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Abstract—Spiking neural networks (SNNs) are bio-plausible 

computing models with high energy efficiency. The temporal 

dynamics of neurons and synapses enable them to detect 

temporal patterns and generate sequences. While 

Backpropagation Through Time (BPTT) is traditionally used to 

train SNNs, it is not suitable for online learning of embedded 

applications due to its high computation and memory cost as 

well as extended latency. In this work, we present 

Spatiotemporal Online Learning for Synaptic Adaptation 

(SOLSA), which is specifically designed for online learning of 

SNNs composed of Leaky Integrate and Fire (LIF) neurons with 

exponentially decayed synapses and soft reset. The algorithm 

not only learns the synaptic weight but also adapts the temporal 

filters associated to the synapses. Compared to the BPTT 

algorithm, SOLSA has much lower memory requirement and 

achieves a more balanced temporal workload distribution. 

Moreover, SOLSA incorporates enhancement techniques such 

as scheduled weight update, early stop training and adaptive 

synapse filter, which speed up the convergence and enhance the 

learning performance. When compared to other non-BPTT 

based SNN learning, SOLSA demonstrates an average learning 

accuracy improvement of 14.2%. Furthermore, compared to 

BPTT, SOLSA achieves a 5% higher average learning accuracy 

with a 72% reduction in memory cost. 

Keywords—Spiking Neural Network, Spatiotemporal pattern 

learning, online learning. 

I. INTRODUCTION  

Unlike conventional artificial neural networks (ANNs), 

Spiking Neural Network (SNNs) [1][2] have the unique 

ability to retain past information within the membrane 

potential. The membrane potential is considered as the state 

of neurons and synapses. The changes of the membrane 

potential over time, which are influenced by both current and 

historical inputs, are referred to as temporal dynamics. Many 

SNN models, such as the widely used Leaky Integrate and 

Fire (LIF) model [3], calculate membrane potential as a leaky 

integration of the input with exponential decay. Once the 

membrane potential reaches a certain threshold, the neuron 

fires a spike and resets its membrane potential. In a more 

advanced model proposed by [4], called spatial temporal (ST) 

SNN, the temporal dynamics of synapses are also considered. 

It has been demonstrated both biologically [5] and 

computationally [6] that the temporal dynamics in neurons 

and synapses play a crucial role in enabling the network to 

perform spatiotemporal operations. 

A basic method of SNN training is to update the weights 

based on the timing of pre- and post-synaptic neuron spiking 

events [7]. When a pre-synaptic spiking event happens before 

post-synaptic spiking event within a time window, this leads 

to a potentiation of the synaptic weight. A contrast condition 

leads to a depression of weight. This weight update rule is 

also called Hebbian Learning Rule [8]. Vanilla Hebbian Rule 

is usually slow and less effective compared to the 

backpropagation algorithm used in ANN training [1].  

By modeling the temporal dynamics of neurons and 

synapses as filters with feedback connections [4], an SNN is 

seen as a recurrent neural network (RNN) and can be trained 

using Backpropagation Through Time (BPTT) [9][14]. This 

algorithm unrolls the network along the temporal axis and 

applies conventional backpropagation to the unrolled 

network. The gradients need to propagate from the output 

layer all the way back to the input layer and from present time 

back to the time when the input sequence begins. Therefore, 

BPTT requires a significant amount of memory to store the 

historical activities of neurons. Additionally, the learning 

process cannot start until the entire input sequence has been 

received. This either leads to an extended processing time or 

a high workload surge at the end of each input sequence. 

These limitations make BPTT unsuitable to be applied for 

online learning on edge devices with limited hardware 

resources. 

The limitations discussed above regarding BPTT have 

spurred a set of online training algorithms for SNN, including 

eligibility trace propagation (i.e., E-prop) [10], Online 

Training Through Time (OTTT) [11] and Deep Continuous 

Local Learning (DECOLLE) [12]. However, these 

algorithms ignore the temporal dynamics of the synapses 

[10][11] and some of them even overlook the reset process of 

the membrane potential  [11]. Consequently, their 

performance is compromised, particularly for longer input 

sequences. 

In this work we present SOLSA (Spatiotemporal Online 

Learning for Synaptic Adaptation), a learning algorithm to 

train SNNs with temporal filters on both synapses and neuron 

membrane potentials. SOLSA goes beyond learning synaptic 

weights. It can also update synapse filter kernels 

automatically. Our unique techniques such as scheduled 

weight update and early stop, allow SOLSA to converge 

faster and learn with better accuracy. 

The uniqueness and benefit of the SOLSA learning is 

summarized as the following: 

1. It does not record historical neuron activities for 

backpropagation over time, hence the memory complexity 

is much lower than that of BPTT.  

2. It is capable of learning not only the synapse weights but 

also the synaptic filter kernels. Compared to the existing 

non-BPTT based learning algorithms, which only update 
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the synapse weights, model learned by SOLSA can better 

adapt to the given spatiotemporal sequence. 

3. Unlike BPTT, which updates the model only once at the 

end of each input sequence and blindly computes the 

gradient for the entire input sequence, the scheduled 

update and early stop techniques allows SOLSA to update 

the model more frequently and focus more on the 

signature patterns. Hence, it outperforms BPTT in terms 

of learning accuracy.  

4. Our experimental results show that SNN models trained 

using SOLSA have an average of 14.2% higher accuracy 

in spatiotemporal pattern classification compared to 

models trained with existing non-BPTT algorithms. It also 

outperforms BPTT by improving the classification 

accuracy by 5% while requiring 72% less memory.  

The rest of the paper is organized as following. In Section 

II, we will introduce related works. Section III will present 

details of our proposed learning algorithm. In Section IV, we 

will show experimental results of SOLSA on different spatial 

temporal datasets and compare it with other learning 

algorithms. Section V gives the conclusions. 

II. BACKGROUND AND RELATED WORKS 

The LIF neuron uses a recurrent structure to maintain its 

membrane potential. A network formed by connected LIF 

neurons is a recurrent neural network and can be trained using 

backpropagation through time (BPTT) [18][19]. However, 

BPTT is not suitable for online learning [20] on edge devices. 

Before initiating backpropagation (i.e., learning), the entire 

input sequence, which can be quite long, must be received 

and complete the forward propagation process. This not only 

increases the latency but also causes an unbalanced temporal 

distribution of workload. Additionally, the delayed learning 

requires all neurons and synapses maintain a cycle-accurate 

record of their activities during the processing of input data, 

as this information is needed for backpropagation at the end. 

Consequently, a large memory is needed. 

To address the limitations of the original BPTT and 

enable edge applications, Truncated BPTT was proposed 

[15]. It truncates the original sequence to a bounded history 

considering only a fixed number of time steps during 

backpropagation. However, as a variation of the BPTT 

algorithm, truncated BPTT still requires maintaining a record 

of history for certain time steps. Therefore, it does not 

fundamentally change the overall memory and computation 

complexity. Furthermore, by ignoring long term history, 

Truncated BPTT introduces bias. Consequently, its 

performance deteriorates when dealing with very long 

sequences. 

To enable online learning and edge implementation, 

recent works have employed three-factor Hebbian Learning  

[16][17]. This type of learning typically incorporates three 

factors in the weight update process: a term that represents 

the presynaptic activities, a term that represents the 

postsynaptic activities, and a term that represents the 

neuromodulated global error signal. Additionally, the first 

two factors can be combined to form an eligibility trace [16], 

which serves as a transient memory or a flag. In a biological 

system, the eligibility trace is activated when there is a 

coincidence of spikes between a presynaptic neuron and a 

postsynaptic neuron. When the eligibility trace is active, 

signals, which may indicate novelty or surprise, can impact 

the connection weights between neurons. 

Several three-factor Hebbian learning algorithms have 

been proposed for online learning in SNNs [10][11][12]. One 

of them is Online Training Through Time (OTTT) [11], 

which trains SNNs with LIF neurons. OTTT avoided 

propagating gradients backward through time by 

disregarding the dependency of the neuron membrane 

potential on the output activities in the previous time step.  In 

other words, it ignores the membrane potential reset process. 

While this approximation simplifies the backpropagation 

process, it also leads to a degradation in learning 

performance. Another notable work [10], known as E-prop 

learning, calculates weight change as an accumulation of the 

product of two variables, the eligibility trace and the learning 

signal. The former is incrementally computed in a forward 

manner, while the latter approximates the influence of the 

spike output of a neuron on output error. Reference [12] 

proposed a method call DECOLLE which attaches random 

readout matrices to each layer and defines the global loss as 

sum of each layer’s loss. DECOLLE set all non-local 

gradients as zero to enforce locality. The weight update rule 

can then be defined as three parts, errors, pre-synaptic 

activity, and post-synaptic activity. The weights will be 

updated at each time step based on three parts in update rule. 

The algorithms based on three-factor Hebbian learning 

calculate weight changes incrementally without unrolling the 

network, making them suitable for online learning and edge 

implementation. However, existing algorithms of this kind 

tend to overlook the temporal dynamics on the synapses, 

which results in a degradation of learning performance as the 

sequence lengthens. 

 The proposed SOLSA learning can also be classified as 

a Three-Factor Hebbian Learning approach. It tackles the 

limitations of BPTT by incrementally updating the gradient 

through forward time-axis updates and interleaving forward 

and backward propagation. In comparison to the BPTT 

algorithm, SOLSA offers benefits such as reduced memory 

usage, shorter latency, and a more balanced distribution of 

workload. As a result, it is better suited for online training in 

edge applications. Furthermore, SOLSA distinguishes itself 

from other three-factor Hebbian learning algorithms by 

considering synapse temporal dynamics and incorporating 

various enhancement techniques. These include adaptive 

filter kernel, scheduled weight updates, and early stop 

mechanisms, all of which significantly contribute to the 

improved training performance of SOLSA. 

III. PROPOSED METHOD 

A. Neuron and Synapse Models 

In this work, we follow [4] to consider a layered network 

structure with temporal dynamics in both neurons and 

synapses. A summary of the notations used in this paper is 

given in TABLE I.  

The membrane potential of the th neuron at layer  
at time  is updated based on the following equation: 

 =  − 1 + ∑ , , 
 −  − 1 ,   (2) 

where  − 1 denotes the output of this neuron in previous 

time step. The output is calculated using the Heaviside 



 

activation function given in Equation (1),  =  −
 , where   is potential threshold, ,  is the weight 

coefficient and  is the post synaptic potential of the jth 

input. To model the filter effect of synapses,   is the 

output of a first order IIR filter updated as the follows: 

             =   − 1 +   − 1            (3) 

Equation (3) shows that the output of synapse filter in 

current time step is determined by its previous value and the 

input (i.e.,  − 1 ) in previous time stamps.   and 

  are coefficients of the filter that control the balance 

between the forward and backward taps of the filter. Fig. 1 

depicts a diagram of the neuron model.  

Fig. 2 illustrates the data flow graph of the SNN after 

being unrolled over time. Each column represents a single 

time step. The duration of the time step is determined by the 

intervals between consecutive data in the input sequence. 

During inference, the signal propagates from bottom to top 

and left to right. During training, when applying BPTT, the 

gradient propagates reversely from top right corner to the 

bottom left corner. The vertical propagation is referred to as 

the spatial propagation and the horizontal propagation is 

referred to as the temporal propagation. All parameters in the 

SNN, including  ,   , and  , can be trained using BPTT. 

 

Fig. 1. The architecture of the neuron model. 

TABLE I.  NOTATIONS USED IN THE PAPER 

Symbol Description 

 Membrane potential of the th neuron in layer  at time  

 Output of the th neuron in layer  at time  

  Synapse potential of the th connection in layer  (i.e., connection 

from the th neuron in layer  − 1 to the th neuron in layer ) 
 ,   Coefficients of synaptic filter of th connection in layer   

,  Synaptic weight of th connection in layer  
∙ Heaviside activation function of spiking neurons 

 Surrogate gradient of the Heaviside activation function  

 Gradient of  backpropagated through the spatial path 

E Output error (difference of the actual and expected output) 

 Output error at time t 

B. SOLSA Learning 

The Heaviside activation function is non-differentiable 

[21]. However, under a Gaussian noise ~0,  , the 

probability that a neuron with membrane potential V and 

threshold   will fire an output spike, which can be 

calculated using Equation (4), 

 +    = 
 erfc 

√ ,               (4) 

is differentiable. Following many previous works [4][13], we 

adopt the derivative of the spiking probability as the surrogate 

gradient for the Heaviside activation. Let  denote the 

derivative of spike activity of neuron i in layer l,  


 . 

 
Fig. 2. Unrolled ST SNN. 

We denote  as the error, which is the difference between 

the actual output and the expected output. The term “th 

connection in layer ” refers to the connection from the th 

neuron in layer  − 1 to the th neuron in layer . With the 

given error, the gradient of the weight   of the th 

connection in layer  can be expressed as Equation (5): 

                          



= ∑ 



   ,                         (5) 

where the term 


 calculates the impact of the membrane 

potential  on the error E.  

The  affects the error in two ways. Firstly, through 

the spatial path, it determines the neuron’s output  , 

which subsequently propagates to neurons in layer l+1 and 

beyond, ultimately reaching the output layer to determine the 

output error in the current time step. Secondly, through the 

temporal path,   determines the neuron’s membrane 

potential in the next time step (i.e.,  + 1) via the leaky 

integrate process, which will further impact the future output 

error.  Therefore, we can rewrite Equation (5) as the 

following expression:  

 

First, we analyze the spatial path. Using the surrogate 

gradient function, we know that 

 = . Using the chain 

rule, the spatial gradient can be further expanded as follows:  





  ∑ 












  

                    = ∑ 
 .          (7) 

As we can see, Equation (7) calculates the vertical 

backpropagation from the output layer to the lth layer. For the 

,                      (6)

Spatial Path Temporal Path



 

simplicity, we denote the spatial path gradient in (7) as  
and refer to it as the learning signal. 

Next, we analyze the temporal path in Equation (6). Note 

that 


 is just the one step shifted version of 


, we 

can rewrite (6) as the following: 


 =  +  + 1 + 






       (8) 

= ∑ ′




 … 

 ,      (9) 

where  is the length of the entire input sequence. Plugging 
(9) into (5) we get (10). 




= ∑ ∑ ′




 … 



    

We denote ∑ 



 … 

 


 using 

,  and refer to it as the Eligibility Trace. The Eligibility 

Trace can be updated incrementally using (11):  

,  = ,  − 1 
 + 


  

         =  − ′,  − 1 + ,             (11) 

Using the learning signal (′) and the eligibility 

trace , , we now have the SOLSA learning rule. 

                 



= ∑ ′ ∙ ,                      (12) 

Both the learning signal and eligibility trace rely only on 

signals of current and previous time steps. The entire 

algorithm can be implemented using a streaming process. It 

always moves forward in time. 

C. Adaptive Synapse Filter Kernel 

Previous works on BPTT training have also shown that 

optimizing the filter kernels, achieved by adapting   and 

 , leads to improved learning results [4]. We introduce an 

online technique that approximates the gradient with respect 

to the filter kernels.  

If we only consider time step , the gradient of error  
with respect to   and   can be calculated using the spatial 

backpropagation path as follows:  

∇  = 
 =  

 

 =  ∙  ∙  − 1, 

∇
 = 


=  

 



=  ∙  ∙  − 1.  
However, the error  is not solely influenced by neuron 

activities in time step , but also by activities during past time 

steps. We assume that the impact on the future error decays 

exponentially with time. To capture this historical impact, we 

calculate the overall gradient of  as follows: 




 ∇
 ∙ ∑  ,  




 ∇
 ∙ ∑  ,  

where 0 <  < 1 is a decay factor. Finally, we consider all 

 from time 0 to T, and calculate the gradient of   and 

  using (13) and (14): 


 = ∑ ∇  ∙ 

 ,                           (13) 




= ∑ ∇
 ∙ 

 .                          (14) 

D. Scheduled weight update 

Unlike BPTT, where gradients and weight updates are 

calculated at the end of the input sequence, SOLSA learning 

accumulates ∆  overtime. This enables us to update the 

network to reflect the partial results of learning even before 

the entire input sequence has been received. This facilitates 

faster convergence by allowing the SNN to escape inferior 

settings earlier. However, updating weights frequently at 

each time step can introduce noise due to local variations in 

the input sequence. Therefore, careful selection of when to 

update is crucial. We propose an approach called scheduled 

weight update, which selects specific time steps as update 

points and only update weights at these selected points. The 

number of update points serves as a hyper-parameter and is 

configured before training. Generally, a ratio of 1 to 50 

between the update points and the sequence length yields 

desirable results. 

Initially, the update schedule consists of only one update 

point, which is the end of the input sequence. At each time 

step , we calculate and record , the total absolute partial 

gradient of all neuron connections: 

 = ∑ 


 = ∑ ∑  ′
 ∙ ,   .  

The time step with the highest  are selected as an update 

point and added to the update schedule. We will repeat this 

process until the schedule has the required number of update 

points. 

E. Eearly-Stop Training 

For certain input sequences, the distinctive pattern that 
signifies the class information emerges right at the beginning. 
This enables the SNN model to make accurate predictions 
before reaching the end of the sequence. However, the data 
that follows the signature pattern may consist of random noise 
that does not contribute to the classification. Training the 
model using the data beyond the signature pattern will 
deteriorate the learned features. To address this issue, we 
propose an early-stop technique that focuses on the segment 
of the sequences containing useful information.  

For each training sample, the early-stop detector monitors 

the prediction accuracy, denoted as  , at every scheduled 

update point  . If the accuracy surpasses a predefined 

threshold indicating a correct prediction, a counter   is 

incremented. We stop processing this training sample when 

 reaches /2, where  is the total number of update points. 

Fig. 3 shows an illustrative example of the early stop 

training. The model is trained binary classification of input 

sequences. It has two output neurons, which generate spike 

trains  and . The output neuron with the higher 

spiking activities indicates the prediction. The accuracy 

function is defined as  = ∑ 
∑ ∑ 

, and the threshold is 

(10)



 

set to be 0.5. In other words, the prediction is considered 

correct if the neuron corresponding to the target class (y) 

generates more output spikes than the other neuron. In the 

figure,  = 4 and the  value reached /2 at the 3rd update 

point, which indicates an early stop of the training process for 

this input sample. 

 

Fig. 3. An example of early-stop training. 

IV. EXPERIMENTAL RESULTS 

We tested SOLSA learning on the classification of 

multivariate time series. The datasets are sequences of sensor 

readings from motion sensor, EEG sensor, and visual event 

sensor, etc. Except the DVS128 [23], all other datasets can be 

downloaded from The UCR Time Series Classification 

Archive and UCI Machine Learning Repository. Most of 

them consist of current readings of the sensors except 

DVS128, which consists of recoded visual events.  To 

convert the current readings into spikes, current-based LIF 

neurons [22] are employed in the first layer for temporal 

population coding. TABLE II. summarizes the key statistics 

of those datasets including their input and output dimensions 

and sequence length. The architectures of the SNN models 

used as the classifiers are also given. All layers are fully 

connected layers. All layers, including the input layer, are 

trainable. 

TABLE II.  DATASET INFORMATION 

Dataset Name 
Input 

dimension  

Sequence 

length 

Output 

size 
SNN architecture 

R
eg

u
la

r 

EMG gesture 8 100 7 8-150-150-7 

Finger mov. 28 50 2 28-100-100-2 

Basic motion 6 100 4 6-100-100-4 

Epilepsy 3 207 4 3-100-100-4 

Jap. Vowel 12 29 9 12-100-100-9 

RacketSports 6 30 4 6-100-100-4 

DVS128 4096 100 11 4096-100-100-11 

L
o
n

g
 

Self reg. scp 6 896 2 6-100-100-2 

EMG action 8 1000 10 8-200-200-10 

Four reference algorithms, namely BPTT [9], Truncated 

BPTT (T-BPTT) [15], E-prop [10], and OTTT [11], were 

implemented for comparison. The T-BPTT considers up to 

20 steps of historical information during training and 

disregards past information beyond that point. Both BPTT 

and T-BPTT require additional storage for the unrolled 

network, hence they are unsuitable for edge implementation. 

E-prop learning and OTTT are non-BPTT based, however, 

they do not have synapse filters or enhancement techniques 

such as scheduled weight update and early stop. Furthermore, 

OTTT omits the impact of membrane potential reset in the 

gradient approximation. For ablation test, three variants of 

SOLSA were created by disabling adaptive filter kernel or 

early stop, or a combination of both. TABLE III. summarized 

the non-BPTT algorithms tested in the experiment. 

A. Performance Comparison 

TABLE IV. compares different learning algorithms and 

SOLSA for their accuracy and memory usage. All training 

uses a batch size of 1 to resemble online learning. The results 

show that SOLSA achieves the highest accuracy among all 

algorithms for all datasets. In addition, it requires much lower 

memory usage compared to BPTT especially when data 

sequence is long. Truncated BPTT effectively reduces the 

overhead of temporal backpropagation and lowers the 

memory cost compared with original BPTT, however, as 

shown in TABLE IV. , its performance is unstable.  

TABLE III.  A SUMMERY OF TESTED NON-BPTT ALGORITHMS 

TABLE IV.  COMPARISON OF DIFFERENT LEARNING ALGORITHMS  

a.
 Online training using batch 1. 

From TABLE IV. , it can be observed that the SOLSA 

learning algorithm outperforms both E-prop and OTTT. On 

average, it improves the classification accuracy of the 9 

datasets by 30% and 66.5% compared to E-prop and OTTT 

respectively. It is worth noting that although the OTTT is a 

simpler algorithm than E-prop, it updates weights at every 

time step, while E-prop only updates at the end of the 

sequence. As a result, OTTT outperforms E-prop for certain 

datasets. 

B. Ablation Study of SOLSA 

In this section, we demonstrate the impact of the 

enhancement techniques by comparing SOLSA with the 3 

variants listed in TABLE III. We also implemented and 

compared it with an unscheduled SOLSA where the model is 

always updated only once at the end of the input sequence. 

For SOLSA without adaptive filter kernel (variant 3), fixed 

kernel coefficient (i.e.,  ,  ) are used for all synapses. We 

performed a hyper-parameter search and found the best 

combination of those two parameters that works for most of 

the datasets. We need to point out that such hyperparameter 

tuning is usually not practical for online learnings.  

TABLE V. presents the comparison results. We can see 

that the original SOLSA outperforms the variants for almost 

all cases. Comparing SOLSA with variant 3 shows that using 

adaptive filter kernel helps to improve the accuracy by more 

(target)

Update 

point 1

Update 

point 2

Update 

point 3

Update 

point 4

A(1)=1/2

C=0

A(1)=6/8

C=1

A(1)=9/13

C=2

(Early stop)

Feature SOLSA E-prop OTTT 
SOLSA 
variant 1 

SOLSA 
variant 2 

SOLSA 
variant 3 

Synapse filter       

Adaptive weight       

Adaptive kernel       

Impact of reset       

Scheduled updates       

Early stop       

Dataset 
BPTT based Three factor Hebbian 

Memory usage 

(MB) 

BPTT TBPTT SOLSA E-prop OTTT BPTT SOLSA 

EMG gesture 0.956 0.664 0.985 0.675 0.672 13.4 6.6 

Finger mov. 0.58 0.56 0.64 0.58 0.59 9.0 7.1 

Basic motion 1 0.25 1 0.925 1 13.4 7.5 

Epilepsy 0.941 0.676 0.971 0.816 0.904 22.7 9.9 

Jap. Vowel 0.926 0.951 0.981 0.944 0.969 7.1 6.6 

RacketSports 0.809 0.769 0.907 0.388 0.796 7.4 6.2 

DVS128 0.959 0.6 0.979 0.819 0.875a 105.8 67.2 

Self reg. scp 0.836 0.866 0.897 0.876 0.89 79.6 22.2 

EMG action 0.973 0.696 0.979 0.77 0.161 158.4 44.1 



 

than 5%. Comparing SOLSA with variant 2 shows that early 

stop in training leads to an average improvement of 17% in 

classification accuracy. Finally, by comparing SOLSA with 

its unscheduled version, we can see that using scheduled 

learning provides almost 20% accuracy improvements. 

TABLE V.  ABLATION STUDY: EARLY STOP AND ADAPTIVE KERNEL 

 

We also observed that, without adapting the filter kernels, 

the learning performance is very sensitive to the values of 

filter coefficients  and . To show the importance of filter 

adaptation, we tested different random combinations of fixed 

α and β values on each dataset and recorded the best, worst 

and medium accuracy of trained models as shown in Fig. 4. 

As mentioned earlier, variant 3 was obtained after extensive 

hyperparameter tunning to make sure that the same set of 

filter coefficients works relatively good for all datasets. Its 

accuracy is also shown in the plot. Finally, we list the 

accuracy of SOSA in the same plot as a reference. The results 

clearly show the importance of adapting the filter kernel 

coefficients instead of using the fixed value. 

 

Fig. 4. Accuracies of different  and  settings.  

V. CONCLUSION 

In this paper, we present SOLSA, an online learning 

algorithm for SNNs with both synapse and neuron dynamics. 

Enhancement techniques such as adaptive filter kernel, 

scheduled weight update and early stop are also presented. 

Compared with BPTT training, SOLSA requires much less 

memory storage and has more balanced temporal workload 

distribution, hence more suitable for edge implementation. 

Compared with other online learning algorithms, SOLSA 

leads to more accurate models with more robust performance. 

The algorithm is evaluated using data series collected from 

sensor readings, and the results indicate SOLSA provides 

outstanding performance in learning temporal sequences 

compared to existing algorithms. 
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Dataset 
Accuracy 

Unscheduled variant 1 variant 2 variant 3 SOLSA 

EMG gesture 0.912 0.942 0.671 0.957 0.985 

Finger mov. 0.56 0.65 0.59 0.58 0.64 

Basic motion 0.95 1 1 1 1 

Epilepsy 0.794 0.934 0.713 0.958 0.971 

Jap. Vowel 0.869 0.975 0.619 0.96 0.981 

RacketSports 0.598 0.855 0.901 0.835 0.907 

DVS128 0.895 0.93 0.959 0.93 0.979 

Self reg. scp 0.88 0.894 0.897 0.893 0.897 
EMG action 0.134 0.93 0.946 0.848 0.979 


