other hand, FastMPC, Pensieve, and
PreSR perform well under good network conditions via aggressive bitrate requests. But they incur
severe rebuffering events on 3G datasets. Unlike other methods, BONES behaves robustly across all
network conditions, maintaining a stable QoE even under challenging low-bandwidth scenarios.

5.3 Practical Improvement

In this subsection, we introduce two additional heuristics to further advance the performance of
BONES and report their empirical improvement.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:17

Table 5. Ablation study for practical improvements.

Method Qual. (VMAF) | Osc. (VMAF) | Rebuf. (%) | QoE
Basic 88.64 3.17 2.62 74.95
Monitor 88.76 3.03 2.52 75.62
AutoTune 89.22 3.16 2.58 75.71
Monitor+AutoTune 89.23 3.07 2.52 76.05

Download Process Monitoring. Since the network bandwidth can vary abruptly in practice, a
decision may become out-of-date when the corresponding video segment is under download. For
example, downloading a high-quality segment may incur rebuffering if the bandwidth drops in
midway. In such a case, it is wise to abort the current download and select a lower-quality segment.
We implement this in a similar way to BOLA, allowing our algorithm to monitor the bandwidth
variations during download processes and regret its previous decision if necessary. During the
download process of a segment, BONES periodically recomputes the current decision’s objective
score via a modified version of Eq. (11), where S; () is replaced with the remaining size to download.
BONES also computes the objective scores of other options. If a better option is found, BONES will
abandon the ongoing download and switch to the new solution.

Automatic Hyper-Parameter Tuning. We observe that the hyper-parameter setting of BONES
is sensitive to the network condition. Under poor network conditions, it is advisable to adopt a
conservative strategy with lower quality and a lower rebuffering ratio, while under good conditions,
an aggressive strategy is preferred. Inspired by Oboe [3], we develop an automatic hyper-parameter
tuning mechanism for BONES in accordance with different network conditions. In the offline phase,
we generate synthetic network traces with different average bandwidths (from 200 to 5000 Kbps),
different bandwidth variances (500 to 5000 Kbps), and different latency (20 to 100 ms). Then we
search for the optimal hyper-parameter § (from 0.1 to 1) and yp (from 10 to 100) under each
network condition that maximizes the QoE. During the online deployment phase, BONES estimates
the network condition using the exponentially weighted moving average before each decision
interval. BONES then adjusts its hyper-parameters to the offline optimal accordingly.

Empirical Results. We conduct an ablation study for practical improvement techniques and present
the results under the NAS-MDSR enhancement setting in Tab. 5. Note that those versions without
automatic hyper-parameter tuning are assigned with the optimal hyper-parameters found by grid
search (f = 1, yp = 10). As experimental results imply, Download Process Monitoring can reduce
the rebuffering ratio by regretting previous decisions during bandwidth valley. While Automatic
Hyper-Parameter Tuning can contribute to the performance of BONES mostly in visual quality.
When both techniques are applied, BONES could achieve the maximum QoE improvement of 1.48%.
In summary, this ablation study verifies the effectiveness of our practical improvement techniques.

5.4 Sensitivity to Hyper-Parameters

In this section, we comprehensively investigate the effect of hyper-parameters. It is worth noting
that, in practice, one may leverage the Automatic Hyper-Parameter Tuning scheme in Sec. 5.3 instead
of manually adjusting parameters. From the experimental results under NAS-MDSR enhancement
settings in Fig. 6, we find that increasing y generally leads to lower visual quality, higher quality
oscillation, and a lower rebuffering ratio. As explained in Sec. 3.2, a higher y makes BONES download
more low-bitrate segments, trading quality for playback smoothness. Besides, due to the diminishing
return of visual quality, low-bitrate segments span wider in quality scores. Thus downloading
more low-quality segments brings more oscillations. We also find that a higher f leads to lower

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:18 Lingdong Wang et al.

Visual Quality (VMAF) Quality Oscillation (VMAF) Rebuffering Ratio (%) QoE
1.0 —9 0 50 10 -6 1.0
0.9 g0 09 09 0.9 -725
08 038 _45 08 -5 08
07 —gg 07 07 07
06 06 _40 06 -4 06 [-67.5
05 -8 05 0.5 05 ~65.0

0.4 0.4 B 0.4 -3 04
| o7 35

-70.0

-62.5

10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100
4 4 yp \Zz

Fig. 6. Performance of BONES with respect to hyper-parameter settings.

full content-agnostic low+medium 240p full content-aware
low low+medium+high 240p+360p
IMDN, GTX 2080ti IMDN, GTX 3060ti

o 10.0 4 o 10.0 A
= =
T 754 B 757
o o
< <
2 5.01 2 5.0
))
a [a}
8 254 8 2.5
% =
w w

0.0 1 T T T OIO] T T T

73 74 75 76 77 73 74 75 76 77
QoE QoE

Fig. 7. Performance of BONES with respect to the additional download size.

visual quality, lower quality oscillation, and a lower rebuffering ratio. From our theoretical analysis
in Sec. 3.2 we know that, by increasing the weight on the penalty term of optimization objective
Eq. (11), BONES downloads more low-bitrate segments and performs more enhancements, resulting
in lower quality and fewer rebuffering events. Additionally, since neural enhancement can improve
visual quality and reduce the visual quality disparities between segments, increasing f also alleviates
quality oscillations. Lastly, empirical results verify that higher f (so does V) positively contributes
to the QoE. This conclusion roughly aligns with the observation in Theorem 2, despite the QoE
here being defined in a slightly different way than the optimization objective.

5.5 Overhead Analysis

In this section, we comprehensively analyze the overhead of BONES, including offline costs of
training enhancement models, online costs of downloading them during playback, and other costs.

Offline Costs. A content-agnostic model is trained over a generic video dataset and enhances
all video content. So it only incurs a one-time training cost without the need for fine-tuning. In
contrast, a content-aware model needs to be fine-tuned for a particular video using a content-
agnostic backbone. NAS [48] reports that a typical fine-tuning will take 10 minutes for each video.
The enhancement benefit will cover this additional cost after streaming the video for 30 hours. As
a rule of thumb, one may apply content-aware enhancements only for popular videos.

Online Costs. Online costs of BONES include the additional bandwidth consumption and startup la-
tency in downloading extra models. The content-agnostic enhancement has all models pre-installed
on the client device. So this cost is only applicable to content-aware enhancement as it requires
specific models per video. Unlike other methods, BONES allow choosing different enhancement

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:19

Table 6. Trade-off between performance, offline costs, and online costs. Offline costs include whether training
or fine-tuning is required. Online costs include extra download size (KB) and additional startup latency (s).

Method Qual. | Osc. | Rebuf | QoE | Train | FineTune | Download | Startup
Agnostic 88.49 | 3.37 | 2.64 | 7452 | Yes No 0 0
Aware 89.02 | 3.09 | 2.53 | 75.80 | Yes Yes 310 0.68
Aware+QuickStart | 88.80 | 3.14 | 2.56 | 75.40 | Yes Yes 310 0

methods from a pool of enhancement methods on the fly. This behavior leads to more QoE im-
provement but requires pre-downloading more models, which may further increase the online cost.
Therefore, we study the trade-off between performance and extra download size in Fig. 7.

We plot QoE of content-agnostic IMDN and the additional download overhead (0 MB) in Fig. 7.
We do the same for a full content-aware IMDN, which requires downloading 4 quality levels X 3
bitrate levels = 12 models. We then start to remove models from the enhancement method pool.
For example, low indicates only keeping low-quality models, and 240p indicates only keeping
enhancement models for 240p. From the results, we find that low-quality content-aware models
can provide slightly more QoE than content-agnostic models with a download overhead of 89 KB.
And we can gain almost all the benefits by downloading the first two quality levels with only 310
KB. Surprisingly, we can outperform the full model by downloading the first three quality levels
using 2215 KB. This implies the ultra-level IMDN model is dragging the performance of BONES by
occupying enormous resources but providing marginal improvements.

Assume the downloading processes for models and segments occur sequentially, then download-
ing models before playback will cause extra startup latency. To mitigate this, we further introduce
a QuickStart heuristic that postpones the model downloading and skips enhancement tasks until
the buffer level reaches a certain threshold. To avoid rebuffering, we empirically set the threshold
to be two segments (8 seconds in our case). We quantitatively analyze the trade-off between per-
formance and overhead in Tab. 6 using IMDN with its low and medium options on a 3060ti GPU.
The content-agnostic enhancement provides the lowest QoE improvement with zero overhead.
The content-aware enhancement has the best performance but incurs fine-tuning costs, 310-KB
extra download, and 0.68-second additional startup latency. QuickStart sacrifices the possibility of
enhancing the first few segments. As a result, it offers an intermediate performance but eliminates
the startup latency.

Other Costs. Content-aware enhancement introduces negligible costs of delivering enhancement
model addresses in the metadata. Enhancement tasks can slow down the main playback process
if they consume excessive computational resources. However, BONES will not favor enhancement
under limited computational resources due to the long computation time. Thus, the computational
overhead is also not a concern. In summary, BONES significantly improves QoE with minimal
overhead, while providing various trade-offs between performance and overhead.

6 PROTOTYPE SYSTEM
6.1 System Overview

To further validate the BONES algorithm in practice, we develop a prototype video player in addition
to our simulator. Our prototype implementation is based on the iStream framework [5], which
enables the flexible composition of video player modules in a publisher-listener fashion. The
prototype system architecture is presented in Fig. 8. We highlight the modules significantly different
from the traditional ABR pipeline, which we implemented from scratch. Besides, we implemented
a graphical renderer for visual comparison, other than the headless player provided by iStream. We

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:20 Lingdong Wang et al.

MPD Parse MPD NES log o Analvzer
File Provider / Controller ¥
I
Metadata Control
¥
i Bandwidth Dequeue Decode
Bandwidth Scheduler Download g Player Renderer
Meter Enqueue Buffer
’
Measure Segment Enqueue Replace
|
Video Segment \ Enhance T Parse Metadata
Segment Download | Downloader Buffer Decode Download & Model

Fig. 8. Prototype system architecture. Modules largely different from the ABR pipeline are highlighted.

fps:30.0 - o x fps:30.0 - o x

Fig. 9. Sample rendering outcome of the prototype system before and after the enhancement enabled by
BONES. Compared with the original video frame, the enhanced one features clearer textures and sharper
edges, especially for the eyes, grass, and rocks. It is recommended to zoom in for a closer look at the details.
The frame rate is displayed in the title portion of the video frame.

implemented the entire system in Python, the deep learning model in PyTorch, the video decoder
in VPF [33], and the graphical renderer in OpenGL. Our modification involves approximately 3000
lines of code. In Fig. 9, we illustrate sample frames rendered by the prototype system.

As shown in Fig. 8, the system’s core component is the Scheduler. It first calls the MPD Provider to
download and parse the metadata. It then interacts with the NES Controller to make download and
enhancement decisions. Next, it notifies the Segment Downloader to download the corresponding
segment, and the Bandwidth Meter to measure the bandwidth during download. After downloading
the video segment, it enqueues the segment into the Download Buffer and the Enhance Buffer.
Meanwhile, the enhancement models will be downloaded if needed. The Enhancer fetches the
downloaded video segment from the Enhance Buffer, decodes, and enhances it. The enhanced
segment replaces its counterpart in the Download Buffer after enhancement. The Player fetches the
segment from the Download Buffer, decodes it if necessary, and gives it to the Renderer for display.
The Analyzer collects logs from all components all the time.

6.2 Settings and Experiments

In our prototype implementation, the enhancement quality ladder is pre-measured and stored locally.
The computation speed table is measured the first time this system is deployed. In adaptation to the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:21

Table 7. Performance comparison in the prototype system. BONES achieves the highest QoE.

Method ‘ Qual. ‘ Osc. ‘ Rebuf. ‘ QoE Method ‘ Qual. ‘ Osc. ‘ Rebuf. ‘ QoE
Content-Agnostic Content-Aware with Quick Start

BOLA * 70.44 | 3.37 | 0.19 | 66.29 BOLA * 70.31 | 3.47 | 0.17 | 66.14
Dynamic* 73.23 | 4.22 1.60 62.57 Dynamic* 73.45 | 4.16 1.58 62.93
Buffer* 71.24 | 5.24 | 0.27 64.89 Buffer* 7135 | 5.24 | 0.17 65.41
Throughput® | 69.92 | 3.51 1.60 59.98 | Throughput* | 70.15 | 3.68 1.58 60.10
NAS 71.65 | 6.92 1.45 58.92 NAS 70.95 | 7.72 0.24 62.26
BONES 75.42 | 3.92 0.52 | 69.38 BONES 76.56 | 3.48 | 0.17 | 72.38

3G
2500
80
@ 2000 -
2 70%
£ 1500 £
< 2
S 60 >
= 1000 =
° ©
c 508
& 500
0 40
0 100 200 300 400 500 600
Time (s)
FCC-HD
100
__ 25000 90
A —
Q w
g 20000 80 <z(
>
= <
S 15000 70 >
3 60 ©
S 10000 Bandwidth =
g X 0 ©
5000 BOLA 5
, BONES 20
0 100 200 300 400 500 600
Time (s)

Fig. 10. Performance evolution in the prototype system over example traces.

varying computational resources, we consistently update this table using the latest measurement
of enhancement speed. Outdated enhancement tasks will be immediately aborted.

We implement two variants of IMDN enhancer, one content-agnostic and one content-aware
with the QuickStart heuristic introduced in 5.5. We compare our BONES algorithm with the well-
performing algorithms in simulation, namely, BOLA*, Dynamic®, Buffer*, Throughput*, and NAS.
For a fair comparison, we test the algorithms over 10 pre-recorded network traces sampled from
the low-bandwidth 3G network trace dataset and the high-bandwidth FCC-HD dataset.

We present the overall experimental results in Tab. 7. The trend slightly differs from the simulation
due to practical factors like the choice of dataset, sampling bias, varying resources, system latency,
and implementation details. Under the content-agnostic setting, we observe that BONES outpeforms
other baselines in QoE by 4.66% to 13.54%. While under the content-aware setting, the advantage
of BONES over baselines ranges from 9.43% to 20.43%. We also illustrate the performance of BONES
and the best baseline BOLA* over two example traces in Fig. 10, including the bandwidth variation
over time and the video quality determined by the algorithms. We find from the figure that BONES
generally achieves better quality than the baseline. In conclusion, the advantage of BONES not only
holds in large-scale simulations but also translates to practice.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:22 Lingdong Wang et al.

7 RELATED WORK

Adaptive Bitrate Streaming. The ABR algorithm selects the download bitrate for video segments
in adaptation to the varying network bandwidth. ABR algorithms can be generally classified into
three categories. First, buffer-based methods adapt the bitrate purely based on the client’s buffer
level. For example, the method in [19] chooses the bitrate according to a piecewise linear function
of the buffer level. BOLA [39] makes download decisions by solving a Lyapunov optimization
problem with respect to the buffer level. Our method could be viewed as an extension of BOLA
from ABR to the new NES scenario. Second, throughput-based methods utilize the prediction of
future network bandwidth. FESTIVE [22] estimates bandwidth using harmonic mean and chooses
the maximum bitrate under that estimation. Fugu [46] proposes a more accurate download time
prediction module based on fully-connected neural networks, while Xatu [46] employs a long
short-term memory (LSTM) network for prediction. Third, mixed-input algorithms consider both
buffer level and estimated throughput inputs. Pensieve [29] takes these states as input and trains
a reinforcement-learning (RL) agent. FastMPC [50] formulates bitrate adaptation as an online
control problem and solves it via model predictive control (MPC). Dynamic [38] switches between
a throughput-based method and BOLA to take advantage of both.

Neural Enhancement. Neural enhancement refers to any method that improves video quality
via deep learning. It typically encompasses the following areas. Super-resolution (SR) aims at
improving the resolution of images [21, 26, 27] and videos [10, 11]. To reduce the training and
inference cost of SR models, Li et al. [25] overfit the first video segment and then fine-tune the
model toward the following segments. Wang et al. [45] introduce heuristics like training with
smaller patches and decreasing the update frequency. DeepStream [4] further introduces scene
grouping, frame sub-sampling, and model compression. Frame interpolation aims at improving the
frame rate of videos [37, 52]. Inpainting methods can complete the missing region of images [41] or
videos [53]. Denoising methods effectively reduce noise in videos [13, 42]. Apart from 2D videos,
point cloud upsampling [24, 51] increases the density of 3D point cloud objects in volumetric
videos, and point cloud completion [20] makes them whole. In this paper, we used NAS-MDSR [48]
and IMDN [21] SR models as our enhancement methods, but our control algorithm BONES can be
integrated with any subset of the above algorithms.

Neural-Enhanced Streaming NES incorporates neural enhancement methods into video
streaming algorithms and enables high-quality content delivery by leveraging both bandwidth and
computational resources. NAS [48] is the first method to integrate SR models into on-demand video
streaming. It develops a content-aware SR model called NAS-MDSR and utilizes a Pensieve-like RL
agent to manage both download and enhancement processes. SRAVS [56] adopts RL controllers and
a lightweight SR model while proposing a double-buffer system model. PreSR [57] pre-fetches and
enhances “complex” segments that bring the most quality improvement and bandwidth reduction.
It formulates the problem as MPC and solves it heuristically. Our method is most similar to these
approaches.

Neural enhancement can be applied beyond the scope of client-side on-demand video streaming.
LiveNAS [23] upsamples low-resolution videos at the ingest server for live streaming. NEMO [47]
increases the computational efficiency of SR by only enhancing selected "anchor" frames. Based on
LiveNAS and NEMO, NeuroScaler [49] can enhance live streams at scale. Dejavu [18] improves the
quality of the current frame in live video conferencing using historical knowledge. And VISCA [54]
deploys SR models on edge-based cache servers. Beyond the regular 2D videos, recent work applied
NES to 360-degree and volumetric videos. The substantial bandwidth requirement of these videos
makes the assistance of neural enhancement even more appealing. SR360 [12] uses RL to make
viewport prediction and enhancement decisions for delivering 360 videos. Sophon [36] pre-fetches

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:23

and enhances semantically salient tiles in a 360 video. Madarasingha et al. [28] enhance 360 videos
with both SR and frame interpolation at edge servers. YuZu [55] streams volumetric videos and
enhances them using point cloud upsampling. Emerging studies of virtual reality streaming systems
also pursue optimal policies for joint allocation of the available computational and communication
resources[8, 9, 17], where the concept of enhancement is not limited to deep-learning methods.

While the above methods are based on RL or heuristic optimization, we formulate and near-
optimally solve a Lyapunov optimization problem. Our method BONES is the first NES algorithm
with a theoretical performance bound. Furthermore, BONES has been proven to exhibit exceptional
performance through numerous experiments, while also possessing the benefits of being simple
and robust in deployment.

8 CONCLUSION

This paper proposed BONES, an NES algorithm incorporating neural enhancement into video
streaming, allowing users to download low-quality video segments and then enhance them via
deep-learning models. Residing in a parallel-buffer system model, BONES jointly optimizes download
and enhancement decisions to maximize the QoE by solving a Lyapunov optimization problem.
BONES achieves the performance within an additive factor toward offline optimal, making it the
first NES algorithm with a theoretical performance guarantee. Experiments verify that BONES can
outperform existing ABR and NES methods by 3.56% to 13.20% in simulation and 4.66% to 20.43%
in practice. BONES maintains stable performance under all network conditions, has explainable
hyper-parameters, and offers different trade-offs between performance and overhead. We publicly
release our source code, expecting BONES to become a new baseline for the NES problem.

There are some limitations to the current work, which open future research directions. Firstly,
we assume the computation time of enhancement is static or can be accurately predicted. This may
not hold in reality especially when other applications are competing for computational resources.
Secondly, we only consider scheduling one type of enhancement (super-resolution). In practice, it
is possible to simultaneously apply multiple enhancements, which may require the scheduling of
multiple enhancement buffers. Thirdly, we only consider a client-side on-demand video streaming
scenario. Deploying a streaming algorithm in the cloud or for live streaming may raise other
interesting challenges. Given the simplicity of algorithm design, bounded theoretical performance,
and superior empirical performance of BONES, in future work, we will explore the possibility of
generalizing BONES to more dynamic, multi-buffer, multi-point, and low-latency systems.

ACKNOWLEDGMENTS

The work has been supported by the National Science Foundation (NSF) under awards CNS-1763617,
CNS-1901137, CNS-2106463, CNS-2102963, CAREER-2045641, CNS-2106299, CCF-2031881, ECCS-
2032387, CNS-2040088, CNS-2032033, and CNS-2106150; by the National Institutes of Health (NIH)
under award R01EY030470; and by the Panasonic Chair of Sustainability at the New Jersey Institute
for Technology.

REFERENCES

[1] Anne Aaron, Zhi Li, Megha Manohara, Joe Yuchieh Lin, Eddy Chi-Hao Wu, and C.-C Jay Kuo. 2015. Challenges in
cloud based ingest and encoding for high quality streaming media. In 2015 IEEE International Conference on Image
Processing (ICIP). 1732-1736. https://doi.org/10.1109/ICIP.2015.7351097

[2] Eirikur Agustsson and Radu Timofte. 2017. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and
Study. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

[3] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin
Zhan, and Hui Zhang. 2018. Oboe: Auto-Tuning Video ABR Algorithms to Network Conditions. In Proceedings of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

https://doi.org/10.1109/ICIP.2015.7351097

19:24 Lingdong Wang et al.

[12

—

[13

—

[14

—

[15

—

[16

—

[17]

[18]

[19]

[20]

[21]

[22]

the 2018 Conference of the ACM Special Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM ’18).
Association for Computing Machinery, New York, NY, USA, 44-58. https://doi.org/10.1145/3230543.3230558

Hadi Amirpour, Mohammad Ghanbari, and Christian Timmerer. 2022. DeepStream: Video Streaming Enhancements
using Compressed Deep Neural Networks. IEEE Transactions on Circuits and Systems for Video Technology (2022), 1-1.
https://doi.org/10.1109/TCSVT.2022.3229079

Akram Ansari and Mea Wang. 2023. IStream Player: A Versatile Video Player Framework. In Proceedings of the 33rd
Workshop on Network and Operating System Support for Digital Audio and Video (Vancouver, BC, Canada) (NOSSDAV
"23). Association for Computing Machinery, New York, NY, USA, 65-71. https://doi.org/10.1145/3592473.3592569

J. Chakareski, J. Apostolopoulos, S. Wee, W.-T. Tan, and B. Girod. 2005. Rate-Distortion Hint Tracks for Adaptive
Video Streaming. IEEE Trans. Circuits and Systems for Video Technology 15, 10 (Oct. 2005), 1257-1269.

J. Chakareski and P.A. Chou. 2006. RaDiO Edge: Rate-Distortion Optimized Proxy-Driven Streaming from the Network
Edge. IEEE/ACM Trans. Networking 14, 6 (Dec. 2006), 1302-1312.

J. Chakareski, M. Khan, T. Ropitault, and S. Blandino. 2023. Millimeter Wave and Free-Space-Optics for Future Dual-
Connectivity 6DOF Mobile Multi-User VR Streaming. ACM Transactions on Multimedia Computing Communications
and Applications 19, 2(15) (feb 2023), 1-25.

J. Chakareski, M. Khan, and M. Yuksel. 2022. Towards Enabling Next Generation Societal Virtual Reality Applications
for Virtual Human Teleportation. IEEE Signal Processing Magazine 39, 5 (2022), 22-41.

Kelvin C.K. Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. 2021. BasicVSR: The Search for Essential
Components in Video Super-Resolution and Beyond. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 4947-4956.

Kelvin C.K. Chan, Shangchen Zhou, Xiangyu Xu, and Chen Change Loy. 2022. BasicVSR++: Improving Video Super-
Resolution With Enhanced Propagation and Alignment. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 5972-5981.

Jiawen Chen, Miao Hu, Zhenxiao Luo, Zelong Wang, and Di Wu. 2020. SR360: Boosting 360-Degree Video Streaming
with Super-Resolution. In Proceedings of the 30th ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video (Istanbul, Turkey) (NOSSDAV ’20). Association for Computing Machinery, New York, NY, USA, 1-6.
https://doi.org/10.1145/3386290.3396929

Michele Claus and Jan van Gemert. 2019. ViDeNN: Deep Blind Video Denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

Federal Communications Commission. 2016. Raw Data - Measuring Broadband America 2016. https://www.
fec.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-
america-2016.

Mallesham Dasari, Arani Bhattacharya, Santiago Vargas, Pranjal Sahu, Aruna Balasubramanian, and Samir R. Das.
2020. Streaming 360-Degree Videos Using Super-Resolution. In IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications. 1977-1986. https://doi.org/10.1109/INFOCOM41043.2020.9155477

Robert G. Gallager. 2012. Discrete Stochastic Processes. Springer New York, NY. https://doi.org/10.1007/978-1-4615-
2329-1

S. Gupta, J. Chakareski, and P. Popovski. 2023. mmWave Networking and Edge Computing for Scalable 360-Degree
Video Multi-User Virtual Reality. IEEE Trans. Image Processing 32 (2023), 377-391.

Pan Hu, Rakesh Misra, and Sachin Katti. 2019. Dejavu: Enhancing Videoconferencing with Prior Knowledge. In
Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications (Santa Cruz, CA, USA)
(HotMobile ’19). Association for Computing Machinery, New York, NY, USA, 63-68. https://doi.org/10.1145/3301293.
3302373

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. 2014. A Buffer-Based Approach
to Rate Adaptation: Evidence from a Large Video Streaming Service. SIGCOMM Comput. Commun. Rev. 44, 4 (aug
2014), 187-198. https://doi.org/10.1145/2740070.2626296

Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le. 2020. PF-Net: Point Fractal Network for 3D Point Cloud
Completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. 2019. Lightweight Image Super-Resolution with Information
Multi-Distillation Network. In Proceedings of the 27th ACM International Conference on Multimedia (Nice, France) (MM
’19). Association for Computing Machinery, New York, NY, USA, 2024-2032. https://doi.org/10.1145/3343031.3351084
Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, Efficiency, and Stability in HTTP-Based Adaptive
Video Streaming with FESTIVE. In Proceedings of the 8th International Conference on Emerging Networking Experiments
and Technologies (Nice, France) (CoNEXT ’12). Association for Computing Machinery, New York, NY, USA, 97-108.
https://doi.org/10.1145/2413176.2413189

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

https://doi.org/10.1145/3230543.3230558
https://doi.org/10.1109/TCSVT.2022.3229079
https://doi.org/10.1145/3592473.3592569
https://doi.org/10.1145/3386290.3396929
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://doi.org/10.1109/INFOCOM41043.2020.9155477
https://doi.org/10.1007/978-1-4615-2329-1
https://doi.org/10.1007/978-1-4615-2329-1
https://doi.org/10.1145/3301293.3302373
https://doi.org/10.1145/3301293.3302373
https://doi.org/10.1145/2740070.2626296
https://doi.org/10.1145/3343031.3351084
https://doi.org/10.1145/2413176.2413189

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:25

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33
[34]

[t

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han. 2020. Neural-Enhanced Live Streaming;:
Improving Live Video Ingest via Online Learning. In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication
(Virtual Event, USA) (SIGCOMM ’20). Association for Computing Machinery, New York, NY, USA, 107-125. https:
//doi.org/10.1145/3387514.3405856

Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2019. PU-GAN: A Point Cloud Upsampling
Adversarial Network. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

Xiaoqi Li, Jiaming Liu, Shizun Wang, Cheng Lyu, Ming Lu, Yurong Chen, Anbang Yao, Yandong Guo, and Shanghang
Zhang. 2022. Efficient Meta-Tuning for Content-Aware Neural Video Delivery. In Computer Vision — ECCV 2022,
Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.). Springer Nature
Switzerland, Cham, 308-324.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. 2021. SwinIR: Image Restoration
Using Swin Transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops.
1833-1844.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. 2017. Enhanced Deep Residual Networks
for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops.

Chamara Madarasingha and Kanchana Thilakarathna. 2022. Edge Assisted Frame Interpolation and Super Resolution
for Efficient 360-Degree Video Delivery. In Proceedings of the 28th Annual International Conference on Mobile Computing
And Networking (Sydney, NSW, Australia) (MobiCom ’22). Association for Computing Machinery, New York, NY, USA,
856-858. https://doi.org/10.1145/3495243.3558261

Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive Video Streaming with Pensieve. In
Proceedings of the Conference of the ACM Special Interest Group on Data Communication (Los Angeles, CA, USA)
(SIGCOMM ’17). Association for Computing Machinery, New York, NY, USA, 197-210. https://doi.org/10.1145/3098822.
3098843

Yun Seong Nam, Jianfei Gao, Chandan Bothra, Ehab Ghabashneh, Sanjay Rao, Bruno Ribeiro, Jibin Zhan, and Hui
Zhang. 2021. Xatu: Richer Neural Network Based Prediction for Video Streaming. Proc. ACM Meas. Anal. Comput. Syst.
5, 3, Article 44 (dec 2021), 26 pages. https://doi.org/10.1145/3491056

M. Neely. 2010. Stochastic Network Optimization with Application to Communication and Queueing Systems. Morgan &
Claypool Publishers. https://books.google.com/books?id=sZpeAQAAQBA]

Michael J. Neely. 2013. Dynamic Optimization and Learning for Renewal Systems. IEEE Trans. Automat. Control 58, 1
(2013), 32-46. https://doi.org/10.1109/TAC.2012.2204831

NVIDIA. 2023. Video Processing Framework. https://github.com/NVIDIA/VideoProcessingFramework

Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pal Halvorsen. 2013. Commute Path Bandwidth Traces from 3G
Networks: Analysis and Applications. In Proceedings of the 4th ACM Multimedia Systems Conference (Oslo, Norway)
(MMSys °13). Association for Computing Machinery, New York, NY, USA, 114-118. https://doi.org/10.1145/2483977.
2483991

Sandvine. 2023. 2023 Global Internet Phenomena Report. https://www.sandvine.com/global-internet-phenomena-
report-2023 https://www.sandvine.com/global-internet-phenomena-report-2023.

Jianxin Shi, Lingjun Pu, Xinjing Yuan, Qianyun Gong, and Jingdong Xu. 2022. Sophon: Super-Resolution Enhanced
360° Video Streaming with Visual Saliency-Aware Prefetch. In Proceedings of the 30th ACM International Conference
on Multimedia (Lisboa, Portugal) (MM °22). Association for Computing Machinery, New York, NY, USA, 3124-3133.
https://doi.org/10.1145/3503161.3547750

Zhihao Shi, Xiaohong Liu, Chengqi Li, Linhui Dai, Jun Chen, Timothy N. Davidson, and Jiying Zhao. 2022. Learning
for Unconstrained Space-Time Video Super-Resolution. IEEE Transactions on Broadcasting 68, 2 (2022), 345-358.
https://doi.org/10.1109/TBC.2021.3131875

Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2019. From Theory to Practice: Improving Bitrate Adaptation
in the DASH Reference Player. ACM Trans. Multimedia Comput. Commun. Appl. 15, 2s, Article 67 (jul 2019), 29 pages.
https://doi.org/10.1145/3336497

Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2020. BOLA: Near-Optimal Bitrate Adaptation for Online
Videos. IEEE/ACM Transactions on Networking 28, 4 (2020), 1698—1711. https://doi.org/10.1109/TNET.2020.2996964
Thomas Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP -: Standards and Design Principles. In
Proceedings of the Second Annual ACM Conference on Multimedia Systems (San Jose, CA, USA) (MMSys ’11). Association
for Computing Machinery, New York, NY, USA, 133-144. https://doi.org/10.1145/1943552.1943572

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. 2022. Resolution-Robust Large Mask Inpainting
With Fourier Convolutions. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

https://doi.org/10.1145/3387514.3405856
https://doi.org/10.1145/3387514.3405856
https://doi.org/10.1145/3495243.3558261
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3491056
https://books.google.com/books?id=sZpeAQAAQBAJ
https://doi.org/10.1109/TAC.2012.2204831
https://github.com/NVIDIA/VideoProcessingFramework
https://doi.org/10.1145/2483977.2483991
https://doi.org/10.1145/2483977.2483991
https://www.sandvine.com/global-internet-phenomena-report-2023
https://www.sandvine.com/global-internet-phenomena-report-2023
https://doi.org/10.1145/3503161.3547750
https://doi.org/10.1109/TBC.2021.3131875
https://doi.org/10.1145/3336497
https://doi.org/10.1109/TNET.2020.2996964
https://doi.org/10.1145/1943552.1943572

19:26 Lingdong Wang et al.

(WACV). 2149-2159.

[42] Matias Tassano, Julie Delon, and Thomas Veit. 2020. FastDVDnet: Towards Real-Time Deep Video Denoising Without
Flow Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43] N. Thomos,]J. Chakareski, and P. Frossard. 2011. Prioritized Distributed Video Delivery with Randomized Network

Coding. IEEE Trans. Multimedia 13, 4 (Aug. 2011), 776-787.

Jeroen van der Hooft, Stefano Petrangeli, Tim Wauters, Rafael Huysegems, Patrice Rondao Alface, Tom Bostoen, and

Filip De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over 4G/LTE Networks. IEEE Communications

Letters 20, 11 (2016), 2177-2180. https://doi.org/10.1109/LCOMM.2016.2601087

[45] Zelong Wang, Zhenxiao Luo, Miao Hu, Di Wu, Youlong Cao, and Yi Qin. 2022. Revisiting Super-Resolution for

Internet Video Streaming. In Proceedings of the 32nd Workshop on Network and Operating Systems Support for Digital

Audio and Video (Athlone, Ireland) (NOSSDAV °22). Association for Computing Machinery, New York, NY, USA, 8-14.

https://doi.org/10.1145/3534088.3534344

Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis, and Keith Winstein.

[n.d.]. Learning in situ: a randomized experiment in video streaming. 17th USENLX Symposium on Networked Systems

Design and Implementation (NSDI °20) ([n.d.]). https://par.nsf.gov/biblio/10186616

Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han. 2020. NEMO: Enabling Neural-Enhanced

Video Streaming on Commodity Mobile Devices. In Proceedings of the 26th Annual International Conference on Mobile

Computing and Networking (London, United Kingdom) (MobiCom °20). Association for Computing Machinery, New

York, NY, USA, Article 28, 14 pages. https://doi.org/10.1145/3372224.3419185

Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han. 2018. Neural Adaptive Content-Aware

Internet Video Delivery. In Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation

(Carlsbad, CA, USA) (OSDI'18). USENIX Association, USA, 645-661.

Hyunho Yeo, Hwijoon Lim, Jaechong Kim, Youngmok Jung, Juncheol Ye, and Dongsu Han. 2022. NeuroScaler: Neural

Video Enhancement at Scale (SIGCOMM °22). Association for Computing Machinery, New York, NY, USA, 795-811.

https://doi.org/10.1145/3544216.3544218

[50] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-Theoretic Approach for Dynamic
Adaptive Video Streaming over HTTP. SIGCOMM Comput. Commun. Rev. 45, 4 (aug 2015), 325-338. https://doi.org/
10.1145/2829988.2787486

[51] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2018. PU-Net: Point Cloud Upsampling
Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52] Zijie Yue and Miaojing Shi. 2023. Enhancing Space-time Video Super-resolution via Spatial-temporal Feature Interaction.
arXiv:2207.08960 [cs.CV]

[53] Yanhong Zeng, Jianlong Fu, and Hongyang Chao. 2020. Learning Joint Spatial-Temporal Transformations for Video
Inpainting. In Computer Vision — ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm
(Eds.). Springer International Publishing, Cham, 528-543.

[54] Aoyang Zhang, Qing Li, Ying Chen, Xiaoteng Ma, Longhao Zou, Yong Jiang, Zhimin Xu, and Gabriel-Miro Muntean.
2021. Video Super-Resolution and Caching—An Edge-Assisted Adaptive Video Streaming Solution. IEEE Transactions
on Broadcasting 67, 4 (2021), 799-812. https://doi.org/10.1109/TBC.2021.3071010

[55] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2022. YuZu: Neural-Enhanced Volumetric Video Streaming.
In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX Association, Renton,
WA, 137-154. https://www.usenix.org/conference/nsdi22/presentation/zhang-anlan

[56] Yinjie Zhang, Yuanxing Zhang, Yi Wu, Yu Tao, Kaigui Bian, Pan Zhou, Lingyang Song, and Hu Tuo. 2020. Improving
Quality of Experience by Adaptive Video Streaming with Super-Resolution. In IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications. 1957-1966. https://doi.org/10.1109/INFOCOM41043.2020.9155384

[57] Ganggiang Zhou, Zhenxiao Luo, Miao Hu, and Di Wu. 2023. PreSR: Neural-Enhanced Adaptive Streaming of VBR-
Encoded Videos With Selective Prefetching. IEEE Transactions on Broadcasting 69, 1 (2023), 49-61. https://doi.org/10.
1109/TBC.2022.3227419

[44

[l

[46

—

[47

—

[48

—

[49

—

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

https://doi.org/10.1109/LCOMM.2016.2601087
https://doi.org/10.1145/3534088.3534344
https://par.nsf.gov/biblio/10186616
https://doi.org/10.1145/3372224.3419185
https://doi.org/10.1145/3544216.3544218
https://doi.org/10.1145/2829988.2787486
https://doi.org/10.1145/2829988.2787486
https://arxiv.org/abs/2207.08960
https://doi.org/10.1109/TBC.2021.3071010
https://www.usenix.org/conference/nsdi22/presentation/zhang-anlan
https://doi.org/10.1109/INFOCOM41043.2020.9155384
https://doi.org/10.1109/TBC.2022.3227419
https://doi.org/10.1109/TBC.2022.3227419

BONES: Near-Optimal Neural-Enhanced Video Streaming 19:27

A PROOF OF THEOREM 1
PROOF. We prove the inequality Q%(t;) < V”m‘"’;# + p by induction. The bound holds for k =1

as 0%(t;) = Q%(0) = 0. Suppose it also holds for some k. Then there are two cases for k + 1.
(1) 0%(1y) < Vu‘““‘;#. From Eq. (1) we know Q%(t;) can increase by at most p in one single time

slot. Hence, we have Q% (tj,1) < Vu‘m;# +p.
(2) Vu‘“"‘;# < Q%) < VW + p. In this case, we have

v o QU QU(t)p+Q (810,)
Umax VP ud(i> te) + 4 (i, j, te) + YP,
This makes Op (tx)+VOp(t;) > 0, Vd, e, in Eq. (11) and forces the control algorithm not to download.
As a result, Q% (1) < Q%(ty).
Till now, we have proven Q%(t;) < Vu‘“"‘;# + p. Combining it with V' < %—;}{21’ from
assumption, we have Qg(#;) < Q% and the proof is complete. O

B PROOF OF THEOREM 2

LEMMA 1. Denote the optimal objective of problem Eq. (8) as u°F* + y5°P!. There exists a stationary
i.i.d. algorithm for this problem that has the following properties for any § > 0.
(1) @* +y5* < u%! +ys°P + 6.
E{Zkidip}
(2) B] S 1+34.
E{Zkij die;t® (L))}

(3) B T <1+6.

Proor. Problem Eq. (8) is formulated as maximizing time-averaged objective under time-averaged
constraints in a system with variable-size renewal frames. This lemma can be directly derived from
Lemma 1 in [32].)

Based on Lemma 1, we prove Theorem 2 as follows.

Proor. In the following proof, we will use superscript ’ to denote the decisions of BONES, and *
for those of the optimal i.i.d. algorithm.

Following the framework of Lyapunov optimization over renewable frames [32], we define the
Lyapunov function L(#;) as

L) 2 (070 + 0 (1)?). (15)

Define Q(t) = [Q%(tx), Q¢ (t)], then the conditional Lyapunov drift is formulated as

D(tk) = E{L(tk+1) = L(t)|Q(tk) }- (16)
The drift D(#;) is bounded by

1 1
D(tk) < EPZ + E(tf;ax)z + TmaxE{Tle(tk)}

+QU()BE(Y dip ~ Tl Q(1) @)
+ QU (B) diejt* (i, /) - TelQ(t)}.
ij

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

19:28 Lingdong Wang et al.

For the sake of simplicity, we denote %pz + %(tfnax)z as C. Now we reuse Op (k) in Eq. (9) and
Op(x) in Eq. (10). Adding V times E{Op(t;)|Q(#)} on both sides and simplifying the formula
using E{Op(t;)|Q(tx)}, we have

D(t) + VE{Op(t)1Q(t:)}
< C+ (Tnax — Q% (1) — Q° (1) E{Tic|Q (1) } (18)
+E{Op () + VOp(t)1Q (1)}

Recall that the time slot duration can be computed by Ty = (2; diS;)/w (). As our algorithm
greedily minimizes the objective defined in Eq. (11), we can derive

Op (tx) + VOR(tk) - Op (tx) + VOR(tk)
s S nds,

- Op (t) + VOp(tk) - Op (t) + VOp(tk)

(ZidiS)/w(t) — (Xid;Si)/w(te) (19)
=E{Op (t) + VOp(t)1Q(tk)}
- E{T{1Q(t) }
~ E{T{1Q(t)}
We then apply Eq. (19) to Eq. (18) and bring in the definition of Eq. (3), Eq. (5). Since the total
video length or total enhancement time is less or equal to the total playback time, we have

E{Op (1) + VOp (1) 1Q(k) }-

D/ (1) + VE{O4(10)1Q(10)}
< C+ T B{T{IQU)) ~ V(@ + 5" E(TIQ(K0)

b B0}
Q) BUTIQU) (i) = 1) 20
B3 diejt*(1)IQ(1)
Q00 (BT QU N —= e

k

< C+ T B{T{IQU) + V(& + 5 BTIQ()).

Next, sum both sides over k = 1,- - -, Ky and we get

E{L(tk1)} + VE{), Op(ti)}
k

(21)
< KnC+ Tmax]E{Z T/} - V(@ + y§*)E{Z T/}
k k
We divide both sides by E{}}; T} and take the limit Ky — oo. Since L(kk+1) > 0, we have
KnC
V(@ +ys’) < lim + Tmax — V(@™ +y57). (22)

N
Kn—eo B{X¢ T/}
Because the lower bound of time slot duration is Tpj,, we can transform the above formula into

Eq. (12).
m}

Received August 2023; revised January 2024; accepted March 2024

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 19. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 System Model
	2.2 Optimization Objective

	3 BONES: Control Algorithm and Theoretical Analysis
	3.1 Control Algorithm
	3.2 Decision Plane of BONES
	3.3 Performance Bound

	4 Experimental Evaluation
	4.1 Performance Metric
	4.2 Implementation Details
	4.3 Enhancement Settings
	4.4 Comparison Algorithms

	5 Simulation Results
	5.1 Overall Performance
	5.2 Sensitivity to Network Condition
	5.3 Practical Improvement
	5.4 Sensitivity to Hyper-Parameters
	5.5 Overhead Analysis

	6 Prototype System
	6.1 System Overview
	6.2 Settings and Experiments

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 1
	B Proof of Theorem 2

