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Rise and fall of patterns in driven-dissipative Rydberg polaritons
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In this study, we present an exploration of spontaneous symmetry breaking and pattern formation in the
driven-dissipative system of Rydberg exciton polaritons with long-range interactions. Our investigation unravels
the pattern formations through modulational instability, characterized by scales in the micron range. We observe
the dynamics of the polariton ensemble, studying the emergence of metastable patterns and their eventual
collapse in the long-time limit. This phenomenon is attributed to the destructive interference between the
polariton state and the external drive within the ensemble. Further, we delineate conditions conducive to the
stable formation of patterns under incoherent pumping. These findings open up various avenues for delving into
the burgeoning realm of driven-dissipative and long-range interacting gases through the unique characteristics
of Rydberg excitons.
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I. INTRODUCTION

Spontaneous pattern formation is a widespread phe-
nomenon across various disciplines, ranging from cosmology
[1] to biology [2] and condensed matter physics [3]. While
there is no universal microscopic mechanism giving rise to
stationary patterns in these diverse systems, they all share a
complex interplay of dispersion, interactions of various length
scales, and external driving forces.

In quantum systems, cold atoms have evolved into a po-
tent tool for simulating a diverse range of phenomena in
closed quantum systems, encompassing spontaneous sym-
metry breaking and the formation of patterns. Numerous
theoretical and experimental investigations have unveiled var-
ious phases and the emergence of patterns in long-range
interacting and dipolar Bose-Einstein condensates (BECs)
[4–12]. Additionally, studies have explored roton insta-
bilities in quasi-one-dimensional (quasi-1D) dipolar BECs
subjected to a periodic lattice potential [13], hexagonal pat-
tern formations in Rydberg BECs [14–17], and the prediction
of quasicrystalline structures in optical feedback systems
[15,18].

Concurrently, exciton polaritons, characterized as hybrid
light-matter quasiparticles with optical nonlinearities, have
surfaced as an alternative avenue for quantum simulation.
Unlike cold atoms, polaritons are open quantum systems
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and exhibit driven-dissipative dynamics which constitute a
focal point in ongoing research [19–21]. Leveraging their
adaptable potential landscape and tunable interaction features,
polaritons present a versatile platform for the exploration of
driven-dissipative phenomena [22–24]. Moreover, the direct
access to their photonic component facilitates the investi-
gation of states’ quantum statistical properties. So far, the
majority of the explored phenomena in exciton polaritons
have revolved around short-range interactions [22]. The ob-
servation of highly excited Rydberg states of excitons in Cu2O
[25,26] and the recent demonstration of Rydberg exciton po-
laritons [27–29] in planar cavities introduce the opportunity to
explore the largely uncharted territory of systems combining
long-range interactions, drive, and dissipation.

In this work, we investigate whether the characteristic pat-
tern formation fueled by long-range interactions, typically
observable in cold dipolar atomic gases, can be achieved in
Rydberg polaritons. We delve into the dynamic evolution of
polariton phases where the homogeneous state becomes un-
stable, leading to finite-range instability behavior and pattern
formation during the system’s evolution. Additionally, we
scrutinize the long-term stability of this patterned phase in
an open system compared to a closed one, as depicted in
Figs. 1(c) and 1(d). Our calculations indicate that unlike in
closed systems, the stability of the driven-dissipative case
is contingent on the type of external pump. Given the high
tunability of Rydberg polaritons through parameters such as
the principal quantum number, cavity parameters, and driving
in conjunction with their distinctive long-range interactions,
Rydberg polaritons make a unique platform for investigating
driven-dissipative quantum many-body phenomena.

We consider an unconfined polariton formed by a 2D cavity
encapsulating a layer hosting Rydberg excitons, as depicted in
Fig. 1(a). With the cavity field treated at the mean-field level,
the excitons and their correlations can be solved exactly and
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FIG. 1. Rydberg polaritons in closed and open systems.
(a) Schematics of a 2D optical cavity encapsulating the Rydberg
excitonic material. (b) Normalized nonlinear W (r) as a function of
r showing the tunability of dispersive (top) and dissipative (bottom)
effective soft-core potential via the exciton detuning, �ex. Snapshots
of cavity-field intensity in (c) a closed system with g = 1,C6 =
−1, � = −1 and (d) a coherently driven open system with �ex =
6, γ = 0.1, κ = 0.5,C6 = −1, �c = 2, highlighting the pattern for-
mations in both cases while contrasting their stability. The white
scale bar corresponds to L = 10. Initial field at t = 0 is homogeneous
with |E0|2 = 10 and |E0|2 = 25, respectively, and subject to random
noise.

analytically to the third order in terms of the field, which leads
to the following generalized Gross-Pitaevskii equation (GPE)
describing the cavity-field dynamics only as (see Appendix A
for details on the GPE derivation)

i∂tE (r, t ) =
[
− h̄

2mph
∇2 + iχ (1) − i

�c

2

+
∫

dr′ W (r − r′)|E (r′, t )|2
]
E (r, t ) + drive.

(1)

In this equation, χ (1) and W are the effective linear and
nonlinear optical susceptibility, respectively, mediated by the
exciton-exciton interaction with the following explicit forms:

χ (1) = −2g2

�ex
, (2)

W (r) = − 16g4

|�ex|2�ex

U (r)

�ex + iU (r)
, (3)

where g is the vacuum Rabi coupling between the excitons
and cavity mode and U (r) is the pairwise long-range van
der Waals interaction between excitons as U (r) = C6

|r−r′|6 [30].
The complex-valued exciton and cavity decay rates �ex and �c

are related to the cavity �c and exciton detuning �ex as well
as the decay rates of the Rydberg state γ and cavity photons
κ , via

�c = ωp − ωc, �c = κ − 2i�c, (4)

�ex = ωp − ωex, �ex = γ − 2i�ex. (5)

The nonlocal character of the nonlinear susceptibility stems
from the long-range interactions between excitons, a poten-
tial that depends on the principal quantum number through
an n-dependent C6 coefficient and realizes a dissipative and
dispersive soft-core potential, as depicted in Fig. 1(b) [21]. In
the rest of the text, we work with the dimensionless quantities
as

Ẽ (r, t ) = r0E
(
r
r0

,
t

τ

)
, (6)

where c is the speed of light, r0 = L/(nπ ) is the effective
cavity length, n is the effective refractive index of the exci-
tonic material, and τ = r0/c is the photon travel time within
the cavity. These choices of the length scale and timescale
help to underline the general features of the system, but we
use parameters from experiments on cuprous oxide for all
figures and discuss the parameter choices towards the end of
this paper (see Appendix E for further information).

II. RESULTS

Commonly, excitations can be created either via a coherent
pump of the cavity field or an incoherent one, typically de-
scribing the excitation via a reservoir [22]. Coherent pumping
directly injects photons into the cavity mode and can be de-
scribed via a driving term as iE0 in Eq. (1). The dynamics of a
fluctuation δE(k, t ) around any stationary point is then given
as

i
d

dt

(
δE(k, t )

δE∗(−k, t )

)
= B

(
δE(k, t )

δE∗(−k, t )

)
, (7)

where the Bogoliubov matrix B for a uniform solution E0

reads

B =
⎛
⎝ k2

2 + i
(
χ (1) − �c

2

) + 2π |E0|2[W̃ (k) + W̃ (0)] 2πE2
0 W̃ (k)

−2πE∗2

0 W̃ ∗(k) − k2

2 + i
(
χ (1)∗ − �∗

c
2

)
− 2π |E0|2[W̃ ∗(k) + W̃ ∗(0)]

⎞
⎠, (8)

where W̃ (k) is the Fourier transform of W (r).
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FIG. 2. Homogeneous steady states with coherent drive and the Bogoliubov dispersion. Steady-state photon density (|E0|2) of a Rydberg
polariton ensemble, driven by a coherent laser of amplitude E0 where �ex = 6, γ = 0.1, κ = 0.5,C6 = −1, at various cavity detunings
(a) �c = −2, (b) �c = 0, and (c) �c = 2. Stable branches are shown as solid lines in each panel, while the dashed lines show unstable
solutions. (d)–(i) The Bogoliubov dispersion of elementary excitations at points (A)–(F) clarifying the (in)stability of each point. In each
panel, the dark- (light)-blue line shows the real (imaginary) part of ω(k).

This leads to a dispersion of small fluctuations as

ω±(k) = i
{

2π |E0|2[W̃I (k) + W̃I (0)] + χ
(1)
R − κ

2

}

±
√{

k2

2
+ 2π |E0|2[W̃R(k) + W̃R(0)] − χ

(1)
I − �c

}2

− 4π2|E0|4
[
W̃ 2

R (k) + W̃ 2
I (k)

]
, (9)

which signifies a modulational instability (MI) where
Im[ω(k)] � 0 [31].

Figures 2(a)–2(c) exemplifies the behavior of uniform field
intensity (|E0|2) as a function of the coherent pump strength
for cavity detunings �c ranging from negative [Fig. 2(a)], to
zero [Fig. 2(b)], to positive [Fig. 2(c)]. The homogeneous
steady states naturally only depend on the spatial integral
over the interaction and are therefore formally equivalent to
a system with short-range interactions. Interestingly, the Bo-
goliubov spectra also show qualitatively very similar features
compared to polaritons with contact interactions (cf. [22]): For
both types of interactions, a wide array of behaviors can be ob-
tained, including dynamical (in)stability depicted as (dashed)
solid lines. For an attractive interaction (C6 � 0) as considered
here and at negative cavity detuning [Fig. 2(a)], optical mul-
tistability emerges. While the middle branch, characterized
by the negative slope, is always unstable (dotted line), the
two other branches’ stabilities depend on the cavity detuning.
When both the lower and upper branches are stable and the
middle one is unstable, the cavity field follows a hysteretic
behavior, i.e., by increasing the pump intensity, eventually, the
lower branch mode abruptly jumps into the upper one when
the lower branch ends. On the other hand, if the pump inten-

sity is decreased, the field intensity decreases and jumps back
down to the lower branch around this dynamically unstable
region when the upper branch ends, similar to the response of
a polariton ensemble with contact interaction [22].

For a resonant excitation depicted in Fig. 2(b), only one
branch exists, typically referred to as the pump-only branch,
whose stability depends on the pump intensity. As the photon
density increases, the nonlinearity modifies the behavior and
deviates from the quadratic trend. Since the cavity becomes
increasingly detuned with growing photon number, the effec-
tive pumping rate decreases, which leads to a sublinear growth
of the cavity-field intensity.

For positive cavity detuning as shown in Fig. 2(c), there
is only one branch, just as in the resonant case. However,
unlike Fig. 2(b), the cavity photon density grows mono-
tonically with the pump intensity due to the small photon
number. The attractive potential detunes the cavity further
as the photon density increases, and hence the collective
nonlinearity remains low, leading to a monotonic growth,
almost quadratically.

In Figs. 2(d)–2(i), we present the real (dark blue) and imag-
inary (light blue) parts of the Bogoliubov dispersion of points
(A)–(F) denoted in Figs. 2(a)–2(c), respectively. While the
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FIG. 3. Phase distribution and polariton flow in closed and open
systems. Snapshots of cavity-field phase for (a) closed polariton con-
densates and (b) the driven-dissipative Rydberg polariton ensemble
under a coherent pump, illustrating the stability of the closed case
and the ultimate disappearance of the patterns in the open system.
The scale bar corresponds to L = 10.

stability of the lower branch at point A can be deduced from
the always-negative imaginary part in Fig. 2(d), the instability
of the middle branch at point B can be deduced from the
positive imaginary parts of the dispersion at k = 0 in Fig. 2(e).

At point C on the upper branch, depicted in Fig. 2(f), the
two Bogoliubov branches cross in a finite momenta range
away from k = 0 and give rise to a flat region, i.e., Re(ω±) =
0. On the other hand, the imaginary parts split and, in
the positive-valued regions, the system becomes dynamically
unstable. Similar behavior can be observed under resonant
excitation, hosting a finite region of MI [cf. Fig. 2(g)]. At
larger detunings �c = 2, the dispersion shows a roton mini-
mum which transitions from stable behavior at weaker pump
strengths [Fig. 2(h)] to a finite region of instability, or roton
minimum softening, at stronger pump strengths [Fig. 2(i)]. It
is worth reiterating that for the homogeneous solution consid-
ered above, the instabilities are largely driven by the cavity
detuning and parametric scattering, and the long-range nature
of the interactions only contributes to smaller corrections.

Therefore, to examine the ensemble’s behavior in the pres-
ence of the MI, we must time evolve the field dynamics
given by the generalized GPE in Eq. (1). Figure 1(d) shows
a few snapshots of the cavity-field intensity at point F in
Fig. 2(c). Upon starting from a noisy initial state at t = 0,
extended density patterns are established at longer times, e.g.,
t = 100. This is in stark contrast to systems with short-range
interactions and is, in fact, similar to the closed polariton
dynamics depicted in Fig. 1(c). Contrary to the closed system
with stable patterns (see Appendix B), however, the patterns in
the driven-dissipative polariton cloud are not stable at longer
times, as depicted in the field snapshot at t = 200. To shed
light on the pattern instability of the open system, we compare
the phase distribution of the ensemble in Fig. 3. As can be seen
in Fig. 3(a) for the closed case, the polariton cloud establishes
a constant phase at equilibrium, corresponding to a uniform

chemical potential and hence a vanishing flow of particles.
The polariton’s phase under drive and dissipation, on the other
hand, is not uniform, as depicted in Fig. 3(b). Interference be-
tween the inherent phase of the symmetry-broken field and the
phase of the external coherent pump leads to a nonvanishing
flow towards the high-density points, which limits the lifetime
of the patterns [cf. Fig. 3(b), the snapshot at t = 200].

Since the collapse is intimately connected with destructive
interference between the cavity photons and the pump laser,
we investigate the dynamics of the Rydberg polariton cloud
subject to an incoherent drive. The driving term in the general-
ized nonlocal GPE of Eq. (1) for an incoherent pump intensity
P(r), with phenomenological coupling and saturation param-
eters of γR and R, can be described as [22,32]

i
R P(r)

2γR + 2R |E (r, t )|2 Ẽ (r, t ). (10)

Unlike in the coherently driven case, this equation is U(1)
symmetric, implying phase freedom of the polariton ensem-
ble. Following a similar approach as for the coherent pump,
the fluctuation spectrum around the flat-top solution E0 can
be determined as

ω±(k) = −i
�eff(k)

2
±

√
k2

2

[
k2

2
+ 4πE2

0 W̃R(k)

]
− �eff(k)2

4
,

where the effective gain/loss rate is defined as

�eff(k) =
[

R2P0

(γR + R|E0|2)2 − 4πW̃I (k)

]
E2

0 . (11)

Aside from �eff, this dispersion is very similar to the closed
case; as detailed in Eq. (B4) of Appendix B, similarities in
density patterns and their stability are also expected.

Figures 4(a) and 4(b) exemplify the real and imaginary
parts of the Bogoliubov dispersion of an incoherently driven
cavity, respectively. The dispersion features a finite range
of exceptional-point momenta where the real parts of two
branches coalesce and their imaginary parts depart from each
other. Furthermore, as can be seen in Fig. 4(b), there is a
finite range of modulational instability where Im[ω(k)] � 0.
To investigate the emergence of patterns due to MI and their
stability, we time evolve the GPE in Eq. (1) with an incoherent
pump. The cavity-field intensity and its corresponding phase
at a few different times are depicted in Figs. 4(c) and 4(d),
respectively. As can be seen, unlike the coherent case, there
is no particular phase pattern, and hence no flow of polaritons
which would lead to pattern collapse, as highlighted in the
field density profile at long times in Fig. 4(c).

III. CONCLUSION

In this work, we present a study of dynamically unstable
phases and pattern formations in Rydberg exciton polaritons
featuring long-range interactions in the presence of drive
and dissipation. We examined various steady-state phases,
encompassing scenarios of multistability and modulational
instability. Furthermore, we elucidated the emergence of pat-
terned phases and showed that such patterns can form, but
then collapse again under coherent optical pumping. It is
important to highlight that the spectral characteristics of
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FIG. 4. Dispersion and pattern formation under an incoherent
pump. (a) Real and (b) imaginary parts of the Bogoliubov dis-
persion in an unstable flat-top solution with �ex = 1, γ = 0.1, κ =
0.5,C6 = −1. Snapshots of (c) spatial photon density |E0|2 and (d) its
corresponding phase at various times. The scale bar corresponds to
L = 10.

the incoherently driven ensemble closely resemble those of
the closed system, suggesting a stable long-term behavior.
Based on the achievable interaction with Rydberg excitons
in cuprous oxide and taking into account their decoherence
at n = 10, the parameters used in all the figures can be ob-
tained in a cavity with L ≈ 300 nm with a moderate finesse of
F ≈ 20, both within reach of experimental capabilities (see
Appendix E for a detailed discussion about the cavity and
exciton parameters).

As a novel platform, Rydberg polaritons offer a distinc-
tive opportunity to study the physics of strongly interacting
open quantum systems. This includes, but is not limited to,
the study of quantum fluids supporting solitons and vortices
[33,34], Bose-Hubbard models, quantum synchronization in
the presence of long-range interactions [35], as well as
the emergence of topological effects [36–38], and Faraday
patterns [39]. Furthermore, it would be interesting to inves-
tigate emerging photonic correlations, as could captured by a
beyond-mean-field description [12].
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APPENDIX A: CAVITY-FIELD HAMILTONIAN

Our considered system is driven dissipative since exciton
polaritons have a finite lifetime. An accurate description of
this driven-dissipative system is given by the quantum master
equation. Following the description in [22] for exciton po-
laritons in a 2D cavity and within the validity range of the
rotating wave approximation, the closed-system dynamics of
cavity-field–exciton interaction reads

Ĥ =
∫

dr[Ê†(r)HphÊ (r) + X̂ †(r)HexX̂ (r)]

+ h̄g
∫

dr[Ê†(r)X̂ (r) + H.c.]

+ 1

2

∫∫
drdr′X̂ †(r)X̂ †(r′)V (|r − r′|)X̂ (r′)X̂ (r)

+ drive,

where Ê†(r), X̂ †(r) are the cavity and exciton creation field
operators at position r, respectively, and V is the general
nonlocal interaction between two excitons. Because of the
finite lifetime of polaritons, the cavity has to be continuously
replenished, i.e., driven here, and its steady state results from
a dynamical balance between pumping and loss.

To find an effective Hamiltonian description for the photon
field inside the cavity E (r), we start from the approximated
dispersion of the photons as Eph = h̄ω = h̄ck/n, where n
is the refractive index of the material filling the cavity and k is
the photon momentum. Expressing the momentum in terms of
the in-plane and perpendicular to the cavity axis z direction,
we have

Eph = h̄c

n

√
k2

z + k2
‖ ≈ h̄c

n
kz + h̄c

2nkz
k2
‖ , (A1)

where we assumed kz � k‖ to simplify the dispersion in
the quadratic form in terms of the parallel momentum. Re-
membering that for a cavity length of L, kz = π/L for the
lowest mode, it becomes clear that for thin cavities with
well-separated longitudinal mode manifolds, this is a valid
assumption.

Based on Eq. (A1), we can define the following quantities,
i.e., the longitudinal mode frequency ωc and the effective
photon mass mph, as

Eph = h̄ωc + h̄2

2mph
k2
‖ , ωc = cπ

nL
, mph = nπ h̄

cL
. (A2)

With these, we can write the cavity Hamiltonian in terms
of the field operators as

Ĥcav =
∫

dr E†(r)

(
h̄ωc + h̄2

2mph
∇2

)
E (r), (A3)

where we used ∇2 to describe the kinetic energy of the pho-
tons, i.e., energy of free photons propagating in the transverse
direction, and dropped the subscript index as the dynamics are
merely restricted to in-plane coordinates.
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In the Heisenberg picture of evolving fields, one can de-
rive the equations of motion (EoM) for the exciton- and
cavity-field operators, which in general leads to an infinite
hierarchy of the moments due to the correlation between exci-
tons and photons. Since V is typically large at short distances
[cf. Fig. 1(b)], the coupled field-exciton dynamics cannot be
solved perturbatively. Instead, we seek a solution for small
driving fields, corresponding to a cluster expansion in the
exciton correlations. Since the leading-order nonlinearity is
determined by terms up to pair correlations, the hierarchy can
be truncated at this order. To first-order approximation, the
correlations between the cavity photons and excitons can be
ignored, expressing

〈Ê†(r)X̂ (r)〉 ≈ E (r)〈X̂ (r)〉, (A4)

where we further assumed a weak exciton-cavity coupling,
i.e., a negligible correlation, which means the cavity field is
a coherent state.

Considering steady-state expectation values, a closed alge-
braic system of equations is obtained that can be solved in
an expansion in the drive. To simplify the equations, we also
assumed that the excitons are immobile compared to the much
lighter photons, and hence they have no kinetic energy and
the cavity dispersion is quadratic in the transverse momentum.
As mentioned before, in the presence of many photons in the
cavity field, quantum fluctuations can be ignored. However,
truncating the cluster expansion at third order is only permis-
sible at low exciton densities. Therefore, the generalized GPE
in Eq. (1) of the main text is only valid within a certain range
of cavity-field intensities.

Furthermore, from Eq. (3), one can define an important
length scale, known as the blockade radius,

rb =
∣∣∣∣ C6

�ex

∣∣∣∣
1
6

. (A5)

While for distances below the blockade radius, the large
van der Waals interaction re-normalizes the ensemble en-
ergy and hence saturates the interaction, at distances longer
than rb, the interaction asymptotically approaches the van der
Waals potential dropping as r6. As shown in Fig. 1(b), the
photon-photon interaction is complex in general, having both
dispersive and dissipative parts.

APPENDIX B: CLOSED-SYSTEM DYNAMICS

To investigate the effect of the nonlocal interactions, we
start with the closed system with closed dynamics, i.e.,
κ = γ = η = 0, satisfying the following GPE:

i∂tE =
[
− h̄

2mph
∇2 + iχ (1) +

∫
dr′W (r − r′)|E (r′)|2

]
E (r).

(B1)

Note that this generalized GPE closely resembles the GPE
describing the behavior of the condensate wave function in
dipolar gases [8], implying similar behavior in both cases,
including the emergence of the density patterns.

With the choice of scaling for the length and time as in
Eq. (6) of the main text, the prefactor of the kinetic energy
can be simplified to h̄/mph → 1. From Eq. (B1), we find that
the uniform solution E (r, t ) = E0e−iμ0t satisfies

μ0E0 = [
iχ (1) + 2πW̃ (0)|E0|2

]
E0, (B2)

where 2πW̃ (0) = ∫
drW (r) is the average nonlinear suscep-

tibility, i.e., an effective Kerr-type nonlinearity, and μ0 is the
chemical potential.

To study the dynamical stability, we consider a pertur-
bation δε(r, t ) to the steady-state solution. After a Fourier
transform, we can simplify the equations of motion for
δE (k, t ) as

i∂t

(
δE (k, t )

δE∗(−k, t )

)
=

(
k2

2 + 2π |E0|2W̃ (k) 2πE2
0 W̃ (k)

−2πE∗2

0 W̃ ∗(−k) − k2

2 − 2π |E0|2W̃ ∗(−k)

)(
δE (k, t )

δE∗(−k, t )

)
, (B3)

where δE (k, t ) = Fr[δε(r, t )] = 1
2π

∫
drδε(r, t )e−ik·r and

W̃ (k) = Fr[W (r, t )]. Here, W (r) is real, which simplifies the
dispersion as1

ω±(k) = ±
√

k2

2

[
k2

2
+ 4π |E0|2W̃ (k)

]
. (B4)

Equation (B4) describes the energy-momentum relationship
of the system around the stationary homogeneous or flat so-
lution E0. When the roton minimum softens, the spectrum
acquires a positive imaginary part, consequently leading to
instability and pattern formation.

1Here we use a symmetric Fourier transform, and hence F [ f (r) �
g(r)] = 2π F̃ (k)G̃(k).

Figure 5 shows the dispersion of the closed system for
|E0|2 = 10, 20, 30 and for C6 = −1,� = −1 (and hence rb =
1). The real part depicted in Fig. 5(a) shows the roton mini-
mum and softening for small values of k within (4.5, 6.5),
where the dispersion vanishes and is accompanied by imagi-
nary values shown in Fig. 5(b) corresponding to decaying and
growing fluctuations, and hence the dynamical instability. For
larger values of k, the dispersion is quadratic as for a free
particle. The roton minimum and the associated instability can
be a precursor of the supersolid phase.

To study the implications of the dynamic (in)stability of
the polariton cloud, we investigate the time evolution of the
system described by Eq. (B1). Figures 5(c) and 5(d) show the
snapshots of the cavity field for |E0|2 = 10 and |E0|2 = 30,
respectively, using the slit-step Fourier method. In Fig. 5(d)
and at t = 0, the field starts from a uniform solution with
perturbed Gaussian noise, and as time evolves, patterns form
due to the dynamical instability.
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FIG. 5. Closed system. (a) Real and (b) imaginary part of the Bogoliubov dispersion for a closed system with no loss (γ = κ = η = 0),
when |E0|2 = 10, 20, 30 and g = 1,C6 = −1, � = −1. Time evolution of the nonlocal GPE of the noisy flat-top solution within t = (0,100)
for (c) |E0|2 = 10 and (d) |E0|2 = 30.

APPENDIX C: COMPARISONS WITH CONTACT
INTERACTION

As discussed in the main text, for flat-top solutions in the
steady state, the effect of long-range potential W (R) can be
replaced with a contact interaction as 2πW̃ (0). While this
leads to similar steady-state behavior, in which the photon

density vs the pump rate is the same, the stability of the two
types of interactions is different. Figures 6(a) and 6(b) shows
the stable (solid line) and unstable (dashed line) solutions for
contact and long-range interaction, respectively.

For the contact interactions, the Bogoliubov dispersion will
be given as follows:

ω±(k) = i

[
4π |E0|2W̃I (0) + χ

(1)
R − κ

2

]
±

√[
k2

2
+ 4π |E0|2W̃R(0) − χ

(1)
I − �c

]2

− 4π2|E0|4
[
W̃ 2

R (0) + W̃ 2
I (0)

]
. (C1)

Figures 6(c) and 6(d) show the Bogoliubov spectrum of the
contact and long-range interaction at E0 = 16, respectively,
where MI can be obtained in both cases.

FIG. 6. Comparison between contact and long-range interac-
tions. Steady-state vs coherent pump rate for (a) contact and
(b) long-range interactions.

While the instability range and the gain values are differ-
ent, the spectra are overall similar. However, as demonstrated
in the main text, the pattern formation dynamics from the
unstable homogeneous state is fundamentally different for
short- and long-range interactions.

APPENDIX D: OPEN SYSTEMWITH INCOHERENT
DRIVE

For a spatially uniform incoherent pump, i.e., P(r) = P0,
we use the flat-top ansatz with the condensation frequency ω0

as E (r, t ) = E0e−iω0t , where

|E0|2 = 1

4W̄I
[B ±

√
B2 − 8W̄I (P0 − Pth )], (D1)

ω0 = ωc − χ
(1)
I + W̄R|E0|2. (D2)

The threshold pumping power Pth and B are defined as

Pth = γR

R

(
κ − 2χ

(1)
R

)
(D3)

and

B = R

γR
Pth − 2γR

R
W̄I . (D4)
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The stability of the flat-top solution can be determined via the
following Bogoliubov matrix:2

(
k2

2 + 2πE2
0 W̃ (k) − i�/2 2πE2

0 W̃ (k) − i�/2

−2πE2
0 W̃ ∗(k) − i�/2 − k2

2 − 2πE2
0 W̃ ∗(k) − i�/2

)
,

(D5)

where we defined the small-signal pumping rate � as

� = R2P0(
γR + Rψ2

0

)2 E2
0 . (D6)

APPENDIX E: EXPERIMENTAL CONSIDERATIONS

Observing excited Rydberg excitons presents a challenge,
primarily due to most materials’ typically small Rydberg con-
stant. However, Cu2O stands out as a rare exception with a
significantly larger Rydberg constant, showcasing Rydberg
states characterized by record principal quantum numbers,
reaching n = 30. In these highly excited states, excitons ex-
hibit enhanced sensitivity to external fields, and their mutual
interactions can be magnified by more than 10 orders of mag-
nitude compared to the ground state.

Furthermore, the observed linewidths for Rydberg exci-
tons up to n = 25 suggest lifetimes of 200–400 ps, which

2Note that in the simplification, we implicitly assumed that ψ0 is
real, which does not impose any limitation due to the U(1) symmetry
of the generalized GPE.

is approximately an order of magnitude greater than exci-
tons in GaAs quantum wells. The prolonged coherence times,
coupled with the robust interactions in Rydberg states, hold
tremendous potential for a diverse range of applications. The
renewed interest in Cu2O excitons has spurred numerous stud-
ies, detailed in recent review articles [26].

The recent experimental demonstration of Rydberg ex-
citon polaritons from a Cu2O layer surrounded by dis-
tributed Bragg reflector indicates that the realization of
these quasiparticles is indeed feasible in a cavity with
the moderate quality factor of Q ≈ 2300 [29]. With a
vacuum Rabi cooling of g ≈ 200 GHz, hybridization of
the first few Rydberg states up to n = 6 has been
demonstrated.

For cuprous oxide, the van der Waals (vdW) interaction
coefficient and the decay rate vary with the principal quantum
number (n) as [25]

c6(n) ≈ 10−2n11 (Hz µm6), (E1)

γn ≈ 3.8

n3
(THz). (E2)

The required parameters in the main text can be obtained
in a cavity with L ≈ 300 nm where a resonance at λc = 575
nm can be supported, and the requirement can be met for a
cavity with F ≈ 20, with an active layer of Cu2O at n ∼ 10
and cooperativity of C ≈ 3.
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