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Abstract

Climate change is contributing to declines of insects through rising temperatures,
altered precipitation patterns, and an increasing frequency of extreme events. The
impacts of both gradual and sudden shifts in weather patterns are realized directly
on insect physiology and indirectly through impacts on other trophic levels. Here, we
investigated direct effects of seasonal weather on butterfly occurrences and indirect
effects mediated by plant productivity using a temporally intensive butterfly monitor-
ing dataset, in combination with high-resolution climate data and a remotely sensed
indicator of plant primary productivity. Specifically, we used Bayesian hierarchical
path analysis to quantify relationships between weather and weather-driven plant
productivity on the occurrence of 94 butterfly species from three localities distrib-
uted across an elevational gradient. We found that snow pack exerted a strong direct
positive effect on butterfly occurrence and that low snow pack was the primary driver
of reductions during drought. Additionally, we found that plant primary productiv-
ity had a consistently negative effect on butterfly occurrence. These results high-
light mechanisms of weather-driven declines in insect populations and the nuances
of climate change effects involving snow melt, which have implications for ecological

theories linking topographic complexity to ecological resilience in montane systems.
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et al., 2021; Wilson & Fox, 2021). However, climate change is not

Climate change is driving declines in the abundance of wild or-
ganisms across the world (Parmesan, 2006; Sage, 2020; Young
et al., 2016). Along with habitat loss and degradation, studies of
insects frequently report climate as a primary contributor to re-
ductions in population density (Boggs, 2016; Bowler et al., 2017;
Harvey et al., 2022; Wagner, Fox, et al., 2021; Wagner, Grames,

one cohesive stressor and is instead a phenomenon composed
of changes to mean temperature and precipitation, increased
frequency of extreme events, and their interactions, which are
all expected to impact individual populations through different
direct and indirect processes (Boggs & Inouye, 2012; Filazzola
et al.,, 2021). Additionally, climate shifts are not uniform across

space or time, with higher latitudes and elevations experiencing
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more rapid rates of change and such changes being nonuniformly
distributed across seasons (Rangwala & Miller, 2012; Wang
et al., 2016). This spatial and temporal complexity makes under-
standing trends and forecasting future population trajectories dif-
ficult as such work requires extensive long-term datasets that are
relatively scarce for insects, especially at higher elevations (Halsch
et al., 2021). This paucity of information is problematic consider-
ing the importance of insects as ubiquitous, crucial components of
most natural systems and major components of global biodiversity
(Wilson, 1987). In this study, we use 36 years of monitoring data
of 94 species to evaluate direct and indirect effects of weather
on butterflies and their larval host and nectar plants across three
sites along an elevational gradient in the Sierra Nevada mountain
range of California.

The direct effects of long-term climate change have been most
often observed in phenological responses to temperature, with
many examples of temperate zone insect populations advancing
their emergence dates to earlier in the year or extending flight ac-
tivity into later months (Forrest, 2016). As ectotherms, the effects
of temperature on insects are far more than just phenological, and
events such as heat waves can have direct developmental conse-
qguences (Harvey et al., 2020). Rising temperature, however, is just
one axis of global climate change, and the disruption of precipi-
tation patterns may be an even greater threat (Wagner, 2020). It
appears that precipitation regimes, particularly extreme events,
play a significant role in declining insect populations (Forister
et al.,, 2018; Salcido et al., 2020; Stireman et al., 2005). While
temperature and precipitation are two different facets of climate,
they often covary and specific combinations may be particularly
adverse for insects (Dai, 2011; Harvey et al., 2022). For instance,
hotter and drier regions in the US are hotspots of butterfly de-
cline, while cooler and wetter regions are seeing increases in
abundances (Crossley et al., 2021).

Further complexity derives from the fact that populations are
embedded in communities and shifting abiotic conditions are ex-
pected to disrupt interactions between co-occurring organisms
(Gilman et al., 2010). Like direct effects, these indirect effects
have often been explored through a phenological lens. In these
cases, climate can have an indirect effect on insect populations
by causing a seasonal decoupling of insects and plants where
the emergence of a consumer, for example, is no longer aligned
with a resource (Forrest, 2016). Much of this work has been
focused on the start of the growing season, but the end of the
growing season is also important and potentially as consequential
(Gallinat et al., 2015; Nielsen et al., 2022; Williams et al., 2012).
For instance, sites experiencing warmer temperatures at the end
of the adult activity period in late fall experienced the great-
est declines in butterfly abundance, and one hypothesis for
this effect was stress on late-season plant resources (Forister
et al., 2021). Beyond potential mismatches in phenology, climate
change will also alter key features of plant communities, such as
species composition, nutritional quality, floral resources, natu-
ral defenses, and volatiles, which can have positive or negative

indirect outcomes on insects (Wilson & Fox, 2021). For instance,
drought has been shown to decrease floral resources and vola-
tiles while also decreasing defense against herbivory (Burkle &
Runyon, 2016; Rouault et al., 2006), and changes in C:N ratios
in leaves have been linked to declines in insect herbivores (Welti
et al., 2020). Such indirect effects may prove to be as important
as the direct effects; however, studies linking indirect effects to
long-term trends are few.

In high-elevation systems, direct and indirect processes are
both important for understanding the ways in which insects re-
spond to weather (Mani, 1968). In these landscapes, perhaps no
single variable is as important as snow, in the timing of its arrival,
the timing of its subsequent melt, and its impact on water avail-
ability throughout the following growing season. Population-level
data for butterflies have demonstrated the benefit of snow in its
protection from extreme winter conditions for both the butterflies
themselves (Roland & Matter, 2016) and their host and nectar plants
(Boggs & Inouye, 2012). Snow effects can also be long-lasting, as
an early melt can cause an early onset of summer water stress in
shallow soils (and the plants that utilize these soils) in the following
growing season (Blankinship et al., 2014). Of course, while snow is
important, weather during the growing season will also influence
butterflies directly and indirectly (Murphy & Boggs, 1997; Singer
& Thomas, 2002). Summer heat, for instance, may contribute to in-
creased activity and expanded phenology, while also stressing ear-
lier developmental stages and host plants (Forister et al., 2021). In
all, the outcomes of montane butterfly populations in response to
weather are likely complex, depending on both timing and intensity
as well as their own phenology.

Here, we use observations from a temporally intensive but-
terfly monitoring program in North America to quantify the di-
rect effects of weather and the indirect effects of weather on
plant productivity, which affects adults (through quality of nec-
tar sources) and larvae (through abundance and quality of larval
food plants) from three sites above 1350 m in the Sierra Nevada
(Forister et al., 2010). This dataset contains variation in life his-
tories and landscapes and is ideal for considering the direct and
indirect effects of weather and the traits associated with varia-
tion in responses to abiotic conditions. We combine these long-
term monitoring records with a satellite-derived indicator of plant
primary productivity and high-resolution weather data in a mod-
eling framework that incorporates population- and site-specific
responses. We first ask how conditions during the winter and
the subsequent growing season impact butterflies directly and
indirectly, potentially influencing juvenile stages through effects
on host plants or impacting adults through changes in nectar
resources. We then consider how these effects relate to how
populations responded to an extreme, millennium-scale drought
(Forister et al., 2018) and the life history traits that mediated
drought response. In doing so, we shed new light on how differ-
ent aspects of climate change covary, the relative importance of
different variables, and the pathways through which they impact
montane butterflies.
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2 | METHODS
21 | Overview

Analyses incorporated annually resolved butterfly data, remotely
sensed NDVI (Normalized Difference Vegetation Index) data, and
weather data from a downscaled regional climate model into a
Bayesian hierarchical path analysis to understand direct and indirect
effects of weather on butterfly occurrence at three monitoring sites
(Figure 1). To do this, we first performed a factor analysis to reduce
the dimensionality of the weather data, while still preserving mean-
ingful information with interpretable factors. We then used these
weather factors and NDVI data to build two separate Bayesian hi-
erarchical models, one predicting NDVI and another predicting but-
terfly occurrence (including NDVI as a predictor; Figure 2). These
models were interpreted together to build the path analysis. Finally,
using daily weather data available at one of the sites, we ran an ad-
ditional Bayesian hierarchical model describing the effect of warm
conditions at the end of winter, an effect of interest based on results

from the path analysis.

2.2 | Butterfly data

The butterfly data used in this study are part of a long-term moni-
toring program that includes observations from 10 sites visited
approximately every other week during the adult butterfly season
(Forister et al., 2010). These sites cover an elevational gradient in

FIGURE 1 Topography of the three
butterfly monitoring sites where the route
walked is shown in red. (a) Location of
monitoring sites in the Northern California
Sierra Nevada mountains. (b) The Castle
Peak monitoring site which climbs to

a summit, follows the ridge, and then
descends through two meadows. (c) The
Donner Pass site which largely lies at the
bottom of a basin. (d) The Lang Crossing
site which is also largely at the bottom of a
drainage basin and crosses two rivers.
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northern California that spans sea level to 2800 m. During each
site visit, observers walked a fixed transect and recorded the pres-
ence of all butterfly species seen. For this analysis, a population
refers to a time series of a species at a site and is not meant to
imply genetic structure among sites. We restricted analyses to
the subset of species that have been present in at least 10 sepa-
rate years at a site and that have never been absent more than 5
consecutive years, for a total of 188 populations (Figure S1 for
the fauna at each site). These criteria eliminated stray species and
those that colonized in the middle of the study. Additionally, since
NDVI data were only available beginning in 1984, we further re-
stricted the butterfly data to the years of 1985-2020 (to include
a lagged effect of 1984). We then totaled the number of times
each butterfly species was seen each year (for each site) and the
number of times that a site was visited, which jointly inform the
binomial sampling distribution. Intraspecific, annual variation in
the probability of occurrence derived from this approach is an
established proxy for variation in population density, as greater
abundance in a year for any particular species is reflected in
positive observations on more days throughout the year (Casner
et al., 2014). This proxy relationship has been previously investi-
gated with our dataset, where it was found that change through
time estimated with individual counts (abundance) and with the
number of days present are highly related across the majority of
species (Casner et al., 2014). Those analyses were made possible
because abundance data are collected (in addition to presence and
absence data) at the lower elevation sites of our monitoring pro-

gram, where the butterfly fauna is less diverse and thus counts
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FIGURE 2 Conceptual diagram of

the primary analysis. (a) A factor analysis
was used to estimate weather covariates
where observed weather variables are
shown in the rectangles and the weather
factors are shown in the ovals underneath
them. The relationships between the
original variables and the factors can

be found in Table S1. The factors are
ordered by water year (prior October to
current September, shown as months on
the bottom). Below the factors are the
life stages that a typical early and late
phenology butterfly will be in during time
periods relevant to these factors. (b) The
general structure of the path analysis
where butterflies are affected by weather
in the same year and from the previous
year. We also generate indirect effects of
weather mediated by productivity (NDVI)
in the same and previous year. Each path
is estimated at three levels: a population
within a site (n=188), a site (n=3), and
across all sites (n=1).

I Summer Max. Temp. I

I Summer Min. Temp. I

I Summer Rainfall I

Late growing
season

Egg/larva

Adult
Jul.  Aug. Sep.

factors

Same Water Year

of individuals are more readily recorded. Here, we have revisited
this issue with more years of data relative to the previous analysis
(Casner et al., 2014), and we again find a clear and positive re-
lationship between the binomial probability previously described

and actual abundance (Figure 3).

2.3 | Site descriptions
The three high-elevation sites examined here are Castle Peak,
Donner Pass, and Lang Crossing, located in the Sierra Nevada moun-
tain range of California (Figure 1). We selected these sites because
they receive substantial percentages of their precipitation as snow,
and they remain covered during the winter. We were particularly in-
terested in exploring how the duration of snow pack might relate
to the impact of a mega-drought on butterfly populations (Forister
et al., 2018). These sites have also remained relatively unchanged
compared with the high rates of suburban and exurban develop-
ment that characterize the lower elevation monitoring sites (Forister
et al., 2010). Thus, the primary stressors of butterflies at the three
focal montane sites are likely from weather and not from other
anthropogenic inputs. Finally, given the known heterogeneity of
weather effects across these monitoring sites (Nice et al., 2019), a
focus on only a few sites allowed us to more efficiently address the
complexity of weather responses among butterflies.

The Castle Peak transect (39.367°N, 120.352°W) is 14.5km long
and spans an elevation range of 2200-2800m. The route is mostly

DT —

composed of mixed conifer forest with herbaceous understory but
also follows a ridge (above treeline) and crosses two meadows. The
landscape is heterogeneous, and snow melt timing is highly variable
within a single season, with south-facing sections that melt early
and north-facing sections that melt late. The Donner Pass transect
(39.367°N, 120.352°W) is 17.75km long and spans an elevation
range of 2000-2175m. The route is mostly composed of mixed co-
nifer forest with an herbaceous understory but also includes a large
meadow and granite rock outcroppings. Most of the route is walked
in the bottom of the local drainage and the route itself is mostly flat.
The Lang Crossing transect (39.309°N, 120.666°W) is 7.25km long
and spans an elevation range of 1350-1475m. The route consists
of a relatively even distribution of mixed conifer forest, meadows,
and xeric rock outcroppings. The route is largely in the bottom of
a drainage and crosses both the Bear and Yuba rivers. This route
encompasses more topographic complexity than Donner Pass but
less than Castle Peak.

24 | NDVldata

NDVI is a commonly used spectral index that contrasts the re-
flectance of red light (which is typically absorbed by healthy
vegetation) and near-infrared light (which is typically reflected
by healthy vegetation). Thus, NDVI is a holistic indicator of plant
community photosynthesis and productivity. We calculated an-
nual NDVI values from Landsat Collection 2 Surface Reflectance
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FIGURE 3 Strong positive relationship between the probability of occurrence and annual counts at five lower elevation sites (where
counts can be conducted). The center panel show this relationship for 201 populations after z-transforming baseline occurrence probability
and abundance. Fourteen populations were randomly selected to demonstrate this relationship using the raw data. These are shown in the
14 smaller panels that surround the main figure. Points in all panels are colored by population (white points denote a population that is not

shown in the marginal panels).

imagery collected at each of our monitoring sites. To limit the ef-
fects of image irregularities in individual Landsat scenes, we used
an annual image composite approach as follows. First, we used
the CFMask-derived quality assurance band (Foga et al., 2017) to
mask pixels with clouds, shadows, water, and snow cover in each
Landsat scene that overlapped our study area. For each 30-m pixel
and year, we then calculated the 75th percentile NDVI value for all
unmasked values in images collected during the typical growing
season (i.e., June 1 to September 30), which reflects the overall
photosynthetic production within a pixel without being sensitive
to outliers. As a result, we developed annual image composites of
growing season NDVI for each year in our study period. Within
each site, we extracted NDVI data from each year in unforested
areas that are representative of annual phenological patterns for
herbaceous plants. A single weighted mean NDVI value was then

calculated for each year at each site, where a pixel that was com-
pletely in an unforested area contributed more than a pixel that
was on the edge, with partial forest cover. NDVI values were then
centered and scaled (z-transformed) prior to analysis.

2.5 | Weather data

Mean monthly values of daytime highs (°C), nighttime lows (°C),
and precipitation (mm) were derived from the M3 version of the
Parameter-elevation Regressions on Independent Slopes Model
dataset (Daly et al., 2008), which provides gridded weather data
at 4-km native resolution. These data were spatially downscaled
to 270-m resolution (Flint & Flint, 2012) and were then used as
inputs for the Basin Characterization Model (BCM), a mechanistic
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model that balances the water budget on a per-grid cell basis by
combining the weather variables with site characteristics, includ-
ing soil depth, porosity, and bedrock type (Flint et al., 2013; Thorne
et al., 2015). The BCM produces additional variables, including
runoff, recharge, climatic water deficit, the accumulation and melt
of the snow, and the snow water equivalent (SWE). Because the
model is mechanistic, it can be calibrated using various ecosys-
tem characteristics. The California version of the BCM has been
calibrated and validated for actual evapotranspiration using re-
mote sensing (Reitz et al., 2017), snow water equivalent (SWE)
using National Resources Conservation Service (NRCS) Snowpack
Telemetry (SNOTEL) stations, and streamflow gauges from the
USGS National Water Information System (Flint et al., 2021). We
used the path of each transect, buffered by 100 m on either side,
to sample the 270m BCM variables and calculated monthly means
for T i Tmax PPT, and PCK (SWE) for each month from 1984 to
2020.

To further explore the role of warm winters in driving butter-
fly populations, we obtained an additional weather dataset from
the Central Sierra Snow Laboratory in Soda Springs, CA, which
has maintained a weather station along the Donner Pass monitor-
ing route for the entirety of the monitoring program (Osterhuber &
Schwartz, 2021). We used this weather station's daily measurements
of maximum temperature, minimum temperature, snow depth, and
SWE. To match the temporal window of our factor analysis (dis-
cussed below), we summarized both maximum and minimum tem-
perature by taking the mean across the months of January-March.
To examine the effects of snow at the end of the cold season, we
took the average of SWE (which was >0.95 correlated with snow
depth) across the 2weeks preceding April 1, to account for occa-
sional instances of missing data over that time span. Each of these

variables was scaled prior to analysis.

2.6 | Factor analysis

We treated weather as a latent variable by performing a factor anal-
ysis on the weather data from the BCM model, with the scores of the
factors becoming the covariates used in the path analysis. To do this,
we first took seasonal averages of minimum temperature, maximum
temperature, precipitation, and SWE, calculated within the water
year (i.e., prior October to current September). We then performed
a single factor analysis of scaled weather variables across all sites
(specifying four factors) using the “oblimin” rotation, which does not
force axes to be orthogonal (preserving any correlations that may
exist between seasonal weather). By performing one factor analysis
across all the weather data, we ensured that the interpretation of
factors was consistent across all sites and years. The specification
of four factors was chosen based on the results of an exploratory
factor analysis where we tried different rotations and numbers of
factors to assess fits and interpretations. We then generated factor
scores for each site in each year to be used as covariates in sub-
sequent analyses. Finally, factor scores were scaled for use in the

subsequent path models. The factor analysis was performed using

the psych package (version 2.2.9) in R (Revelle, 2022).

2.7 | Modeling of butterfly populations

The butterfly occurrence and NDVI models were fit as two sepa-
rate Bayesian hierarchical models, the outputs of which were
combined to describe direct and indirect effects. This approach
is similar to Piecewise SEM (Lefcheck, 2016), where models are
fit separately, but inferences are made using all models. Butterfly
occurrences were modeled using covariates for each seasonal
weather factor, each seasonal weather factor in the previous year,
NDVI, the previous year's NDVI, butterfly density in the previ-
ous year, and year (see Figure 2 for schematic of these effects,
Figure S2). Butterfly occurrences were treated as binomially dis-
tributed where an observation of a species during an individual
survey was treated as a “success” and the total number of surveys
during a year at that site was the number of “trials.” The probabil-
ity of a success was modeled using a logit link and was predicted
by the linear terms in the model. In our hierarchical framework,
the coefficients associated with each covariate were estimated at
three levels: an individual population within a site (188 estimates
per covariate), across all populations within that site (3 estimates
per covariate), and across all populations across all sites (1 esti-
mate per covariate). For a small subset of species that only occur
early in the year, we removed the effect of the end-of-the-year
conditions because this occurs after the adults have completed
their flight. NDVI was modeled using covariates for each seasonal
weather factor, each seasonal weather factor in the previous year,
the previous year's NDVI, and year (Figure 2, Figure S3). The coef-
ficients for each covariate were estimated at two levels: within
each site and across all sites. NDVI was treated as normally dis-
tributed with a mean that is predicted by the linear terms in the
model and a precision estimated from the data. Vaguely informa-
tive priors were used for all terms in both models and these prior
specifications, along with full model statements, can be found in
the supplement (Figures S2 and S3). Both models were run using
the jagsUI package (version 1.5.2) in R, which implements Gibbs
and Metropolis-Hastings sampling algorithms (Kellner, 2019).
Model convergence was evaluated by examining Gelman-Rubin
diagnostics and traceplots. Model fit was evaluated using Pareto
smoothed importance sampling and posterior predictive checks
using the loo (version 2.5.1) and bayesplot (version 1.10.0) pack-
ages in R (version 4.4.2; Gabry & Mahr, 2022; R Core Team, 2022;
Vehtari et al., 2022).

Once the butterfly and NDVI models were fit, outputs were
combined for interpretation. The direct effect of each weather
factor on butterflies was inferred from the posterior distribution
of each coefficient associated with each weather factor in the
butterfly model. The indirect effect of each weather factor was
calculated by multiplying points describing the posterior distribu-
tion associated with each weather factor in the NDVI model by
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points describing the posterior distribution of the NDVI effect in
the butterfly model. To standardize the coefficients from the but-
terfly model, which are on a logit scale, we performed a Menard
standardization (Menard, 2017). The total effect of each weather
variable (whether direct or indirect) was calculated by summing all
relevant paths.

In response to the effect of warm winters observed with the path
analysis, we ran an additional analysis to understand which traits
were most strongly associated with this response at the Donner
Pass site (where the most local snow data were available). To do this,
we used a Random Forest model; Breiman, 2001) to detect the life
history variables that are predictive of how a population responds
to a warm winter. In the model, we used larval host breadth, over-
wintering stage, phenology, wingspan, and range size as predictor
variables, with the response variable being the population-specific
response to the end-of-winter conditions (i.e., coefficients from the
previous path model). This was done with 500 trees with a node
size of five using the randomForest package (Breiman et al., 2018).
Because they were important features in this Random Forest anal-
ysis, we then focused on overwintering conditions and overwinter-
ing stages, using a Bayesian hierarchical model and data from the
Donner Pass site (Figure S4). For this model, butterfly occurrences
were once again binomially distributed (as previously described)
and predictors included mean winter maximum temperature, mean
winter minimum temperature, SWE, NDVI, year, a multiplicative in-
teraction term between snow and the maximum temperature, and
a multiplicative interactive term between snow and minimum tem-
perature. The effect of each predictor on butterflies was estimated
at two levels: for each species and for each overwintering stage.
We used vaguely informative priors, and a full model statement can
be found in the supplement (Figure S4). Full implementation of the
model, including sampling, convergence evaluation, and model fit

were performed in the same way as the path analysis.

3 | RESULTS
3.1 | Weather factor analysis

We generated four factors that incorporated information from the
original 14 temperature and precipitation variables to summarize
seasonal covariation in weather (Figure 2a). Two of the factors repre-
sented weather during the winter, while the other two represented
weather during the growing season (Table S1). The first winter fac-
tor largely described early winter conditions, while the other winter
factor described the conclusion of winter, particularly temperature
at winter's end (Table S1). High values of the early winter factor indi-
cated a cool and wetter onset of winter (including more snow), while
high values of the late winter factor indicated a hotter January-
March (Table S1). The growing season factors largely split between
the first and second half of the adult butterfly season (April-June
and July-September, respectively). Higher values for both growing
season factors indicated a hotter and drier season (Table S1). Factors
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were generated with nonorthogonal rotation and are thus corre-
lated, but weakly (Figure S5).

3.2 | Total and indirect effects of weather factors

When looking at the total impact of the four weather factors, sum-
ming across direct, indirect, and lagged (previous year) pathways,
we found heterogeneous effects on butterfly occurrence. Most
of the posterior distributions for both the across-site and the site-
level effects were largely overlapping zero, indicating uncertainty in
quantifying common responses to weather shared across species at
different monitoring sites or even shared across species within a site
(Figure 4a, Figure S6). This is despite the weather variables them-
selves being highly correlated across sites (Figure S7). We did find
effects of each of these factors (at an 80% credibility level, equal
tail probability interval [ETPI]) at the population level, as shown in
Figure 4a and listed in Table 1. Hot and dry conditions in the first
half of the growing season have largely negative effects, resulting
in reductions in occurrence probability from .13 to .48 per SD of
hot spring conditions. We found a reversal of equal magnitude of
this effect for many species later in the growing season (Figure 4a,
Table 1). We detected both positive and negative responses to win-
ter variables, but a wetter and cooler onset of winter (starting at the
end of the previous calendar year) generally increases the probabil-
ity of occurrence for butterflies in the next year (Figure 4a, Table 1).
The end-of-winter conditions affected the most populations, but did
so bidirectionally, with populations responding both positively and
negatively (Figure 4a, Table 1). When considering indirect effects,
we see reversals in the directions of effects as compared to direct
effects because NDVI (i.e., higher vegetation productivity) has a
negative effect on butterflies, as shown in Figure 4b and Table 1. We
found variation in effect sizes by site, but conditions in early winter
appear to have the strongest and most general indirect effect, where
a high snow year (1 SD above normal) reduces butterfly occurrences
indirectly by up to .24. This effect is negative due to it being a posi-
tive predictor of NDVI (which itself has a negative association with
butterfly populations). We also want to note the negative indirect
effect of year: After accounting for seasonal weather variation,
there is a residual negative trend over time explained by an indirect
relationship with NDVI (Figure 4b, Table 1).

3.3 | Comparing prior and current year weather
on butterfly occurrence

The total effects described above are derived from the path coef-
ficients from two different models (including both within-year and
lagged effects), whose coefficients can be considered individually.
As was the case for total effects, it is the population-specific path
coefficients that were more informative; however, we did observe
shared variation in responses based upon the site (Figure S8).
Within the same year, we saw largely positive responses to wetter
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FIGURE 4 Effects of seasonal weather on butterfly populations. For each plot, small colored points show estimates from the lowest
level in the hierarchy (a population within a site) and are colored by site (across-site estimates can be found in Figure Sé). Points denoting
estimates that are credibly different from O at a 0.8 level are opaque. Larger colored points with error bars show the site-level estimate
with 80% credible intervals. (a) The total effect size (direct+indirect) of each weather covariate. (b) The strength of indirect effects of

each weather covariate. (c) The estimated effects of each covariate from the same year butterflies were observed (for instance, butterflies
observed in 1980 respond positively to snow accumulation in the 1979-1980 winter). (d) The estimated effects of each covariate from the
year before butterflies were observed (for instance, butterflies observed in 1980 respond positively to hot and dry conditions at the end of

the 1979 growing season).

early winters and largely negative responses to hot/dry ends to
the growing season (at an 80% credibility level, ETPI; Figure 4c,
Table 1). We also found strong negative effects of NDVI in the
same year, which reduces the probability of occurrences of but-
terflies between .08 and .26 per SD (Figure 4c, Table 1). When
looking at the impacts of weather in the previous year, we again

found not only largely positive responses to wet early winters but
also largely negative responses to hot/dry early growing season
conditions and positive responses to hot/dry late growing seasons
(Figure 4d, Table 1). We also found, for most species, a positive
effect of butterfly occurrence probability in the previous year af-
fecting observations in the current year. All the parameters in both
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TABLE 1 Range of mean positive and
negative effect sizes of credible effects at
a 0.8 level (the 80% equal tail probability
interval does not overlap 0). Total

Total

Effect type

Total

Total

Total
Indirect
Indirect
Indirect
Indirect
Indirect
Same year
Same year
Same year
Same year
Same year
Same year
Prev. year
Prev. year
Prev. year
Prev. year
Prev. year

Prev. year

Predictor variable

Range of positive
effect sizes
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Range of negative
effect sizes

Early winter 0.17-.46 (26) 0.17-.63 (8)
Late winter 0.17-.55 (40) 0.13-.54 (34)
Early growing season 0.21-.46 (9) 0.13-.48 (49)
Late growing season 0.11-.53 (46) 0.18-.40 (6)
Year 0.16-.47 (26) 0.12-.56 (90)
Early winter 0.05(1) 0.04-.24 (110)
Late winter 0.05-.16 (62) 0.02-.06 (3)
Early growing season 0.03-.19 (83) 0.04-.10 (3)
Late growing season 0.02-.11 (76) 0.03-.12 (36)
Year —(0) 0.05-.37 (96)
Early winter 0.07-.17 (55) 0.08-.28 (5)
Late winter 0.07-.17 (17) 0.07-.19 (56)
Early growing season 0.08-.18 (15) 0.08-.31 (42)
Late growing season 0.08-.12 (3) 0.07-.31 (44)
NDVI —(0) 0.08-.26 (93)
Year 0.09-.38 (47) 0.09-.39 (68)
Early winter 0.06-.30 (63) 0.07-.24 (2)
Late winter 0.07-.33 (25) 0.07-.14 (11)
Early growing season 0.07-.17 (10) 0.07-.24 (66)
Late growing season 0.06-.22 (83) 0.09-.11 (2)
NDVI 0.08-.18 (2) 0.09-.31(62)
Butterflies 0.09-.43 (145) 0.09-.21 (3)

Note: The number of populations that respond at that level to each predictor variable is indicated
with parentheses (out of 188 populations). Effect sizes are the expected change in the probability
of occurrence for every 1 SD of change in a predictor variable. Linear relationships for effect sizes
from the binomial model were estimated using a Menard standardization (Menard, 2017). “Total”
refers to the effects of predictor variables across both same- and previous-year effects. “Indirect”
refers to the effects of predictor variables mediated through productivity (NDVI). “Butterflies”

(in the predictor variable column) refers to the influence of butterfly density in the previous year
(represented by the number of days observed) on observations in the subsequent year.

path analysis models converged and the models were a good fit
to the data (Tables S2 and S3, Figures S9 and S10). All parameter
estimates and convergence diagnostics can be found in the sup-

plemental materials.

3.4 | Population response to drought

In addition to the impacts of weather, estimated through the mod-
els described above, we were also interested in how sensitivity to
specific seasonal weather variables could inform our understanding
of population responses to a major climatic event. We found that
population response to elevated winter temperatures is related to
population trajectories during the mega-drought years of 2011-
2015 (Figure 5). Populations with an overall positive response to
warm end-of-winter conditions maintained higher occupancy dur-
ing the drought years, which is also related to phenology and over-
wintering stage (we examined other traits which were found to be
less predictive, see Figure S11). Given this result, we next asked

how overwintering stage is associated with population response
to a warm winter and thus response to the drought. We hypoth-
esized that if the mechanism underlying the relationship to warm
winters involves an effect of premature snow melt and a disruption
to diapause, then species that overwinter in younger developmental
stages will be more vulnerable. Another possibility is that early snow
melt reduces water availability at the end of the following growing
season, which disproportionately impacts adult butterflies foraging
for floral resources that have dried up. In this scenario, an effect of
NDVI should be more important, particularly for species that fly late
in the season.

We found a positive effect (at an 80% credibility level, ETPI) of
higher April 1 SWE on all butterflies, across all overwintering stages
(.99 probability of direction [pd]; Figure 6a). For other weather vari-
ables, we found that the most credible effects were specific to cer-
tain overwintering stages (Figure 6a). For example, we observed a
negative effect of elevated minimum temperatures during late winter
on populations that overwinter as eggs, larvae, and pupae (.99 pd, .97
pd, and .91 pd, respectively). We also recover the previously detected

AsUQDIT suowwo)) aanear) dqedsrjdde ayp £q pauraaoS a1e So[ONIE Y 98N JO SI[NI 0] ATRIGIT AUIUQ AD[IAY UO (SUONIPUOD-PUE-SULIA)/ WO Ka[1m’ ATeIqIjaurjuo//:sd)y) SUONIpuo)) pue suldf, 3y 928 “[£707/11/€] uo Areiqiy aurjuQ K[IAN ‘Oudy epeadN JO ANsIoatun) £q $0L1°498/1111°01/10p/wod Kapim Kreiqiourfuoy/:sdny woij papeoumo( ‘() ‘98+7So¢ 1



HALSCH ET AL.

10 of 15
4|—WI [B2A% Clobal Change Biology

FIGURE 5 Positive relationship

&) 1.01 b @ o (b) 1.01 IO O O between how a species responds to
— ! 8 — ! O (8 a warmer winter and how a species
(54 ) (5} il 0 ded to the 2011-2015 drought at
0.5 - 05 - respon g
.,"d:, QOO‘QJCSD é Q.Oé)’ (a, b) Castle Peak, (c, d) Donner Pass, and
Q | O © o g). o o (e, f) Lang Crossing. Positive values for
% 0.01@- - %""6"'"@' %’ 0.00-- 8%""6""'.— drought effect indicate that a species did
5 ; 5 : better than its historic average during the
2 -0.5- OO '@ ®o (@) g 051 .. '@ oo @) years 2011-2015. In panels (a), (c), and (e),
o @) i QS) o @) i Q’ points are colored by the average date of
® E ® E when that species has ended its flight at
-1.0; 1®) i ad -1.01 v that site. In panels (b), (d), and (f), points
_0'_2 0:0 0:2 014 -(j_2 010 0:2 0:4 are colored by their overwintering stage.
Warm winter effect Warm winter effect
(c) : (d)
1.0 o) O; 1.0
(8] (8]
0.51 O 0.5
£ P oo £
Q ) @ Q
= 0.07---@--gpfy----- - = 00
2 s oa Pl @
-0.51 & I -0.5
505) 9" o&rg S
(@) @) ok (@)
-1.0- e : -1.07
O r=0.28
-04 -02 00 02 04 -02 00 02
Warm winter effect Warm winter effect
(e) M , o
1.0 1.0 ;
g 8 e fa
= 05 = 05 |
() () @®
£ 00 S 00y go— -
S %’ @) O0
2.05 2.08 &
- - "o *®
1.0 o | r=036 1.0 o

02 00 02 04
Warm winter effect

.

Later phenology —

negative effect of NDVI on butterflies, particularly on stages that
overwinter as eggs and larvae (.94 pd and .88 pd), that will fly as
adults later in the season relative to populations that overwinter as
pupae (Figure 6a). Finally, we found support for an interactive effect
between April 1 SWE and minimum temperature for populations that
overwinter as eggs and larvae (.95 pd and .99 pd; Figure 6a). The in-
teractive combination of both minimum and maximum temperature
and April 1 snow (i.e., SWE) is visualized in Figure 6b,c, where years

with reduced snow and high minimum temperature greatly reduce the

02 00 02 04
Warm winter effect

.Egg OLarva
OPupa .Adult

probability of occurrence in the following growing season (Figure 6b),
while reduced snow and maximum temperature do not strongly inter-
act (Figure 6¢). This is especially informative for the drought, shown
with the red point, where the interactive combination of high min-
imum temperature and low snow reduced the probability of occur-
rence of juvenile stage overwinter butterflies by over 15% compared
with average conditions (Figure 6c). All the parameters in the Donner
Pass model converged and the models were a good fit to the data
(Table S4, Figure S12).
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FIGURE 6 Coefficient estimates from the model focusing on Donner Pass. (a) The estimated effect (and 80% credible intervals) of

each variable on butterflies. Small colored points show estimates from the lowest level in the hierarchy (a species) and are colored by
overwintering stage. Points denoting estimates that are credibly different from O at a 0.8 level are opaque. Larger colored points with error
bars show the wintering stage-level estimate with 80% credible intervals. (b) Visualization of the interaction between minimum temperature
and April 1 snow for eggs and larvae. (c) Visualization of the interaction between maximum temperature and April 1 snow for eggs and
larvae. The red point in panels b and c indicates observed conditions during the drought.

4 | DISCUSSION

Butterflies and moths in all landscapes across the world are fac-
ing the manifold threats of climate change (Bowler et al., 2017,
Harvey et al., 2022; Wagner, Fox, et al., 2021; Wagner, Grames,
et al., 2021). Long-term monitoring datasets offer excellent oppor-
tunities to better understand the mechanisms underlying popula-
tion response to shifting and extreme abiotic conditions (Halsch
et al., 2021). Here, we found that montane butterfly populations,
even those in close geographic proximity to each other, respond
in heterogeneous ways to weather (Figure 4). Complex, among-
site variation in abiotic effects that are not a simple function of
elevation has been observed previously in this system, although

using analyses that did not include measures of snow or primary
productivity (Nice et al., 2019). In contrast to those heterogeneous
effects, we found a strong negative effect of plant primary pro-
ductivity at all sites and found that many populations respond to
winter temperatures (in both the positive and negative direction).
The importance of cold season temperatures is consistent with
a recent regional analysis of butterflies (Forister et al., 2021), al-
though that study was not designed to disentangle species-specific
responses to abiotic conditions. We found that how a population
responds to a warm winter predicts how that population fared
during a mega-drought, where it appears to be related to the melt-
ing of snow, highlighting the importance of the end of winter for
montane butterflies (Figures 5 and 6).
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A primary motivation behind this work was to explore the role
of plant-mediated effects in the decline of butterflies in natural
areas. We focused on productivity (as indicated by NDVI), because
those data have been collected for a similar length of time to our
own butterfly data. This index is imperfect and does not include
aspects of plant communities such as shifts in plant composition
or functional groups (Pettorelli et al., 2005). Nonetheless, a strong
negative effect of NDVI was detected with relative consistency
across sites and species (Figure 4). This result is noteworthy given
the observed heterogeneity in the responses of individual popu-
lations within and among sites to weather conditions. A negative
effect of NDVI on animal populations is not without precedent.
One of the most important potential effects of climate change on
plant-herbivore interactions is that increasing atmospheric carbon
dioxide concentrations and temperature will increase C:N ratios
in plant tissues, decreasing nutritional quality of leaves (Robinson
et al., 2012). Such changing ratios have been demonstrated to be
negative for other insect herbivores and are thus a plausible expla-
nation for this result in our data (Welti et al., 2020). Likewise, in-
terannual changes in NDVI may also relate to fluctuations in plant
community composition, which, in turn, can affect nutritional re-
sources. In montane meadows of the Sierra Nevada, high NDVI
is often associated with greater cover of hydrophilic species such
as sedges (Carex spp.), which can form dense mats that exclude
other plant species such as grasses and forbs (Davis et al., 2020).
Interestingly, while NDVI is itself a negative predictor of butter-
fly population dynamics, it does not have a straightforward rela-
tionship to butterflies during the drought years. In fact, primary
productivity decreased during the mega-drought so, if anything,
butterflies performed even worse during the drought than would
be expected given the positive influence of reduced productivity
during that period. Given this, it seems likely that multiple pro-
cesses are at work, and while primary productivity changes may be
associated with gradual change, sudden and extreme population
disruption is related to other factors or interacts with productivity
in ways we do not yet understand.

The effect that was most associated with drought response was
how a population responds to warm conditions at the end of winter.
We found that elevated temperatures in the months of January to
March were broadly associated with changes in the probability of
occurrence (both positive and negative) and species that responded
the most negatively to those conditions over the long run of decades
were also those species that fared the worst during the drought
years (Figure 5). This pattern was found at all three sites; however,
it was strongest at the two lower elevation sites: Lang Crossing and
Donner Pass. Castle Peak, while very close to Donner (<3km), is a
much more heterogeneous landscape, and such topographic varia-
tion may buffer populations against warm winters. Our model fo-
cusing on Donner Pass suggests that this warm winter effect is most
likely due to damaging effects taking place in the winter itself and
not a delayed effect realized later in the growing season, although
whether this winter stress is on butterflies (especially on juvenile
stages), host plants, or both, we cannot determine (Figure 5). The

importance of minimum temperature (and not maximum tempera-
ture) is particularly insightful as this variable has been linked to di-
rect physiological stress in both butterflies and host plants (Speights
et al., 2017). This interpretation is also consistent with other studies
that have associated changes in the beginning and end of winter with
disruptions of insect populations (Roland & Matter, 2016), particu-
larly in areas where snow cover patterns are shifting from being cov-
ered in winter to being exposed (Roberts et al., 2021). Regardless of
the mechanism, disruptions to conditions at the end of winter pose
a serious risk to overwintering butterflies, particularly those in more
uniform landscapes and in early developmental stages.

Climate change encompasses multiple concomitant weather
phenomena that vary in space and time. For organisms that have
distinct, seasonal life stages, interannual variation in the intensity
of climate change is clearly important for understanding which spe-
cies are most vulnerable (Uhl et al., 2022). Our findings suggest that
changing or novel conditions at the end of winter are impactful for
montane butterflies, especially those that overwinter in more vul-
nerable stages such as eggs or early instar caterpillars. However,
our results also show that this effect is not universal and that het-
erogeneous landscapes that contain variation in topography and
canopy cover may provide microrefugia capable of buffering some
populations from extreme events in a way that is consistent with
long-standing ecological theories of resilience in the face of dis-
turbance (McLaughlin et al., 2017), but it is interesting to note how
localized and species-specific that effect may be. We also acknowl-
edge that our primary response variable, the binomial probability of
occurrence, is derived from repeated presence and absence obser-
vations throughout the flight season, and not from counts of indi-
viduals. While the probability of observation is a useful proxy for
abundance (Casner et al., 2014), it is also intertwined with pheno-
logical variation (Forister et al., 2011), and we expect future stud-
ies focusing on that interdependency will be productive (Figure 3).
Finally, we note that while many of the variables we examined, such
as plant primary productivity and the hotness and dryness of fall,
are gradually increasing over time (Figure S13), it was an extreme
weather event that was the single largest disruptor of populations
(Forister et al., 2018). This further demonstrates the importance of
extreme weather events, and interactions between temperature
and precipitation, in understanding how climate change is impacting
populations in natural areas.
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