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Abstract

Conducting research with human subjects can be difficult because of limited sample sizes and small empirical effects.
We demonstrate that this problem can yield patterns of results that are practically indistinguishable from flipping a
coin to determine the direction of treatment effects. We use this idea of random conclusions to establish a baseline for
interpreting effect-size estimates, in turn producing more stringent thresholds for hypothesis testing and for statistical-
power calculations. An examination of recent meta-analyses in psychology, neuroscience, and medicine confirms
that, even if all considered effects are real, results involving small effects are indeed indistinguishable from random

conclusions.
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Introduction

Human-subjects research often involves noisy measures
and limited sample sizes. Accordingly, small effects and
low statistical power are typical in many areas of behav-
ioral and medical science (Marek et al., 2022; Szucs &
Ioannidis, 2017). Some argue that this situation is ten-
able because the ongoing identification of small effects
amounts to a steady accumulation of knowledge (Gotz
et al., 2022). We argue to the contrary. Specifically, we
show that the study of small effects frequently produces
results that are indistinguishable from flipping a coin
to determine the direction of an experimental treat-
ment’s effect. We use this idea to develop a benchmark
based on minimum acceptable estimation accuracy.
This benchmark yields an intuitive interpretation of
effect-size estimates—one based in accurate estimation.
We show that calibrating existing tests to our bench-
mark yields far stricter thresholds for hypothesis testing
and for statistical-power calculations. Our work is
intended to spark a larger discussion within the scien-
tific community on acceptable estimation accuracy, the
interpretation of effects, and statistical standards.

Although there are many exceptions, behavioral sci-
entists almost universally test null hypotheses, which
are often formulated as two or more means being
exactly equal to one another. Much ink has been spilled
noting the shortcomings of this approach (e.g., Krantz,
1999: Nickerson, 2000; van de Schoot et al., 2011).
Cohen (1994) famously criticized the null hypothesis
through his “nil” hypothesis critique, describing it as a
conceptual tool that is ill-suited for answering substan-
tive research questions. He noted that for continuous
dependent variables, it is simply impossible for two
population means to be truly equal to one another. This
means that the null hypothesis acts as a straw man
to be knocked down at a given sample size. By his
critique, all effects exist in a trivial sense; it just may
be that some are so small that they do not warrant
attention. A more meaningful line of investigation is
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determining whether effects are accurately estimated
and characterized.

What constitutes acceptable estimation accuracy?
This question is challenging to answer and fraught with
subjectivity. A confidence interval (CD) deemed accept-
ably narrow by one scientist may be unacceptably wide
to another. We seek to answer this question by the use
of a reference—a foil—with undeniable negative quali-
ties. To better understand the accuracy of standard
methods, we will compare them against a foil estima-
tion process that is, by construction, incapable of accu-
rately estimating effects. Such a foil is useful for
handling questions of subjectivity. If a community of
scientists agree that this foil is unacceptably inaccurate,
then any estimation process that cannot be distin-
guished from it is also unacceptably inaccurate.

Our foil must be tailored to the types of questions
that behavioral scientists ask and to how they make
decisions about data. Behavioral scientists often formu-
late directional hypotheses about treatment effects. Is
the population mean of Group A larger than that of
Group B? A strong foil would offer zero information
about the correct direction of effects. A foil could ran-
domize the direction of any observed effect; for exam-
ple, which group mean is larger than another would be
decided via a coin flip. Such a foil creates a worst-case
scenario for evaluating any directional hypothesis. In
addition, behavioral scientists typically use the outcome
of a statistical test to conclude whether a treatment
effect is detected. In keeping with our estimation focus,
an ideal foil would remove effect detection from the
comparison. One way to handle this is for the foil to
correctly detect whether an effect exists at similar, or
identical, rates as standard methods. A scientist using
this foil would correctly reject a relevant null hypothesis
just as often as someone using standard estimation
methods. This would make the foil especially useful for
evaluating published findings in the literature.

Scientists using such a foil would arrive at random
conclusions regarding their data. All else being equal,
they would detect effects as often as scientists using
standard methods, but would be incapable of accurately
estimating and characterizing them. The logic is straight-
forward: If one accepts that arriving at random conclu-
sions is unscientific and inaccurate, then it becomes
incumbent on the scientific community to use statistical
procedures that would be distinguishable from such a
foil.! In the present work, we focus on the canonical
case of using sample means to estimate population
means for two independent groups. Our proposed foil
consists of an estimation process that randomizes the
direction of treatment effects while still correctly reject-
ing a null hypothesis as often as standard methods.

Our analyses reveal that distinguishing sample means
from such a foil requires far larger sample sizes than
typically employed in the behavioral sciences, espe-
cially when studying the kinds of small effects that are
commonplace in the psychological literature. We also
show that our foil comparison naturally relates to many
existing tests and methods, including those based on
traditional null hypotheses. We leverage these connec-
tions to provide new calibrations for existing tech-
niques. For power analyses, we show that typical power
thresholds of .80 are not sufficient to rule out unac-
ceptable estimation accuracy. Linking our argument to
hypothesis testing, we show that far stricter thresholds
(a0 =.0005) are required if sufficient estimation accuracy
is to be ensured. We also provide a simple methodology
that allows researchers to convert a common measure
of effect size, Cohen’s d, into an easily understood
measure of estimation accuracy on the basis of our foil.
This methodology can be applied to CIs over Cohen’s
d, allowing researchers to determine whether their esti-
mates are acceptably accurate. Finally, we examine a
collection of meta-analyses from the behavioral sci-
ences, finding that typical estimates in many fields of
study are indistinguishable from our random conclu-
sions foil.

Ultimately, all scientific decisions regarding data are
made by human beings. A key aim of any statistical
methodology is to provide characterizations of data that
researchers can understand. What we provide in the
current work is simply a perspective, one grounded in
a common experimental design with linkages to many
other familiar statistical quantities and methods. It is
through this framing that we aim to push forward the
conversation on estimation accuracy and replication
efforts. To further understand our approach and provide
precise definitions, consider the following scenario.

A Tale of Two Labs

Consider two hypothetical laboratories, Lab 1 and Lab
2, studying an effect—for instance, the efficacy of a
drug. Both labs use a treatment condition (Group A)
and a control condition (Group B) and compare the
sample means from each group, x, and Xxp, on some
outcome measure. These sample means underpin the
statistical tests conducted by both labs and provide
point estimates for the population means, p, and pg,
that instantiate their scientific hypotheses regarding the
drug’s effect. Assume that the drug has a true effect

8 >0, where 6 :%, with o being the standard

deviation of responses from the populations.?
Unfortunately, Lab 2 has a glitch in their data-analysis
software—it randomly assigns, with equal likelihood,
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the labels of “treatment” and “control” to those means.
That is, if Lab 2 conducted a study for which the actual
sample means for the two conditions were X, =7 and
Xxp =3, the software would instead report x, =3 and
Xy =7 with probability equal to .5, and the truth cannot
be recovered. We refer to this procedure as a random-
conclusions estimator (RCE) because the direction of
the effect—whether the drug helps or harms—is deter-
mined at random. Although mathematically related, the
RCE is distinct from a classic Fisher randomization test
in which labels are randomized at the individual
response level to generate a null, no-effect reference
distribution.

If Lab 2’s error came to light, retraction of any study
that relied on this software would be demanded, and a
drug approved on the basis of such results would (right-
fully) be recalled. But Lab 2 provides an interesting
comparison with Lab 1, especially when considering
issues of replication and reliability. Lab 2 will correctly
reject the null hypothesis, H : p, = pu;, exactly as often
as Lab 1 using a two-tailed ¢ test. Barring preregistration
restrictions, both labs will publish results at similar rates.
In this way, Lab 2 will pollute the scientific literature
with random conclusions and, in the case of drug trials,
potentially claim evidence for dangerous treatments.

Lab 1 and Lab 2 are identical with the exception that
Lab 2 is using an RCE, which, by any measure, is not
science because the direction of effects (including pub-
lished effects) is determined via a coin flip. Intuitively,
we would like to believe that results from the two labs
would be readily distinguishable. Unfortunately, in many
areas of behavioral science, even if all effects exist, Lab
2’s results will often be strikingly similar to Lab 1’s, and
the gain from removing their results from the literature
may be marginal at best. This situation is illustrated in
Figure 1, which presents scenarios for effect sizes that
are conventionally considered large, medium, and small
(yet interpretable; Cohen, 1988; Sawilowsky, 2009). For
simplicity, these scenarios assume that outcomes in both
conditions are normally distributed with unit variance.
The left and right columns of Figure 1 illustrate the
sampling distributions of mean estimates in each of the
labs. Each dot represents a pair of means from a single
study. How well these means estimate the population
means n, and py is quantified in terms of a common
metric for assessing estimation accuracy: mean-squared
error (MSE; see the Appendix).

In the top row of Figure 1, the effect size is large.
Lab 2’s bimodal distribution of estimates clearly evi-
dences the software error, and the resulting MSE is 19
times larger than Lab 1’s. We use y to denote the ratio

%; y has a lower bound of 1, given that there is

MSE

no scenario in which Lab 2’s estimates will be, on average,

Labl

more accurate than Lab 1’s. The middle and bottom
rows of Figure 1 illustrate how the estimates from the
two labs converge as effect size becomes smaller, with
Lab 2’s distribution of estimates eventually becoming
unimodal. These changes are indexed by y: In the bot-
tom row, y =1.5, and estimates from the two labs are
visually nearly indistinguishable, an impression con-
firmed by a small Wasserstein metric (Rubner et al.,
2000) and the large number of replicates needed (at
least 54 per lab) to reliably distinguish the distributions
of results from the two labs via a Kolmogorov-Smirnov
test (see the Appendix).

Effect size and sample size combinations like those
in the bottom row of Figure 1 raise an important ques-
tion: If Lab 2’s results are subject to retraction, how
should we interpret Lab 1’s results? Put differently, if
one’s results look unscientific, perhaps they are unsci-
entific. A computer glitch on the scale of Lab 2’s results
is, one hopes, an unlikely occurrence, but the compari-
son is useful in illustrating what a worst-case estimator
could look like and why it would be problematic if it
were indistinguishable from current practice. Within
the behavioral sciences, many of the hypotheses being
tested, if not the vast majority, are directional in nature.
The RCE completely randomizes the direction of effects,
removing any information about direction from the
data. Yet the RCE is special in that it still detects effects
at the same rate as sample means via a nondirectional
t test, which is, once again, ubiquitous practice in the
behavioral sciences. In this way, our RCE comparison
provides an interesting new perspective on published
literature in the field, which often hinges upon the suc-
cessful reporting of a significant test. We are not seri-
ously suggesting that such a computer glitch exists, but
we do think it highly problematic if a large corpus of
work within the behavioral sciences is indistinguishable
from such an error.?

General Formulation

If the goal is to be distinguishable from a veritable Lab 2,
as instantiated by the RCE, we can use Wy as an index
to set standards for hypothesis testing and sample-size
planning. As shown in the Appendix, y simplifies to

2
Y@y =" 2 2+ =3 %))

where 7 is the sample size per group. Equation 1 is
straightforward to interpret: For given values of 8 and
n, sample means are y times as accurate (in terms of
MSE) as the RCE. Although v is distribution-free and
interpretable outside of any testing framework, it func-
tionally relates to a two-sample ¢ test and the resulting
p values. See the Appendix for connections between y
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Fig. 1. Distribution of sample mean estimates x, and Xp for Lab 1 and Lab 2. Each row corresponds
to a different combination of effect size d and sample size per group n. The ratio of mean-squared

error (MSE) values for the two labs, MSE 4pp , is represented by . To facilitate visualization, we report
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all relevant values for each comparison from both Lab 1 and Lab 2 (8, 2, MSE) in the Lab 1 panel.
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and other metrics, including out-of-sample R*. This
relationship allows us to reexamine hypothesis-testing
and statistical-power standards by calibrating to mini-
mally acceptable estimation, as opposed to detection
error rates against a null hypothesis. The mathematics
are familiar, but the RCE comparison offers new inter-
pretation to these techniques.

Determining a minimum acceptable y for a given
scientific discipline is perhaps best decided on a case-
by-case basis, taking into consideration specific research
goals (S. F. Anderson & Maxwell, 2016; Navarro, 2019).
Here, we demonstrate the consequences of a threshold
of 3 for the interpretation of results and sample-size
planning. Although somewhat arbitrary and perhaps
modest, this threshold is motivated by the logic illus-
trated in Figure 1. When y <3, the sampling distribu-
tion of the RCE becomes unimodal for normal random
variables (Figs. A3-A7, Appendix), and the number of
study replicates required to reliably distinguish it from
sample means becomes impractical (Table A1). If we
take our illustration with the two labs seriously, poor y
values imply that members of Lab 1 and Lab 2 could
spend their entire careers replicating scores of studies
and be unable to reject the null hypothesis that they are
using the same estimator (see the Appendix).

Table Al in the Appendix characterizes V¥ in terms
of the information about the direction of effect that is
gained by using sample means versus the RCE. For
example, for y=1.5, the usage of sample means
reduces the uncertainty about the correct direction of
effects by only 29% compared with the total uncertainty
given by the RCE (see also Fig. Al, Appendix). In this
way, our RCE comparison links directly to the concept
of Type S errors regarding the sign of the effect (Gelman
& Carlin, 2014; Gelman & Tuerlinckx, 2000). See also
recent work by Domingue et al. (2021), who applied
the concept of weighted coins to develop a measure of
predictive accuracy for binary outcomes.

Applications to CIs and Hypothesis
Testing

Applying Equation 1 to the bounds of a 95% CI over &
provides researchers a simple, transparent method to
gauge how accurately a range of plausible effects is
being estimated. For example, consider a study with a
sample size of 50 that yields an effect size point esti-
mate d of 0.5 and a 95% CI equal to [0.10,0.89] (see,
e.g., Cumming & Finch, 2001). This interval does not
include 0, corresponds to a p value of .014, and by
current standards would provide researchers assurance
that an effect has been detected. But even if this interval
contains the population value §, researchers cannot be

confident that their estimation is better than the bottom
row of Figure 1. Applying Equation 1 to this CI yields
a y interval of [1.25,20.80], which includes conditions
in which sample mean estimates are practically indis-
tinguishable from random conclusions. Put another
way, these researchers may claim that the population
means are not equal, but, upon examining the bounds
on y, may also conclude that there remains tremendous
uncertainty regarding the size and direction of the
effect. Indeed, sample means estimation yields a
16.075% reduction in uncertainty (relative to the RCE)
at the lower bound (y =1.25) and a 99.998% reduction
in uncertainty at the upper bound (y = 20.80; Fig. AD).
Although the effect-size estimate implies a difference
between groups, the accuracy of this estimate could be
anything from a blind guess to a statement of fact.

Figure 2 contextualizes y within familiar statistical
quantities:

e Panel (a) - ensuring that y is greater than 3 often
requires a large n, especially when dealing with
smaller effect sizes (e.g., 8 =0.10). Sample size
requirements are more stringent if one also wants
to achieve 95% confidence that the true y is
larger than 3. For example, the estimation accu-
racy of a small effect (with 6 =0.3) requires a
sample of 2x255 =510 to be confidently accept-
able. See the Appendix for a discussion on how
effect-size priors can be used to determine 7.

e Panel (b) - the requirements for acceptability can
also be framed in terms of statistical power.
Regardless of &, under the standard alpha
(a0 =.05), statistical power needs to be above .92
for CIs over & to exclude y values less than 3.
Minimally acceptable estimation of an effect
requires its detection to be near certain: Common
but arbitrary power standards, such as .80, do not
yield estimates that rule out unacceptable estima-
tion accuracy.

e Panel (0 - it is well known that a larger # results
in smaller observed effects becoming statistically
significant. However, the y associated with said
effects can still be unacceptable. For example,
critical effects with a p of .05 yield a y of approxi-
mately 5, with CIs that include values very close
to 1. In comparison, critical effects with a p of .0005,
which are approximately 78% larger than their
.05 counterparts, yield confidently acceptable y
values. We note that using an aof .0005 as a
threshold for null hypothesis testing is a stricter
standard than other recent proposals that focus on
the detection of effects (Benjamin et al., 2018).
Such a stringent criterion makes it more difficult
for questionable researcher practices, such as
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Fig. 2. Relationship between y and different relevant quantities. The bands correspond to the 95% confidence intervals (CIs) of y. The
power values reported in (b) are also reported in Table 1. For further details, see the main text and the Appendix.

p-hacking (Simmons et al., 2011), to affect the
outcome. Finally, these results may also serve to
dampen researcher urges to characterize nonsig-
nificant effects (p >.05) as if they are acceptably
accurate.

Panel (d) - some researchers consider an effect to
be robust or reliable when the 95% CI of & does
not cross zero (Cumming, 2013). But when we
transform a strictly positive or negative interval
onto a range of plausible y values, we see that
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Table 1. Median Power to Detect Small (8 =.2), Medium (§ =.5), and Large (§ =.8) Effects as Reported
in Meta-Analyses and Their Corresponding y Values (in Brackets).

Small effect

Medium effect Large effect

Meta-analyses

Median power [V]

Median power [V ] Median power [V ]

Szucs & loannidis (2017)

Cognitive neuroscience 0.11 [1.54]
Psychology 0.16 [1.94]
Medicine 0.15 [1.86]
Nuijten et al. (2020)

Intelligence 0.11 [1.54]
Gaeta & Brydges (2020)

Speech and language 0.13 [1.70]
Siegel et al. (2021)

Industrial and organizational 0.47 [4.58]

psychology

0.40 [4.006] 0.70 [7.56]
0.60 [6.13] 0.81 [9.48]
0.59 [6.00] 0.80 [9.32]
0.47 [4.75] 0.99 [19.88]
0.49 [4.86] 0.91 [12.52]
0.79 [8.80] 0.99 [19.88]

Note: The y values are also illustrated in Figure 2b. We calculated power for Gaeta & Brydges (2020) and Siegel et al.

(2021) on the basis of median sample sizes.

they will include unacceptable values (for a thresh-
old of 3) unless the width is less than 1.168 (i.e.,
58% of its maximum width of 28). In short, estima-
tion accuracy can be unacceptable even for robust
or reliable effects.

Examining Prior Meta-Analyses

We examined several recent meta-analyses to get a
snapshot of how common poor y values are in various
subfields (Gaeta & Brydges, 2020; Nuijten et al., 2020;
Siegel et al., 2021; Szucs & Ioannidis, 2017). Table 1
shows a remarkable consistency across subfields, with
the estimated median power to detect a small effect
(8 =0.20) ranging between 0.11 and 0.16. These power
estimates translate to y values ranging from 1.54 to
1.94, which strongly resemble the unacceptable sce-
nario illustrated in the bottom row of Figure 1. Said
simply, the majority of studies examining small effects
in these fields may be producing results that are virtu-
ally indistinguishable from random conclusions. These
meta-analytic values are also plotted in Figure 2 (b),
where we show that even representative studies exam-
ining medium and large effects are not sufficiently pow-
ered to rule out unacceptable estimation accuracy.

Extensions

Our Lab 1 and Lab 2 framing provides a concrete way
for scientists to grapple with inherently difficult ques-
tions about acceptable estimation accuracy and replica-
tion within the behavioral sciences. This framing could
be extended to other estimators, testing frameworks,

and experimental designs. In the current application,
we focused on sample means and the usage of the
independent two-sample ¢ test. We did so because of
the ubiquity of this experimental design and testing
framework within the behavioral sciences. Our RCE
formulation could be used to calibrate power and
hypothesis-testing thresholds for statistical tests other
than the standard ¢ test, such as Welch’s test, which
allows for differences in group variance (Welch, 1947).
Future work could explore how different configurations
of group variances impact the RCE sample-mean com-
parison and what testing and power thresholds provide
acceptable estimation accuracy.

The RCE is defined by the randomization of group
labels on the estimates of interest, but these are not
required to be population means. In keeping with our
two-group design, an RCE could be defined as the
randomization of group labels to estimates of popula-
tion medians, which may be an interesting application
for heavily skewed distributions. One could then exam-
ine alternative power and hypothesis-testing calibra-
tions for tests such as the Wilcoxon-Mann-Whitney U
test. It should be noted, however, that the Wilcoxon-
Mann-Whitney U test is appropriate only for evaluating
whether two population medians are different under
relatively strict assumptions—that is, that both popula-
tions are identically distributed and differ only by a
shift in location (Divine et al., 2018).

The RCE and two-labs perspective could be extended
to other experimental designs. In defining a general
RCE comparison, we want to preserve two distinct fea-
tures of our current formulation. First, a generalized
RCE should randomize the conclusions of scientific
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interest. Applications could include a one-way analysis
of variance, in which group mean labels are random-
ized, thus randomizing which means are larger than
others while preserving Type I and Type II error rates
for the omnibus F test. Generalizations could also
include multiple regression: Certain aspects of the esti-
mation process could be randomized, such as whether
one standardized regression coefficient is larger than,
or has the same sign, as another.* Second, a generalized
RCE should also yield statistically significant results at
rates similar to the standard estimation method being
evaluated. This gives a generalized Lab 2 comparison
additional bite, because the generalized RCE is not just
randomizing the direction of results; it is also leading
to random decisions regarding data. This second point
is not intended to avoid important questions relating
to preregistration practices (Nosek et al., 2019; Szollosi
et al., 2020) but rather to place a finer point on an RCE
comparison.

Given a suitable RCE and a standard method of
estimation (e.g., ordinary least squares), we define a
generalized y as the ratio of the respective mean-squared-
error values. Although MSE has several nice properties,
other accuracy metrics could also be substituted. Under
this definition, y retains its simple interpretation: An
estimator is y times as accurate as a generalized RCE.
Future work could develop these comparisons and
relate them to existing techniques, such as CIs, statisti-
cal power, and hypothesis testing.

Recommendations

Report y intervals

When reporting CIs over Cohen’s d values, we recom-
mend also reporting the requisite y interval using that
study’s sample size. A CI communicates a range of
plausible effect sizes, whereas the CI over y commu-
nicates how well the effect is being estimated relative
to an easily understood benchmark. If the y CI includes
values less than 3, it is worth reporting that the data do
not rule out unacceptable levels of estimation accuracy.
Although we have illustrated some consequences of
using 3 as a threshold for y, other values could be used
depending upon the context.’ The key takeaway is that
vy intervals translate effect-size estimates into a com-
prehensible measure of estimation accuracy. Reporting
y intervals also provides researchers a degree of
nuance when reporting results, allowing them to claim
(or not) the detection of an effect, up to the usual Type
I error rate under a specified a level, while also being
transparent about estimation accuracy. To be clear, no
additional inference is taking place: Transforming a CI
over & values into one over y values is expressing the

same information again from an estimation perspective.
Making use of such a perspective can be done regard-
less of one’s statistical-inferential inclinations (e.g.,
Bayesian vs. frequentist). It is worth noting once again
that y is distribution-free, in that its interpretation as
the ratio of MSE values between sample means and the
RCE does not depend upon any particular distributional
form (see the Appendix for details).

Power statistical tests for estimation

When conducting a priori power analyses, we recom-
mend that the sample size be selected according to
effective estimation of the effect, rather than simple
detection. We demonstrated that power of .92, when
using an a of .05, results in CIs over & that exclude y
values less than 3. This perspective offers a grounded
rationale for power values, rather than the highly arbi-
trary, but quite common, value of .80. Selecting sample
sizes in this way is similar in spirit to the work of
Gelman and Carlin (2014) and connects to the work of
Kelley and Maxwell (2003) and Kelley and Lai (2011),
who argue for determining sample size on the basis of
CI width. See also the work of S. F. Anderson et al.
(2017), who present a power-analysis framework that
incorporates publication bias.

Bayesian estimation

One takeaway from our arguments is that there simply
is not much information contained in small samples
and small effects. Bringing more information to the
analysis can take many forms, with Bayesian methodol-
ogy being an obvious approach. Informative priors can
be used to improve estimation accuracy of mean esti-
mates (Gelman et al., 1995), and such priors can be
incorporated into the ¢ test itself (see, notably, Rouder
et al., 2009; Gronau et al., 2019; and Ly & Wagenmakers,
2021). Bayesian formulations are well suited for inte-
grating informative hypotheses with cognitive models
(Lee & Vanpaemel, 2018; Vanpaemel & Lee, 2012),
which can help avoid some of the estimation issues we
raise here. This approach is especially important for
researchers who face limited sample sizes by the very
nature of their investigations. Of course, the accuracy
of Bayesian approaches under limited sample sizes will
be prior dependent (e.g., McNeish, 2016). The Appen-
dix also provides two examples of how prior beliefs
can be incorporated into the computation of .

Computational modeling and formal
theory

Throughout, we have treated the accurate estimation of
an effect as a primary goal. There is much to say about
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whether conceptualizing and testing theories in this way
is optimal from a meta-science perspective. Indeed,
Scheel (2022) argued that many psychological hypoth-
eses are imprecisely specified, leading to questionable
attempts at replication and measurement. Improved
theory and quantitative modeling can lead to more com-
pelling tests (e.g., model selection; for a recent review,
see Myung & Pitt, 2018), avoiding simple effect-based
characterizations (van Rooij & Baggio, 2021); see also
Guest and Martin (2021) and Proulx and Morey (2021).
Lee et al. (2019) and Devezer et al. (2019) provide
thoughtful analysis and argumentation for how formal-
ism can be used to improve scientific practices.

A more stringent threshold (a = .0005)
Jor two-group between-subjects
bypotbesis testing

Using a = .0005 sets a more stringent threshold than
recent high-profile recommendations for methods reform
(Benjamin et al., 2018). It’s hardly our goal to further
contribute to file-drawer problems by arguing that some
studies should not be published if y is less than 3.
Indeed, we believe that all studies should be reported
and that p values (likewise, y values) should not serve
as gatekeepers to the literature. Yet for researchers who
want to provide a characterization that goes beyond
mere detection (e.g., “the two groups differ”) and ensure
that their estimates are distinguishable from random con-
clusions, a more prohibitive a level is arguably required.
Rather than a tool for censorship, y can be perceived
as a useful way to adjust the strength of one’s claims to
the expected accuracy of the estimation process.

The importance of experimental design

The fact that small effects are commonly observed does
not mean that they are inevitable—one should always
keep in mind the artificial and constructive nature of
effects (e.g., Guala & Mittone, 2005; Woodward, 1989).
In the behavioral sciences, effects are often small
because of the use of minimal experimental manipula-
tions that make the conditions being compared virtually
identical, apart from a minor change (for a discussion,
see Prentice & Miller, 1992). Researchers can rely on y
to gauge the ability of a given experimental design to
elicit a target phenomenon with sufficient accuracy,
which in some cases can lead to the development of
alternative experimental approaches. We do emphasize
that notions of effect size are just one of many factors
that impact experimental outcomes; see Buzbas et al.
(2023) for a formal treatment of experimental design
and its relation to replication rates.

Discussion

In reaction, one might argue that estimation accuracy
should not be much of a concern if we care only about
correctly detecting effects. We find this argument unten-
able for four reasons: First, knowledge about effect sizes
plays a crucial role when using basic research findings
to develop effective real-world interventions (Schober
et al., 2018). Second, developing a theoretic account of
the phenomena being studied typically requires more
than just nominal or ordinal information (Meehl, 1978).
Third, this reaction is at odds with the widespread use
of statistical models that are predicated on quantitative
comparisons of effects (Kellen et al., 2021), or the popu-
larity of inferential frameworks that call for a quantita-
tive reasoning of effects (Vanpaemel, 2010). Fourth,
even in the context of coarse-grained theoretical
accounts and ordinal predictions, knowledge about
effect sizes is still relevant in the sense that it can inform
us on matters of theoretical scope (i.e., how many peo-
ple conform to a given theory’s predictions; Davis-
Stober & Regenwetter, 2019; Heck, 2021). That being
said, we are not claiming that a focus on detection is
by itself problematic, or that there are no legitimate
contexts in which it takes center stage; we are asserting
only that a mature scientific characterization calls for
more than that, namely accurate estimates.

Alternatively, one could try to downplay the impor-
tance of estimation accuracy by arguing that talk of
effects is by itself problematic, in the sense that effects
are of secondary importance relative to the explanation
of psychological capacities (van Rooij & Baggio, 2021).
We take issue with pursuing such a line of reasoning
here, as it mistakenly implies that giving psychologi-
cal theorizing the attention that it is owed somehow
eliminates effects from researchers’ discourses. As a
counterexample, consider the recent discussion on
benchmark effects in short-term and working memory,
a research domain that stands out for its highly sophis-
ticated theoretical accounts (Oberauer et al., 2018). By
contrast, the empirical exigencies of theory testing and
development give estimation accuracy center stage
(Meehl, 1978).

One could also argue that there is nothing new to
see here, given that y is so closely related to already-
established quantities. For instance, it is easy to see that
vy is a quadratic function of the ¢ statistic (for details,
see the Appendix). Rather than an all-new, all-different
quantity to be reconciled with all the other ones in
researchers’ toolboxes, what y offers is a reframing of
an old problem. It is an attractive feature, not a short-
coming,® that y is closely related to known quantities
or tests, or that the pursuit of estimation accuracy ends
up recovering similar methodological proposals with
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distinct motivations (e.g., Benjamin et al., 2018). It is
also worth noting once again that although we assumed
Gaussian distributions when deriving our y value rec-
ommendations, the definition of the RCE and the sub-
sequent interpretation of y as a ratio of MSE values is
distribution-free.

Regardless of one’s scientific view, random conclu-
sions are indefensible. It follows that researchers’
empirical findings should, at a minimum, be distin-
guishable from a foil whose conclusions are determined
by a coin flip. But as we have demonstrated, this is
easier said than done: Many published research studies,
despite honest efforts, have barely improved upon the
estimation accuracy of the infamous Lab 2. As it turns
out, one can easily fail to reliably outperform Lab 2,
even if effects are real, studies are based in strong
theory, and no questionable research practices are at
play. The RCE approach and the y index that can be
derived from it provide a new perspective on method-
ological reform (Devezer et al., 2019; Munafo et al.,
2017; Shrout & Rodgers, 2018). Everything begins with
a simple statement: The estimation accuracy of our
methods should be distinguishable from a random-
conclusions foil. In the pursuit of this modest goal, we
find that the default p value threshold of .05 does not
rule out unacceptable conditions (see the bottom row
of Fig. 1), leading us to more stringent criteria that also
address known concerns with measurement error, sta-
tistical power, and replicability (Gelman & Carlin, 2014;
Loken & Gelman, 2017; Maxwell et al., 2015; but see
also Bak-Coleman et al., 2022). Based on these results,
we believe that y and the RCE approach more gener-
ally constitute an important tool in improving psycho-
logical science.

Appendix
Formal characterization of y

All code is available on the Open Science Framework
(OSF) at https://osf.io/2hza8/?view_only=f679d2211a3
14f469118e2fa27111fea.

Let X,,,X,,,X;5,,...,X,, be n-many independent,
identically distributed samples from a random variable,
X,, with mean p, and variance o*, where &” is finite.
Likewise, let X, X,,, X,y,..., X, be n-many indepen-
dent, identically distributed samples from a random vari-
able, Xy, with mean p,; and variance o®. We assume that
X, and Xy are independent of one another. We quantify
accuracy via mean-squared error (MSE):

MSE = E[(p’A_ l’l'A)z + (l:lB_ ”’B)z]’

where “E[-]” is the expectation operator and [, and [i
are, respectively, estimates for p, and py.

Result 1. The ratio of MSE values between the random
conclusion estimator (numerator) and sample means
(denominator) is equal to

2
w(o.m) = nd +2.

Proof. We first calculate the MSE of the random conclu-
sions estimator (RCE):

MSE, ., = %E[@ S (Fy — )]
. %E[@B S+ (Ey — )]
- %E[a‘cﬁ + Xy = 2X [, — 25X Hy K+ ]
+ %E[o?i + Xy = 2XH, — 2X, My + B+ K

1( 20
=5(7+ui+ué—2ui—2ué+ui+uéj
1 2
+E(Zi+2ui + 245, _4”BHA)
n
26°
=—+(u, _HB)Z
n
_o'(nd’ +2)
=

Equation 1 is obtained by taking the ratio of MSE,,
to the MSE of sample means,

o’ (nd* +2)
v = n _ nd* + 2. O
w2
n

The value y is easily expressed in other metrics. It
is equivalent to #* + 1, under the usual ¢ metric, provid-
ing a direct relationship with the two-sample ¢ test.
Relevant to questions involving replication, we can also
write out-of-sample R* (Campbell & Thompson, 2008),
denoted R’, as a simple function of y. Consistent with
typical formulations, we compare sample means against

- 1= 1—
a competitor that uses the grand mean, G = E.XA + E.X'B,

as the estimate for the population means in each group.


https://osf.io/2hza8/?view_only=f679d2211a314f469118e2fa27111fea
https://osf.io/2hza8/?view_only=f679d2211a314f469118e2fa27111fea

Perspectives on Psychological Science 19(1)

233

As before, we assume equal 7z in both groups. Direct
calculation provides the following relationship:

207
MSE . n 4
Részl_ﬂzl_ 2 & =1 2
MSEF o (2+mnd) 2+ nd
2n
= 1 — E,
v
where MSE and MSE_ are the MSE values for sam-

means

ple means and the grand mean, respectively.

Comparing sample means to the RCE
via Kolmogorov-Smirnov tests

We carried out a power analysis to determine the sam-
ple size n for achieving a power of .80 to reject the
hypothesis that bivariate samples from the two distribu-
tions (sample means and RCE) are equal. We used the
two-dimensional Kolmogorov-Smirnov test of Fasano
and Franceschini (1987) with an a of .05. These power
analyses were carried out in MATLAB using Lau’s (2021)
implementation of the test. The first row of Table Al
shows the required number of samples to achieve a
statistical power of .80 as a function of y. We also car-
ried out a power analysis using a one-dimensional test
that examines the distribution of differences between
mean estimates—that is, we calculated similar power
analyses using d =X, —Xx,. For this test, we used the
two-sample Cramér-von Mises goodness-of-fit test
(T. W. Anderson, 1962), as implemented in MATLAB by
Cardelino (2021). The second row of Table A1l displays
the required number of samples to achieve a power of
.80 for each estimator as a function of y.

Rows 1 and 2 of Table A1 list the minimum number
of studies (draws) per lab to reject the null hypothesis
that estimates from the two labs follow the same gen-
erating distribution with a statistical power of .80. Row
3 presents the gain in information about the direction
of an effect when estimated by sample means (relative

Table Al. Power analyses.

y=15 y =2 y =3 y=5
2D Kolmogorov- 54 31 19 15
Smirnov test
Cramér-von Mises 45 27 20 18
test
Information gain .29 49 72 91

to the RCE), where 0 represents no reduction in uncer-
tainty and 1 represents total reduction in uncertainty.

Comparing samples means to the RCE
via entropy

We can evaluate the two estimators with respect to
information gain regarding the direction of the effect.
The RCE randomly assigned condition labels according
to a fair coin toss (p, = pg =.50) . The Shannon entropy
of the RCE with respect to direction of the effect is
given by

H(RCE) = —{p,log,(p,) + pslog,(py)}
= —0.50l0g,(0.50) — 0.5010g, (0.50) = 1,

or total entropy about the direction. In other words, as
n approaches o, RCE estimates converge to {—d,+d}.
Note that entropy is not contingent on d or n and thus
the RCE yields total entropy about the direction, regard-
less of sample size or effect size. The RCE thereby
exemplifies the principle of maximum entropy (Jaynes,
1957), which holds that the probability distribution with
the largest entropy best represents the most uniform
state of knowledge. To that end, y contextualizes the
sample-means estimator relative to an optimally defi-
cient estimator, such that higher values of y indicate
greater accuracy beyond mere random conclusions
regarding direction.

The relationship between the two estimators can be
further quantified in information-theoretic terms: As y
increases from 1.0, the sample-means estimator will
afford an increase in information relative to the RCE.
This is illustrated in Figure A1, which depicts informa-
tion gain (or reduction in entropy) as a function of .
The y-axis represents the bits of information that are
gained when using sample means rather than the RCE,
with values ranging from 0 (no information gain; i.e.,
sample means are as equally uninformative as the RCE)
to 1 (complete information gain; i.e., sample means
eliminate 100% of the uncertainty that comes with using
the RCE). For example, the dotted line in the figure
shows that the threshold y =3 is associated with a 72%
increase in information. If researchers desire a 90% gain
in information beyond the RCE, they must achieve a
vy greater than4.76 ; a 95% gain in information requires
a y greater than 5.99 . To create this figure, we used the
entropy package in R (Hausser & Strimmer, 2009) to
calculate the Shannon entropy H, in bits, of the sample
means and RCE distributions generated by all combina-
tions of 8 €1{0,.01,.02,..,.90} and n e {20,22,24,...,200} .
We then found the reduction in entropy Hp., — Hy,
(i.e., the information gain) at corresponding values of
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Fig. Al. Information gain afforded by sample means (relative to the
RCE) regarding the direction of an effect as a function of .

y. All code is available in the OSF repository linked
above. Our use of information gain is equivalent to the
(asymmetric) Kullback-Leibler divergence (Kullback &

. SM(x)
Leibler, 1951) D,,(SM || RCE) = SM(X)log(—j,
- ; RCE(x)

which we deemed theoretically appropriate because it
allows us to gauge improvements in the accuracy of
sample means estimation relative to that of the maxi-
mally entropic RCE. Analysis of the (symmetric) Jensen-
Shannon divergence reveals a nearly identical trajectory
across values of w, but without the theoretical align-
ment or ease of interpretation.

Quantifying the difference between
distributions via the Wasserstein metric

To quantify the differences between the left and right
sides of Figure 1 we relied on the Wasserstein metric,
which is also known as the Earth Mover’s Distance
(EMD) because it determines the most efficient strategy
for transporting a certain mass of earth from one posi-
tion to another (Urbanek & Rubner, 2015). Specifically,
the transportation of some mass from position
P={(pl,wpl),...,(pm,wpm)}, where p, is a unit of the
reference mass with weight w,, to position
Q= {(ql,wa),...,(qn,wq” )}, where q; is a unit of the tar-
get mass with weight w, , is given by the EMD:

21:1 j:l(dij‘f;j)

2

distance between p, and g, and f is the optimal path
from p, to g;.

EMD(P,Q) = , where d, is the ground

In the current context, the EMD reflects the minimum
amount of work (where one unit of work corresponds
to transporting one unit of mass by one unit of distance)
that is required to convert each random conclusions
distribution to its corresponding sample-means distribu-
tion. We used the R package emdist (Urbanek & Rubner,
2015) to derive the EMD under each scenario in Figure
1 (see the OSF repository for code). When the effect
size is small, the sample-means estimate in the bottom
left panel (Fig. 1) shows that a negligible amount of
work has been done to improve upon the random-
conclusions estimate in the bottom right panel (Fig. 1),
EMD =.106; on average, each unit of mass in the RCE
panel would need to be moved just .106 units to match
the mass in the sample-means panel. Relative to this
small-effect-size condition, it would take six times more
work to improve upon the RCE when & is large
(EMD = .635) and four times more work when 8 is mod-
erate (EMD = .424). In other words, more work is neces-
sary whenever researchers want to ensure that their
estimates are notably better than the mathematically
least-informative estimate.

Confidence intervals around the true y

For each effect size 8 considered, we computed 95%
confidence intervals (CIs). The approach used to com-
pute these intervals (see Cumming & Finch, 2001) con-
sisted of determining the noncentral ¢ distributions
whose tails yield the observed ¢ statistic (which can be
obtained from & and 7) with nominal probabilities (e.g.,
0.025 and 0.975). Because the present analysis focuses
on absolute effect sizes, we established a lower bound-
ary (8 =0) on these intervals (for which y =1).

We investigated the coverage rates of the 95% inter-
vals obtained for true effect sizes, such as the ones
illustrated in Figure 2. Specifically, we performed the
following steps:

1. Computed the 95% CI for known values of &
and n.

2. Generated 2xn samples from two normal distri-
butions with variances 1 and means 0 and d.

3. Computed an effect-size estimate d from the
2xn samples taken in Step 2 and subsequently
transformed this estimate into a y estimate.

4. Checked whether y was included in the CI com-

puted in Step 1.

Repeated Steps 2 through 4 100,000 times.

Performed Steps 1 through 5 for different com-

binations of & and n values.

o

The results reported in Table A2 show that the 95%
Cls around the true effect sizes, when transformed into
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Table A2. Coverage Rates of the 95% Confidence Intervals Around V¥ for
a Given True Effect Size 8 and Sample Size per Group n.

§=0.1 §=02 §=03 §=04 8=05
n=s 0.93 0.94 0.94 0.94 0.94
n=10 0.95 0.96 0.96 0.96 0.96
n =20 0.96 0.97 097 0.97 0.97
=50 0.97 097 097 0.97 0.95
n =100 0.97 097 0.96 0.95 0.95
n =200 0.97 097 0.95 0.95 0.95
n =500 0.97 0.95 0.95 0.95 0.95
n =1,000 0.96 0.95 0.95 0.95 0.95
n = 2,000 0.95 0.95 0.95 0.95 0.95
n=15,000 0.95 0.95 0.95 0.95 0.95
n =10,000 0.95 0.95 0.95 0.95 0.95

v intervals, included the V¥ estimates obtained from
random samples roughly 95% of the time. These results
corroborate our interpretation of these Cls around true
values of y as ranges of plausible y estimates under a
given effect size & and sample size per group 7.

Using effect-size priors to determine n

Further, y can be used to determine the sample size
n that is expected to satisfy one’s accuracy standards.
Although our previous examples focused on point-
effect-size values (see Fig. 2a), it is easy to incorporate
prior beliefs in terms of an absolute effect-size distribu-
tion w(d) with support over the positive reals. Let Wy ..
be the minimum accuracy threshold. For a given effect
size §, the minimum 7 ensuring a threshold-satisfying
y value is given by

2y o —2
nmin (87Wmin) = \Vng—r;

The expected #n,,, can be obtained by calculating
the following integral:

Bl = [11, (8,0, RIS

For example, if we assume a uniform prior over
[0.1,0.5] and a threshold of 3, then El#n,_, 1=80. Note
that, alternatively, one could consider the minimum 7
for a given § that yields a lower bound of plausible y
estimates that satisfies the threshold. If we consider the
95% CI as our range of plausible values, then an inte-
gration over & like the one above yields Eln,, 1~ 457

Finally, note that alternative prior distributions could
be used instead (Gronau et al., 2019). For example, we
could assume a truncated #-prior on § with a location

of 0.30, a scale of 0.05, degrees of freedom (df) of 3,
and support over [0.05,+]. This prior, which is illus-
trated in Figure A2, places most of its mass on effect
sizes ranging between 0.2 and 0.4. Computing the
above integrals using this informative prior instead
results in Eln 1 of approximately 56 and 323,
respectively.

‘min

Histograms comparing the two
distributions at different values of y

As an illustration, Figures A3—A7 display bivariate his-
tograms for simulated data under sample means (left-
hand columns) and random conclusions (right-hand

t-Prior Example

0 I I T T
0.0 02 04 06 0.8 1.0

Effect Size &

Fig. A2. Example of a truncated ¢-prior.
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Fig. A3. Bivariate histograms comparing the sampling distribution of sample means to the random conclusions
estimator under a yof 1.5. Each row of figures corresponds to a different combination of d and 7 to yield the same

value of .
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Fig. A4. Bivariate histograms comparing the sampling distribution of sample means to the random conclusions
estimator under a yof 2. Each row of figures corresponds to a different combination of d and #n to yield the

same value of V.
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Fig. A5. Bivariate histograms comparing the sampling distribution of sample means to the random conclusions
estimator under a y of 3. Each row of figures corresponds to a different combination of d and 7 to yield the same

value of Y.
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Sample Means, 5 = .10, n= 800 Random Conclusions, 6 = .10, n= 800

100

50

0.1
Lp T

Sample Means, 5 = .20, n= 200

Sample Means, 6 = .40, n=150 Random Conclusions, 6 = .40, n=50
100
50
05
)
5, 080 i 7, O 055 0

Fig. AG. Bivariate histograms comparing the sampling distribution of sample means to the random conclusions estima-
tor under a yof 5. Each row of figures corresponds to a different combination of d and n to yield the same value of .



240

Davis-Stober et al.

Sample Means, 8 =.10, n= 1800
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Fig. A7. Bivariate histograms comparing the sampling distribution of sample means to the random conclusions estimator
under a yof 10. Each row of figures corresponds to a different combination of & and #n to yield the same value of .

columns) for yvalues of 1.5,2 3,5 and 10. Each row
corresponds to 8 values of 0.10, 0.20, 0.30 and 0.40 for
values of 7 that give the appropriate value of y. By
examining Figures A3 through A7, we can see that the

estimator’s variance clearly depends upon 7, but the
relationship between sample means and the RCE
remains stable for fixed values of y at different com-
binations of n and 3.
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Notes

1. This type of argument is foundational to myriad other exist-
ing procedures, such as determining whether fitted network
models are distinguishable from networks with randomly deter-
mined connections (Steinley & Brusco, 2021). Looking further
back, another example would be techniques such as Horn’s
parallel analysis (Horn, 1965).

2. We use 0 to denote the true effect size in the population and
d to denote sample estimates of 8. When we refer to the popu-
lation value of Cohen’s d, we are referring to .

3. To be clear, we are also not suggesting that comparisons
with Lab 2 can serve as a way to identify errors or questionable
research practices.

4. See Davis-Stober and Dana (2014) for a proto-RCE estimator
along these lines.

5. Indeed, rejecting the null at the a = .05 level is equivalent to
stating that the 95% CI over y does not include 1, a value that
can be achieved only if there is precisely no effect.

6. For a similar scenario in which the same model-selection
index is derived from very different theoretical foundations,
see Grunwald and Navarro (2009) and Karabatsos and Walker
(2000).
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