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Abstract— The Dynamic Vision Sensor (DVS) is an innovative
technology that efficiently captures and encodes visual infor-
mation in an event-driven manner. By combining it with event-
driven neuromorphic processing, the sparsity in DVS camera
output can result in high energy efficiency. However, similar to
many embedded systems, the off-chip communication between
the camera and processor presents a bottleneck in terms of
power consumption. Inspired by the predictive coding model
and expectation suppression phenomenon found in human
brain, we propose a temporal attention mechanism to throttle
the camera output and pay attention to it only when the visual
events cannot be well predicted. The predictive attention not
only reduces power consumption in the sensor-processor inter-
face but also effectively decreases the computational workload
by filtering out noisy events. We demonstrate that the predictive
attention can reduce 46.7% of data communication between
the camera and the processor and reduce 43.8% computation
activities in the processor.

I. INTRODUCTION

While human eyes are sensitive to color information,
certain animals like birds and insects excel in perceiving
objects in rapid motion[1]. Taking inspiration from this
phenomenon, event cameras are designed to detect changes
in light intensity. Among them, the Dynamic Vision Sensor
(DVS) is a representative event-based sensor that naturally
detects moving objects and filters out redundant informa-
tion automatically[2]. Unlike conventional RGB cameras
that capture image frames consisting of the light intensity
of every pixel, DVS cameras measure per-pixel brightness
changes and output events asynchronously. In the remainder
of this paper, we refer to these events as visual events. The
DVS cameras outperform their traditional counterparts in
several aspects[2]. For instance, the microsecond temporal
resolution of DVS cameras allows them to avoid motion blur,
and their high dynamic range (140dB compared to the 60dB
of conventional cameras) enables effective functioning in
low illumination conditions. They are particularly appealing
for their low energy dissipation and are commonly used
in energy-constrained systems where situation awareness is
required. The visual events generated by the DVS camera
are typically sparse. When processed by event-driven neuro-
morphic computing models, this sparsity allows for further
reduction in computation energy.

*This work is partially supported by the National Science Foundation
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Existing neuromorphic computing utilizes Spiking Neural
Network (SNN) models, which are known as the third
generation of neural networks. Spiking neurons communicate
and process information through discrete electrical impulses
referred to as spikes. Information is encoded using the rate
or interval of these spikes. Similarly to biological neurons,
SNNs are inherently asynchronous, and process information
in an event-driven manner [1]. SNNs have been successfully
applied to various tasks [3][4][5][6], demonstrating a poten-
tial in achieving high accuracy with low power consumption.
They have been utilized for classification [7][3] and object
detection [8][9] of DVS camera output, enabling real-time
visual analysis.

A DVS camera is connected to the back-end processor via
a USB port. State of the art neuromorphic processors such as
IBM TrueNorth [10] and Intel Loihi [11][12] exhibit power
consumption well below 1 Watt. The power consumption of
a DVS camera can also be as low as 30mW[13]. The energy
efficiency of data communication over USB channel ranges
from approximately 3.110−8 to 1.410−7 Joules per bit [14].
With a 128x128 image resolution, a conventional camera
capturing 30 frames per second generates 107,520 pixels per
second. Assuming that only 10% of the pixels experience
brightness change and it requires 3 bytes to describe an event,
the DVS camera will generate approximately 258kb data
per second. Consequently the transmission power required to
move the data amounts to approximately 8 mW to 36 mW.
Compared to the power consumption of the DVS camera
and back-end processor, the power consumption of their data
interface is not negligible.

It is widely accepted that human brain functions as a pre-
dictive machine[15][16]. The predictive coding model [17]
proposes that the brain consistently generates and updates
a ”mental model” of the environment to anticipate input
signals from the senses. The predictive behavior contributes
to the exceptional energy efficiency of the human brain.
Neuroscience experiments have demonstrated that neural
activity decreases when a stimulus is expected to occur
[18]. In other words, when the environment is predictable,
the brain suppresses sensory inputs and relies on prior
knowledge to infer information about the surrounding world.
This phenomenon is known as expectation suppression.

Inspired by the predictive coding and expectation suppres-
sion, we propose a predictive attention model to control the
output of the DVS camera. The model consists of two main



components: a predictor that anticipates future visual events
and an attention generator that produces a control signal to
regulate the output of the DVS sensor. The attention should
be guided by the high-level goal of the application. In this
study, our objective is to maintain a situation awareness, so
attention is generated to ensure the accuracy of predicted
visual events.

To implement the visual event predictor, we employ an
SNN-ANN hybrid auto-encoder. The SNN-based encoder
models the feedforward neural pathway, while the artificial
neural network (ANN) based decoder represents the feed-
back neural pathway. Depending on the attention level, the
predictor receives inputs from either the DVS camera or its
own predictions. When attention is high, the sensed events
are utilized, whereas when attention is low, the predicted
events are used. The predicted visual events can be seen
as an internal belief about the world, therefore, we consider
improving the prediction accuracy as equivalent to enhancing
situation awareness.

The conventional approach to assess the quality of video
prediction is by calculating the mean-square error (MSE)
between the predicted frame and the ground truth frame [19]
[20]. However, this metric is insufficient for measuring the
similarity between two sets of visual events. In this study,
we introduce a novel metric called event similarity (Esim)
and demonstrate that the Esim score demonstrates a stronger
correlation with human visual perception compared to MSE.

Our contributions can be summarized as follows:

• We present an attention-assisted hybrid architecture
that combines SNN and ANN for continuous visual
event prediction. Compared to an ANN-based prediction
model, our hybrid model on average improves the
quality of prediction by 14.5%.

• We have developed a novel evaluation metric to assess
the similarity between two sets of visual events. Unlike
metrics such as MSE, our Esim measurement provides
enhanced robustness against random noises and focuses
more on the differences in salient features.

• The proposed attention model effectively gates 46.7%
of the communication between the DVS camera and
the back-end processor, while maintaining an accept-
able level of situation awareness. Compared to random
gating at the same rate, a system utilizing attention-
based gating achieves a 81.1% higher level of situation
awareness.

• Moreover, by incorporating the predicted visual event,
which contains significantly less noise and emphasizes
salient features, we can reduce computation in the SNN-
based encoder network by 43.8%, leading to more
energy savings.

II. BACKGROUND AND RELATED WORKS

A. DVS data representation

A DVS camera generates an event when the
logarithmically-scaled change in light intensity exceeds a

certain threshold:{
pos event log(It+1)− log(It) > th.

neg event log(It)− log(It+1) > th.
(1)

The event recording process is pixel-specific, where each
pixel is evaluated independently of others. Each event con-
sists of a 2D location of the event (x, y), a timestamp t,
and a polarity p indicating whether it is a positive (light in-
tensity increase) or negative event (light intensity decrease).
Therefore, an event is recorded as a four-element tuple,
e = {x, y, t, p}, which is commonly known as Address Event
Representation (AER).

Typically, visual events are grouped into event frames.
Two grouping strategies are often used, i.e., dividing frames
based on equally time interval or equal number of events. In
this study, we employ the first strategy. Each event frame is
represented as a 2-dimensional ternary array, F ∈ BH×W ,
where B ∈ {0, 1,−1} corresponds to no event, positive
or negative events respectively. The dimension H × W
represents the camera resolution. All events within the same
frame are generated at approximately the same time, so their
individual timestamps are disregarded during processing.

B. Prediction Models

Video prediction has been extensively studied in the field
of deep learning. The objective is to generate a sequence of
future frames, denoted as Y = (Ŷt+1, Ŷt+2, ..., Ŷt+m) given
a sequence of n preceding frames X = (Xt−n, ..., Xt−1, Xt)
[21]. Training the video sequence model is self-supervised,
as it does not require additional label information.

To predict future frames, a model needs to possess a strong
understanding of the spatiotemporal correlations within a
video. Models such as recurrent neural networks (RNN)
and Long Short-Term Memory (LSTM) [22][23][24][25]
are commonly used. While the outcome of a prediction
model could be stochastic , the majority of works provide
deterministic predictions [21]. The MSE metric is often used
to evaluate the prediction quality. However, when dealing
with event-based data, this method exhibits limitations due to
the extreme sparsity of hot pixels (i.e., pixels with positive or
negative events). Under the MSE metric, most frames appear
”similar” to each other since large regions are often devoid of
events. To the best of our knowledge, no prior works have
been designed specifically to predict event frames from a
DVS camera.

C. Attention mechanism

The attention mechanism has demonstrated significant
success in machine learning, leading to improved model per-
formance [26][27][28] and reduced computation resources
[29][28]. Generally, there are three types of attention mech-
anisms. Spatial-wise attention coupled with channel-wise
attention is commonly used in convolutional neural network
models[28], while recurrent neural networks often employ
temporal attention[30]. Although relatively new, the attention
mechanism has also been successfully applied in SNNs.
For example, in [31], SNN spatial attention is used for



object recognition, while [32] focuses on discovering more
informative period of events in a redundant DVS event stream
using a squeeze-and-excitation[26] method. However, the
soft attention employed in these works does not help reduce
computation complexity. In contrast, our model generates
hard attention, ensuring that the input is queried only when
necessary, thus reducing communication and computation
overhead.

III. METHOD
The overall architecture of the proposed visual event

attention system comprises two main components: an
autoencoder-based visual event predictor and an attention
generator. The back-end processor buffers incoming visual
events and combines them into event frames. The predictor
takes an input event frame and predicts the next event
frame. The attention generator evaluates the quality of the
prediction and generates a binary gating signal to either
block or unblock the camera output. The autoencoder takes
a combination of the camera-sensed events and the predicted
events as its input.

Fig. 1: Overall visual predictive attention system architecture.

A. Visual Event Predictor

The architecture of the visual event predictor is illustrated
in Fig 2. The predictor consists of three components: an
SNN-based encoder, a sequence of residual blocks, and a
decoder for next frame generation. Each layer of the encoder
is a convolutional network of LIF neurons. The encoder
extracts temporal and spatial features from the incoming
sequence of event frames. The residual blocks are ANN-
based convolutional layer with skip structure. The decoder
consists of multiple layers of ANN-based deconvolutional
networks for generating the next frame. Feedforward skip
connections are inserted between corresponding layers in
the encoder and decoder. The output dimensions of each
layer are labeled beside the blocks. While the SNN en-
coder leverages the sparsity in the DVS camera output,
the ANN-based forecasting and frame generation provide
more flexibility and higher trainability as the neurons output
continuous values. Through experimentation, we discovered
that the skip connection is crucial for achieving accurate
predictions. Without the feedforward skip information, the
sparse activities within the network often result in an all-
zero output. Each pixel in the predicated frame may be in 3
possible states, i.e. positive, negative or no-event, a softmax

layer is used at the output to predict the probability of the
three possible states. Finally, events are sampled based on
the probability.

We employ leaky-integrate-and-fire (LIF) neuron in the
SNN encoder. The LIF neuron maintains a membrane po-
tential u through leaky integration of input spikes. When
the membrane potential exceeds the threshold, the neuron
generates an output spike and resets the membrane potential.
The dynamics of the LIF neuron are described by Equations
2 and 3. Here ut,n represents the membrane potential of a
neuron in layer n at time t, yt,n denotes the neuron’s output,
and Vth denotes the threshold of the neuron’s membrane
potential. In a convolutional-based SNN, each neuron is
solely connected to and receives signals from other neurons
within the receptive fields F from the previous layer.

ut,n =
∑
j∈F

wn
j y

t,n−1
j + τut−1,n(1− yt−1,n) (2)

yt,n =

{
1 if ut,n > Vth

0 otherwise
(3)

The predictor is trained using Cross Entropy(CE) loss:

L = − 1

H ·W

H·W∑
i=0

2∑
j=0

yi,j log ŷi,j , (4)

where ŷi,j and yi,j represent the estimated and ground
truth probability of pixel i having event j.

The activation function of the spiking neuron (Equation
3) is non-differentiable, making it unsuitable for direct
application of conventional backpropagation for training. A
commonly used approach is to employ a surrogate function
that approximates the gradient of the spikes’ activation
function. In this study, we utilize the arctangent function
and its derivative as surrogates for calculating the derivative
of the SNN activation function. The expressions for these
surrogates are provided below, where x and y epresent the
input and output of the activation function, respectively:

y =
1

π
arctan(

π

2
αx) +

1

2
(5)

∂y

∂x
=

α

2(1 + (π2αx)
2)

(6)

when α becomes larger, the function resembles a activation
function for spiking neuron, for our experiment, we set α =
2.

Fig 3 presents an example of the predicted frame and
the ground truth frame. In the image, the red and blue
dots represent positive and negative events, respectively.
Interestingly, we observed that the predicted frame exhibits
significantly less noise compared to the original frame. This
can be attributed to the fact that noise events are random
and lack any discernible pattern, making them inherently
unpredictable.



Fig. 2: Visual event predictor.

(a) sensor input (b) model prediction

Fig. 3: The prediction can reduce the noise and reflect a
region activity

B. Measuring Event Similarity

A reliable measure of similarity between two event frames
should accurately capture the level of overlap in their vi-
sual events. Taking inspiration from the Intersection over
Union (IOU) metric commonly used for evaluating object
bounding boxes, we propose a novel metric called Event
Similarity (Esim). Given two event frames, denoted as
F1 and F2 each comprising positive and negative visual
events, we begin by defining the intersection of F1 and
F2 as F1

⋂
F2 = {e = {x, y, p} | e ∈ F1, e ∈ F2}. Further-

more, we define the union of F1 and F2 as F1

⋃
F2 =

{e = {x, y, p} | e ∈ F1 ∥∈ F2}. The intersection of two
event frames only includes events that are present in both
frames, while the union contains events from either of the
frames. Esim is defined by the following equation:

Esim(F1, F2) =
| F1 ∩ F2 |
| F1 ∪ F2 |

(7)

where | · | is ℓ1 norm. Formula denotes the ratio of common
visual events over the number of total visual events in these
two frames.

Using Esim to assess the quality of predictions by compar-
ing them to the ground truth frame has certain limitations.
Firstly, if the predicted event shifts from its ground truth
location, regardless of the extent of the shift, there is no

intersection between the two and the Esim score will be
0. Furthermore, due to its high sensitivity, the output of a
DVS camera often contains a considerable number of noise
events, sometimes even surpassing the number of informative
events. Consequently, discrepancies with noise events can
significantly diminish the Esim score of the predicted frame.

The aforementioned limitations arise from the fact that
Esim relies on exact event matching at a per-pixel level,
which is unnecessary. To introduce some tolerance towards
random noise and small shifts, we compare the events
within a small region surrounding the pixel. Similar to using
polarized filter for image noise reduction, we define the
polarity intensity(PI) of a h × w region centered at locate
(x, y) as

PI(x, y) =
|Epos| − |Eneg|

h · w
(8)

where |Epos| and |Eneg| represent the number positive and
negative events within the specified region. Each pixel is
polarized by checking the polarity intensity of its surrounding
area against a threshold using the following equation:

P ′(x, y) =


1 PI(x, y) > th

−1 PI(x, y) < −th

0 PI(x, y) < |th|
(9)

The Esim calculated based on the array with polarized
value of the pixel is refer to as Region Esim. Region
Esim with a n × n polarization size is denoted as Esimn.
The threshold can be tuned under different scenario(we use
0.2501, which proves to be fine value for our experiment for
Esim2 and Esim4). Because one frame consists of random
noise while the other does not. Despite featuring similar
events related to ball movement, when using Esim, their
similarity is nearly zero. However, when employing Region
Esim, their similarity score exceeds to a reasonable level.

We compared Esim with Mean Square Similarity (MSS),
which is mathematically defined as 1−MSE. The reference
frame and the comparison frames are provided in Fig. 4,



with the white box indicating the location of the ball in the
reference frame. The metric scores are reported in Table I. It
is evident that MSS fails to accurately depict the magnitude
of the displacement of the ball’s location. In contrast, Esim-
based metrics is more suitable in measuring the similarity
between the two event frames.

Fig. 4: The prediction can reduce the noise and reflect a
region activity. The left most figure is the reference, others
are figures where the ball was moved to the right by a
percentage of radius(the black box denotes the reference
position).

TABLE I: Metric Score on Noised Shifted Ball

offset 0% 5% 10% 25%
1-MSE 0.9949 0.9898 0.9848 0.9798
Esim 0.599 0.3321 0.1438 0.0022
Esim2 0.9719 0.5230 0.2433 0.0000
Esim4 0.9882 0.5980 0.3412 0.0000

C. Prediction Evaluator and attention generator

Video prediction exhibits robust spatial and temporal con-
sistency. By feeding the predicted frame back into the au-
toencoder’s input, we can continuously generate a sequence
of future frames, extending beyond just the immediate next
frame. However, as this iterative process continues, errors
accumulate, leading to a degradation in the prediction quality.
At this time, it becomes crucial to ”take a look” (or pay
attention) to the sensor stream once again in order to perceive
the actual information and rectify the prediction errors. The
challenge lies in determining when to look.

As discussed in previous section, the region Esim can be
used to measure the similarity between the predicted and
the ground truth frame. However, since the system lacks
access to the ground truth without ”looking” at the camera
output, we must estimate the Region Esim score based on
the predicted frame. Fortunately, this is feasible because a
poorly generated event frame usually is noisy and the events
do not form a clear contour of the object. By examining the
event distribution within the predicted frame, we can make
a rough estimation of how closely the prediction resembles
the ground truth. Moreover, the quality of predictions often
deteriorates significantly when the object changes its current
trajectory. By observing the sequence of event frames, we
can make a general prediction of when such a change is
likely to occur.

In this work, we developed a neural network based evalu-
ator to predict the Region Esim score of the predicted frame.
The architecture of the evaluator is illustrated in figure 5.
The evaluator architecture is a typical SNN feature extractor.
It takes channel-wise concatenation of the first frame and
the current prediction as input and the concatenation was
continuously fed into the evaluator for 10 time steps and then
outputs a confidence of current prediction. The training of
the evaluator is same as and independent from the predictor.

Fig. 5: Esim estimation model

IV. EXPERIMENT RESULT

A. Experimental Setup

Our experiments were conducted on four datasets: Bounc-
ingBall, MovingMnist, Visevent[33], and DVS128[34]. All
of them contain sequences of event frames from a DVS
camera. Both BouncingBall and MovingMnist are syn-
thetic datasets. BouncingBall offers resolutions of 64x64 or
256x256 and features three balls moving in straight path
and bouncing off boundaries or each other upon collision.
MovingMnist, on the other hand, has a resolution of 64x64
and showcases two MNIST digits bouncing within the scene.
Visevent is specifically designed for object tracking of pedes-
trians and vehicles in street scenarios. DVS128 captures the
upper body’s moving gestures of a man, with a resolution of
128 × 128. For each dataset, we use 50% of the sequences
as training set and the remaining as the testing set. During
the training, the learning rate is set to 1e− 3, the batch size
to 8, and a total of 2000 epochs were trained .

B. Predictor Performance

TABLE II: Predictor Performance

Dataset frame size SNN ANN
BouncingBall64 (64,64) 0.801 0.7289
BouncingBall256 (256,256) 0.589 0.5124
MovingMnist (64,64) 0.691 0.6702
DVSGesture (128,128) 0.502 0.3918
Visevent (256,256) 0.317 0.2726

We tested our predictor on aforementioned datasets and
reported the average Esim4 score in Table II. We also trained
an ANN predictor as a baseline. It has a similar architecture
except that an LSTM-based encoder is used to replace the
SNN encoder. However, due to the very sparse input, the
accuracy of ANN prediction is much lower than SNN. In
addition, the ANN in general does not support event-driven
operation, hence will have more computation workload.

The predictor also demonstrates its ability to significantly
reduce noise in the input. To evaluate its noise tolerance,



we manually added Gaussian noise to the test set and passed
the noisy frames through the predictor. We introduced a term
called ”relative Esim” to quantify the prediction’s robustness.
The relative Esim is calculated as the ratio of the Esim
scores between predictions with noisy input and predictions
with clean input. By gradually increasing the noise level,
we observed the corresponding changes in the relative Esim.
The trends for the four datasets are depicted in Fig 6. As
we can see, the predictor can tolerate about from 47.3%
(bouncingball64) to 52.1% (visevent) noise, while maintain
a prediction that is 90% similar to the prediction with clean
input. In other words, the predictor is capable of filtering
out from 32.0%(bouncingball64) to 43.8% (visevent)noisy
events. This can be turned into reduced computation in the
event-driven SNN encoder.

Fig. 6: Relative performance reduction as noise increases.

C. Attention Directed Situation Awareness

We further apply the evaluator to continuously estimate
the Esim score of the prediction. If the score falls below
a threshold, the camera output is attended, and a sensed
frame is used to replace the poorly predicted frame while the
prediction continues. Fig 7 shows an example of predicted
frames. The 3th frame is replaced by the sensed information.

Fig. 7: Attention assisted sequence prediction of MovingM-
nist (The red box indicates the input of next time step.)

Fig 8 illustrates how the prediction quality varies through-
out the attention process. The black lines represent the
actual Esim score of the prediction after comparing it with
the ground truth, while the grey lines represent the Esim
score estimated by the evaluator. The red dot indicates the
predicted Esim right after the sensor is attended, and the
green line represents the threshold. As we can see that the

evaluator gives quite good estimation of the Esim score of
the prediction. Each time the sensor input is received, the
prediction quality is reinforced. We can also see that, when
the predictor maintaing an acceptable relative performance,
with the proposed attention mechanism, the sensor processor
interface can be gated for about 76.7%(bouncingball64) of
time on average, leading to energy reduction in data commu-
nication. Even in the most complex scenario(visevent), the
gating rate can still be up to 46.7% . Due to the fact that the
prediction contains significantly fewer noise events compared
to the sensor input, when the sensor is gated, the encoder
experiences lower computational activity. This observation
aligns with the neurological observation that neurons exhibit
reduced activity when attention levels are low.

Fig. 8: Evaluator assisted Situation Awareness.

Fig. 9: Average score comparison to random gated sensor
and periodically gated sensor.

We further show that the attention is carefully timed to
ensure situation awareness. To evaluate this, we compared
our attention mechanism with a randomly and a periodical-
lytimed attention mechanism using the same attention rate.
By adjusting the evaluation threshold, we varied the rough
attention rate, which represents the percentage of time that
the sensor is open, ranging from 90% to 10%. We used the
quality of the prediction as a metric to measure situation
awareness. The results are presented in Fig. 9. It is evident
that, on average, our attention model provides 81% better
awareness compared to the random attention mechanism.



D. Conclusion
In this work, we have designed a generative model for

predicting the next frame using inputs from a DVS camera.
This model combines the strengths of a deep SNN encoder
and an ANN decoder. We have introduced Esim as an
evaluation metric to assess the quality of the predictions.
An evaluator is developed to estimate the Esim score from
predicted event frames and controls the output of the DVS
camera based on the attention level. We have compared the
performance of the predictive model with both the proposed
attention mechanism and a random attention mechanism. The
results demonstrate that the proposed attention mechanism
achieves superior situation awareness. Additionally, the pre-
dicted frames contain significantly less noise, resulting in
reduced computational requirements. Overall, the proposed
predictive attention mechanism offers a promising approach
to decrease both communication and computational energy
consumption.

ACKNOWLEDGEMENT

This work is partially supported by the National Science
Foundation I/UCRC ASIC (Alternative Sustainable and In-
telligent Computing) Center (CNS-1822165).

REFERENCES

[1] M. F. Land, “Motion and vision: why animals move their eyes,”
Journal of Comparative Physiology A, vol. 185, pp. 341–352, 1999.

[2] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 44, no. 1, pp. 154–180, 2020.

[3] M. Yao, H. Gao, G. Zhao, D. Wang, Y. Lin, Z. Yang, and G. Li,
“Temporal-wise attention spiking neural networks for event streams
classification,” CoRR, vol. abs/2107.11711, 2021. [Online]. Available:
https://arxiv.org/abs/2107.11711

[4] D. Roy, P. Panda, and K. Roy, “Synthesizing images from
spatio-temporal representations using spike-based backpropaga-
tion,” CoRR, vol. abs/1906.08861, 2019. [Online]. Available:
http://arxiv.org/abs/1906.08861

[5] H. Kamata, Y. Mukuta, and T. Harada, “Fully spiking variational
autoencoder,” CoRR, vol. abs/2110.00375, 2021. [Online]. Available:
https://arxiv.org/abs/2110.00375

[6] Y. Hu, J. Binas, D. Neil, S. Liu, and T. Delbrück,
“DDD20 end-to-end event camera driving dataset: Fusing
frames and events with deep learning for improved steering
prediction,” CoRR, vol. abs/2005.08605, 2020. [Online]. Available:
https://arxiv.org/abs/2005.08605

[7] X. She, S. Dash, and S. Mukhopadhyay, “Sequence approximation
using feedforward spiking neural network for spatiotemporal learning:
Theory and optimization methods,” in The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. [Online]. Available:
https://openreview.net/forum?id=bp-LJ4y XC

[8] H. Liu, D. P. Moeys, G. Das, D. Neil, S.-C. Liu, and T. Delbrück,
“Combined frame- and event-based detection and tracking,” in 2016
IEEE International Symposium on Circuits and Systems (ISCAS),
2016, pp. 2511–2514.

[9] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza, “Feature
detection and tracking with the dynamic and active-pixel vision sensor
(davis),” in 2016 Second International Conference on Event-based
Control, Communication, and Signal Processing (EBCCSP), 2016, pp.
1–7.

[10] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al.,
“Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip,” IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 34, no. 10, pp.
1537–1557, 2015.

[11] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[12] G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B.
Shrestha, F. T. Sommer, and M. Davies, “Efficient neuromorphic
signal processing with loihi 2,” CoRR, vol. abs/2111.03746, 2021.
[Online]. Available: https://arxiv.org/abs/2111.03746

[13] M. Zaffar, S. Ehsan, R. Stolkin, and K. D. McDonald-
Maier, “Sensors, SLAM and long-term autonomy: A
review,” CoRR, vol. abs/1807.01605, 2018. [Online]. Available:
http://arxiv.org/abs/1807.01605

[14] S. Lurye, “Surges in mobile energy consumption during
USB charging and data exchange – Securelist,” 7 2016.
[Online]. Available: https://securelist.com/surges-in-mobile-energy-
consumption-during-usb-charging-and-data-exchange/75297/

[15] A. Clark, “Whatever next? predictive brains, situated agents, and the
future of cognitive science,” Behavioral and brain sciences, vol. 36,
no. 3, pp. 181–204, 2013.

[16] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hin-
ton, “Backpropagation and the brain,” Nature Reviews Neuroscience,
vol. 21, no. 6, pp. 335–346, 2020.

[17] Y. Huang and R. P. Rao, “Predictive coding,” Wiley Interdisciplinary
Reviews: Cognitive Science, vol. 2, no. 5, pp. 580–593, 2011.

[18] K. S. Walsh and D. P. McGovern, “Expectation suppression dampens
sensory representations of predicted stimuli,” Journal of Neuroscience,
vol. 38, no. 50, pp. 10 592–10 594, 2018.

[19] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans-
actions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[20] Y. Zhou, H. Dong, and A. El Saddik, “Deep learning in next-frame
prediction: A benchmark review,” IEEE Access, vol. 8, pp. 69 273–
69 283, 2020.

[21] S. Oprea, P. Martinez-Gonzalez, A. Garcia-Garcia, J. A. Castro-Vargas,
S. Orts-Escolano, J. Garcia-Rodriguez, and A. Argyros, “A review on
deep learning techniques for video prediction,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 6, pp. 2806–
2826, 2022.

[22] C. Lee, A. K. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and
K. Roy, “Spike-flownet: event-based optical flow estimation with
energy-efficient hybrid neural networks,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXIX 16. Springer, 2020, pp. 366–382.

[23] W. Lotter, G. Kreiman, and D. D. Cox, “Deep predictive
coding networks for video prediction and unsupervised
learning,” CoRR, vol. abs/1605.08104, 2016. [Online]. Available:
http://arxiv.org/abs/1605.08104

[24] Y. Wang, Z. Gao, M. Long, J. Wang, and P. S. Yu, “Predrnn++:
Towards A resolution of the deep-in-time dilemma in spatiotemporal
predictive learning,” CoRR, vol. abs/1804.06300, 2018. [Online].
Available: http://arxiv.org/abs/1804.06300

[25] R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and
H. Lee, “Learning to generate long-term future via hierarchical
prediction,” CoRR, vol. abs/1704.05831, 2017. [Online]. Available:
http://arxiv.org/abs/1704.05831

[26] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation
networks,” CoRR, vol. abs/1709.01507, 2017. [Online]. Available:
http://arxiv.org/abs/1709.01507

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[28] S. Woo, J. Park, J. Lee, and I. S. Kweon, “CBAM: convolutional
block attention module,” CoRR, vol. abs/1807.06521, 2018. [Online].
Available: http://arxiv.org/abs/1807.06521

[29] A. Papadopoulos, P. Korus, and N. D. Memon, “Hard-attention for
scalable image classification,” CoRR, vol. abs/2102.10212, 2021.
[Online]. Available: https://arxiv.org/abs/2102.10212

[30] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” CoRR, vol. abs/1409.3215, 2014.
[Online]. Available: http://arxiv.org/abs/1409.3215

[31] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci,
“Attention mechanisms for object recognition with event-based



cameras,” CoRR, vol. abs/1807.09480, 2018. [Online]. Available:
http://arxiv.org/abs/1807.09480

[32] M. Yao, H. Gao, G. Zhao, D. Wang, Y. Lin, Z. Yang, and G. Li,
“Temporal-wise attention spiking neural networks for event streams
classification,” CoRR, vol. abs/2107.11711, 2021. [Online]. Available:
https://arxiv.org/abs/2107.11711

[33] X. Wang, J. Li, L. Zhu, Z. Zhang, Z. Chen, X. Li, Y. Wang, Y. Tian,
and F. Wu, “Visevent: Reliable object tracking via collaboration of
frame and event flows,” arXiv preprint arXiv:2108.05015, 2021.

[34] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 7243–7252.


