SOLSA: Neuromorphic Spatiotemporal Online
Learning for Synaptic Adaptation

Zhenhang Zhang, Jingang Jin, Haowen Fang, Qinru Qiu
Department of Electrical Engineering and Computer Science, Syracuse University
{zzhan281, jjin24, hfang02 } @syr.edu, qinru.qiu@gmail.com

Abstract—Spiking neural networks (SNNs) are bio-plausible
computing models with high energy efficiency. The temporal
dynamics of neurons and synapses enable them to detect
temporal patterns and generate sequences. While
Backpropagation Through Time (BPTT) is traditionally used to
train SNNEs, it is not suitable for online learning of embedded
applications due to its high computation and memory cost as
well as extended latency. In this work, we present
Spatiotemporal Online Learning for Synaptic Adaptation
(SOLSA), which is specifically designed for online learning of
SNNs composed of Leaky Integrate and Fire (LIF) neurons with
exponentially decayed synapses and soft reset. The algorithm
not only learns the synaptic weight but also adapts the temporal
filters associated to the synapses. Compared to the BPTT
algorithm, SOLSA has much lower memory requirement and
achieves a more balanced temporal workload distribution.
Moreover, SOLSA incorporates enhancement techniques such
as scheduled weight update, early stop training and adaptive
synapse filter, which speed up the convergence and enhance the
learning performance. When compared to other non-BPTT
based SNN learning, SOLSA demonstrates an average learning
accuracy improvement of 14.2%. Furthermore, compared to
BPTT, SOLSA achieves a 5% higher average learning accuracy
with a 72% reduction in memory cost.

Keywords—Spiking Neural Network, Spatiotemporal pattern
learning, online learning.

I. INTRODUCTION

Unlike conventional artificial neural networks (ANNs),
Spiking Neural Network (SNNs) [1][2] have the unique
ability to retain past information within the membrane
potential. The membrane potential is considered as the state
of neurons and synapses. The changes of the membrane
potential over time, which are influenced by both current and
historical inputs, are referred to as temporal dynamics. Many
SNN models, such as the widely used Leaky Integrate and
Fire (LIF) model [3], calculate membrane potential as a leaky
integration of the input with exponential decay. Once the
membrane potential reaches a certain threshold, the neuron
fires a spike and resets its membrane potential. In a more
advanced model proposed by [4], called spatial temporal (ST)
SNN, the temporal dynamics of synapses are also considered.
It has been demonstrated both biologically [5] and
computationally [6] that the temporal dynamics in neurons
and synapses play a crucial role in enabling the network to
perform spatiotemporal operations.

A basic method of SNN training is to update the weights
based on the timing of pre- and post-synaptic neuron spiking
events [7]. When a pre-synaptic spiking event happens before
post-synaptic spiking event within a time window, this leads

This project was partially funded under AFRL’s FA8750-21-C-1511
contract and NSF I/UCRC ASIC Center (CNS-1822165).

to a potentiation of the synaptic weight. A contrast condition
leads to a depression of weight. This weight update rule is
also called Hebbian Learning Rule [8]. Vanilla Hebbian Rule
is usually slow and less effective compared to the
backpropagation algorithm used in ANN training [1].

By modeling the temporal dynamics of neurons and
synapses as filters with feedback connections [4], an SNN is
seen as a recurrent neural network (RNN) and can be trained
using Backpropagation Through Time (BPTT) [9][14]. This
algorithm unrolls the network along the temporal axis and
applies conventional backpropagation to the unrolled
network. The gradients need to propagate from the output
layer all the way back to the input layer and from present time
back to the time when the input sequence begins. Therefore,
BPTT requires a significant amount of memory to store the
historical activities of neurons. Additionally, the learning
process cannot start until the entire input sequence has been
received. This either leads to an extended processing time or
a high workload surge at the end of each input sequence.
These limitations make BPTT unsuitable to be applied for
online learning on edge devices with limited hardware
resources.

The limitations discussed above regarding BPTT have
spurred a set of online training algorithms for SNN, including
eligibility trace propagation (i.e., E-prop) [10], Online
Training Through Time (OTTT) [11] and Deep Continuous
Local Learning (DECOLLE) [12]. However, these
algorithms ignore the temporal dynamics of the synapses
[10][11] and some of them even overlook the reset process of
the membrane potential [11]. Consequently, their
performance is compromised, particularly for longer input
sequences.

In this work we present SOLSA (Spatiotemporal Online
Learning for Synaptic Adaptation), a learning algorithm to
train SNN's with temporal filters on both synapses and neuron
membrane potentials. SOLSA goes beyond learning synaptic
weights. It can also update synapse filter kernels
automatically. Our unique techniques such as scheduled
weight update and early stop, allow SOLSA to converge
faster and learn with better accuracy.

The uniqueness and benefit of the SOLSA learning is
summarized as the following:

1. It does not record historical neuron activities for
backpropagation over time, hence the memory complexity
is much lower than that of BPTT.

2. It is capable of learning not only the synapse weights but
also the synaptic filter kernels. Compared to the existing
non-BPTT based learning algorithms, which only update



the synapse weights, model learned by SOLSA can better
adapt to the given spatiotemporal sequence.

3. Unlike BPTT, which updates the model only once at the
end of each input sequence and blindly computes the
gradient for the entire input sequence, the scheduled
update and early stop techniques allows SOLSA to update
the model more frequently and focus more on the
signature patterns. Hence, it outperforms BPTT in terms
of learning accuracy.

4. Our experimental results show that SNN models trained
using SOLSA have an average of 14.2% higher accuracy
in spatiotemporal pattern classification compared to
models trained with existing non-BPTT algorithms. It also
outperforms BPTT by improving the -classification
accuracy by 5% while requiring 72% less memory.

The rest of the paper is organized as following. In Section
II, we will introduce related works. Section IIT will present
details of our proposed learning algorithm. In Section IV, we
will show experimental results of SOLSA on different spatial
temporal datasets and compare it with other learning
algorithms. Section V gives the conclusions.

II. BACKGROUND AND RELATED WORKS

The LIF neuron uses a recurrent structure to maintain its
membrane potential. A network formed by connected LIF
neurons is a recurrent neural network and can be trained using
backpropagation through time (BPTT) [18][19]. However,
BPTT is not suitable for online learning [20] on edge devices.
Before initiating backpropagation (i.e., learning), the entire
input sequence, which can be quite long, must be received
and complete the forward propagation process. This not only
increases the latency but also causes an unbalanced temporal
distribution of workload. Additionally, the delayed learning
requires all neurons and synapses maintain a cycle-accurate
record of their activities during the processing of input data,
as this information is needed for backpropagation at the end.
Consequently, a large memory is needed.

To address the limitations of the original BPTT and
enable edge applications, Truncated BPTT was proposed
[15]. It truncates the original sequence to a bounded history
considering only a fixed number of time steps during
backpropagation. However, as a variation of the BPTT
algorithm, truncated BPTT still requires maintaining a record
of history for certain time steps. Therefore, it does not
fundamentally change the overall memory and computation
complexity. Furthermore, by ignoring long term history,
Truncated BPTT introduces bias. Consequently, its
performance deteriorates when dealing with very long
sequences.

To enable online learning and edge implementation,
recent works have employed three-factor Hebbian Learning
[16][17]. This type of learning typically incorporates three
factors in the weight update process: a term that represents
the presynaptic activities, a term that represents the
postsynaptic activities, and a term that represents the
neuromodulated global error signal. Additionally, the first
two factors can be combined to form an eligibility trace [16],
which serves as a transient memory or a flag. In a biological
system, the eligibility trace is activated when there is a
coincidence of spikes between a presynaptic neuron and a
postsynaptic neuron. When the eligibility trace is active,

signals, which may indicate novelty or surprise, can impact
the connection weights between neurons.

Several three-factor Hebbian learning algorithms have
been proposed for online learning in SNNs [10][11][12]. One
of them is Online Training Through Time (OTTT) [11],
which trains SNNs with LIF neurons. OTTT avoided
propagating gradients backward through time by
disregarding the dependency of the neuron membrane
potential on the output activities in the previous time step. In
other words, it ignores the membrane potential reset process.
While this approximation simplifies the backpropagation
process, it also leads to a degradation in learning
performance. Another notable work [10], known as E-prop
learning, calculates weight change as an accumulation of the
product of two variables, the eligibility trace and the learning
signal. The former is incrementally computed in a forward
manner, while the latter approximates the influence of the
spike output of a neuron on output error. Reference [12]
proposed a method call DECOLLE which attaches random
readout matrices to each layer and defines the global loss as
sum of each layer’s loss. DECOLLE set all non-local
gradients as zero to enforce locality. The weight update rule
can then be defined as three parts, errors, pre-synaptic
activity, and post-synaptic activity. The weights will be
updated at each time step based on three parts in update rule.
The algorithms based on three-factor Hebbian learning
calculate weight changes incrementally without unrolling the
network, making them suitable for online learning and edge
implementation. However, existing algorithms of this kind
tend to overlook the temporal dynamics on the synapses,
which results in a degradation of learning performance as the
sequence lengthens.

The proposed SOLSA learning can also be classified as
a Three-Factor Hebbian Learning approach. It tackles the
limitations of BPTT by incrementally updating the gradient
through forward time-axis updates and interleaving forward
and backward propagation. In comparison to the BPTT
algorithm, SOLSA offers benefits such as reduced memory
usage, shorter latency, and a more balanced distribution of
workload. As a result, it is better suited for online training in
edge applications. Furthermore, SOLSA distinguishes itself
from other three-factor Hebbian learning algorithms by
considering synapse temporal dynamics and incorporating
various enhancement techniques. These include adaptive
filter kernel, scheduled weight updates, and early stop
mechanisms, all of which significantly contribute to the
improved training performance of SOLSA.

III. PROPOSED METHOD

A. Neuron and Synapse Models

In this work, we follow [4] to consider a layered network
structure with temporal dynamics in both neurons and
synapses. A summary of the notations used in this paper is
given in TABLE .

The membrane potential V![t]of the ith neuron at layer [
at time t is updated based on the following equation:

VI[t] = aVEE — 1] + 27wl FL e - Ve OHe — 1], (2)

where O} [t — 1] denotes the output of this neuron in previous
time step. The output is calculated using the Heaviside



activation function given in Equation (1), 0}[t] =
Vth), where V, is potential threshold, Wi_ 5

U(Viel -
is the weight
coefficient and F}l [t] is the post synaptic potential of the jth
input. To model the filter effect of synapses, F}l [t] is the
output of a first order IIR filter updated as the follows:

Ff[t] = af;F{[t — 1] + B;0;7 [t — 1] €)

Equation (3) shows that the output of synapse filter in
current time step is determined by its previous value and the
input (i.e., 01 Ut —1]) in previous time stamps. a and
ﬂu are coefﬁ01ents of the filter that control the balance
between the forward and backward taps of the filter. Fig. 1
depicts a diagram of the neuron model.

Fig. 2 illustrates the data flow graph of the SNN after
being unrolled over time. Each column represents a single
time step. The duration of the time step is determined by the
intervals between consecutive data in the input sequence.
During inference, the signal propagates from bottom to top
and left to right. During training, when applying BPTT, the
gradient propagates reversely from top right corner to the
bottom left corner. The vertical propagation is referred to as
the spatial propagation and the horizontal propagation is
referred to as the temporal propagation. All parameters in the
SNN, including w}; and B}; > can be trained using BPTT.

ij> Lj’
( 11 )
Silt]e Al

Sjlt]e

The architecture of the neuron model.

Fig. 1.

TABLE L NOTATIONS USED IN THE PAPER

Symbol [Description
V![t] [Membrane potential of the ith neuron in layer [ at time ¢
0![t] |Output of the ith neuron in layer [ at time ¢
Fl-l]- [t] [Synapse potential of the ijth connection in layer [ (i.e., connection
from the jth neuron in layer [ — 1 to the ith neuron in layer [)

af]-, ﬁil]. Coefficients of synaptic filter of ijth connection in layer [

i

U(-) |Heaviside activation function of spiking neurons

€l[t] [Surrogate gradient of the Heaviside activation function

ut[t] |Gradient of Vi*[t] backpropagated through the spatial path
E  |Output error (difference of the actual and expected output)

E[t] [Output error at time ¢

B. SOLSA Learning

The Heaviside activation function is non-differentiable
[21]. However, under a Gaussian noise z~N(0,0), the
probability that a neuron with membrane potential J and
threshold V,, will fire an output spike, which can be
calculated using Equation (4),

PV+z>Vy) = %erfc (%), 4
is differentiable. Following many previous works [4][13], we
adopt the derivative of the spiking probability as the surrogate

w Synaptic weight of ijth connection in layer [

gradient for the Heaviside activation. Let €}[t] denote the
derivative of spike activity of neuron i in layer /, €;[t] =
ap(Vi[t1+z>Ven)

avie]
I I
7 ! '
- (g F—— fua ) — ‘F[t+1] )
| |
| I i
oft-1 | | ot | [om |
| I |
Coen ) | (Cug J |} (Cuew
g [ vi-1) Vg v+
11— i1 ]
Cma ) —— ] —4 Flt+1] )
R :
T ! |
T l ] |
g o[t-1] ‘ : (Com J— : o[+1] |
Time t-1 : Time t ': Time t+1
Spatial Path — Temporal Path

SOLSA Learning Signal

BPTT Gradient

Fig. 2. Unrolled ST SNN.

We denote E as the error, which is the difference between
the actual output and the expected output. The term “ijth
connection in layer [” refers to the connection from the jth
neuron in layer [ — 1 to the ith neuron in layer l. With the
given error, the gradient of the weight W of the ijth
connection in layer l can be expressed as Equatlon 5):

Zt s (5)

dE 6V[]
dV [t] 6w

where the term ~ calculates the impact of the membrane

dE
vilt]
potential V'[t] on the error E.

The V}[t] affects the error in two ways. Firstly, through
the spatial path, it determines the neuron’s output O}[t],
which subsequently propagates to neurons in layer /+1 and
beyond, ultimately reaching the output layer to determine the
output error in the current time step. Secondly, through the
temporal path, le [t] determines the neuron’s membrane
V]-l[t + 1]) via the leaky
integrate process, which will further impact the future output
error. Therefore, we can rewrite Equation (5) as the
following expression:

potential in the next time step (i.e.,

avie+1]
avi[e+1] avie] ’

dE_ dE 90MHt] dE
aviie] ~ aolt] avi[e]

(6)

Spatial Path Temporal Path

First, we analyze the spatial path Using the surrogate
ao t] = €l[t]. Using the chain

gradient function, we know that

rule, the spatial gradient can be further expanded as follows:

dE 90![t] ~y dE[t] a0kt [t] avitit] aFL (el d0}(t]
aol[e] aviiel ka0l ] aviti[e] aFf el a0Hel av{lt]
dE[t]
= Yigoprg ek Wi B el ()

As we can see, Equation (7) calculates the vertical
backpropagation from the output layer to the /th layer. For the



simplicity, we denote the spatial path gradient in (7) as u}[t]
and refer to it as the learning signal.

Next, we analyze the temporal path in Equation (6). Note

that ﬁ is just the one step shifted version of f[t] we
can rewrite (6) as the following:
dE 1 aE  avie+2]\ avie+1]
avie] wiltl + (”i ¢+ 1]+ avi[e+2] avil[r+1]> avl[e] ®)
Nen avie-11  avie+1]
= Zt<t’<T:ul [t]av Te'—1] avf(c'—2] ™" ovie] ©)

where T is the length of the entire input sequence. Plugging
(9) into (5) we get (10).
6V [tr] 6V [tr—1]

= S Besvar uile) St S

6Vl[t’] avier-1]

l l
avie+1] avie]
avi[e] aw};
avit+1] aviitl

=Zt’5T'u"[ I Beser avile—1]aviie'-21"" avi[t] aw); (10)
N v J
l r
Eij[t ]
N avit'-1 6Vil[t+1]6Vl-l[t] .
We denote Y;<;/ P [t['—]1]av L,_Z} vl aw, using

& ][ '] and refer to it as the Eligibility Trace. The E11g1b111ty
Trace can be updated incrementally using (11):

U] = o [+ — 6le[t’] 6Vil[t’]
e[t = &;;[t" — 1] avlie—11 T owl,
= (A — venei[tDe[t" — 1] + F[¢'] (11)

Usmg the learning signal (u”l[ t']) and the eligibility
trace 81, ;[t'], we now have the SOLSA learning rule.

=2kt ef5lt] (12)

Both the learmng signal and eligibility trace rely only on
signals of current and previous time steps. The entire
algorithm can be implemented using a streaming process. It
always moves forward in time.

C. Adaptive Synapse Filter Kernel

Previous works on BPTT training have also shown that
optimizing the filter kernels, achieved by adapting af]- and
ﬁil]-, leads to improved learning results [4]. We introduce an
online technique that approximates the gradient with respect
to the filter kernels.

If we only consider time step t, the gradient of error E[t]
with respect to a and B}; ; can be calculated using the spatial
backpropagation path as follows:

_ QE[t] _ avi[t] oF} [t]
Vo lt) = 5 = ) S S5 = il why - File = 1),
_9E[t] _ OV ORIl _ 1pq . 1L l-1fy _
Ve 2] = = i ]BFilj[t] 2T = pilt]-wi; - 0/ Mt —1].

However, the error E[t] is not solely influenced by neuron
activities in time step t, but also by activities during past time
steps. We assume that the impact on the future error decays
exponentially with time. To capture this historical impact, we
calculate the overall gradient of E[t] as follows:

ZET[;],] b 3?.[t] Th=o "™

dE[t

o Vgl Ty

where 0 <y < 1is a decay factor. Finally, we consider all
E[t] from time O to T, and calculate the gradient of ailj and

ﬁil]- using (13) and (14):
d _t+1
aa = 2V - 13_ ,

+1

(13)

= 5V [ (14)

dﬁl

D. Scheduled weight update

Unlike BPTT, where gradients and weight updates are
calculated at the end of the input sequence, SOLSA learning
accumulates Aw overtime. This enables us to update the
network to reflect the partial results of learning even before
the entire input sequence has been received. This facilitates
faster convergence by allowing the SNN to escape inferior
settings earlier. However, updating weights frequently at
each time step can introduce noise due to local variations in
the input sequence. Therefore, careful selection of when to
update is crucial. We propose an approach called scheduled
weight update, which selects specific time steps as update
points and only update weights at these selected points. The
number of update points serves as a hyper-parameter and is
configured before training. Generally, a ratio of 1 to 50
between the update points and the sequence length yields
desirable results.

Initially, the update schedule consists of only one update
point, which is the end of the input sequence. At each time
step t, we calculate and record g;, the total absolute partial
gradient of all neuron connections:

Zul Zz]l|zt’_o Hj [t] gl][t ]|

The time step with the highest g, are selected as an update
point and added to the update schedule. We will repeat this
process until the schedule has the required number of update
points.

E. Eearly-Stop Training

For certain input sequences, the distinctive pattern that
signifies the class information emerges right at the beginning.
This enables the SNN model to make accurate predictions
before reaching the end of the sequence. However, the data
that follows the signature pattern may consist of random noise
that does not contribute to the classification. Training the
model using the data beyond the signature pattern will
deteriorate the learned features. To address this issue, we
propose an early-stop technique that focuses on the segment
of the sequences containing useful information.

For each training sample, the early-stop detector monitors
the prediction accuracy, denoted as A(t), at every scheduled
update point t. If the accuracy surpasses a predefined
threshold indicating a correct prediction, a counter C is
incremented. We stop processing this training sample when
C reaches N /2, where N is the total number of update points.

Fig. 3 shows an illustrative example of the early stop
training. The model is trained binary classification of input
sequences. It has two output neurons, which generate spike
trains Oy[t] and O;[t]. The output neuron with the higher
spiking activities indicates the prediction. The accuracy
Sz Oyli]

m, and the threshold is

function is defined as A(t) =



set to be 0.5. In other words, the prediction is considered
correct if the neuron corresponding to the target class (y)
generates more output spikes than the other neuron. In the
figure, N = 4 and the C value reached N/2 at the 3™ update
point, which indicates an early stop of the training process for
this input sample.

Update
point 1

Update
point 2

Update Update
point 3 point 4

IEREEITIENE T

0 | | | j
1 t i1 th 1o
0 T
A(1)=1/2 A(1)=6/8 A(1)=9/13
C=0 Cc=1 C=2
(Early stop)

Fig. 3. An example of early-stop training.

IV. EXPERIMENTAL RESULTS

We tested SOLSA learning on the classification of
multivariate time series. The datasets are sequences of sensor
readings from motion sensor, EEG sensor, and visual event
sensor, etc. Except the DVS128 [23], all other datasets can be
downloaded from The UCR Time Series Classification
Archive and UCI Machine Learning Repository. Most of
them consist of current readings of the sensors except
DVS128, which consists of recoded visual events. To
convert the current readings into spikes, current-based LIF
neurons [22] are employed in the first layer for temporal
population coding. TABLE II. summarizes the key statistics
of those datasets including their input and output dimensions
and sequence length. The architectures of the SNN models
used as the classifiers are also given. All layers are fully
connected layers. All layers, including the input layer, are
trainable.

TABLE II. DATASET INFORMATION
Dataset Name di Inp ut Sequence O?‘p ut SNN architecture
imension length size
EMG gesture 8 100 7 8-150-150-7
Finger mov. 28 50 2 28-100-100-2
& |Basic motion 6 100 4 6-100-100-4
% Epilepsy 3 207 4 3-100-100-4
~ | Jap. Vowel 12 29 9 12-100-100-9
RacketSports 6 30 4 6-100-100-4
DVS128 4096 100 11 4096-100-100-11
& Self reg. scp 6 896 2 6-100-100-2
3
~ | EMG action 8 1000 10 8-200-200-10

Four reference algorithms, namely BPTT [9], Truncated
BPTT (T-BPTT) [15], E-prop [10], and OTTT [11], were
implemented for comparison. The T-BPTT considers up to
20 steps of historical information during training and
disregards past information beyond that point. Both BPTT
and T-BPTT require additional storage for the unrolled
network, hence they are unsuitable for edge implementation.
E-prop learning and OTTT are non-BPTT based, however,
they do not have synapse filters or enhancement techniques
such as scheduled weight update and early stop. Furthermore,
OTTT omits the impact of membrane potential reset in the
gradient approximation. For ablation test, three variants of
SOLSA were created by disabling adaptive filter kernel or

early stop, or a combination of both. TABLE III. summarized
the non-BPTT algorithms tested in the experiment.

A. Performance Comparison

TABLE IV. compares different learning algorithms and
SOLSA for their accuracy and memory usage. All training
uses a batch size of 1 to resemble online learning. The results
show that SOLSA achieves the highest accuracy among all
algorithms for all datasets. In addition, it requires much lower
memory usage compared to BPTT especially when data
sequence is long. Truncated BPTT effectively reduces the
overhead of temporal backpropagation and lowers the
memory cost compared with original BPTT, however, as
shown in TABLE IV., its performance is unstable.

TABLE IIL A SUMMERY OF TESTED NON-BPTT ALGORITHMS
Feature  |SOLSA [E-prop| OTTT | SOLSA | SOLSA | SOLSA
variant | | variant 2 | variant 3
Synapse filter 4 v 4 v
Adaptive weight v v v v v v
Adaptive kernel v v
Impact of reset v v v v v
Scheduled updates| v v v v
Early stop 4 4
TABLE IV. COMPARISON OF DIFFERENT LEARNING ALGORITHMS
Dataset BPTT based Three factor Hebbian Mcnz(l)\z}]/gl)lsagc
BPTT| TBPTT | SOLSA | E-prop OTTT BPTT | SOLSA
EMG gesture | 0.956 | 0.664 0.985 0.675 0.672 13.4 6.6
Finger mov. | 0.58 0.56 0.64 0.58 0.59 9.0 7.1
Basic motion 1 0.25 1 0.925 1 134 7.5
Epilepsy | 0.941| 0.676 0.971 0.816 0.904 22.7 9.9
Jap. Vowel [0.926| 0.951 0.981 0.944 0.969 7.1 6.6
RacketSports | 0.809 | 0.769 0.907 0.388 0.796 7.4 6.2
DVSI28 |0.959 0.6 0.979 0.819 0.875% 105.8 67.2
Selfreg. scp [ 0.836 | 0.866 0.897 0.876 0.89 79.6 22.2
EMG action [0.973 | 0.696 0.979 0.77 0.161 158.4 44.1

2 Online training using batch 1.

From TABLE IV. , it can be observed that the SOLSA
learning algorithm outperforms both E-prop and OTTT. On
average, it improves the classification accuracy of the 9
datasets by 30% and 66.5% compared to E-prop and OTTT
respectively. It is worth noting that although the OTTT is a
simpler algorithm than E-prop, it updates weights at every
time step, while E-prop only updates at the end of the
sequence. As a result, OTTT outperforms E-prop for certain
datasets.

B. Ablation Study of SOLSA

In this section, we demonstrate the impact of the
enhancement techniques by comparing SOLSA with the 3
variants listed in TABLE III. We also implemented and
compared it with an unscheduled SOLSA where the model is
always updated only once at the end of the input sequence.
For SOLSA without adaptive filter kernel (variant 3), fixed
kernel coefficient (i.e., al;, p};) are used for all synapses. We
performed a hyper-parameter search and found the best
combination of those two parameters that works for most of
the datasets. We need to point out that such hyperparameter
tuning is usually not practical for online learnings.

TABLE V. presents the comparison results. We can see
that the original SOLSA outperforms the variants for almost
all cases. Comparing SOLSA with variant 3 shows that using
adaptive filter kernel helps to improve the accuracy by more



than 5%. Comparing SOLSA with variant 2 shows that early
stop in training leads to an average improvement of 17% in
classification accuracy. Finally, by comparing SOLSA with
its unscheduled version, we can see that using scheduled
learning provides almost 20% accuracy improvements.

TABLE V. ABLATION STUDY: EARLY STOP AND ADAPTIVE KERNEL
Dataset - Accurac -
[Unscheduled| variant 1 | variant 2 | variant 3 | SOLSA
EMG gesture 0.912 0.942 0.671 0.957 0.985
Finger mov. 0.56 0.65 0.59 0.58 0.64
Basic motion 0.95 1 1 1 1
Epilepsy 0.794 0.934 0.713 0.958 0.971
Jap. Vowel 0.869 0.975 0.619 0.96 0.981
RacketSports 0.598 0.855 0.901 0.835 0.907
DVSI128 0.895 0.93 0.959 0.93 0.979
Self reg. scp 0.88 0.894 0.897 0.893 0.897
EMG action 0.134 0.93 0.946 0.848 0.979

We also observed that, without adapting the filter kernels,
the learning performance is very sensitive to the values of
filter coefficients a and . To show the importance of filter
adaptation, we tested different random combinations of fixed
a and B values on each dataset and recorded the best, worst
and medium accuracy of trained models as shown in Fig. 4.
As mentioned earlier, variant 3 was obtained after extensive
hyperparameter tunning to make sure that the same set of
filter coefficients works relatively good for all datasets. Its
accuracy is also shown in the plot. Finally, we list the
accuracy of SOSA in the same plot as a reference. The results
clearly show the importance of adapting the filter kernel
coefficients instead of using the fixed value.

best
medium
worst
variant 3
SOLSA

1.24

accuracy
o B
[=1] o
; ;

o
o
!

0.4

EGSelf RCBM Ep Jap.V RS DVS FM EA

dataset

Fig. 4. Accuracies of different a and [ settings.

V. CONCLUSION

In this paper, we present SOLSA, an online learning
algorithm for SNNs with both synapse and neuron dynamics.
Enhancement techniques such as adaptive filter kernel,
scheduled weight update and early stop are also presented.
Compared with BPTT training, SOLSA requires much less
memory storage and has more balanced temporal workload
distribution, hence more suitable for edge implementation.
Compared with other online learning algorithms, SOLSA
leads to more accurate models with more robust performance.
The algorithm is evaluated using data series collected from
sensor readings, and the results indicate SOLSA provides
outstanding performance in learning temporal sequences
compared to existing algorithms.

REFERENCES

[1] Tavanaei, A. et al., 2019. Deep learning in spiking neural networks.
Neural Networks, Volume 111, pp. 47-63.

[2] Ghosh-Dastidar, Samanwoy, and Hojjat Adeli. "Spiking neural
networks." International journal of neural systems 19.04 (2009): 295-
308.

[3] La Camera, G. et al., 2004. Minimal models of adapted neuronal
response to in vivo-like input currents. Neural Computation, 16(10), p.
2101-2124.

[4] Fang, H., Shrestha, A., Zhao, Z. & Qiu, Q., 2020. Exploiting neuron
and synapse filter dynamics in spatial temporal learning of deep spiking
neural network. Yokohama, International Joint Conferences on
Artificial Intelligence, pp. 2799-2806.

[5] Koch, C. & Segev, L, 2000. The role of single neurons in information
processing. Nature Neuroscience, 3(Suppl 11), p. 1171-1177.

[6] Fang, H. et al., 2020. Encoding, Model, and Architecture: Systematic
Optimization for Spiking Neural Network in FPGAs. San Diego,
IEEE/ACM International Conference On Computer Aided Design
(ICCAD)

[7] Markram, H., Liibke, J., Frotscher, M. & Sakmann, B., 1997.
Regulation of synaptic efficacy by coincidence of postsynaptic APs and
EPSPs. Science, 275(5297), pp. 213-215.

[8] Hebb, D., 1949. The organization of behavior; a neuropsychological
theory. s.L.: Wiley

[91 Werbos, P. J., 1988. Generalization of backpropagation with
application to a recurrent gas market model. Neural Networks, 1(4), pp.
339-356.

[10] Bellec, G. et al., 2020. A solution to the learning dilemma for recurrent
networks of spiking neurons. Nature Communications, 11(3625).

[11] Xiao, M. et al., 2022. Online Training Through Time for Spiking
Neural Networks. s.l., Conference on Neural Information Processing
System.

[12] Kaiser, Jacques, Hesham Mostafa, and Emre Neftci. Synaptic plasticity
dynamics for deep continuous local learning (DECOLLE).Frontiers in
Neuroscience 14 (2020): 424.

[13] Zenke, F. & Vogels, T. P., 2021. The Remarkable Robustness of
Surrogate Gradient Learning for Instilling Complex Function in
Spiking Neural Networks. Neural Computation, 33(4), p. 899-925.

[14] Robinson, A. J., and Frank Fallside. The utility driven dynamic error
propagation network. Vol. 1. Cambridge: University of Cambridge
Department of Engineering, 1987.

[15] Williams, R. J. & Peng, J., 1990. An Efficient Gradient-Based
Algorithm for On-Line Training of Recurrent Network Trajectories.
Neural Computation, 2(4), p. 490-501.

[16] Gerstner, W. et al., 2018. Eligibility traces and plasticity on behavioral
time scales: experimental support of neohebbian three-factor learning
rules. Frontiers in Neural Circuits.

[17] Frémaux, N. & Gerstner, W., 2016. Neuromodulated Spike-Timing-
Dependent Plasticity, and Theory of Three-Factor Learning Rules.
Frontiers in Neural Circuits.

[18] Yin, Shihui, et al. "Algorithm and hardware design of discrete-time
spiking neural networks based on back propagation with binary
activations." 2017 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE, 2017.

[19] Shen, Guobin, Dongcheng Zhao, and Yi Zeng. "Backpropagation with
biologically plausible spatiotemporal adjustment for training deep
spiking neural networks." Patterns 3.6 (2022): 100522.

[20] Lobo, Jesus L., et al. "Spiking neural networks and online learning: An
overview and perspectives." Neural Networks 121 (2020): 88-100.

[21] Wang, Jun. "Analysis and design of a k-winners-take-all model with a
single state variable and the heaviside step activation function." IEEE
Transactions on Neural Networks 21.9 (2010): 1496-1506.

[22] Cavallari, Stefano, Stefano Panzeri, and Alberto Mazzoni.
"Comparison of the dynamics of neural interactions between current-
based and conductance-based integrate-and-fire recurrent networks."
Frontiers in neural circuits 8 (2014): 12.

[23] Amir, Arnon, et al. "A low power, fully event-based gesture
recognition system." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.



