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Abstract

Understanding how populations respond to climate is fundamentally impor-

tant to many questions in ecology, evolution, and conservation biology.

Climate is complex and multifaceted, with aspects affecting populations in dif-

ferent and sometimes unexpected ways. Thus, when measuring the changing

climate it is important to consider the complexity of the phenomenon and the

number of ways it can be characterized through different metrics. We used a

Bayesian sparse modeling approach to select among 80 metrics of climate and

applied the approach to 19 datasets of bird, insect, and plant population

responses to abiotic conditions as case studies of how the method can be

applied for climate variable selection in a time series context. For phenological

datasets, mean spring temperature was frequently selected as an important cli-

mate driver, while selected predictors were more diverse for population met-

rics such as abundance or reproductive success. The climate variable selection

approach presented here can help to identify potential climate metrics when

there is limited physiological or mechanistic information to make an a priori

variable selection, and is broadly applicable across studies on population

responses to climate.
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INTRODUCTION

Over the past century, the mean global temperature has

risen rapidly as a result of anthropogenic climate forcing.

Global climate change has a multitude of impacts on bio-

diversity, including extinctions and extirpations (Cahill

et al., 2013; Urban, 2015); population declines as well as

population increases, especially for introduced species

and pests (Jactel et al., 2019); range expansions, contrac-

tions, and shifts (McCarty, 2001; Thuiller, 2004); micro-

evolution and adaptation to novel climates or expression

of phenotypic plasticity (Charmantier et al., 2008; Nicotra

et al., 2010); and phenological shifts in which life history

events are advanced or delayed (Renner & Zohner, 2018;

Visser & Both, 2005).

Understanding how climate affects populations is a

central question in ecology, however it is also challenging

to address because climate is inherently multifaceted,

partly stochastic, and measured with diverse technologies

and approaches (Garcia et al., 2014). Different aspects of

climate may have effects on populations that are positive,

detrimental, synergistic, or have opposing direct and indi-

rect effects, which can result in species responses that are

difficult to predict and asynchronous even between
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closely related or interacting species. For example, some

insects exhibit enhanced population growth under

warming conditions due to increased rates of develop-

ment, resulting in more generations per year, but the

same warming conditions also shift the phenology of

their host plants that can have negative effects, ultimately

resulting in population declines (Jactel et al., 2019; Pelini

et al., 2009). Without thorough a priori knowledge of the

mechanisms that lead from shifts in abiotic conditions to

population response, which is rarely available for

nonmodel species, decisions about what aspects of cli-

mate to include in statistical models can be arbitrary.

In addition to lacking sufficient biological information

with which to fully inform variable selection, there are

also methodological challenges. Researchers have pro-

posed many alternative ways of quantifying climate and

climate change: analyzing the difference in means

between recent decades and a historical reference period

(Kling et al., 2020), characterizing the overlap between the

distributions of variables in univariate or multivariate

space (Nadeau & Fuller, 2015); accounting for spatial and

temporal shifts using the velocity of climate change

(Brito-Morales et al., 2018) and minimum cumulative

exposure to unfavorable climates (Dobrowski & Parks,

2016); or measuring departure from baseline conditions

(Abatzoglou et al., 2020). Given the number of publicly

available downscaled global climate models and the data

layers they contain, the number of ways researchers have

proposed to measure climate change (e.g., see Garcia et al.,

2014), the issue of seasonality, and whether extremes,

means, or frequency of events are considered, there are

essentially infinite ways to measure changes in the climate

over recent decades. Depending on which approaches are

used and which variables are included, researchers can

arrive at vastly different conclusions about the effects of

climate change on biodiversity (Baker et al., 2016).

Despite recognizing the complexity of climate change

and how it is quantified, ecologists frequently use sim-

plistic measures when modeling the effects of climate

change on populations. In terrestrial systems, researchers

frequently use trends in mean annual temperature and

precipitation to characterize climate change even when

climate is expected to affect populations differently

throughout the year (Garcia et al., 2014; van de Pol et al.,

2016) including through extremes and accumulated

degrees above developmental thresholds.

Considering the multitude of ways in which climate

change could be characterized, there is an open question

not just of which variables should be considered, but how

to select among any suite of potentially important climate

variables for analysis. Variable selection can be thought of

as a subset of model selection, in which researchers

develop a candidate model set and use information criteria

(Anderson & Burnham, 2002) to reduce the number of

potential variables and avoid overfitting. Given the num-

ber of potential climate variables, it is practically impossi-

ble to develop a tractable candidate set of models for

systems with limited physiological or mechanistic infor-

mation that could inform a priori variable selection. For

example, consider a study in which researchers expect that

temperature and precipitation both affect some population

parameter, but have no a priori reason to know during

which seasons and whether extreme conditions

(e.g., minimum and maximum temperature) or mean con-

ditions are more important. Considering two variables,

four seasons (in a temperate system), and minima, max-

ima, and means, resulting in 24 potential climate vari-

ables. Building a candidate model set in which each model

contains one to four combinations of those variables leads

to 49,152 candidate models; including combinations of five

variables increases the candidate model set to 261,672

models. Thus, traditional approaches to variable selection

in ecology based on information criteria, significance, step-

wise selection, and other methods are not practical for cli-

mate variable selection.

The case of selecting climate variables as covariates for

long-term ecological data can be viewed as a sparse model-

ing problem, for which the number of predictors (i.e., the

climate variables) is greater than the number of observa-

tions (Hastie et al., 2009). In sparse modeling, only a few

of many covariates are assumed to have true effects, while

other variables are unimportant and the analyst seeks to

constrain them to have zero coefficients or otherwise

exclude them. This is often done using a global shrinkage

parameter or penalty, typically denoted λ, in which larger

values of λ impose more shrinkage on the model parame-

ters. This is the approach taken in penalized regressions

(e.g., in the ridge or LASSO models), although there are

many sparse modeling approaches (O’Hara & Sillanpää,

2009). One method that has recently been introduced in

ecology is Bayesian regression with horseshoe priors for

estimated effects of covariates (Sen et al., 2023;

Weiss-Lehman et al., 2022). The horseshoe prior is useful

for variable selection because the flat tails allow for large

parameter estimates, thus avoiding imposing shrinkage on

parameters that truly have large effects, while most esti-

mates are pulled toward zero.

Here, we advocate for using sparse modeling for cli-

mate variable selection because it has the advantage of

allowing researchers to fit a single model for variable

selection rather than building many candidate models

and is flexible enough to allow some variables with

known or expected effects to not be subjected to shrink-

age. We use “climate variables” to mean summary met-

rics from a location over seasonal or annual periods, as

opposed to proximate weather conditions. We illustrate
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the approach with a set of case studies documenting bird,

plant, and insect populations and community responses

to climate. We only consider a suite of 80 univariate mea-

sures of climate divided seasonally. However, the

approach can be expanded to encompass any number of

climate variables, including the methods described

above.

MATERIALS AND METHODS

To identify long-term datasets documenting population

responses to climate, we searched Dryad and the

Environmental Data Initiative Portal for data sets with at

least 10 years of data collected on plants, insects, or birds.

We only included data sets from studies in which there

was some expectation that the population or community

was responding to climate and for which the response

could reasonably be summarized at the population level

on an annual basis; we did not include studies on

morphological or genetic changes. To be included, studies

had to report latitudes and longitudes, or use recognizable

site names for which we could easily identify study site

coordinates. Based on these criteria and attempting to bal-

ance taxonomic representation, we selected 19 data sets

(Table 1) for the analysis; for studies with multiple out-

comes (e.g., multiple species responses) we selected the

outcome with the most coverage (e.g., the species with the

most observations or site with the longest time series); if

there was no single outcome that met this criterion, an

arbitrary outcome was selected. There are hundreds of

long-term data sets on this topic that have been included

in previous meta-analyses (e.g., Halupka & Halupka, 2017;

Massad & Dyer, 2010), however, we required access to the

raw data and coordinates for analysis rather than sum-

mary statistics, which is why we adopted a targeted

approach to dataset selection.

To quantify climate, we used six climate layers

included in the TerraClimate dataset (Abatzoglou et al.,

2018) at monthly scales from 1958 to 2020: maximum

TAB L E 1 Characteristics of studies included in the analysis.

Figure 1 Study Species

Taxonomic

group Response

First

year

Last

year

1 McNulty, 2018 Ruffed grouse (Bonasa umbellus) Birds Date of first drumming 1984 2017

2 Ramakers et al., 2018 Great tit (Parus major) Birds Mean laying date 1973 2016

3 Ma et al., 2020 Aesculus hippocastanum Plants Leaf out date 1958 2013

4 Wadgymar et al., 2019 Two-lobe larkspur

(Delphinium nuttallianum)

Plants Date of first flowering 1973 2016

5 O’Keefe, 2021 Striped maple (Acer pennsylvanicum) Plants Budburst date 1990 2019

6 Visser et al., 2021 Caterpillar community Insects Total frass fall 1985 2020

7 Hinks et al., 2015 Great tit (Parus major) Birds Mean laying date 1965 2009

8 Pöysä, 2019 Common goldeneye

(Bucephala clangula)

Birds Mean settling date 1991 2018

9 Werner et al., 2016 Ips beetles (Scolytinae) Insects Abundance 1972 2012

10 Wiebe, 2020 Northern flicker (Colaptes auratus) Birds Abundance 1998 2013

11 Huenneke &

Browning, 2022

Burrograss (Scleropogon brevifolius) Plants Percent fruiting in

September

1992 2020

12 Donoso et al., 2016 Green-veined white (Pieris napi) Insects Abundance 1996 2012

13 McLean et al., 2020 Willow warbler

(Phylloscopus trochilus)

Birds Body condition 1994 2014

14 Cole et al., 2016 Great tit (Parus major) Birds Mean laying date 2001 2013

15 Valtonen et al., 2018 Moth community Insects Species richness 1962 2009

16 DeMay &

Walters, 2020

Red-cockaded woodpecker

(Dryobates borealis)

Birds Abundance 1980 2015

17 Lightfoot, 2021 Grasshoppers Insects Spring abundance 1992 2019

18 Frigerio et al., 2021 Greylag goose (Anser anser) Birds First laying date 1990 2018

19 Weed et al., 2016 Southern pine beetle

(Dendroctonus frontalis)

Insects Abundance 1987 2009

Note: Studies are ordered from top to bottom in the same order as studies are grouped in Figure 1 from left to right based on similarity of response.
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temperature, minimum temperature, precipitation, vapor

pressure deficit, Palmer drought severity index, and soil

moisture. For maximum and minimum temperature, the

values represent the mean daily maximum and minimum

temperature within a month. For each layer, we calcu-

lated the mean value across meteorological months for

the previous fall, previous winter, current spring, current

summer, and the annual mean in the current calendar

year; for temperature, we also included extreme condi-

tions (i.e., mean daily minimum temperature in the

coldest month and mean daily maximum temperature in

the warmest month for each season and annually). For

each of these layer and season combinations, we

extracted the value in the proximate year and also calcu-

lated the departure in that year from baseline conditions

during the period from 1958 to 1987 using Mahalanobis

distance (Abatzoglou et al., 2020). We only calculated

univariate metrics for this analysis, as opposed to multi-

variate distance metrics, resulting in a total of 80 metrics.

We extracted these metrics within a 4 km2 cell, including

the central coordinates of each study site for the years

included in the study.

To avoid imposing excess shrinkage on parameters

that truly have large effects, we used a Bayesian approach

that included both global and local shrinkage parameters.

For each ecological data set included in our case study, we

fitted a Bayesian sparse regression model with a horseshoe

estimator as the prior for coefficients associated with all

climate variables. We assumed that each observation i of

the population or community response y arose from a nor-

mal distribution with mean μ and a variance σ estimated

from an uninformative gamma prior (Equations 1 and 10).

We estimated the mean μ as a function of a random inter-

cept, the effect of year t (using an uninformative normal

prior), and the climate variables X (Equations 2, 11, and

12). For time series in which sampling effort can vary

greatly from year to year and across study locations, it is

critical to include sampling effort as a covariate that may

explain differences in population responses due to observa-

tional rather than ecological processes (Botella et al., 2020;

Rhodes & Jonzen, 2011). Sampling effort was largely not

reported in the datasets selected as case studies, however,

and thus we did not include it in the model below, but it

could easily be incorporated in the same manner as the

effect of year when it is not subject to variable selection if

such data were available. For each climate variable in X,

we estimated if it should be included in the model with

the parameter γ (drawn from a Bernoulli prior with proba-

bility 0.5) and subsequently modeled the effect β with a

horseshoe estimator using half-Cauchy priors for the

global shrinkage parameters and the local shrinkage

parameter λ fixed to 0.1 (Equations 3–10, 13), following

Roberts and Zhao (2022). This model structure allowed us

to estimate both the probability of inclusion for every cli-

mate variable based on γ and generate parameter esti-

mates for selected variables.

We fitted the models using the Markov chain Monte

Carlo (MCMC) approach implemented in JAGS (Plummer,

2003) using saveJAGS v0.0.4.9002 (Meredith, 2021). After a

burn-in of 100,000, we ran the models for one million itera-

tions and sampled the posterior every 20 iterations,

resulting in a posterior sample of 50,000 from three chains.

We assessed model convergence with the Gelman–Rubin

statistic (bR) and assumed chains had converged when bR

was less than or equal to 1.1. When models failed to con-

verge, we increased the number of iterations in intervals

of 200,000 until chains converged. Because models for

different case studies ran for different numbers of itera-

tions, we resampled the posterior to draw 5000 samples

from each chain (for a total of 15,000 samples from the

posterior) for primary results reporting. To identify pat-

terns in which variables were selected across studies, we

used the Euclidean distance between the mean γ values

from the model output for hierarchical cluster analysis

with the R package stats v4.1.2 (R Core Team, 2021):

yi �N μi,σð Þ, ð1Þ

μi ¼ β0 + β1 × ti + γ× β×X, ð2Þ

β�N 0,λ× ν×ωð Þ, ð3Þ

ν¼ χ1j j= ffiffiffi
τ1

p , ð4Þ

ω¼ χ2j j= ffiffiffi
t2

p , ð5Þ

τ1 �Gamma 0:5,0:5ð Þ, ð6Þ

τ2 �Gamma 0:5,0:5ð Þ, ð7Þ

χ1 �N 0,1ð Þ, ð8Þ

χ2 �N 0,1ð Þ, ð9Þ

σ�Gamma 0:01,0:01ð Þ, ð10Þ

β0 �N 0,0:001ð Þ, ð11Þ

β1 �N 0,0:001ð Þ, ð12Þ

γ�Bern 0:5ð Þ: ð13Þ

Climate variables tend to be highly correlated with

one another, which can result in issues with collinearity
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and multicollinearity that are problematic for many

approaches to variable selection (Lu & Lou, 2022).

Previous simulations have found that the performance of

horseshoe priors is relatively insensitive to increases in

correlations among predictor variables from 0 to 0.9

(Lu & Lou, 2022). However, several of our climate vari-

ables were correlated with one another at greater than

0.90. To assess if this extreme multicollinearity affected

variable selection, we performed a sensitivity analysis

and re-ran the same models for all case studies but ran-

domly dropped one variable from each pair of highly cor-

related predictors (ρ > 0.95). We then compared the

mean posterior inclusion probability for the models fit

with all variables, to those fit with a subset of predictors

that all had correlations with one another <0.95.

RESULTS

Models for most case study data sets converged after one

million iterations with bR <1.1. Seven datasets required

additional iterations (Donoso et al., 2016; Huenneke &

Browning, 2022; Ma et al., 2020; McLean et al., 2020;

O’Keefe, 2021; Valtonen et al., 2018; Wadgymar et al.,

2019), ranging from 1.2 million iterations to a maximum

of 1.8 million iterations. Mean, standardized parameter

estimates across case studies ranged from −0.490 to 0.34,

for which larger absolute values indicate greater effects,

with a mean overall estimate of 0.00 that would be

expected given the horseshoe prior (Figure 1a). Here, we

do not focus on the parameter estimates, but rather the

probability of inclusion for each variable across the case

studies. In some cases (Appendix S1: Figure S1), variables

had high probabilities of inclusion but had negative

effects on the population or community response

(e.g., Figure 1a; proximate mean minimum temperature

in the previous fall), whereas other variables had positive

effects (e.g., Figure 1a; proximate mean maximum tem-

perature in the previous winter). Out of all 80 variables,

proximate mean spring maximum temperature had the

highest probability of inclusion (mean= 0.62), across spe-

cies and studies (Figure 1b). Univariate departures from

baseline conditions had a low probability of inclusion for

most variables across all case studies (Appendix S1:

Figure S1). Based on similarity in the probability of inclu-

sion for each variable, case studies clustered by type of

response rather than by taxa or region (Figure 1b), with

an emergent cluster of phenology studies. Models fit

with all variables or a subset of variables as a sensitivity

analysis for collinearity yielded similar mean posterior

inclusion probabilities (Appendix S1: Figure S2).

Not all of the case study datasets had corresponding

publications that assessed the impact of climate change.

However, for nine studies, we were able to compare the

variables that the original authors analyzed or found to

be important to variables with a high probability of inclu-

sion (arbitrarily set at 0.65) in the sparse regression

model reported here. We qualitatively discuss those dif-

ferences (see Appendix S1: Table S1), with the caveat that

none of the original papers were describing variable

selection on the scale considered here, and in some cases

the questions addressed were tangential to the analyses

discussed here. In half the cases, the variables with the

probability of inclusion greater than 0.65 in the sparse

regression model were very similar to those considered

by the original authors. For example, Wadgymar et al.

(2019) analyzed spring temperature and the timing of

snowmelt in relation to the first flower date, and the

sparse regression model indicated a high probability of

inclusion for spring maximum temperature and summer

soil moisture (presumably indirectly influenced by snow-

melt). Spring maximum temperature was the only vari-

able with a high probability of inclusion for two studies

that only considered spring temperature effects (Hinks

et al., 2015; Visser et al., 2021). In two cases, the original

authors did not select any climate variables for analysis;

Weed et al. (2016) represented weather in the error term,

and Valtonen et al. (2018) discussed temperature and pre-

cipitation but found no significant change in climate over

the course of their study. In both cases, the sparse regres-

sion model did not indicate a high probability of inclu-

sion for any of the 80 variables we considered. Several

papers analyzed metrics with no direct comparison to the

80 variables we considered (e.g., ice-out date, photope-

riod, cloud cover, see Appendix S1: Table S1), or the

model indicated a high probability of inclusion for vari-

ables not considered in the original paper.

DISCUSSION

The current biodiversity crisis is a product of the rapid

environmental changes impacting nearly every ecosystem

and ecological process (Parmesan & Yohe, 2003).

Understanding how the biosphere will persist through

these changes is the single greatest challenge facing the

field of ecology. Among the threats facing biodiversity,

climate change will continue to grow as a driver of popu-

lation change across the globe, with a suite of complex

and interrelated aspects of climate change affecting

populations in different ways. While the approach we

advocate for here is exploratory and has limited or no

predictive ability, it can help to serve as the basis for

future research by selecting variables that are associated

with biodiversity responses. Because of its complexity,

there are numerous ways to characterize climate change
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(Garcia et al., 2014). Sparse modeling can be used to

select among the many measures of climate rather than

oversimplifying it with one or a few broad measures,

enabling researchers to build informed models with a

small and more readily interpreted set of variables as the

basis for future analyses (Hastie et al., 2009).

F I GURE 1 Probability of inclusion for different climate variables measured as proximate values within a study year for (a) McNulty

(2018) as an example, and (b) across case studies. In (a) posterior distributions of parameter estimates are shown for all 40 proximate climate

variables; color corresponds to mean probability of inclusion (γ) with red colors indicating probabilities less than 0.5 and blue colors

indicating probabilities greater than 0.5. Climate variables are indicated at left from top to bottom as extreme minimum temperature, mean

minimum temperature, extreme maximum temperature, mean maximum temperature, mean precipitation, soil moisture, Palmer drought

severity index, and vapor pressure deficit. The top row in each block shows previous fall, followed by winter, spring, summer, and annual

conditions. In (b) intensity of blue within cells indicates the mean probability of inclusion from the models. Studies are ordered from left to

right based on similarity of response to climate variables, shown with a dendrogram at top, corresponding to the grouping order found in

Table 1. For each study, the taxon is indicated with a silhouette and color indicating if the response is timing or phenology (green), a

population or community response such as abundance or species richness (purple), or other metrics that are percent fruit and body

condition (blue). Icons were created by Eliza Grames or are licensed in the public domain.
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When applying sparse modeling to climate variable

selection, we found emergent patterns in which variables

had a high probability of inclusion for models in which

the responses were phenological shifts but not for popu-

lation and community responses. These results suggest

that assumptions of which variables matter are warranted

for some research questions related to phenology where

many population responses are associated with similar

predictor variables, but that these relationships are not

universal, and in many cases, it is necessary to consider

many potential climate variables. The modeling approach

we advocate for here can help to identify associations

between measures of climate and biodiversity responses

in cases in which there are no a priori expectations for

which variables matter.

Even within a relatively small set of case studies, we

found similar results in which variables had a high prob-

ability of inclusion for phenology case studies

(Figure 1b). The case studies we included were from tem-

perate regions, where phenological responses have been

studied much more than in tropical regions, especially in

spring (Cohen et al., 2018). In the tri-trophic context of

plants, insects, and birds considered here, many

responses depend on spring bud burst or leaf out. For

example, in temperate deciduous forests, bud burst often

coincides with spring temperature, which also triggers

insects to emerge from diapause, and the phenology of

many insectivorous bird species is synchronized to the

period of peak food availability in the form of insect

resources (Visser & Both, 2005). Thus, finding a consis-

tent relationship between temperature conditions and

population responses is not wholly unexpected for phe-

nology studies, and is in keeping with what has previ-

ously been considered in the literature (Appendix S1:

Table S1). This consistency suggests that researchers

studying the effects of climate on tri-trophic phenology in

temperate regions of the Northern Hemisphere may be

able to narrow down the set of candidate climate vari-

ables. The seasonality of temperature, however, does

seem to matter for phenology studies and researchers

should not default to using annual mean values for ana-

lyses when spring metrics are likely to be the most impor-

tant when studying spring and summer phenology and

indeed even more narrow windows are important and

likely to be worth consideration for many studies (van de

Pol et al., 2016).

Despite widely documented climate effects on popula-

tion abundance, biomass, and community composition

(McCarty, 2001), we found considerable heterogeneity of

associations between responses among our case studies

and climate variables. That is not to say that abundance

and community composition are not shifting in response

to climate change, but rather that climate change is

multifaceted and different aspects may be responsible for

observed responses across different taxa and regions.

For example, we found that the grass fruit set

(Huenneke & Browning, 2022) was primarily associated

with summer precipitation, whereas northern flicker

abundance (Wiebe, 2020) was associated with the previ-

ous winter vapor pressure deficit (presumably indirectly).

Populations often exhibit delayed responses to extrinsic

factors, with weather in previous years having lagged

effects on abundance or species richness in future years

(Evers et al., 2021; Salcido et al., 2020; Thompson &

Ollason, 2001; Wu et al., 2015). We did not include lagged

effects in our models because of the heterogeneity of

datasets and our goal of emphasizing the method through

case studies rather than aiming to make biological infer-

ences in any one system; however, including lagged

effects based on the biology of the system and more

sophisticated time series analysis may help researchers

working on tri-trophic responses to climate change to

uncover these types of responses. Similarly, researchers

could select more biologically relevant sets of candidate

variables than the ones presented here. For example,

snow cover is likely to be an important variable in several

of the case studies (e.g., McNulty, 2018; Wadgymar et al.,

2019), however, others were conducted in areas with no

snow cover data (e.g., DeMay & Walters, 2020; Lightfoot,

2021) and for consistency we did not include snow in the

models.

The method presented here is one of many sparse

modeling approaches that could be used for climate vari-

able selection (Hastie et al., 2009). The advantage of using

a Bayesian method is that it produces posterior distribu-

tions for variables that can themselves be informative. For

example, it can be useful to separate the probability that a

variable should be included from its estimated effect.

Because climate variables are frequently interrelated and

collinearity can be an issue, skewed distributions or con-

vergence issues can pinpoint variables that may be causing

issues with model fit or convergence. The issue of collin-

earity is especially true of climate variables, and

researchers should be aware that parameter values will

frequently be estimated incorrectly in the presence of

strong multicollinearity (Piironen & Vehtari, 2017).

Horseshoe priors will tend to estimate a high probability

of inclusion for only one of a set of highly correlated

predictors. However, unlike frequentist approaches to

variable selection, the overall model performance is

relatively insensitive to high collinearity among predictors

(Lu & Lou, 2022). Researchers should be cautious and

not take the parameter estimates from Bayesian sparse

modeling at face value, in part because the approach is

exploratory, but also because the prior distribution is

designed to draw estimates closer to zero (Roberts & Zhao,
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2022). As with all statistical approaches to variable selec-

tion, the decision about which variables to include in the

final models should be made by the researcher based on the

biology of the system. With increased computational power

and data storage capacity, ecology has entered a “big data”

era in which the amount of available data layers to use as

predictors often exceeds the number of observations that

are still constrained by resources available for field

data collection. Sparse modeling addresses this challenge by

allowing researchers to select among the thousands of pos-

sible predictor variables to develop models understanding

how biodiversity responds to global change.

With more and more studies documenting the effects

of climate change on biodiversity, it has become apparent

that population responses are often counterintuitive and

that there are many unknown or unexpected effects of

climate change. The sparse modeling approach for cli-

mate variable selection that we advocate for here is well

suited to exploratory analyses and identifying associa-

tions between biodiversity responses and climate change.

For example, previous winter vapor pressure deficit

emerged as a variable with a high probability of inclusion

in models of northern flicker abundance (Wiebe, 2020),

but there is no plausible reason to expect that it has direct

effects on the population. Rather, vapor pressure deficit

probably has indirect effects on the plant and insect com-

munities upon which the birds depend (Grossiord et al.,

2020), and as such, this approach can highlight avenues

for future research to identify more proximate factors

that are influenced by climate change. Indeed, this

approach can highlight suites of variables for subsequent

analyses, including multivariate metrics or composite

variables (Abatzoglou et al., 2020), using different histori-

cal periods for baseline conditions (Baker et al., 2016), or

assessing responses at more fine-scale temporal windows

(van de Pol et al., 2016). Simply including annual mean

temperature as a measure of climate change can mask

these more nuanced aspects of climate. Sparse modeling

to select among many climate variables can highlight

directions for future research to build toward more mech-

anistic models predicting the effects of climate change on

biodiversity that are necessary for conservation planning.
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