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Abstract Genuinely new discovery transcends existing knowledge. Despite this, many analyses
in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical
facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as
new discovery. Here, | discuss that this problem can confound key results and estimate that it has
affected more than three thousand studies in network neuroscience over the last decade. | suggest
that future studies can reduce this problem by limiting the use of speculative evidence, integrating
existing knowledge into benchmark models, and rigorously testing proposed discoveries against
these models. | conclude with a summary of practical challenges and recommendations.

You do not know anything until you know why you know it.
Clovis Andersen, The Principles of Private Detection (McCall Smith, 2007), cited in Sokal, 2010.

Introduction

Scientific models are explanations of reality (Shmueli, 2010; Frigg and Hartmann, 2020). Models
come in many forms, from sentences to equations, and in many kinds, from hypotheses to theories.
All models are false, but some models are truer than others (Mizrahi, 2020). Specifically, all else being
equal, models that are more explanatorily successful — that explain the data more accurately or with
fewer assumptions — are likely to be truer than rival models (Appendix 1).

Efforts to find truer models drive scientific progress but command relatively little neuroscientific
attention. Neuroscience devotes greater efforts to produce better data or more replicable analyses
(Frégnac, 2017). A study by Jonas and Kording, 2017 implicitly critiqued this imbalance of effort.
The study showed that popular neuroscientific analyses of ideal data cannot explain the workings of a
computer chip, a toy model of the nervous system. The study implied, in this way, that neuroscience
must devote greater efforts to find truer models.

Science finds truer and truer models relative to stronger and stronger rival models. By contrast,
many analyses in neuroscience test new speculative models against weak null models. Some of these
analyses use circular reasoning to redundantly explain existing knowledge. These circular analyses of
knowledge violate the principle of parsimony and, in this way, accept models that are less true relative
to the strongest rival models. Here, | discuss the nature and prevalence of this problem in systems
and network neuroscience. | show that the problem can confound key results and estimate that it is
common in the network-neuroscience literature.

| suggest that studies can reduce this problem in three main ways. First, they can limit the use of
speculative evidence. Second, they can integrate all important existing knowledge into benchmark
models. Third, they can rigorously test the significance of proposed discoveries against these models.
Together, these steps can reduce circular analyses, formalize existing knowledge, and benchmark
future progress.
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Table 1. Definitions of terms.

Term Definition

Principle of An assertion that all else being equal, models with fewer redundant features are likely to be truer than rival

parsimony models (Baker, 2022). This assertion reflects an objective preference for parsimony rather than a subjective
(Occam’s razor) preference for simplicity or elegance. In this way, and contrary to misconception, the principle of parsimony

does not imply that reality, or its truest models, are simple or elegant.

Trueness (bias) Distance between expected and true estimates of model parameters (ISO, 1994). True values of model
parameters are typically inaccessible, and trueness (bias) can therefore be defined only in relative terms. The
principle of parsimony asserts that all else being equal, models with fewer redundant features have truer (less
biased) parameter estimates relative to rival models.

Precision (variance) Expected distance between repeated estimates of model parameters (ISO, 1994). Precision (variance) does
not require knowledge of the true values of model parameters and can therefore be defined in absolute
terms. The problem of irreplicable results (leannidis, 2005) is primarily a problem of precision (variance).

Circular analysis An analysis that first tests a model in a way that almost invariably accepts the model and then accepts
the model on the basis of this test. This definition includes circular analyses of knowledge that accept
overspecified models or redundant (less true) explanations. It also includes circular analyses of noise that
accept overfitted models or irreplicable (less precise) explanations (Kriegeskorte et al., 2009).

Neural circuits or ~ Groups of connected neurons or brain regions that mediate function. This definition does not intend to make
brain networks analogies between groups of neurons or brain regions, and electronic circuits or artificial neural networks
(Rubinov, 2015).

Function Behavior and other action that helps animals to survive and reproduce (Roux, 2014). This definition excludes
physiological phenomena that lack such useful action.

Structure Anatomical or physiological organization. This definition encompasses all physiological phenomena,
including phenomena that lack known function.

Development Formation of structure before and after birth. This definition includes plasticity and therefore encompasses
learning and memory.

Much of the following discussion stresses the importance of unambiguous definitions. Accordingly,
Table 1 defines the use of several potentially ambiguous technical terms.

General definitions

Analyses of complex datasets are vulnerable to distortions by extraneous features. Such distortions
may include corruption by noise or confounding by existing knowledge. Statistical science, machine
learning, and other fields have developed rigorous tests to mitigate the risk of these distortions.
Analyses of complex datasets that neglect such tests, however, will almost invariably be distorted by
extraneous features to some extent.

These distortions can generally lead to inflated agreement between model and data and to
inappropriate model acceptance on the basis of this inflated agreement. The nature of individual
distortions, however, will ultimately determine the individual consequences of this problem. On the
one hand, corruption of analyses by noise can lead to the well-known problem of model overfitting
and to irreplicable explanations (Kriegeskorte et al., 2009, Vul et al., 2009). On the other hand,
confounding of analyses by existing knowledge can lead to a distinct, and less well-known, problem
of model overspecification and to redundant explanations.

This work describes analyses that neglect to test speculative models against existing knowledge
and that consequently accept overspecified models and redundant explanations. This section first
defines the nature of this problem and then outlines a general solution.

Toy analogy

We can get an intuition for the problem with a toy analysis of a biological image (Figure 1a). The
image is ambiguous, but our existing biological knowledge tells us that it most likely shows a duck —
specifically a male duck doing a head-throw, its signature courting move. Sometimes our analyses may
neglect such knowledge. This neglect will not make knowledge disappear. Instead, it will inflate the
importance of hypotheses redundant with this knowledge.

We may propose, for example, that the image shows a skvader, a type of winged hare (Figure 1b).
Our existing knowledge makes this hypothesis redundant — ducks doing head-throws almost always
look like skvaders. Our neglect of this knowledge, however, can make the hypothesis seem important.
We may accept the hypothesis on the basis of this perceived importance. This acceptance, however,
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Figure 1. Speculative models. Speculative hypotheses
that rest on apparent similarities between (a) an
ambiguous duck-rabbit animal and (b) a skvader, a
type of winged hare; (c) networks of neurons and

(d) networks of galaxies; (e) a cortical visual system and
(f) a convolutional neural network, a machine learning
model for classifying images; (g) large-scale brain
networks and (h) global friendship networks. Panel

(a) is reproduced from Tim Zurowski (Shutterstock).
Panel (b) is reproduced from Gésta Knochenhauer.
Panel (c) is reproduced from Figure 4.2 of Stangor and
Walinga, 2014. Panel (d) is adapted from the lllustris
Collaboration (Vogelsberger et al., 2014). Panel (e) is
reproduced from Figure 1 of Wallisch and Movshon,
2008. Panel (f) is adapted from Figure 2 of Krizhevsky
et al., 2012. Panel (g) is reproduced from the USC
Laboratory of Neurolmaging and Athinoula A. Martinos
Center for Biomedical Imaging Human Connectome
Project Consortium. Panel (h) is reproduced from Paul
Butler (Facebook).

© 2017, Tim Zurowski (Shutterstock). Panel (a) is
reproduced from Tim Zurowski (Shutterstock). It is

not covered by the CC-BY 4.0 license and further
reproduction of this panel would need permission from
the copyright holder.

© 2015, Gésta Knochenhauer. Panel (b) is reproduced
from Gésta Knochenhauer with permission. It is

not covered by the CC-BY 4.0 license and further
reproduction of this panel would need permission from
the copyright holder.

Neuroscience

will lead to redundant explanations. We will
implicitly “double dip” or explain the same image
twice — first as a duck and second as a skvader.

Circular analysis
We can define the problem more formally with
three types of models.

Benchmark models (well-specified models).
These models represent all important existing
knowledge about our phenomenon of interest.
They include all benchmark features, features
of known importance to this phenomenon, and
they exclude all other features. In systems neuro-
science, benchmark features often represent
existing knowledge about the function, structure,
development, and evolution of neural circuits.
Distinct phenomena may have distinct benchmark
models, and one phenomenon may have several
competing benchmark models.

Speculative models. These models repre-
sent new hypotheses about some phenomenon
of interest. They include one or more specu-
lative features, features of possible but uncer-
tain importance to this phenomenon. Some
speculative features may turn out to be redun-
dant with benchmark features. For example,
consider the similarity of the human brain and
the universe (Figure T1c-d). Both systems have
billions of nested, spatially embedded, and inter-
acting elements: neurons and galaxies (Vazza
and Feletti, 2020). Let the feature of cosmicity
denote the resemblance of a complex system to
the universe. The human brain has high cosmicity.
A speculative model may propose, on this basis,
that brain dynamics resemble cosmic dynamics.
Note, however, that brain cosmicity is likely to be
redundant with our existing knowledge about the
structure of neural circuits.

Strawman models (underspecified models).
These models represent weak null hypotheses.
They typically exclude the benchmark features
with which the speculative features are redun-
dant. In our example, a strawman model excludes
the known structure of neural circuits with which
cosmicity is redundant.

Circular analyses. These analyses almost invari-
ably accept speculative models against strawman
models (Box 1, Appendix 2). They comprise
circular analyses of noise and circular analyses
of knowledge (Appendix 3). Circular analyses of
noise, the focus of previous work (Kriegeskorte
et al.,, 2009), result in acceptance of noisy or
irreplicable explanations. By contrast, circular
analyses of knowledge, the focus of this work,
result in acceptance of redundant explanations. In
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Box 1. A classification of circular analyses.

General definition (weak evidence of progress)
Circular analyses are analyses that use circular reasoning. These analyses:

1. Test a model in a way that almost invariably accepts the model.
2. Accept the model on the basis of this test.

In general, circular analyses denote weak evidence of progress but do not necessarily
preclude progress. In this way, these analyses do not necessarily denote strong evidence of
stagnation. These analyses also violate Mayo’s weak-severity requirement of “bad evidence,
no test” (Mayo and Spanos, 2011; Mayo, 2018; Appendix 2).

Specific definition (strong evidence of stagnation)

This work describes circular analyses of knowledge. These analyses:

1. Test a speculative model in a way that almost invariably accepts it against a strawman
model. Specifically, these analyses test the statistical significance of speculative features
in a way that almost invariably shows the significance of these features against a strawman
model because:

a. The speculative features are redundant with one or more benchmark features.

b. The strawman model excludes the benchmark features with which the speculative
features are redundant.

2. Accept the speculative model on the basis of this test.

Circular analyses of knowledge explain the same aspect of the data twice: first, as one or more
benchmark features and second, as a speculative feature redundant with these benchmark
features. In this way, these analyses necessarily denote strong evidence of stagnation.

Note that in principle, the acceptance of redundant explanations may signify regress rather
than mere stagnation. In practice, however, the relatively transient nature of many such
explanations suggests that stagnation is a more apt description of the problem, cf. “[w]hen
we examine the history of favored stories for any particular adaptation, we do not trace a tale
of increasing truth as one story replaces the last, but rather a chronicle of shifting fads and
fashions.” (Gould, 1978)

Analyses of noise and analyses of knowledge. Previous work has described circular analyses of
noise (Kriegeskorte et al., 2009). These analyses have deep similarities with circular analyses
of knowledge. Both analyses center on the problem of false discovery and are equivalent in
other important respects (Appendix 3).

our example, a circular analysis of knowledge will almost invariably accept the significance of cosmicity
against our strawman model. The analysis will be circular because our strawman model excludes the
known structure of neural circuits with which cosmicity is redundant.

Redundant explanations (overspecified models). Studies sometimes conclude that speculative
features should replace or overturn the benchmark features with which they are redundant. Circular
analyses of knowledge cannot support such conclusions because they never test the speculative
features against a benchmark model. Such analyses must therefore accept, often implicitly, a model
that includes all the existing benchmark features and the redundant speculative features.

In our example, we do not test cosmicity against existing knowledge with which it is redundant and
so cannot overturn this existing knowledge. Our analysis implies, therefore, that cosmicity enriches,
but does not replace, our existing knowledge. In this way, we must accept the importance of cosmicity
and simultaneously accept the importance of existing knowledge with which cosmicity is redundant.

This problem extends to the acceptance of many, potentially countless, speculative models against
the same strawman model. Such acceptance implicitly proposes the simultaneous importance of
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Figure 2. Tests against benchmark models. (a) An empirical data sample. The diagram (left) shows a network
representation of this sample. This example shows only one empirical data sample, but in general there could be
many such samples. (b) A speculative feature computed on empirical data. In this example, the feature has the
same size as the data, but in general it could have an arbitrary size. Colors denote values of feature elements. (c—d)
Corresponding (c) benchmark data samples and (d) speculative features computed on these data. (e) Empirical
test statistic (large black dot) and corresponding benchmark test statistics (small red dots). The effect size reflects
the deviation of the empirical test statistic from the benchmark test statistic. The uncertainty (confidence) interval
and p-value reflect the statistical significance of this deviation. This panel shows a non-significant effect and thus
implies that the speculative feature does not transcend the benchmark model of existing knowledge.

many, potentially countless, redundant features. Moreover, the circular acceptance of one speculative
model after another can give an impression of progress even as it leads to stagnation.

Unified analysis

A general solution to this problem centers on significance tests of speculative features against bench-
mark models (Figure 2). These tests represent unified analyses of existing knowledge and proposed
discovery. They form controlled experiments that test the importance of one feature by controlling for
the effects of all known confounding features (Sibbald and Roland, 1998; Box 2). They also form a
type of severe (model) selection within Mayo's framework of severe testing (Mayo and Spanos, 2011;
Mayo, 2018; Appendix 2). Finally, they parallel controls for model overfitting (Kriegeskorte et al.,
2009; Appendix 3).

In practice, these analyses center on the sampling of data from benchmark-model distributions
and on the testing of speculative features against these data. We can describe these analyses in three
steps.

First, we can consider a sample of empirical data. The sample could be as small as a single dataset
(Figure 2a) or it could be larger. We can compute a speculative feature of interest on this sample and
summarize this feature with a test statistic (Figure 2b and e). The empirical test statistic reflects the
importance of the corresponding speculative feature. It can also reflect, by extension, the importance
of the speculative model that centers on this feature.

Second, we can get many data samples from a benchmark-model distribution (Figure 2c). These
samples should match the statistics of all benchmark features but be maximally random in all other
respects. We can compute the test statistic on these samples and in this way estimate the null
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Box 2. Tests against benchmark models and randomized
controlled trials.

Tests against benchmark models have deep similarities with randomized controlled trials,
controlled experiments in medical research (Sibbald and Roland, 1998). Randomized
controlled trials comprise three main steps. The first step randomly splits a sample of people
into a treated group and a control group. The second step gives the treatment to people

in the treated group and gives a placebo to people in the control group. The third step
compares the medical outcomes of the two groups.

The following list shows that tests against benchmark models (or tests) have essentially
the same structure as randomized controlled trials (or trials), even as they differ in
implementational details.

* Samples of empirical data (in tests) parallel people in the treated group (in trials).

* Samples of benchmark-model data (in tests) parallel people in the control group (in trials).

* Comparison of test statistics (in tests) parallels comparison of medical outcomes (in trials).

* Maximally random, or unbiased, sampling of benchmark-model data (in tests) paral-
lels maximally random, or unbiased, split into the treated and control groups (in trials).
Both approaches allow, in principle, to control for all known (tests) or all possible (trials)
confounding explanations.

Despite these similarities, these two types of experiments have one basic difference.
Randomized controlled trials can test causality because the treatment always precedes the
outcome in time (Siddiqi et al., 2022). By contrast, tests against benchmark models can test
non-redundancy but do not test causality unless we have additional information about the
temporal precedence of speculative and benchmark features.

distribution — the distribution of the test statistic under the null hypothesis of existing knowledge
(Figure 2d and e).

Third, we can test the significance of the empirical test statistic against this null distribution by
estimating the effect size, uncertainty (confidence) interval, and p-value (Mayo and Spanos, 2011).
The p-value can reflect the probability that the empirical test statistic does not exceed the benchmark
test statistic. In this way, and with appropriate definitions of the test statistic and the benchmark
model, the p-value can reflect the probability that our proposed discovery does not transcend existing
knowledge.

In our cosmicity example, we can do this analysis in three steps. First, we can define a test statistic
of cosmicity and estimate the empirical value of this statistic. Second, we can define a benchmark
model that includes all important existing knowledge about the structure of neural circuits. We can
then sample data from this model distribution and estimate the null distribution of the test statistic.
Third, we can use this null distribution to estimate the effect size, the uncertainty interval, and the
p-value, and in this way test the significance of cosmicity against our existing knowledge of neural
circuits.

As we discussed above, cosmicity is likely to be redundant with our existing knowledge. This likely
redundancy suggests that our result is unlikely to be statistically significant. In this context, a finding
of statistical significance can serve as genuine evidence for the importance of cosmicity and, by exten-
sion, for the importance of cosmic dynamics to brain function.

Specific examples

Previous work has noted that circular analyses of noise can be “hard to understand, imagine, or
predict” and “when it's hard to see how, it can still be happening” (Kriegeskorte et al., 2009).
This section shows that circular analyses of knowledge can often be similarly inconspicuous. It first
describes possible examples of these analyses in systems neuroscience and probable examples in
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network neuroscience. It then walks through the details of the problem with a toy analysis. It finally
estimates the prevalence of the problem in the network-neuroscience literature.

Possible circular analyses of knowledge

Systems neuroscience broadly studies the structure and function of interacting groups of neurons or
brain regions. The field variously terms these groups assemblies, populations, circuits, systems, or
networks. It has acquired considerable, albeit somewhat scattered, knowledge about the structure
and function of these groups. It has also proposed many speculative hypotheses that seek to tran-
scend this existing knowledge.

We can show how circular analyses of knowledge can lurk in this environment using the example of
the systems neuroscience of (mammalian) vision. In line with our discussion, we can first consider the
benchmark, speculative, and strawman models of this phenomenon.

Benchmark model. Systems neuroscience lacks a benchmark model that captures our existing
knowledge about the nature and origin of vision (Poggio and Serre, 2013; Golan et al., 2023).
Despite this lack of a benchmark model, we know many benchmark features relevant to vision. We
know, for example, that the visual system tightly balances the activity of inhibitory and excitatory
neurons (Isaacson and Scanziani, 2011). This balance prevents overinhibition and overexcitation and
thus allows animals to sense light and not get seizures (Ma et al., 2019). We also know that this
balance rests, in part, on the fast-spiking response of inhibitory neurons to excitatory visual stimula-
tion (Sohal, 2016). Finally, we know that vision evolved, in virtually all animals, to support visuo-motor
interactions, that is, to help animals interact with their environments through movement (Goodale,
1996; Nilsson, 2021). These basic features do not necessarily form a benchmark model, but they will
suffice for our discussion.

Speculative models. Systems neuroscience has many speculative models of vision. Many of these
models center on the importance of elegant features and often rest on analogies with other natural
and synthetic systems. We can consider three prominent examples of these models.

The first model centers on the importance of internal representations, patterns of neuronal activity
that internally represent visual stimuli (Craik, 1943; Hubel and Wiesel, 1959). Studies have proposed
that the visual system interprets the meaning of internal representations much like an artificial neural
network decodes the nature of input images (Kriegeskorte, 2015; Richards et al., 2019; Cichy and
Kaiser, 2019, Figure 1e-f). Despite these intuitions, we have no evidence that patterns of neuronal
activity actually denote internal representations (Kenny, 1971; Brette, 2019, Bennett and Hacker,
2022). Moreover, in many cases, we may be able to explain these patterns as substrates of visuo-
motor interactions without the need to assume that they internally represent anything at all (Freeman
and Skarda, 1990; Cao, 2020; Driscoll et al., 2022).

The second model centers on the importance of gamma oscillations, fast rhythms of neuronal activity
that correlate with visual perception (Gray et al., 1989, Burwick, 2014). Studies have proposed that
gamma oscillations bind simple visual stimuli into complex perception, much like orchestra conductors
weave the sounds of individual musicians into complex music (Singer, 2001; Buzsaki and Draguhn,
2004). Despite these intuitions, we know that gamma oscillations are absent during the perception
of some images, and so may not be necessary to bind stimuli into perception (Hermes et al., 2015b;
Hermes et al., 2015a). Moreover, in many cases, we may be able to explain these oscillations as the
inevitable outcomes of inhibitory responses to visual stimulation without the need to assume that they
bind anything at all (Ray and Maunsell, 2015; Singer, 2018).

The third model centers on the importance of neural criticality, collective neuronal activity that
balances on the edge of order and disorder. Studies have proposed that criticality optimizes our sensi-
tivity to visual stimuli, much like the critical (neither shallow nor steep) angle of a sand pile optimizes its
responsiveness to tactile stimuli (Shew et al., 2009; Shew and Plenz, 2013). Despite these intuitions,
we know that signatures of criticality can occur in the absence of any visual stimuli and so may not
necessarily be related to optimized visual sensation (Fontenele et al., 2019; Destexhe and Touboul,
2021). Moreover, in many cases, we may be able to explain these signatures as inevitable outcomes
of balanced inhibitory and excitatory activity without the need to assume that they optimize anything
at all (Nanda et al., 2023).

Strawman models. We cannot summarize the full range of null models in the expansive literature
of representations, oscillations, and criticality. We can still do justice to this literature, however, by
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considering some of its strongest models. One such model can test the significance of represen-
tations against correlations of neuronal activity across space and time (Elsayed and Cunningham,
2017). Another model can test the significance of oscillations against non-oscillatory activity of similar
amplitude (Donoghue et al., 2022). A third model can test the significance of critical neuronal activity
against mimicking non-critical (lognormal) phenomena (Buzsaki and Mizuseki, 2014). Together, all
these models can test representations, oscillations, and criticality against important confounders.
Despite this, none of these models test these speculative features against the benchmark features
with which they may be redundant.

Circular analyses and redundant explanations. Tests against strawman models often accept the
importance of representations, oscillations, and criticality. Separately, these tests cannot reject the
importance of benchmark features with which these speculative features may be redundant. It follows
that these tests may implicitly explain the same aspects of brain activity twice — first as a basic bench-
mark feature and second as a redundant speculative feature. In the study of vision, these analyses may
therefore conclude the simultaneous importance of:

1. Visuo-motor interactions and internal representations possibly redundant with these interactions.

2. Inhibitory responses to stimulation and gamma oscillations possibly redundant with these
responses.

3. Balance of inhibition and excitation and critical activity possibly redundant with this balance.

Individually, these analyses accept simple or elegant models. Collectively, however, they may
accept a needlessly complicated model that assumes the simultaneous importance of several redun-
dant features.

Probable circular analyses of knowledge

Many parts of systems neuroscience, such as the study of vision, lack well-defined benchmark models
or the ability to test speculative models against these benchmarks. These limitations make it hard to
show the presence of circular analyses of knowledge, even when they exist.

Some parts of systems neuroscience, however, have relatively well-defined benchmark models and
the ability to test speculative models against these benchmarks. These strengths make it possible
to show the presence of circular analyses of knowledge when they exist. Here, we can describe the
probable presence of such analyses in network neuroscience.

Network neuroscience is a subfield of systems neuroscience that studies the structure and function
of extensive, including whole-brain, networks (Bassett and Sporns, 2017). Nodes in these networks
typically denote cells or regions, while links typically denote synapses, axonal projections, or activity
correlations. We can show probable circular analyses in this field using the example of the network
neuroscience of (mammalian) cortex. In line with our previous discussion, we can first consider the
benchmark, speculative, and strawman models of this structure.

Benchmark model. We have considerable knowledge of evolution, development, structure, and
function of cortical networks. First, evolutionary analyses of extensive mapping studies suggest that
essentially all mammals share a common cortical blueprint (Kaas, 1995; Krubitzer, 1995; Figure 3a).
Second, the commonality of this blueprint likely stems from strongly conserved developmental
processes. These processes include an initial establishment of spatial concentration gradients of
developmental molecules and a subsequent discretization of these gradients (Figure 3b—c). Third,
signatures of these developmental processes show through in the structure of the adult cortex. To
a first approximation, this structure reflects a gradual transition along the cortical sheet (Figure 3d):

o from a relatively well-delineated, clustered, and poorly connected sensory-motor cortex.
e to arelatively ill-delineated, distributed, and highly connected association cortex.

(The sensory-motor cortex is well-delineated in large part because it comprises cortical areas that
form spatial mappings of entire sensory or motor fields. For example, the primary somatosensory area
comprises a spatial mapping of all body parts that can receive somatic input. By contrast, the associ-
ation cortex is ill-delineated in large part because it lacks areas that form similarly clear mappings of
complete sensory or motor fields [Buckner and Krienen, 2013; Patel et al., 2014].)

Fourth, this cortical structure constrains known cortical function. Specifically, a gradual transition
from a relatively well-delineated sensory-motor cortex to a relatively ill-delineated association cortex
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results in the formation of discrete cortical areas and
systems (colors in b). (d) A schematized blueprint of a

Figure 3 continued on next page
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Figure 3 continued

macaque cortical network reflects a gradual transition
of a relatively clustered sensory-motor cortex (red and
green) into a relatively distributed association cortex
(gray). Circles denote cortical regions, while lines
denote interregional projections. V1 and A1 denote
primary visual and auditory areas, while PPC denotes
posterior parietal association cortex. Panel (a) is
adapted from Figure 3 of Krubitzer and Prescott,
2018. Panel (b) is adapted from Figure 1.3b of Grove
and Monuki, 2020. Panel (c) is adapted from Figure 2
of Borello and Pierani, 2010. Panel (d) is adapted from
Figure 2d of Mesulam, 1998.

reflects a corresponding transition from relatively
well-defined sensory-motor function to relatively
ambiguous cognitive function (Bayne et al.,
2019).

Network neuroscience has a well-known
model that captures the basic features of this
cortical blueprint (Sporns, 2013). This model
includes two types of benchmark features. First, it
includes network modules (clusters) that capture
the clustered sensory-motor cortex. Second, it
includes node connectivity (number of connec-
tions) that captures the gradual transition from
the poorly connected sensory-motor cortex to the
well-connected association cortex. We can adopt
this basic benchmark model for our subsequent
discussion.

Speculative models. Speculative models
in network neuroscience broadly resemble
other speculative models in systems neurosci-
ence. These models center on the importance
of elegant features and often rest on analogies
with other natural and synthetic systems, such
as metabolic, transport, and friendship networks
(Barabasi, 2016; Figure 1g-h). In contrast to
broader systems neuroscience, however, specu-
lative features in network neuroscience are often
more clearly redundant with benchmark features.
We can show this redundancy in three specula-
tive models that reflect some of the best-known
results in network neuroscience.

The first model centers on the importance
of small-world structure (Stephan et al., 2000,
Achard et al., 2006). This structure denotes the
simultaneous presence of many network trian-
gles (triplets of fully connected nodes) and many
network shortcuts (connections between different
network parts). Studies have proposed that small-
world cortical structure optimizes the competing
demands of functional segregation and inte-
gration (Sporns and Zwi, 2004). We also know,
however, that this structure is redundant with

connected sensory-motor modules: “modular
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a speculative model

controllable core of
empirical data

empirical data

b benchmark model

controllable core of
benchmark data

benchmark data

onspels jsoy @

outcome: rejection of speculative model

[ strawman model

controllable core of
strawman data

strawman data

{15}
onsness jsoy @

N
3}

outcome: circular acceptance of
speculative model (circularity
contingent on outcome in b)

Figure 4. Example analysis. (a) Left: A toy cortical
network. Right: A matrix that reflects the controllability
of specific network states (a one-rank approximation
of the controllability Gramian [Brunton and Kutz,
2019)). Dashed lines delineate the controllable core.
The test statistic is the logarithm of the sum of all
matrix elements within this core. (b) Left: Data samples
from a benchmark-model distribution. The benchmark
model includes empirical network modules and node
connectivity (red overlays). Right: Controllable cores

in benchmark-model data. Rightmost: Empirical (large
black dot) and benchmark test statistics (small red
dots). (c) Left: Data samples from a strawman model
distribution. The strawman model includes node
connectivity but not empirical network modules (red
overlay). Right: Controllable cores in strawman-model
data. Rightmost: Empirical test statistic (large black dot)
and strawman test statistics (small red dots).

Neuroscience

systems are small-world but not all small-world
systems are modular” (Meunier et al., 2010).

The second model centers on the impor-
tance of cores or clubs (Hagmann et al., 2008,
Zamora-Lépez et al., 2010; van den Heuvel
and Sporns, 2011). These structures denote
groups of highly connected nodes. Studies have
proposed that cores or clubs of the association
cortex form the backbone of functional integra-
tion and may underpin the global workspace, a
theoretical substrate of consciousness (Griffa and
van den Heuvel, 2018). We also know, however,
that these structures are redundant with sensory-
motor modules and highly connected association
nodes (hubs): “clubs are structural byproducts of
modules and hubs” (Rubinov, 2016).

The third model centers on the importance
of node controllability (Tang et al., 2012; Gu
et al.,, 2015). High-control nodes in dynamical
systems mediate switches between network
activity (system states). Studies have proposed
that high-control cortical nodes may support
internal cognitive control and may serve as levers
for external cortical control (Tang and Bassett,
2018). We also know, however, that node control-
lability is roughly equivalent with node connec-
tivity (degree) (Tu et al., 2018) or related features
(Patankar et al., 2020): "a strong [...] correlation
between node degree and average controllability
is mathematically expected” (Gu et al., 2015).

Strawman models. Studies of small worlds,
cores/clubs, and controllability use a relatively
limited set of null models. First, tests of small
worlds and cores/clubs tend to follow the broader
network-science literature and use null models
that include node connectivity but not network
modules (Watts and Strogatz, 1998, Colizza
et al., 2006). Second, many tests of controllability
use abstract null models that lack node connec-
tivity or network modules (Pasqualetti et al.,
2019). Third, many studies also use null models
that include the empirical decay of connectivity
with spatial distance (Markov et al., 2013). These
spatial models can account for much variance in
the data and are perhaps the strongest network-
neuroscience null models in common use today
(Kaiser and Hilgetag, 2006). Despite these
strengths, these models lack node connectivity
or network modules and cannot compete with
benchmark models that include these features
(Rubinov, 2016).

Circular analyses and redundant explanations.
Tests of small worlds, cores/clubs, and controlla-
bility against strawman models will almost invari-
ably accept the importance of these speculative
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features. Separately, these tests cannot reject the importance of benchmark features with which
these speculative features are redundant. It follows that these circular analyses implicitly explain
the same aspects of network structure twice: first as a basic benchmark feature, and second as a
redundant speculative feature. Individually, these analyses accept simple or elegant models. Collec-
tively, however, they accept a needlessly complicated model that assumes the simultaneous impor-
tance of sensory-motor modules, highly connected association nodes, small worlds, cores/clubs, and
controllability.

Walkthrough circular analysis of knowledge
We can show the details of this problem with a walkthrough analysis of a toy cortical network. This
network has an accentuated transition from clustered to distributed cortical connectivity (Figure 4a-b,
left). We can propose a speculative model of this network that centers on a toy feature of a control-
lable core. This hybrid feature represents a core of cortical regions whose activity can be induced with
relatively little stimulation. Theory suggests that this controllable core may support a stable state of
cortical activity and thus play an important role in cortical function. Despite these considerations, the
existence and importance of this feature remain speculative without tests against a benchmark model.

We can test this feature against a benchmark model in three steps. First, we can define a test
statistic that reflects the importance of this feature. In our example, we can define this statistic to be
the core density of controllable network nodes (Figure 4a, right). Second, we can compute the value
of this statistic on empirical and benchmark-model data (Figure 4b). Third, we can use these values to
quantify the effect size, uncertainty interval, and p-value. In our analysis, the empirical test statistic is
3.02, while the median [95% uncertainty interval] benchmark-test statistic is 3.00 [2.87, 3.12] (arbitrary
units). The corresponding effect size of 0.02[-0.11, 0.15] and p=0.36 (Figure 4b, right) suggest that
the empirical test statistic is not significant against benchmark-model data. This analysis suggests that
the controllable core is redundant with our existing knowledge.

Separately, we can test the significance of a controllable core against a strawman model. (Figure 4c).
In our analysis, the strawman-model statistic is 2.72 [2.62, 2.88]. The corresponding effect size of 0.30
[0.14, 0.40] and p<0.01 (Figure 4c, right) suggest a rejection of this strawman model. This rejection
is circular because the strawman model excludes the benchmark feature with which the controllable
core is redundant.

Prevalence of probable circular analyses of knowledge

| quantified the fraction and number of probable circular analyses of knowledge in the network-
neuroscience literature. | did this by evaluating network-neuroscience studies published during five
recent years in ten journals. Appendix 4 describes the details of this evaluation.

This evaluation shows that 56% of evaluated studies had at least one circular analysis of knowledge.
A simple extrapolation suggests that this problem may have affected more than three thousand orig-
inal studies published over the last decade. This extrapolation is necessarily a rough estimate. It may
be upwardly biased if my sample is unrepresentative of the broader literature or downwardly biased
if my search criteria missed other affected articles. Despite these limitations, this extrapolation forms
a useful indicator of the magnitude of this problem in the literature.

| did not try to assess the effects of this problem on individual results. These effects will depend on
the aims and conclusions of individual studies. For example, circular analyses of knowledge in some
studies may be tangential to the main results and may not affect the main conclusions. Separately,
circular analyses in other studies may make the main results seem falsely novel or important and, in
this way, may severely distort the main conclusions. Overall, | agree with a previous similar evaluation
of the literature (Kriegeskorte et al., 2009) that such effects should be assessed through systematic
community efforts.

To facilitate these efforts, | created a semi-automated analysis pipeline that downloads and curates
all published studies that match some specified search criteria (Appendix 4). The curation includes
the extraction of the Methods and Results sections and the highlighting of possible descriptions of
benchmark, speculative, or strawman models. This basic curation cannot replace the careful evalua-
tion of individual articles, but it may help to make such an evaluation standardized and more objective.
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Table 2. Example deepities.
Deepity

Direct meaning

Neuroscience

Implicit allusion

Neural computation (Churchland and
Sejnowski, 2016)

Transformation of sensory input to
behavioral output.

Computer-like transformation of sensory
input to behavioral output.

Neural representation, code, or
information (Baker et al., 2022,
Brette, 2019; Nizami, 2019)

Patterns of neuronal activity that correlate
with, or change in response to, sensory
input.

Internal representations or encodings of
information about the external world.

Neural networks (Bowers et al., 2022)

Artificial neural networks (machine-learning
models).

Biological neural networks.

Necessity and sufficiency (Yoshihara
and Yoshihara, 2018)

The induction or suppression of behavior
through stimulation or inhibition of neural
substrate.

Logical equivalence between behavior and
neural substrate.

Functional connectivity (Reid et al.,
2019)

Correlated neural activity.

Neural connectivity that causes function.

Complexity (Merker et al., 2022)

Patterns of neural structure that are neither
ordered nor disordered.

Patterns of neural structure that are
fundamentally important.

Motifs Repeating patterns of brain-network Motifs of neural computation.
connectivity.

Efficiency Communication between pairs of brain Efficiency of neural communication.
nodes via algorithmic sequences of
connections.

Modularity Propensity of brain networks to be divided  Propensity of brain networks to be robust
into clusters. or evolvable.

Flexibility Propensity for brain nodes to dynamically ~ Propensity for cognitive flexibility.

switch their cluster affiliations.

The brain is a network, like many other
natural and synthetic systems.

The brain consists of connected elements,
like many other natural and synthetic
systems.

The brain shares functional network
principles with many natural and synthetic
systems.

Brain disorders are disconnection
syndromes.

Brain disorders are correlated with brain-
network abnormalities.

Brain disorders are caused by brain-network
abnormalities.

Speculative evidence

The commonness of circular analyses of knowledge may reflect, in part, the intuitive importance of
many speculative models. This importance often rests on the misleading suggestiveness of specula-
tive evidence. The ability to spot such evidence can help to shift the focus from speculative intuitions
to rigorous tests and, in this way, alleviate much of this problem in the literature.

This section discusses how suggestive terminology, suggestive structure, and suggestive narratives
can all falsely signal the importance of speculative features. This discussion aligns with similar perspec-
tives in neuroscience (Krakauer et al., 2017), machine learning (Lipton and Steinhardt, 2019), and
psychology (Yarkoni, 2020).

Suggestive terminology: Deepities

The term deepity denotes a word or phrase that has two distinct meanings (Dennett, 2013). The first
meaning is direct and undisputed but bland, while the second is profound but indirect and specu-
lative. Deepities do damage when they lead us to conflate the two meanings and, in this way, make
speculative or redundant features seem well-supported.

Many bedrock terms or ideas in systems neuroscience are deepities because they conflate facts
with speculations (Table 2). Here, we can show this conflation using three especially consequential
terms: function, emergence, and significance. We can do so using a toy example of “lub-dub” heart
sounds, features that arise as byproducts of turbulent blood flow.

First, function can denote physiological activity and also signal functional utility (Roux, 2014). The
conflation of these two meanings may falsely attribute utility to all physiological phenomena. The
heart pumps blood and makes lub-dub sounds, but only one of these actions is useful.

Second, emergent phenomena can denote higher-order structures in complex systems and also
signal the importance of these structures (Bedau, 1997). The conflation of these two meanings may
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a simple hypothesis:
redundant feature

elaborate hypothesis:
functional feature

Figure 5. Example spandrels. (a) Spandrels in
architecture denote triangular spaces of building arches
(left, orange). Existing knowledge (gray) may explain
these spaces as byproducts, but their intricate structure
(right, orange) may suggest that they have important
function. (b) An illustrative depiction of a “manifold”
representation of neuronal population activity (orange).
Axes denote directions of neuronal population activity
in low-dimensional space. The intricate structure and
predictive success of this feature may suggest that it
plays an important role in neural function. The difficulty
of testing this importance against existing knowledge
(not shown) can make this importance speculative.

(c) An illustrative depiction of a cortical core (orange).
The intricate structure of this feature may suggest

that it plays an important role in neural function. The
relative ease of testing this importance against existing
knowledge (gray) makes it possible to show that this
feature is ultimately redundant. Panels (a) and (c) are
adapted from (respectively) Figure 2b and Figure 1a of
Rubinov, 2016.

Neuroscience

falsely attribute functional importance to higher-
order structures. The structure of turbulent blood
flow is emergent, but this flow plays no important
role in heart function.

Third, significance can denote the rejection of
a null hypothesis and also signal scientific impor-
tance (Wasserstein and Lazar, 2016). The confla-
tion of these two meanings may falsely attribute
importance to statistically significant features,
especially if these features are also functional
and emergent. In practice, the importance of a
statistically significant result is strongly tied to the
nature of the null hypothesis. A weak null hypoth-
esis may propose, for example, that heart sounds
are equally loud in still and beating hearts. We will
always reject this null hypothesis, but such rejec-
tion will tell us little about the importance of heart
sounds.

Collectively, the use of deepities can make
speculative features seem useful or important.
Moreover, the ability to fall back on the direct
meanings of deepities in response to criticism,
and to promote their implicit allusions at other
times, can make deepities easy to defend and
thus hard to eliminate. (This defense of deepities
is known as “motte and bailey”, by analogy with a
defense of a medieval castle [Shackel, 2005]. The
motte is a hill with a tower — it is easily defensible
but not particularly enjoyable to spend time in.
The bailey is an outside court — it is enjoyable
but not particularly defensible. The motte-and-
bailey defense denotes a retreat to the motte in
response to attacks and enjoyment of the bailey
during more peaceful times.)

Suggestive structure: Spandrels
In architecture, spandrels denote triangular
spaces of building arches (Figure 5a). These
spaces arise as byproducts of the contours of the
arch, but their intricate decoration may suggest
that they have important (decorative) function.
In biology, spandrels are phenotypes that have
intricate and similarly suggestive structure (Gould
and Lewontin, 1979). For example, the intricate
structure of turbulent lub-dub flow, and the ability
of this flow to predict heart activity and physical
exertion, may all suggest that lub-dub sounds play
an important role in heart function. The intricate
structure and predictive success of many features
in systems neuroscience may likewise suggest
that these features play an important role in brain
function (Figure 5b-c).

The concept of spandrels helps to show the
value of tests against benchmark models. For
example, the lack of a benchmark model of vision
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Table 3. Example stories.

Concept

Initial narrative of
optimality

Evidence of
suboptimality (strong
but unviable null
model)

Restoration of
optimality through the
inclusion of an ad hoc
tradeoff

Neuroscience

Alternative benchmark
narrative (strong and
viable null model)

Criticality (Fontenele
et al., 2019; Wilting
and Priesemann, 2019,
Nanda et al., 2023)

Brain activity always
and exactly balances
between order and
disorder. This allows it
to optimize information
transmission and
storage.

Brain activity does not
always or exactly balance
between order and
disorder.

Brain activity optimizes
the tradeoffs between
the benefits of criticality
and the competing
benefits of flexibility or
stability.

Brain activity avoids

the extremes of
overinhibition and
overexcitation and is
not optimal over and
above this avoidance-of-
extremes baseline.

Predictive coding (Sun
and Firestone, 2020;
Van de Cruys et al.,
2020; Seth et al., 2020;
Cao, 2020)

Brain activity aims
to optimally predict
incoming sensory input.

Brain activity optimally
predicts sensory input in
dark and quiet spaces.
Despite this, animals
tend not to seek out
such spaces.

Brain activity aims to
optimize the tradeoffs
between predictions
that are accurate and
predictions that are
motivational.

Brain activity reacts to
sensory input but does
not aim to optimally
predict this input.

Wiring minimization
(Markov et al., 2013;
Bullmore and Sporns,

Brain-network structure
globally minimizes
wiring cost and therefore

Brain-network structure
does not globally
minimize wiring cost.

Brain-network structure
optimizes the tradeoffs
between wiring cost

Brain networks have
long connections that
enable specific sensory-

2012, Rubinov, 2016) motor function but do
not optimize global

communication.

and communication
efficiency.

optimizes wiring
economy.

makes it difficult to test the significance of internal representations against visuo-motor interactions
(Figure 5b). This difficulty can make the existence and importance of internal representations incon-
clusive. Such inconclusiveness, in turn, may help to explain the vigorous and unsettled debates over
the nature of this and other speculative features in systems neuroscience (Langdon et al., 2023;
Sohal, 2016; Destexhe and Touboul, 2021). By contrast, well-defined benchmark models of cortical
networks make it relatively easy to show the redundancy of cores or clubs against these models
(Figure 5c). This ease may help explain the lack of comparable debates over the nature of these and
other redundant features in network neuroscience (Liao et al., 2017; Sporns, 2018; Pasqualetti
et al., 2019).

Suggestive narratives: Just-so stories

Just-so stories in biology are intriguing but speculative narratives that suggest the presence of theoret-
ically elegant or optimal biological function (Gould, 1978; Bowers and Davis, 2012). A just-so-story
may suggest, for example, that heart sounds exist to warn of overexertion and thus help minimize
energy expenditure. Just-so stories can be difficult to falsify because it is often easy to reexplain
some evident non-optimality as a globally optimal tradeoff between competing objectives (Gould
and Lewontin, 1979). Table 3 shows examples of such stories in the recent systems-neuroscience
literature.

The difficulty of falsifying just-so stories also helps to show the value of tests against benchmark
models. Assertions of suboptimality form strong but unviable null models (Table 3, third column).
Acceptance of these models, in other words, does not offer a viable alternative explanation to replace
the original narrative. Without such a viable alternative, it becomes easy to hold on to the orig-
inal narrative, typically by introducing an ad hoc tradeoff that restores optimality (Table 3, fourth
column). This process may help to explain why just-so stories can hold sway in the field long after they
are rejected against strong null models. By contrast, benchmark models form strong and viable null
models (Table 3, fifth column). The acceptance of these models offers viable alternative explanations
of brain function and, in this way, makes it easier to eliminate the original narrative (Appendix 2).

Stagnation and progress

The commonness of circular analyses of knowledge can help explain a seeming disconnect between
the fast pace of everyday discovery and the slow pace of real progress. Cobb, 2020 described the
nature of this disconnect in neuroscience:
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“There are now tens of thousands of brain researchers around the world, beavering away in
a bewildering range of new subdisciplines [...] each with their own questions, methods and
approaches. Thousands of research articles relating to brain function appear each year.” Despite
this, “[i]n reality, no major conceptual innovation has been made in our overall understanding of
how the brain works for over half a century.”

On the one hand, circular analyses of knowledge can enable a fast pace of intriguing, and often
replicable, everyday discoveries. On the other hand, the speculative and redundant nature of these
discoveries does not lead to revisions of benchmark models and, in this way, results in a lack of real
progress. Horgan, 2015 introduced the term "ironic science” to describe the nature of this process:

“Ironic science [acceptance of intriguing but speculative models] offers points of view, opinions,
which are, at best, interesting, which provoke further comment. But it does not converge on the
truth [lead to acceptance of truer models]. It cannot achieve empirically verifiable surprises that
force scientists to make substantial revisions in their basic description of reality [make substan-
tial revisions to benchmark models].”

Tests against benchmark models can help resolve this disconnect by ultimately linking the value of
proposed discovery with revisions of benchmark models. Particle physics provides a good example
of these tests in action. This field has the Standard Model, perhaps the most successful benchmark
model in all of science today. The field seeks to revise this model but refreshingly accepts, and indeed
embraces, the everyday failure to do so. Cousins, 2017 aptly summarized the nature of this practice:

“In many searches in [particle physics], there is a hope to reject the [Standard Model] and make
a major discovery [...]. But there is nonetheless high (or certainly non-negligible) prior belief in
the null hypothesis. The literature, including the most prestigious journals, has many papers [...]
that report no significant evidence for the sought-for [beyond-the-Standard-Model] physics.
Often these publications provide useful constraints on theoretical speculation, and offer guid-
ance for future searches.”

In contrast to particle physics, benchmark models are often ill-defined in more expansive fields,
such as psychology or sociology. The difficulty of evaluating real progress in these fields can make
practitioners throw up their hands in despair (Yarkoni, 2020 gives an example from psychology). It
may also make them avoid tests against null models altogether. For example, Gelman et al., 2020
noted:

“We do not generally use null hypothesis significance testing in our own work. In the fields in
which we work [social science and public health], we do not generally think null hypotheses can
be true [cf. strawman models can be truer than speculative models]. We do not find it particu-
larly helpful to formulate and test null hypotheses that we know ahead of time cannot be true
[cf. almost invariably accept speculative models against strawman models].”

Systems neuroscience probably lies somewhere between particle physics and social science. Some
parts of the field, such as network neuroscience, are sufficiently circumscribed to allow tests of new
models against well-delineated benchmark models. To be clear, it is unlikely that the field can converge
on benchmark models that resemble the Standard Model or even remotely approach the explanatory
success of this model. Despite these limitations, the adoption of routine tests against benchmark
models can help place the field on a rigorous foundation and in this way facilitate real progress.

Practical details

This section describes the practical details of testing new models against benchmark models. It first
describes steps to integrate existing knowledge into benchmark models. It then discusses methods
to sample data from benchmark-model distributions. It finally proposes practical steps to establish a
culture of rigorous tests.

Integrating knowledge

Benchmark models should include all aspects of important existing knowledge about some phenom-
enon of interest. The need to include all knowledge reflects not dogma but the objective impor-
tance of control for all known confounding explanations. This need parallels the need to control
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for all aspects of the noise in tests on independent data (Appendix 3) or the need to control for all
confounding explanations in randomized controlled trials (Box 2).

In principle, the inclusion of all important existing knowledge can seem daunting. In practice,
however, this inclusion already happens routinely, albeit often informally, in books, reviews, and
detailed Introduction sections of original articles. For example, an Introduction section that describes
the importance of features a, b, and c to some phenomenon of interest, informally includes all these
features in a benchmark model of this phenomenon.

Features that comprise important existing knowledge should rest on rigorous evidence from exten-
sive observations or controlled experiments. Such evidence generally points to strong similarities
between the nervous system and other body systems, and to strong similarities between the nervous
systems of distantly related species. These similarities span functional objectives, structural building
blocks, and developmental processes.

We know, for example, that other body systems use effective but often inelegant tricks to solve
diverse but always specific problems of survival and reproduction. We also know that nervous systems
use similarly effective but inelegant tricks to feed, fight, flee, mate, and solve other diverse but similarly
specific problems (Ramachandran, 1985; Marcus, 2009). We also know that the specific details of
these tricks are similar in distantly related species (Nieuwenhuys and Puelles, 2016; Tosches, 2017,
Cisek, 2019). These similarities include homologies of specific circuits (Sanes and Zipursky, 2010;
Borst and Helmstaedter, 2015; Clark and Demb, 2016), systems (Strausfeld and Hirth, 2013, Fiore
et al., 2015; Riebli and Reichert, 2016) and developmental processes (Carroll, 1995; Arthur, 2010;
Held, 2017) in flies and mice, organisms that diverged about 600 million years ago (Figure 6). The
importance, specificity, and conservation of these features make them natural candidates for inclusion
in benchmark models (Appendix 5).

Defining models

Models of the phenomena. Benchmark models of relatively simple or circumscribed phenomena can
sometimes take the form of parametric equations. In neuroscience, perhaps the best-known example
of such a benchmark model is the Hodgkin-Huxley model of the action potential (Hodgkin and
Huxley, 1952). By contrast, benchmark models of complex or expansive phenomena, such as whole-
brain networks, are often hard to express in parametric form. These models can instead be defined
pragmatically on the basis of benchmark features in empirical data (Table 4). Such data-driven defini-
tions can resemble dimensionality reduction (Cunningham and Ghahramani, 2015) and force studies
to formalize the often-vague theoretical concepts as quantifiable model features.

Many applied or clinical fields seek to explain the nature of altered brain development, structure,
or function. Formulation of benchmark models is equally important in these fields. Benchmark models
of altered phenomena should correspondingly be defined in terms of altered, rather than absolute,
values of empirical features. For example, benchmark models of neuropsychiatric disorders could

Table 4. Example features and statistics.

Model feature Example statistic

Sensory-motor interactions Connectivity and activity statistics of functional circuits.
Excitation/inhibition balance 1/f power-spectral slopes (Gao et al., 2017).

Node connectivity Degree-distribution statistics (Clauset et al., 2009).
Network clusters Within-module densities (Fortunato, 2010).

Tuning representations Tuning-curve statistics (Kriegeskorte and Wei, 2021).
Manifold representations Persistent-homology barcodes (Ghrist, 2008).

Oscillations Frequency-specific amplitudes and phases (Donoghue et al., 2020).
Criticality Avalanche exponents (Sethna et al., 2001).

Small worlds Small-world statistics (Bassett and Bullmore, 2017).
Cores/clubs Within-core densities (Csermely et al., 2013).

Network controllability Network-controllability statistics (Pasqualetti et al., 2014).
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Figure 6. Similarities of development and structure in mice and flies. (a) Conserved rostrocaudal (nose-to-tail, left panels) and dorsoventral (back-to-
belly, right panels) patterns of neural gene expression in developing flies and mice. Matching colors denote homologous genes. Gene names not
shown. (b) Conserved gross organization of regional modules in adult flies and mice. Note that, relative to flies, the organization of (a) expressed neural
genes and (b) visual, auditory, and olfactory modules in mice is inverted dorsoventrally. This is a known developmental quirk (Held, 2017). (c) Similarities
in the motion-detection circuits of flies and mice. R1-Ré photoreceptors in flies, and cone photoreceptors in mice, convert light into neural activity.
Each photoreceptor has a distinct receptive field that responds to spatially distinct light stimuli. Parallel ON and OFF pathways in both animals extract
motion signals from this activity. These pathways start with L1/L2 lamina monopolar cells in flies, and directly with photoreceptors in mice. Cells in the
ON pathway depolarize, and cells in the OFF pathway repolarize, in response to increased visual input. Moreover, distinct cells within each pathway
may respond to input on fast or slow timescales. T4/T5 interneurons in flies, and starburst amacrine interneurons (SACs) in mice, detect motion in each
pathway by integrating fast and slow responses associated with specific receptive fields. Finally, lobular plate tangential cells (LPTCs) in flies, and ON-
OFF direction-selective ganglion cells (DSGCs) in mice, recombine motion signals from the ON and OFF pathways. +/— denote excitation/inhibition,
and yellow arrows denote four directions of motion. (d) Proposed homologies between the action-selection circuits of flies and mice. The alignment
emphasizes the shared function of individual areas and of excitatory or modulatory (blue), inhibitory (red), dopaminergic (black), and descending (green)
projections. In flies, action selection centers on the central complex. The central complex includes the protocerebral bridge (PB), the fan-shaped body
(FB), and the ellipsoid body (EB). In mice, action selection centers on the basal ganglia. The basal ganglia include the striatum (ST) and the external
and internal globus pallidi (GPe and GPi). The central complex receives direct projections from sensory areas, the intermediate and inferior lateral
protocerebra (IMP and ILP). It also receives direct projections from an association area, the superior medial protocerebrum (SMP). Finally, it receives
indirect projections, via the SMP, from a learning area, the mushroom body (MB). Correspondingly, the basal ganglia receive direct projections from
sensory and association areas in the cortex and indirect projections, via association cortex, from learning areas (the amygdala and hippocampus, Am
and Hp). The central complex projects to the ventral cord via the lateral accessory lobes (LAL) and the motor ventrolateral protocerebra (VLP). Similarly,
the basal ganglia project to the spinal cord via the thalamus and the motor cortex. Finally, in both cases, dopamine plays an important modulatory

Figure 6 continued on next page
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role. It acts via PPLT and PPM3 neurons in flies, and via the substantia nigra pars compacta (SNc) in mice. Note also that the gall (not shown) may be
a fly homolog of the mouse suprathalamic nucleus (STN, Fiore et al., 2015). Panel (a) is reproduced from Figure 1 of Bailly et al., 2013. Panel (b) is
adapted from Figure 1b of Rubinov, 2016. Panel (c) is reproduced from Figure 5 of Borst and Helmstaedter, 2015. Panel (d) is adapted from Figure 2

of Strausfeld and Hirth, 2013.

© 2015, Springer Nature. Panel (c) is reproduced from Figure 5 of Borst and Helmstaedter, 2015, with permission from Springer Nature. It is not
covered by the CC-BY 4.0 license and further reproduction of this panel would need permission from the copyright holder.

© 2013, Science. Panel (d) is reproduced from Figure 2 of Strausfeld and Hirth, 2013. It is not covered by the CC-BY 4.0 license and further
reproduction of this panel would need permission from the copyright holder.

be defined in terms of altered development and structure that coherently delineate specific patient
populations (Insel and Cuthbert, 2015; Hampel et al., 2023).

Models of the data. In practice, benchmark models should also include features that represent
data limitations or biases. For example, limitations of neural-activity data may include acquisition
artifacts, physiological confounders and indirectness of neural-activity markers (Hillman, 2014; Wei
et al., 2020). The inclusion of these data features in benchmark models can help to mitigate their
confounding effects. The interactions of these features with other aspects of the signal, however,
makes it ultimately impossible to fully eliminate these effects (Appendix 3).

Sampling data

Tests against benchmark models rest on the ability to sample data from benchmark-model distribu-
tions. This sampling should ideally be unbiased: the data samples should match the model statistics
but be maximally random otherwise. Unbiased sampling allows us to make valid statistical inferences.
For example, the opinions of an unbiased sample of people allow us to make valid statistical infer-
ences about the opinions of the whole population.

In practice, fully unbiased sampling is often intractable, but approximately unbiased sampling is
often possible for many interesting benchmark-model distributions. For clarity, this section distin-
guishes between specific and general methods for doing such sampling.

Specific sampling methods typically first express benchmark-model distributions as solution spaces
of data that satisfy benchmark statistics (Schellenberger and Palsson, 2009). They then randomly
draw data samples from these solution spaces. Important examples of these methods can sample
data with spatial and temporal correlations (Prichard and Theiler, 1994; Roberts et al., 2016; Nanda
et al., 2023). The main strength of these methods is in the ability to sample data in fast and unbiased
ways. Their main weakness is the inability to sample data with general or arbitrary features and their
consequent restriction to a relatively narrow set of benchmark models.

General sampling methods have a complementary set of strengths and weaknesses. The main
strength of these methods is the ability to sample data with general or arbitrary benchmark features.
Their main weakness is the slow or biased nature of the sampling.

General sampling methods comprise two broad types. The first type of general sampling typically
begins with an initial data sample that typically matches the dimensionality and other basic properties
of empirical data. It then iteratively randomizes this initial sample in a way that satisfies the bench-
mark statistics of empirical data, usually by minimizing an error function (Schreiber, 1998). Unbiased
sampling requires that this randomization could, in principle, reach all possible samples and that
randomization at each iteration could, in principle, be reversible (Newman and Barkema, 1999).

Table 5. Examples of impactful advances.

Advance Nature of impact

Discoveries Revisions of benchmark models (typically rare).

Null results Rejections of previously promising speculative models.

Exploratory advances Formulations of newly promising speculative models.

Conceptual advances Discoveries of explanatory gaps that enable exploratory advances.
Methodological advances Improvements in data or analysis that support all the other advances.
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These conditions imply that this randomization must be “non-greedy” or not necessarily lower the
error at each iteration.

The second type of general sampling typically uses statistical inference methods, such as the prin-
ciple of maximum entropy. It first defines and fits parametric data distributions and then randomly
draws data samples from these distributions (Squartini and Garlaschelli, 2011). In contrast to other
sampling methods, this approach preserves the benchmark statistics in the population average but
not necessarily in each individual data sample. Fully unbiased sampling with this approach is often
intractable for large datasets. Assumptions of independence can make this sampling tractable for
many benchmark models but likely at the expense of considerable bias (Cimini et al., 2019).

Making progress

The importance of tests against benchmark models reflects the broader importance of scientific prog-
ress. In modern science, the notion of progress is intertwined with the concept of impact. Formally,
impact often denotes the number of papers and citations. Implicitly, impact signals real progress.
Circular analyses of knowledge enable speculative and redundant results that can lead to many
intriguing, replicable, and highly cited papers. Such papers satisfy the formal meaning of impact even
as they fail to make real progress (Lawrence, 2007, Alberts, 2013).

Tests against benchmark models can help to align the formal and intuitive definitions of impact.
A narrow perspective on genuine impact could equate impact with direct revisions of benchmark
models. A broader and more realistic perspective can also emphasize advances that indirectly facili-
tate revisions of benchmark models (Table 5).

Separately, the adoption of benchmarking best practices from predictive modeling fields, including
machine learning (Weber et al., 2019; Mangul et al., 2019, Mitchell et al., 2019; Kapoor and
Narayanan, 2023), can help facilitate progress in explanatory modeling. The following list describes
three important examples of these practices:

1. High-quality and publicly accessible data can advance discovery in several ways. First, such data
can serve as a reference for formulating consensus benchmark models. Second, such data can
help reveal explanatory gaps in existing benchmark models. Third, such data can help formulate
new and promising speculative models.

2. Standardized summaries of models and tests can help replace imprecise narratives with quanti-
tative summaries of individual results. Machine-readable versions of these summaries can help
facilitate automated integration of such results across studies.

3. A centralized integration of results can help to formalize discovery through continuous revisions
of benchmark models. It can also help to collate and standardize null results and, in this way,
eliminate rejected speculative models from future tests.

Together, this change in focus can help motivate systems neuroscientists to carefully formulate new
models and to rigorously test these models against benchmark models. Such testing can lead to a
welcome decrease in publications of speculative and redundant results. And collectively, the resulting
alignment of formal and intuitive definitions of impact can give the field a better chance to make real
progress.

Concluding recommendations

Circular analyses of noise, and the resulting problem of irreplicable results, form a known impediment
to progress in systems neuroscience. This work described that circular analyses of knowledge, and
the resulting problem of redundant results, form a less-well known but similarly serious impediment.
This concluding section summarizes my overall suggestions for resolving this problem. Appendix 6
discusses objections to some of these suggestions.

Raise awareness. Few scientists and funding bodies formally discuss the problem of redundant
results. The lack of this discussion contrasts with extensive parallel discussions of the problem of irrep-
licable results. The start of this discussion, including in research and policy papers, will be an important
first step towards the development of principled solutions.

Reevaluate discoveries. Systematic community efforts should establish the genuine novelty of
discoveries in systems and network neuroscience. These efforts may benefit from the experience of
similar efforts to establish the replicability of discoveries in psychological and social science (Open
Science Collaboration, 2015; Camerer et al., 2018). These efforts face specific challenges, however,
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including establishing consensus on definitions of reference datasets, benchmark models, and test
statistics.

Delimit speculation. Speculation often helps to formulate promising new models. At the same time,
misuse of speculation can lead to the neglect of rigorous tests and to the inappropriate acceptance
of speculative models. Studies should minimize this misuse by delimiting all suggestively specula-
tive terms (deepities), structure (spandrels), and narratives (just-so stories). Ideally, these delimitations
should be prominently made in Introduction sections.

Define benchmarks. Many parts of systems and network neuroscience lack benchmark models.
The field should formulate such models to integrate all important existing knowledge and rigorously
test proposed discovery. Challenges in the formulation of benchmark models include collation and
curation of existing knowledge, consensus definition of model features and test statistics, and devel-
opment of distinct models for individual phenomena.

Advance sampling. A dearth of powerful sampling methods limits the adoption of rigorous model
tests. The field should develop unbiased and scalable methods for sampling data from diverse
benchmark-model distributions. Challenges in the development of these methods include competing
demands of unbiased sampling and scalability (for general methods) and extensions to diverse
benchmark-model distributions (for specific methods).

Reclaim impact. The divergence of formal and intuitive meanings of impact can hinder scientific
progress. A multifaceted assessment of direct or indirect impact that centers on revisions of bench-
mark models, and that discourages redundant explanations, can help to reduce this divergence.
Research and funding bodies can emphasize this multifaceted assessment and downplay the use of
publication metrics as indicators of progress.
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Appendix 1: Relative trueness

This section provides two complementary perspectives on the concept of relative trueness.

Philosophical perspective
This work posits that all else being equal, models that are more explanatorily successful — that
explain the data more accurately or with fewer assumptions — are likely to be truer than rival
models. This position is largely compatible with the two main philosophical perspectives on model
trueness (known in philosophy as truthlikeness [Oddie and Cevolani, 2022]). The most popular
perspective, scientific realism, broadly posits that the most successful scientific models are likely to
be approximately true (Bourget and Chalmers, 2014, Chakravartty, 2017). The main alternative
perspective, scientific antirealism, broadly disagrees with this position. This disagreement forms the
basis of a longstanding and possibly irreconcilable debate. Despite this disagreement, however,
both perspectives broadly agree that all else being equal, more successful models are likely to be
truer than rival models (Wray, 2010).

The position in this work is largely compatible with both perspectives because it narrowly centers
on this point of agreement and because it avoids taking sides in the disagreement. Mizrahi, 2020
described a very similar middle-ground position of relative realism:

“[W]e have adequate grounds for believing that, from a set of competing scientific theories, the
more empirically successful theory is comparatively true, that is, closer to the truth relative to
its competitors in the set, rather than approximately true.” and “[A] scientific theory can be[...]
comparatively true, but still be quite far off from the truth.”

Relative trueness resembles the biological concept of relative fitness or reproductive success. Much
as it is more meaningful to study the relative, rather than absolute, fitness of individual organisms
(Orr, 2009), so it is often more meaningful to study the relative, rather than absolute, trueness of
scientific models.

Note also that model trueness differs from model utility. For example, many models in neuroscience
can make accurate predictions but be biologically unconstrained, artificially structured, or altogether
uninterpretable. Such models are useful predictive tools (have high utility) but do not accurately
explain biological reality (have relatively low trueness).

Statistical perspective

This work focuses on scientific analyses that estimate parameters of explanatory models (Appendix 1—
figure 1, top). Many such analyses cannot express explanatory models as parametric equations and
cannot perform formal parameter estimation. Instead, these analyses often use significance tests to
informally estimate parameters of underlying explanatory models.

This work assumes that all parameter estimates are directly comparable across all models. It
makes this assumption without loss of generality because any two models can be nested within a
more general model. It adopts the terminology of the International Organization for Standardization
(ISO, 1994; Menditto et al., 2007) to quantify the accuracy of these parameter estimates. It defines
trueness as the inverse of the estimation bias and precision as the inverse of the estimation variance
(Appendix 1—figure 1, bottom). Note that trueness has a single and clear meaning, whereas bias is
often a catch-all term, especially outside statistics (Danks and London, 2017, Fanelli et al., 2017).

This work focuses on the problem of redundant features in explanatory models. Successful
explanatory models tend to have relatively low estimation bias. The inclusion of redundant features
tends to increase this bias and thereby reduce explanatory success. By contrast, the work does not
consider the problem of redundant features in predictive models. Successful predictive models have
relatively low prediction bias but may not necessarily have low estimation bias, as we saw in the
above distinction between trueness and utility. The inclusion of redundant features in these models
does not necessarily increase their prediction bias (Guyon and Elisseeff, 2003) and, in this way, does
not necessarily reduce their predictive success. (Note that this distinction between explanatory and
predictive modeling differs from the treatment of Shmueli, 2010).
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Appendix 1—figure 1. Statistical perspective on trueness and precision. Top (flowchart): Analyses as parameter
estimates of explanatory models. Bottom (target): Four example parameter estimates with distinct precision and
trueness profiles (colored dots). True parameter values denote true explanations and not true predictions. High-
bias estimates denote explanations that have low relative trueness. By contrast, high-variance estimates denote

explanations that have low precision.
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Appendix 2: Severe testing and severe selection

This section relates circular and unified analyses to Mayo's framework of severe testing (Mayo and
Spanos, 2011; Mayo, 2018). First, it shows that circular analyses of knowledge form a specific
violation of Mayo's weak-severity requirement. Second, it shows that unified analyses form a specific
adherence to Mayo's strong-severity requirement. Third, it describes unified analyses as a type of
severe selection: a hybrid approach that combines severe testing with model selection.

Weak-severity requirement and circular analysis
Mayo, 2018 defines her weak-severity requirement as follows:

“One does not have evidence for a claim if nothing has been done to rule out ways the claim
may be false. If data [...] agree with a claim C but the method used is practically guaranteed to
find such agreement, and had little or no capability of finding flaws with C even if they exist,
then we have bad evidence, no test (BENT).”

Appendix 2—table 1 contrasts this definition with our definitions of circular analysis.

Appendix 2—table 1. Weak-severity requirement and circular analysis.

Weak-severity requirement (Mayo) Circular analysis (this work)

Bad evidence, no test. General definition (weak evidence of progress).
1. Use a test that practically guarantees to find 1. Test a model in a way that almost invariably
agreement between data and claim and has little accepts the model.
or no capability of finding flaws with the claim 2. Accept the model on the basis of this test.
even if they exist.
2. Show that data agree with the claim on the basis

of this test.
N/A. Specific definition (strong evidence of stagnation).
The framework of severe testing, and the weak-severity 1. Test the statistical significance of redundant
requirement, do not specifically consider the problem of features in a way that almost invariably shows this
redundant explanations. significance against a strawman model.
2. Accept the corresponding model on the basis of
this test.

Strong-severity requirement and unified analysis
Mayo, 2018 defines her strong-severity requirement as follows:

“We have evidence for a claim C just to the extent it survives a stringent scrutiny. If C passes a
test that was highly capable of finding flaws or discrepancies from C, and yet none or few are
found, then the passing result[...] is evidence for C.”

Appendix 2—table 2 contrasts this definition with our discussion of unified analysis.

Appendix 2—table 2. Strong severity and unified analysis.

Strong-severity requirement (Mayo) Unified analysis (this work)
Evidence from survival of stringent scrutiny. Evidence of genuinely new discovery.
1. Use a test that is highly capable of finding flaws or 1. Define a benchmark model that includes all impor-
discrepancies with a claim if they exist. tant existing knowledge about some phenom-
2. Show that this test does not find flaws or discrep- enon of interest.
ancies with the claim. 2. Show the statistical significance of a speculative

feature against this model.

Severe selection
Severe testing largely builds on Popper’s ideas and terminology. Popper, 1963 considered that
falsification centers on genuine or severe tests:

“A theory which is not refutable by any conceivable event is nonscientific. Irrefutability is not a
virtue of a theory (as people often think) but a vice. Every genuine [or severe] test of a theory is
an attempt to falsify it, or to refute it. Testability is falsifiability.”
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At the same time, Popper did not consider that severe tests need to involve testable, or viable,
rival models, “the negation of a testable (or falsifiable) statement need not be testable” (Popper,
1963). For example, a wrong prediction can falsify a speculative model but need not accept a
testable or viable rival model.

This lack of viable rival models can make it hard to eliminate falsified explanations (Table 3).
Lakatos, 1976, among others (Musgrave, 1973), has made this point:

“'Falsification’[...] (corroborated counterevidence) is not a sufficient condition for eliminating a
specific theory: in spite of hundreds of known anomalies we do not regard [a theory] as falsified
(that is, eliminated) until we have a better one.”

By contrast, tests against benchmark models always lead to the acceptance of viable rival models.
In this sense, these tests form a type of severe selection: they combine aspects of severe testing
(stringent scrutiny) with aspects of model selection (viable rival models). This severe selection
between strong rival models may also resemble, more closely than severe testing, the natural
selection of strong rival organisms (Appendix 1).
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Appendix 3: Analyses of noise and analyses of knowledge

This section provides a unified perspective on the circular analyses of noise in Kriegeskorte et al.,
2009 and the circular analyses of knowledge in this work. It shows that these two problems, and
their corresponding solutions, share deep similarities but also have basic differences. The differences
reflect the basic distinctions between overfitting and overspecification.

Similarities of circular analyses
Kriegeskorte et al. described circular analyses that lead to overfitting — the corruption of results
by noise. This work describes circular analyses that lead to overspecification — the confounding of
results by existing knowledge. We can show that these two problems are equivalent in important
respects, by translating parts of Kriegeskorte et al. (slightly edited for clarity) into the language
of this work. For simplicity, this translation focuses on an extreme version of overfitting, the full
redundancy (rather than the mere non-independence) of model features with noise. Underlined text
in this translation highlights the differences with the main text.

As in the main text, we can formally define this problem with three types of models.

Benchmark models. These models represent all important assumptions about noise in the data.
In most cases, we may simply assume that the data have noise. In some other cases, we may also
assume that noise in the data follows a specific distribution.

Kriegeskorte et al.: “Data are always a composite of true effects and noise.”
Translation: The benchmark model assumes that the data have noise.

Speculative models. These models include one or more speculative features of possible but uncertain
importance. Some of these speculative features may be redundant with benchmark (noise) features.
In practice, these redundant features will strongly correlate with noise in the data.

Kriegeskorte et al.: "A model may capture the noise to some extent as its parameters are fitted
to the data.”

Translation: A model may include speculative features that are redundant with benchmark
(noise) features.

Strawman models. These models represent weak null hypotheses. Kriegeskorte et al. do not consider
strawman models in their discussion. Here, we can equate the absence of strawman models with the
presence of maximally weak strawman models.

These definitions allow us to express the problem in Kriegeskorte et al. in our language.
Circular analyses and irreplicable explanations (overfitted models). Circular analyses almost
invariably show the significance of speculative features against a strawman model because:

The speculative feature is redundant with one or more benchmark (noise) features.
The maximally weak (absent) strawman model excludes the benchmark (noise) features with
which the speculative features are redundant.

These analyses implicitly accept a new benchmark model that includes all existing benchmark (noise)
features as well as the new redundant speculative features. In this way, these analyses explain the
same aspect of the data twice: first as assumptions about noise and second as a new discovery
redundant with these assumptions.

Kriegeskorte et al. (Supplementary Discussion): “Using the same data set to generate and test a
hypothesis is circular unless [we] address the question: If the data contained only noise and we
searched for an effect the way we did, with what probability would we find an effect as strong
as (or stronger than) the one we observed?”

Translation: Accepting a feature known to be redundant with noise is circular unless we test the
significance of the feature against a benchmark (noise) model.

Similarities of unified analyses
Kriegeskorte et al. described two tests to counter circular analyses of noise. Both tests center on
the sampling of data and on testing the significance of speculative features against these sampled
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data. We can likewise translate these descriptions (slightly edited for clarity) into the language of
this work.

Tests of non-redundancy. These tests are equivalent to our tests against benchmark models.
First, they sample data from benchmark-model distributions: data in which all benchmark (noise)
features are preserved, and all other aspects of the data are maximally random. Second, they test
the statistical significance of speculative features against these data. Third, the finding of statistical
significance implies that the tested speculative features are not redundant with benchmark (noise)
features.

Kriegeskorte et al. (Supplementary Discussion): “Modeling the effect of assumptions may not
be tractable analytically, but could be achieved by simulation of null data.”

Translation: Testing the non-redundancy of speculative features against benchmark (noise)
features may not be tractable analytically, but could be achieved by sampling data from bench-
mark (noise) model distributions.

Tests of independence. These tests are not discussed in the main text. First, they sample data in which
all benchmark (noise) features are maximally random, and all other aspects of the data are preserved.
Second, they test the statistical significance of speculative features against these data. Third, the
finding of statistical significance implies that the tested speculative features are independent of
benchmark (noise) features.

Kriegeskorte et al. (Supplementary Discussion): “Independent data can ensure independence
of the results under the null hypothesis.”

Translation: Data in which all benchmark (noise) features are maximally random (independent),
and all other aspects of the data are preserved can ensure the independence of speculative
features from benchmark (noise) features.

Conceptual considerations. Kriegeskorte et al. primarily advocate tests of independence to prevent
circular analyses of noise. Our discussion helps us to appreciate the reason for this advocacy. Noise
is, by definition, an unwanted feature of the data. Therefore, it is important to show that a speculative
feature is independent of noise rather than merely not redundant with it. Tests of independence, but
not tests of non-redundancy, can allow us to achieve this goal.

Kriegeskorte et al. (Supplementary Discussion): “Tests on null data from a random generator [of
noise] can help catch statistical circularities. Unfortunately, the absence of a bias in such tests
does not indicate that analyses are noncircular.”

Translation: Tests of non-redundancy can help catch statistical circularities by showing that
the speculative features are redundant with the noise features. Unfortunately, the absence of
redundancy in such tests does not indicate that the speculative features are independent of the
noise features.

Practical considerations. The irreplicable nature of noise and the replicable nature of existing
knowledge have practical implications for tests of independence. Specifically, the acquisition of new
data under the same experimental conditions simulates the sampling of data in which all benchmark
(noise) features are maximally random (independent), and all other aspects of the data are preserved.
It follows that such data can be used to test the independence of speculative features from noise but
not the independence of these features from existing knowledge.

Kriegeskorte et al. (Supplementary Discussion): “Independence in this context means the noise
is statistically independent between the two data sets but real effects in the data will replicate.”
Translation: Independent data amounts to the sampling of data in which all benchmark (noise)
features are maximally random, and all other aspects of the data are preserved.

Summary of similarities
Circular analyses of noise and circular analyses of knowledge have the same basic structure. First,
these analyses are vulnerable to distortions by extraneous features. Second, these analyses neglect
to test for these distortions. Third, and due to this neglect, both analyses almost invariably explain
the same aspect of the data twice.

Appendix 3—table 1 summarizes these basic similarities (underlined text highlights the main
differences).
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Appendix 3—table 1. Two types of circular analysis.

Circular analysis of noise Circular analysis of knowledge

Conceptual problem Explanation of the same aspect of the Explanation of the same aspect of the
data twice: first as noise, and second  data twice: first as existing knowledge,
as a new discovery non-independent  and second as new discovery

of this noise. redundant with this knowledge.
Statistical problem Model overfitting that results in high  Model overspecification that results in
variance (low precision) of estimated  high bias (low trueness) of estimated
model parameters. model parameters.
Statistical solution Tests of independence against Tests of non-redundancy against

sampled data in which all benchmark  sampled data in which all benchmark
(noise) features are maximally random (existing knowledge) features are
and all other aspects of the data are  preserved and all other aspects of the

preserved. data are maximally random.

Use novelty, theoretical novelty, and double dipping. Kriegeskorte et al. described circular
analyses as a form of double dipping — the use of the same aspect of the data to formulate and
test new models. This process violates the requirement for (data) use novelty (Worrall, 1978). Our
discussion described a more general problem of double dipping: the explanation of the same aspect
of the data twice — as a benchmark feature and as a redundant feature. This more general problem
violates the requirement for theoretical novelty — the need to transcend existing explanations of
the data (Mayo, 2018).

Analyses of artifact

We can consider data artifact as another extraneous feature. Artifact has distinct properties to noise
and to existing knowledge. On the one hand, artifact is like noise because it is an unwanted feature
of the data. On the other hand, artifact is like existing knowledge because it can replicate under the
same experimental conditions. Together, these properties suggest that neither of the above tests
can fully show the independence of results from artifact. In practice, and to mitigate this problem,
we can try to remove artifact from data or test results on data recorded under different experimental
conditions (Geirhos et al., 2020).

Terminology
Finally, note that assumptions about artifact or noise also form a type of existing knowledge. In this
sense, a more accurate, but somewhat more cumbersome, terminology of circular analyses could
distinguish between:

e Circular analyses of [existing knowledge of] artifact.

e Circular analyses of [existing knowledge of] noise (the focus of Kriegeskorte et al.).

e Circular analyses of [existing knowledge of] signal (the focus of this work).
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Appendix 4: Literature review

Literature selection
| first searched the Web of Science database in January 2019 for all original articles that contained
the following topic terms (TS):

(TS=("network neuroscience"))

OR

((TS=("connectom*"))

AND

(TS=("analy*") OR TS=("model*")))
OR

((TS=("*brain*") OR TS=("*cort*"))
AND

(TS=("network theor*") OR TS=("network analy*") OR TS=("network topolog*")
OR TS=("network control*") OR TS=("graph theor*") OR TS=("complex
network*")))

The initial search produced thousands of articles. | restricted this search to all articles that were
published between 2014 and 2018 in neuroscience (Nature Neuroscience, Neuron), life science
(eLife, PLOS Biology), clinical (Brain, Biological Psychiatry), or multidisciplinary (Nature, Science,
Nature Communications, PNAS) journals. This restricted search produced 235 articles.

Literature evaluation

I manually evaluated the Methods and Results sections of all structured articles, or the full text of all
unstructured articles, for the presence of circular analyses of knowledge. This evaluation centered
on the following three conditions.

e Condition 1: Presence of at least one network-neuroscience model. Network neuroscience
models are network-science models of brain networks. By convention, | excluded standard
dimension-reduction models of networks, such as principal component analysis, and standard
network-inference models, such as dynamic causal models.

o Condition 2: Acceptance of at least one M;, where:

o M, is a network-neuroscience model of the studied data.
o M includes a feature X; that represents some function F;.
o There is no strong known mechanistic link between X; and F;.

e Condition 3: No test of M, against at least one M,, where such a test is possible, and where:
o M, is a model of the same studied data.
o My includes only features with known mechanistic links to function.
o M, is known or likely to explain X; as a redundant feature.

Results
This analysis found that 61% of all evaluated studies had at least one network-neuroscience model
(satisfied Condition 1). These studies were suitable for further evaluation. Of these studies, 56%
had at least one circular analysis of knowledge (satisfied Conditions 2-3). This estimate has a 95%
bootstrap uncertainty interval of [48%, 64%). Another 10% of studies may or may not have had such
analyses. | could not say with certainty if these additional studies accepted an M; or tested it against
a possible M.

| revisited this search in January 2023 to include all journal articles that contained the same topic
terms and that were published between 2013 and 2022. This additional search yielded 11,395 articles.
| extrapolated the above percentages to estimate that more than three thousand (11 thousand x
0.61 x 0.56) studies in this larger set had at least one circular analysis of knowledge.

Auxiliary pipeline

To facilitate future systematic assessment of circular analyses of knowledge, | created an extensible
semi-automated analysis pipeline in Python, a popular programming language. The following text
summarizes the individual steps in this pipeline:
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e Step 1: Environment set-up and loading of previously analyzed data.

e Step 2: Specification of the full literature-search query and instructions for manually down-
loading all reference records that match this query from the Web of Science.

e Step 3: Automated download of all full-text articles that match the specified search query.

e Step 4: Automated curation and cleaning of study text for all downloaded articles.

e Step 5: Automated extraction of relevant text segments and emphasis of potential keywords.

e Step 6: Automated scoring of the presence or absence of circular analyses based on manual
evaluation of specified criteria.

e Step 7: Automated storage of collated evaluations and scores in a simple database and a
summary table.

Resource availability
Data and code are available at https://github.com/mikarubi/litrev (copy archived at Rubinov, 2023).
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Appendix 5: A framework for integrating existing knowledge

This section describes a framework for integrating existing knowledge about the function, structure,
development, and evolution of individual biological features or traits (Appendix 5—figure 1). A
benchmark model of a specific phenomenon should include, where possible, important existing
knowledge from all aspects of this framework.

This framework is based on classifications of Mayr and Tinbergen (Mayr, 1961, Tinbergen,
1963, Laland et al., 2011; Bateson and Laland, 2013; Nesse, 2013) and is organized along two
dimensions. The first dimension reflects the nature and origin of a trait. It distinguishes what the
trait is (structure and function) from how it came to be (development and evolution). The second
dimension reflects the mechanistic timescales of this nature and origin. It distinguishes the proximate
mechanisms of a single lifetime (structure and development) from the distal mechanisms of many
generations (function and evolution).

This framework is widely accepted in biology but less well-known in neuroscience. Instead, more
neuroscientists seem to know about Marr's (and Poggio’s) three-level framework for studying the
brain as a computer (Marr, 1982). The first level of this framework (Marr 1) denotes the aim of brain
“computation”. The second level (Marr 2) denotes the “algorithms” that achieve this aim. The third
level (Marr 3) denotes the “hardware” that implements the algorithms.

The focus on computation alone is somewhat restrictive because it separates the brain from the
rest of the body. We have no rigorous evidence to support this separation (see the main text for
more discussion). Interestingly, and in line with this observation, Poggio recently updated Marr’s
framework to include development and evolution (Poggio, 2012). In this way, he seems to have
independently converged on Tinbergen’s more general biological classification.

[ Nature of traits ]
Structure (Marr 3 and 2) structural Function (Marr 1)
" Anatomical or physiological traits. constraints Functional value of structure.
8 S
S 2}
& )
g devel tal functional 3
g evelopmenta unctiona 2
Q constraints pressures 3
@ 3
: /
< 3
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Q
Development (Marr—) genetic Evolution (Marr—)
Formation and plasticity of structure. constraints Genetic selection for structure.
[ Origin of traits j

Appendix 5—figure 1. A framework for integrating existing knowledge. Tinbergen’s four levels of analysis (blue
boxes) organized along dimensions that reflect Mayr's distinction between proximal and distal mechanisms. Arrows
denote interactions (pressures or constraints) between individual levels. Laland et al., 2011, Bateson and Laland,
2013, Krakauer et al., 2017, and Mobbs et al., 2018 provide additional discussions of this framework.
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Appendix 6: Objections and clarifications

This section discusses possible objections to the main recommendations in this work.

Benchmark models are complicated
Objection. Benchmark models that include all important existing knowledge will often be
complicated. The acceptance of such models violates the scientific preference for simplicity.
Clarification. There is an important difference between the preference for simplicity and the
preference for parsimony. The preference for simplicity asserts that successful scientific models
should be simple or elegant. This preference can be appealing but is not objectively defensible.
Simple or elegant models can be aesthetically pleasing and can help formulate speculative models,
but we have no objective evidence that they provide the most successful explanations of reality. van
Fraassen, 1980 made this point more forcefully:

“[Slome writings [...] suggest that simple theories are more likely to be true. But it is surely
absurd to think that the world is more likely to be simple than complicated (unless one has
certain metaphysical or theological views not usually accepted as legitimate factors in scientific
inference).”

By contrast, the preference for parsimony asserts that all else being equal, models with fewer
redundant features are likely to be more explanatory successful (or truer) than rival models. This
principle makes no assumptions about simplicity or elegance and, in this way, merely embodies
aspects of rational thinking.

The distinction between simplicity and parsimony has real implications for scientific practice.
For example, the Standard Model of particle physics is parsimonious insofar as it lacks redundant
features. Despite this, this model is neither simple nor elegant — instead, particle physicists have
called it "ugly”, “repulsive”, and “awkward” (Oerter, 2006). On this basis, proponents of simplicity
should eliminate the Standard Model from scientific practice. By contrast, proponents of parsimony
can accept this model as a successful benchmark.

Simplicity and parsimony may coexist in benchmark models of simple or circumscribed
phenomena. The Hodgkin-Huxley model is both relatively simple and parsimonious. By contrast,
simplicity and parsimony are less likely to coexist in benchmark models of complex or expansive
phenomena, including in models of whole-brain networks.

Benchmark models favor reductionist explanations

Objection. Benchmark models ignore that the same biological structure can have many functions.
Specifically, these models tend to favor reductionist features and prevent the acceptance of
emergent features. In practice, however, reductionist features can coexist with or give rise to
important emergent features. For example, sensory-motor circuits can coexist with or give rise to
important internal representations.

Clarification. Benchmark models can attribute multiple functions to the same biological structure
as long as these attributions produce non-redundant explanations of the data. The showing of such
non-redundancy, in turn, requires rigorous evidence. We often have such evidence for reductionist
features. By contrast, we often lack such evidence for emergent features, because emergent features
are often hard to test in controlled ways.

A more general objection of this sort may appeal to intuitions. It may assert, for example, that
emergent brain function is intuitively distinct from reductionist body function or that emergent
human cognition is intuitively distinct from reductionist insect cognition. All such intuitions likewise
require rigorous evidence. This evidence can be experimental or computational. It cannot, however,
be solely speculative.

Benchmark models are ill-defined

Objection. Benchmark models are ill-defined for many expansive phenomena. In basic neuroscience,
for example, a benchmark model of cognition is ill-defined because cognition has a wealth of distinct
meanings. Similarly, in clinical neuroscience, a benchmark model of schizophrenia is ill-defined
because this disorder has a wealth of heterogeneous pathology.
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Clarification. The ill-defined nature of benchmark models reflects the ill-defined nature of many
expansive phenomena. Improved definitions of these phenomena can naturally lead to improved
definitions of the corresponding benchmark models. One approach to improve these definitions
could focus on narrower and better-delineated portions of individual expansive phenomena. This
approach could, for example, focus on well-delineated cognition linked to specific sensory-motor
function or on well-delineated developmental changes linked to symptoms of schizophrenia.
Iterative revisions of these narrower definitions can ultimately converge on well-defined phenomena
and well-defined benchmark models.

Descriptive, explanatory, generative and null models are distinct
Objection. On the one hand, many speculative models are descriptive and not explanatory models
and therefore need not be rigorously tested. On the other hand, benchmark models are generative
and not null models and therefore should not be used to test other models.

Clarification. The nature of outwardly different model types is often similar or equivalent. The
assignment of distinct roles to these equivalent models is redundant in much the same way as the
assignment of distinct function to equivalent features.

First, descriptive models in neuroscience should, in many cases, be more properly termed
explanatory models. Strictly speaking, descriptive models should provide neutral summaries of data.
In neuroscience, however, “descriptive” summaries often represent hypotheses about important
aspects of brain structure or function. In these cases, descriptive models essentially do the work of
explanatory models.

Second, explanatory models can typically generate data with few or no additional assumptions.
For example, an explanatory benchmark model specifies a distribution of data samples that match
the empirical benchmark statistics. The sampling of data from these distributions generates data.

Third, generated data of explanatory benchmark models can be used to test null hypotheses. This
finally underscores the equivalence of explanatory, generative, and null models.

In practice, “generative models” in the literature often have features that allow the sampling of
data relatively easily (without need for computationally intensive methods). In some cases, these
features may reflect existing knowledge. In other cases, they do not reflect existing knowledge
and therefore reflect sampling bias. Separately, “null models” in the literature often lack existing
knowledge and, as a consequence, are easy to reject. The exclusion of existing knowledge from
these models underpins the problem of circular analyses of knowledge.

Tests against benchmark models favor old knowledge
Objection. Tests against benchmark models prevent interesting new discoveries. In an extreme case,
a parsimonious benchmark model that perfectly explains some phenomenon of interest will be very
hard to reject. The inability to reject this model will stifle progress.

Clarification. Tests against benchmark models help to prevent false new discoveries. This is not
a weakness but a strength of these tests. Greater and greater knowledge can make it harder and
harder to make new discoveries (because a previously made discovery cannot be new again). The
difficulty of rejecting stronger and stronger benchmark models merely formalizes this process. The
inability to reject benchmark models can still be impactful, however, as null results that may facilitate
future discoveries (see the main text for additional discussion).

Tests against benchmark models are hard
Objection. Tests against benchmark models require the sampling of data from complex benchmark-
model distributions. Such sampling is often slow and sometimes intractable.

Clarification. The slowness of data sampling needs to be placed in context. Many current tests
against strawman models take negligible time, especially relative to data acquisition or analysis.
The commonness of speculative and redundant explanations suggests that this negligible allocation
of time is unjustified. Tests against benchmark models, like other controlled experiments (Box 2),
provide rigorous evidence of new discovery. The slowness of such tests is generally compensated by
the strength of this evidence.

In some cases, sampling from benchmark-model distributions may be simply intractable.
In such cases, it may still be possible to rigorously test speculative models in other ways. For
example:
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. We could test if speculative models can make specific and surprising predictions. This approach

may allow us to severely test individual models but does not necessarily offer viable alterna-
tive models or test explanatory model success (Table 3, Appendix 1-2). In addition, the ability
to devise surprising and testable predictions may be nontrivial for complex neuroscience
phenomena.

. We could estimate maximum likelihoods and quantify the trade-offs between complexity

(number of parameters) and agreement with data (likelihood) of competing models (Aho et al.,
2014). This approach may allow us to select between models but does not necessarily offer
severe tests if all the competing models are strawmen (Appendix 2). In addition, the estimation
of maximum likelihoods may often be nontrivial, especially for models of large datasets.

. We could bypass numerical tests by showing analytical equivalences of outwardly distinct model

features. The approximate equivalence between node connectivity and average controllability
is one example of such an analytical equivalence. Analytical equivalences can be elegant and
instructive, but their discovery is generally idiosyncratic and is often intractable, especially for
complex or highly nonlinear models.

In many cases, we lack the ability to rigorously test interesting models. In these cases, we need
to acknowledge that such untestable models — no matter how elegant, intuitive, or appealing —
ultimately remain speculative.
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