

SOLSA: Neuromorphic Spatiotemporal Online

Learning for Synaptic Adaptation

Zhenhang Zhang, Jingang Jin, Haowen Fang, Qinru Qiu

Department of Electrical Engineering and Computer Science, Syracuse University

{zzhan281, jjin24, hfang02}@syr.edu, qinru.qiu@gmail.com

Abstract—Spiking neural networks (SNNs) are bio-plausible

computing models with high energy efficiency. The temporal

dynamics of neurons and synapses enable them to detect

temporal patterns and generate sequences. While

Backpropagation Through Time (BPTT) is traditionally used to

train SNNs, it is not suitable for online learning of embedded

applications due to its high computation and memory cost as

well as extended latency. In this work, we present

Spatiotemporal Online Learning for Synaptic Adaptation

(SOLSA), which is specifically designed for online learning of

SNNs composed of Leaky Integrate and Fire (LIF) neurons with

exponentially decayed synapses and soft reset. The algorithm

not only learns the synaptic weight but also adapts the temporal

filters associated to the synapses. Compared to the BPTT

algorithm, SOLSA has much lower memory requirement and

achieves a more balanced temporal workload distribution.

Moreover, SOLSA incorporates enhancement techniques such

as scheduled weight update, early stop training and adaptive

synapse filter, which speed up the convergence and enhance the

learning performance. When compared to other non-BPTT

based SNN learning, SOLSA demonstrates an average learning

accuracy improvement of 14.2%. Furthermore, compared to

BPTT, SOLSA achieves a 5% higher average learning accuracy

with a 72% reduction in memory cost.

Keywords—Spiking Neural Network, Spatiotemporal pattern

learning, online learning.

I. INTRODUCTION

Unlike conventional artificial neural networks (ANNs),

Spiking Neural Network (SNNs) [1][2] have the unique

ability to retain past information within the membrane

potential. The membrane potential is considered as the state

of neurons and synapses. The changes of the membrane

potential over time, which are influenced by both current and

historical inputs, are referred to as temporal dynamics. Many

SNN models, such as the widely used Leaky Integrate and

Fire (LIF) model [3], calculate membrane potential as a leaky

integration of the input with exponential decay. Once the

membrane potential reaches a certain threshold, the neuron

fires a spike and resets its membrane potential. In a more

advanced model proposed by [4], called spatial temporal (ST)

SNN, the temporal dynamics of synapses are also considered.

It has been demonstrated both biologically [5] and

computationally [6] that the temporal dynamics in neurons

and synapses play a crucial role in enabling the network to

perform spatiotemporal operations.

A basic method of SNN training is to update the weights

based on the timing of pre- and post-synaptic neuron spiking

events [7]. When a pre-synaptic spiking event happens before

post-synaptic spiking event within a time window, this leads

to a potentiation of the synaptic weight. A contrast condition

leads to a depression of weight. This weight update rule is

also called Hebbian Learning Rule [8]. Vanilla Hebbian Rule

is usually slow and less effective compared to the

backpropagation algorithm used in ANN training [1].

By modeling the temporal dynamics of neurons and

synapses as filters with feedback connections [4], an SNN is

seen as a recurrent neural network (RNN) and can be trained

using Backpropagation Through Time (BPTT) [9][14]. This

algorithm unrolls the network along the temporal axis and

applies conventional backpropagation to the unrolled

network. The gradients need to propagate from the output

layer all the way back to the input layer and from present time

back to the time when the input sequence begins. Therefore,

BPTT requires a significant amount of memory to store the

historical activities of neurons. Additionally, the learning

process cannot start until the entire input sequence has been

received. This either leads to an extended processing time or

a high workload surge at the end of each input sequence.

These limitations make BPTT unsuitable to be applied for

online learning on edge devices with limited hardware

resources.

The limitations discussed above regarding BPTT have

spurred a set of online training algorithms for SNN, including

eligibility trace propagation (i.e., E-prop) [10], Online

Training Through Time (OTTT) [11] and Deep Continuous

Local Learning (DECOLLE) [12]. However, these

algorithms ignore the temporal dynamics of the synapses

[10][11] and some of them even overlook the reset process of

the membrane potential [11]. Consequently, their

performance is compromised, particularly for longer input

sequences.

In this work we present SOLSA (Spatiotemporal Online

Learning for Synaptic Adaptation), a learning algorithm to

train SNNs with temporal filters on both synapses and neuron

membrane potentials. SOLSA goes beyond learning synaptic

weights. It can also update synapse filter kernels

automatically. Our unique techniques such as scheduled

weight update and early stop, allow SOLSA to converge

faster and learn with better accuracy.

The uniqueness and benefit of the SOLSA learning is

summarized as the following:

1. It does not record historical neuron activities for

backpropagation over time, hence the memory complexity

is much lower than that of BPTT.

2. It is capable of learning not only the synapse weights but

also the synaptic filter kernels. Compared to the existing

non-BPTT based learning algorithms, which only update
This project was partially funded under AFRL’s FA8750-21-C-1511

contract and NSF I/UCRC ASIC Center (CNS-1822165).

the synapse weights, model learned by SOLSA can better

adapt to the given spatiotemporal sequence.

3. Unlike BPTT, which updates the model only once at the

end of each input sequence and blindly computes the

gradient for the entire input sequence, the scheduled

update and early stop techniques allows SOLSA to update

the model more frequently and focus more on the

signature patterns. Hence, it outperforms BPTT in terms

of learning accuracy.

4. Our experimental results show that SNN models trained

using SOLSA have an average of 14.2% higher accuracy

in spatiotemporal pattern classification compared to

models trained with existing non-BPTT algorithms. It also

outperforms BPTT by improving the classification

accuracy by 5% while requiring 72% less memory.

The rest of the paper is organized as following. In Section

II, we will introduce related works. Section III will present

details of our proposed learning algorithm. In Section IV, we

will show experimental results of SOLSA on different spatial

temporal datasets and compare it with other learning

algorithms. Section V gives the conclusions.

II. BACKGROUND AND RELATED WORKS

The LIF neuron uses a recurrent structure to maintain its

membrane potential. A network formed by connected LIF

neurons is a recurrent neural network and can be trained using

backpropagation through time (BPTT) [18][19]. However,

BPTT is not suitable for online learning [20] on edge devices.

Before initiating backpropagation (i.e., learning), the entire

input sequence, which can be quite long, must be received

and complete the forward propagation process. This not only

increases the latency but also causes an unbalanced temporal

distribution of workload. Additionally, the delayed learning

requires all neurons and synapses maintain a cycle-accurate

record of their activities during the processing of input data,

as this information is needed for backpropagation at the end.

Consequently, a large memory is needed.

To address the limitations of the original BPTT and

enable edge applications, Truncated BPTT was proposed

[15]. It truncates the original sequence to a bounded history

considering only a fixed number of time steps during

backpropagation. However, as a variation of the BPTT

algorithm, truncated BPTT still requires maintaining a record

of history for certain time steps. Therefore, it does not

fundamentally change the overall memory and computation

complexity. Furthermore, by ignoring long term history,

Truncated BPTT introduces bias. Consequently, its

performance deteriorates when dealing with very long

sequences.

To enable online learning and edge implementation,

recent works have employed three-factor Hebbian Learning

[16][17]. This type of learning typically incorporates three

factors in the weight update process: a term that represents

the presynaptic activities, a term that represents the

postsynaptic activities, and a term that represents the

neuromodulated global error signal. Additionally, the first

two factors can be combined to form an eligibility trace [16],

which serves as a transient memory or a flag. In a biological

system, the eligibility trace is activated when there is a

coincidence of spikes between a presynaptic neuron and a

postsynaptic neuron. When the eligibility trace is active,

signals, which may indicate novelty or surprise, can impact

the connection weights between neurons.

Several three-factor Hebbian learning algorithms have

been proposed for online learning in SNNs [10][11][12]. One

of them is Online Training Through Time (OTTT) [11],

which trains SNNs with LIF neurons. OTTT avoided

propagating gradients backward through time by

disregarding the dependency of the neuron membrane

potential on the output activities in the previous time step. In

other words, it ignores the membrane potential reset process.

While this approximation simplifies the backpropagation

process, it also leads to a degradation in learning

performance. Another notable work [10], known as E-prop

learning, calculates weight change as an accumulation of the

product of two variables, the eligibility trace and the learning

signal. The former is incrementally computed in a forward

manner, while the latter approximates the influence of the

spike output of a neuron on output error. Reference [12]

proposed a method call DECOLLE which attaches random

readout matrices to each layer and defines the global loss as

sum of each layer’s loss. DECOLLE set all non-local

gradients as zero to enforce locality. The weight update rule

can then be defined as three parts, errors, pre-synaptic

activity, and post-synaptic activity. The weights will be

updated at each time step based on three parts in update rule.

The algorithms based on three-factor Hebbian learning

calculate weight changes incrementally without unrolling the

network, making them suitable for online learning and edge

implementation. However, existing algorithms of this kind

tend to overlook the temporal dynamics on the synapses,

which results in a degradation of learning performance as the

sequence lengthens.

 The proposed SOLSA learning can also be classified as

a Three-Factor Hebbian Learning approach. It tackles the

limitations of BPTT by incrementally updating the gradient

through forward time-axis updates and interleaving forward

and backward propagation. In comparison to the BPTT

algorithm, SOLSA offers benefits such as reduced memory

usage, shorter latency, and a more balanced distribution of

workload. As a result, it is better suited for online training in

edge applications. Furthermore, SOLSA distinguishes itself

from other three-factor Hebbian learning algorithms by

considering synapse temporal dynamics and incorporating

various enhancement techniques. These include adaptive

filter kernel, scheduled weight updates, and early stop

mechanisms, all of which significantly contribute to the

improved training performance of SOLSA.

III. PROPOSED METHOD

A. Neuron and Synapse Models

In this work, we follow [4] to consider a layered network

structure with temporal dynamics in both neurons and

synapses. A summary of the notations used in this paper is

given in TABLE I.

The membrane potential of the th neuron at layer 
at time  is updated based on the following equation:

 =  − 1 + ∑ , , 
 −  − 1 , (2)

where  − 1 denotes the output of this neuron in previous

time step. The output is calculated using the Heaviside

activation function given in Equation (1),  =  −
 , where  is potential threshold, , is the weight

coefficient and  is the post synaptic potential of the jth

input. To model the filter effect of synapses,  is the

output of a first order IIR filter updated as the follows:

  =   − 1 +   − 1 (3)

Equation (3) shows that the output of synapse filter in

current time step is determined by its previous value and the

input (i.e.,  − 1) in previous time stamps.  and

 are coefficients of the filter that control the balance

between the forward and backward taps of the filter. Fig. 1

depicts a diagram of the neuron model.

Fig. 2 illustrates the data flow graph of the SNN after

being unrolled over time. Each column represents a single

time step. The duration of the time step is determined by the

intervals between consecutive data in the input sequence.

During inference, the signal propagates from bottom to top

and left to right. During training, when applying BPTT, the

gradient propagates reversely from top right corner to the

bottom left corner. The vertical propagation is referred to as

the spatial propagation and the horizontal propagation is

referred to as the temporal propagation. All parameters in the

SNN, including  ,  , and  , can be trained using BPTT.

Fig. 1. The architecture of the neuron model.

TABLE I. NOTATIONS USED IN THE PAPER

Symbol Description

 Membrane potential of the th neuron in layer  at time 

 Output of the th neuron in layer  at time 

  Synapse potential of the th connection in layer  (i.e., connection

from the th neuron in layer  − 1 to the th neuron in layer )
 ,  Coefficients of synaptic filter of th connection in layer 

, Synaptic weight of th connection in layer 
∙ Heaviside activation function of spiking neurons

 Surrogate gradient of the Heaviside activation function

 Gradient of  backpropagated through the spatial path

E Output error (difference of the actual and expected output)

 Output error at time t

B. SOLSA Learning

The Heaviside activation function is non-differentiable

[21]. However, under a Gaussian noise ~0,  , the

probability that a neuron with membrane potential V and

threshold  will fire an output spike, which can be

calculated using Equation (4),

 +    = 
 erfc 

√ , (4)

is differentiable. Following many previous works [4][13], we

adopt the derivative of the spiking probability as the surrogate

gradient for the Heaviside activation. Let  denote the

derivative of spike activity of neuron i in layer l,  


 .

Fig. 2. Unrolled ST SNN.

We denote  as the error, which is the difference between

the actual output and the expected output. The term “th

connection in layer ” refers to the connection from the th

neuron in layer  − 1 to the th neuron in layer . With the

given error, the gradient of the weight  of the th

connection in layer  can be expressed as Equation (5):




= ∑ 



 , (5)

where the term


 calculates the impact of the membrane

potential  on the error E.

The  affects the error in two ways. Firstly, through

the spatial path, it determines the neuron’s output  ,

which subsequently propagates to neurons in layer l+1 and

beyond, ultimately reaching the output layer to determine the

output error in the current time step. Secondly, through the

temporal path,  determines the neuron’s membrane

potential in the next time step (i.e.,  + 1) via the leaky

integrate process, which will further impact the future output

error. Therefore, we can rewrite Equation (5) as the

following expression:

First, we analyze the spatial path. Using the surrogate

gradient function, we know that

 = . Using the chain

rule, the spatial gradient can be further expanded as follows:





  ∑ 














 = ∑ 
 . (7)

As we can see, Equation (7) calculates the vertical

backpropagation from the output layer to the lth layer. For the

, (6)

Spatial Path Temporal Path

simplicity, we denote the spatial path gradient in (7) as 
and refer to it as the learning signal.

Next, we analyze the temporal path in Equation (6). Note

that


 is just the one step shifted version of


, we

can rewrite (6) as the following:


 =  +  + 1 + 






 (8)

= ∑ ′




 … 

 , (9)

where  is the length of the entire input sequence. Plugging
(9) into (5) we get (10).




= ∑ ∑ ′




 … 





We denote ∑ 



 … 

 


 using

,  and refer to it as the Eligibility Trace. The Eligibility

Trace can be updated incrementally using (11):

,  = ,  − 1 
 + 



 =  − ′,  − 1 + ,  (11)

Using the learning signal (′) and the eligibility

trace , , we now have the SOLSA learning rule.




= ∑ ′ ∙ ,  (12)

Both the learning signal and eligibility trace rely only on

signals of current and previous time steps. The entire

algorithm can be implemented using a streaming process. It

always moves forward in time.

C. Adaptive Synapse Filter Kernel

Previous works on BPTT training have also shown that

optimizing the filter kernels, achieved by adapting  and

 , leads to improved learning results [4]. We introduce an

online technique that approximates the gradient with respect

to the filter kernels.

If we only consider time step , the gradient of error 
with respect to  and  can be calculated using the spatial

backpropagation path as follows:

∇  = 
 =  

 

 =  ∙  ∙  − 1,

∇
 = 


=  

 



=  ∙  ∙  − 1.
However, the error  is not solely influenced by neuron

activities in time step , but also by activities during past time

steps. We assume that the impact on the future error decays

exponentially with time. To capture this historical impact, we

calculate the overall gradient of  as follows:




 ∇
 ∙ ∑  ,




 ∇
 ∙ ∑  ,

where 0 <  < 1 is a decay factor. Finally, we consider all

 from time 0 to T, and calculate the gradient of  and

 using (13) and (14):


 = ∑ ∇  ∙ 

 , (13)




= ∑ ∇
 ∙ 

 . (14)

D. Scheduled weight update

Unlike BPTT, where gradients and weight updates are

calculated at the end of the input sequence, SOLSA learning

accumulates ∆ overtime. This enables us to update the

network to reflect the partial results of learning even before

the entire input sequence has been received. This facilitates

faster convergence by allowing the SNN to escape inferior

settings earlier. However, updating weights frequently at

each time step can introduce noise due to local variations in

the input sequence. Therefore, careful selection of when to

update is crucial. We propose an approach called scheduled

weight update, which selects specific time steps as update

points and only update weights at these selected points. The

number of update points serves as a hyper-parameter and is

configured before training. Generally, a ratio of 1 to 50

between the update points and the sequence length yields

desirable results.

Initially, the update schedule consists of only one update

point, which is the end of the input sequence. At each time

step , we calculate and record , the total absolute partial

gradient of all neuron connections:

 = ∑ 


 = ∑ ∑  ′
 ∙ ,  .

The time step with the highest  are selected as an update

point and added to the update schedule. We will repeat this

process until the schedule has the required number of update

points.

E. Eearly-Stop Training

For certain input sequences, the distinctive pattern that
signifies the class information emerges right at the beginning.
This enables the SNN model to make accurate predictions
before reaching the end of the sequence. However, the data
that follows the signature pattern may consist of random noise
that does not contribute to the classification. Training the
model using the data beyond the signature pattern will
deteriorate the learned features. To address this issue, we
propose an early-stop technique that focuses on the segment
of the sequences containing useful information.

For each training sample, the early-stop detector monitors

the prediction accuracy, denoted as , at every scheduled

update point  . If the accuracy surpasses a predefined

threshold indicating a correct prediction, a counter  is

incremented. We stop processing this training sample when

 reaches /2, where  is the total number of update points.

Fig. 3 shows an illustrative example of the early stop

training. The model is trained binary classification of input

sequences. It has two output neurons, which generate spike

trains  and . The output neuron with the higher

spiking activities indicates the prediction. The accuracy

function is defined as  = ∑ 
∑ ∑ 

, and the threshold is

(10)

set to be 0.5. In other words, the prediction is considered

correct if the neuron corresponding to the target class (y)

generates more output spikes than the other neuron. In the

figure,  = 4 and the  value reached /2 at the 3rd update

point, which indicates an early stop of the training process for

this input sample.

Fig. 3. An example of early-stop training.

IV. EXPERIMENTAL RESULTS

We tested SOLSA learning on the classification of

multivariate time series. The datasets are sequences of sensor

readings from motion sensor, EEG sensor, and visual event

sensor, etc. Except the DVS128 [23], all other datasets can be

downloaded from The UCR Time Series Classification

Archive and UCI Machine Learning Repository. Most of

them consist of current readings of the sensors except

DVS128, which consists of recoded visual events. To

convert the current readings into spikes, current-based LIF

neurons [22] are employed in the first layer for temporal

population coding. TABLE II. summarizes the key statistics

of those datasets including their input and output dimensions

and sequence length. The architectures of the SNN models

used as the classifiers are also given. All layers are fully

connected layers. All layers, including the input layer, are

trainable.

TABLE II. DATASET INFORMATION

Dataset Name
Input

dimension

Sequence

length

Output

size
SNN architecture

R
eg

u
la

r

EMG gesture 8 100 7 8-150-150-7

Finger mov. 28 50 2 28-100-100-2

Basic motion 6 100 4 6-100-100-4

Epilepsy 3 207 4 3-100-100-4

Jap. Vowel 12 29 9 12-100-100-9

RacketSports 6 30 4 6-100-100-4

DVS128 4096 100 11 4096-100-100-11

L
o
n

g

Self reg. scp 6 896 2 6-100-100-2

EMG action 8 1000 10 8-200-200-10

Four reference algorithms, namely BPTT [9], Truncated

BPTT (T-BPTT) [15], E-prop [10], and OTTT [11], were

implemented for comparison. The T-BPTT considers up to

20 steps of historical information during training and

disregards past information beyond that point. Both BPTT

and T-BPTT require additional storage for the unrolled

network, hence they are unsuitable for edge implementation.

E-prop learning and OTTT are non-BPTT based, however,

they do not have synapse filters or enhancement techniques

such as scheduled weight update and early stop. Furthermore,

OTTT omits the impact of membrane potential reset in the

gradient approximation. For ablation test, three variants of

SOLSA were created by disabling adaptive filter kernel or

early stop, or a combination of both. TABLE III. summarized

the non-BPTT algorithms tested in the experiment.

A. Performance Comparison

TABLE IV. compares different learning algorithms and

SOLSA for their accuracy and memory usage. All training

uses a batch size of 1 to resemble online learning. The results

show that SOLSA achieves the highest accuracy among all

algorithms for all datasets. In addition, it requires much lower

memory usage compared to BPTT especially when data

sequence is long. Truncated BPTT effectively reduces the

overhead of temporal backpropagation and lowers the

memory cost compared with original BPTT, however, as

shown in TABLE IV. , its performance is unstable.

TABLE III. A SUMMERY OF TESTED NON-BPTT ALGORITHMS

TABLE IV. COMPARISON OF DIFFERENT LEARNING ALGORITHMS

a.
 Online training using batch 1.

From TABLE IV. , it can be observed that the SOLSA

learning algorithm outperforms both E-prop and OTTT. On

average, it improves the classification accuracy of the 9

datasets by 30% and 66.5% compared to E-prop and OTTT

respectively. It is worth noting that although the OTTT is a

simpler algorithm than E-prop, it updates weights at every

time step, while E-prop only updates at the end of the

sequence. As a result, OTTT outperforms E-prop for certain

datasets.

B. Ablation Study of SOLSA

In this section, we demonstrate the impact of the

enhancement techniques by comparing SOLSA with the 3

variants listed in TABLE III. We also implemented and

compared it with an unscheduled SOLSA where the model is

always updated only once at the end of the input sequence.

For SOLSA without adaptive filter kernel (variant 3), fixed

kernel coefficient (i.e.,  , ) are used for all synapses. We

performed a hyper-parameter search and found the best

combination of those two parameters that works for most of

the datasets. We need to point out that such hyperparameter

tuning is usually not practical for online learnings.

TABLE V. presents the comparison results. We can see

that the original SOLSA outperforms the variants for almost

all cases. Comparing SOLSA with variant 3 shows that using

adaptive filter kernel helps to improve the accuracy by more

(target)

Update

point 1

Update

point 2

Update

point 3

Update

point 4

A(1)=1/2

C=0

A(1)=6/8

C=1

A(1)=9/13

C=2

(Early stop)

Feature SOLSA E-prop OTTT
SOLSA
variant 1

SOLSA
variant 2

SOLSA
variant 3

Synapse filter    

Adaptive weight      

Adaptive kernel  

Impact of reset     

Scheduled updates    

Early stop  

Dataset
BPTT based Three factor Hebbian

Memory usage

(MB)

BPTT TBPTT SOLSA E-prop OTTT BPTT SOLSA

EMG gesture 0.956 0.664 0.985 0.675 0.672 13.4 6.6

Finger mov. 0.58 0.56 0.64 0.58 0.59 9.0 7.1

Basic motion 1 0.25 1 0.925 1 13.4 7.5

Epilepsy 0.941 0.676 0.971 0.816 0.904 22.7 9.9

Jap. Vowel 0.926 0.951 0.981 0.944 0.969 7.1 6.6

RacketSports 0.809 0.769 0.907 0.388 0.796 7.4 6.2

DVS128 0.959 0.6 0.979 0.819 0.875a 105.8 67.2

Self reg. scp 0.836 0.866 0.897 0.876 0.89 79.6 22.2

EMG action 0.973 0.696 0.979 0.77 0.161 158.4 44.1

than 5%. Comparing SOLSA with variant 2 shows that early

stop in training leads to an average improvement of 17% in

classification accuracy. Finally, by comparing SOLSA with

its unscheduled version, we can see that using scheduled

learning provides almost 20% accuracy improvements.

TABLE V. ABLATION STUDY: EARLY STOP AND ADAPTIVE KERNEL

We also observed that, without adapting the filter kernels,

the learning performance is very sensitive to the values of

filter coefficients  and . To show the importance of filter

adaptation, we tested different random combinations of fixed

α and β values on each dataset and recorded the best, worst

and medium accuracy of trained models as shown in Fig. 4.

As mentioned earlier, variant 3 was obtained after extensive

hyperparameter tunning to make sure that the same set of

filter coefficients works relatively good for all datasets. Its

accuracy is also shown in the plot. Finally, we list the

accuracy of SOSA in the same plot as a reference. The results

clearly show the importance of adapting the filter kernel

coefficients instead of using the fixed value.

Fig. 4. Accuracies of different  and  settings.

V. CONCLUSION

In this paper, we present SOLSA, an online learning

algorithm for SNNs with both synapse and neuron dynamics.

Enhancement techniques such as adaptive filter kernel,

scheduled weight update and early stop are also presented.

Compared with BPTT training, SOLSA requires much less

memory storage and has more balanced temporal workload

distribution, hence more suitable for edge implementation.

Compared with other online learning algorithms, SOLSA

leads to more accurate models with more robust performance.

The algorithm is evaluated using data series collected from

sensor readings, and the results indicate SOLSA provides

outstanding performance in learning temporal sequences

compared to existing algorithms.

REFERENCES

[1] Tavanaei, A. et al., 2019. Deep learning in spiking neural networks.
Neural Networks, Volume 111, pp. 47-63.

[2] Ghosh-Dastidar, Samanwoy, and Hojjat Adeli. "Spiking neural
networks." International journal of neural systems 19.04 (2009): 295-
308.

[3] La Camera, G. et al., 2004. Minimal models of adapted neuronal
response to in vivo-like input currents. Neural Computation, 16(10), p.
2101–2124.

[4] Fang, H., Shrestha, A., Zhao, Z. & Qiu, Q., 2020. Exploiting neuron
and synapse filter dynamics in spatial temporal learning of deep spiking
neural network. Yokohama, International Joint Conferences on
Artificial Intelligence, pp. 2799-2806.

[5] Koch, C. & Segev, I., 2000. The role of single neurons in information
processing. Nature Neuroscience, 3(Suppl 11), p. 1171–1177.

[6] Fang, H. et al., 2020. Encoding, Model, and Architecture: Systematic
Optimization for Spiking Neural Network in FPGAs. San Diego,
IEEE/ACM International Conference On Computer Aided Design
(ICCAD)

[7] Markram, H., Lübke, J., Frotscher, M. & Sakmann, B., 1997.
Regulation of synaptic efficacy by coincidence of postsynaptic APs and
EPSPs. Science, 275(5297), pp. 213-215.

[8] Hebb, D., 1949. The organization of behavior; a neuropsychological
theory. s.l.: Wiley

[9] Werbos, P. J., 1988. Generalization of backpropagation with
application to a recurrent gas market model. Neural Networks, 1(4), pp.
339-356.

[10] Bellec, G. et al., 2020. A solution to the learning dilemma for recurrent
networks of spiking neurons. Nature Communications, 11(3625).

[11] Xiao, M. et al., 2022. Online Training Through Time for Spiking
Neural Networks. s.l., Conference on Neural Information Processing
System.

[12] Kaiser, Jacques, Hesham Mostafa, and Emre Neftci. Synaptic plasticity
dynamics for deep continuous local learning (DECOLLE).Frontiers in
Neuroscience 14 (2020): 424.

[13] Zenke, F. & Vogels, T. P., 2021. The Remarkable Robustness of
Surrogate Gradient Learning for Instilling Complex Function in
Spiking Neural Networks. Neural Computation, 33(4), p. 899–925.

[14] Robinson, A. J., and Frank Fallside. The utility driven dynamic error
propagation network. Vol. 1. Cambridge: University of Cambridge
Department of Engineering, 1987.

[15] Williams, R. J. & Peng, J., 1990. An Efficient Gradient-Based
Algorithm for On-Line Training of Recurrent Network Trajectories.
Neural Computation, 2(4), p. 490–501.

[16] Gerstner, W. et al., 2018. Eligibility traces and plasticity on behavioral
time scales: experimental support of neohebbian three-factor learning
rules. Frontiers in Neural Circuits.

[17] Frémaux, N. & Gerstner, W., 2016. Neuromodulated Spike-Timing-
Dependent Plasticity, and Theory of Three-Factor Learning Rules.
Frontiers in Neural Circuits.

[18] Yin, Shihui, et al. "Algorithm and hardware design of discrete-time
spiking neural networks based on back propagation with binary
activations." 2017 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE, 2017.

[19] Shen, Guobin, Dongcheng Zhao, and Yi Zeng. "Backpropagation with
biologically plausible spatiotemporal adjustment for training deep
spiking neural networks." Patterns 3.6 (2022): 100522.

[20] Lobo, Jesus L., et al. "Spiking neural networks and online learning: An
overview and perspectives." Neural Networks 121 (2020): 88-100.

[21] Wang, Jun. "Analysis and design of a k-winners-take-all model with a
single state variable and the heaviside step activation function." IEEE
Transactions on Neural Networks 21.9 (2010): 1496-1506.

[22] Cavallari, Stefano, Stefano Panzeri, and Alberto Mazzoni.
"Comparison of the dynamics of neural interactions between current-
based and conductance-based integrate-and-fire recurrent networks."
Frontiers in neural circuits 8 (2014): 12.

[23] Amir, Arnon, et al. "A low power, fully event-based gesture
recognition system." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.

Dataset
Accuracy

Unscheduled variant 1 variant 2 variant 3 SOLSA

EMG gesture 0.912 0.942 0.671 0.957 0.985

Finger mov. 0.56 0.65 0.59 0.58 0.64

Basic motion 0.95 1 1 1 1

Epilepsy 0.794 0.934 0.713 0.958 0.971

Jap. Vowel 0.869 0.975 0.619 0.96 0.981

RacketSports 0.598 0.855 0.901 0.835 0.907

DVS128 0.895 0.93 0.959 0.93 0.979

Self reg. scp 0.88 0.894 0.897 0.893 0.897
EMG action 0.134 0.93 0.946 0.848 0.979

