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Abstract

A search for long-lived heavy neutrinos (N) in the decays of B mesons produced in
proton-proton collisions at

p
s = 13 TeV is presented. The data sample corresponds

to an integrated luminosity of 41.6 fb�1 collected in 2018 by the CMS experiment at
the CERN LHC, using a dedicated data stream that enhances the number of recorded
events containing B mesons. The search probes heavy neutrinos with masses in the
range 1 < mN < 3 GeV and decay lengths in the range 10�2 < ctN < 104 mm,
where tN is the N proper mean lifetime. Signal events are defined by the signature
B ! `BNX; N ! `±p⌥, where the leptons `B and ` can be either a muon or an elec-
tron, provided that at least one of them is a muon. The hadronic recoil system, X,
is treated inclusively and is not reconstructed. No significant excess of events over
the standard model background is observed in any of the `±p⌥ invariant mass dis-
tributions. Limits at 95% confidence level on the sum of the squares of the mixing
amplitudes between heavy and light neutrinos, |VN|2, and on ctN are obtained in
different mixing scenarios for both Majorana and Dirac-like N particles. The most
stringent upper limit |VN|2 < 2.0 ⇥ 10�5 is obtained at mN = 1.95 GeV for the Majo-
rana case where N mixes exclusively with muon neutrinos. The limits on |VN|2 for
masses 1 < mN < 1.7 GeV are the most stringent from a collider experiment to date.
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1 Introduction
The standard model (SM) of particle physics is a highly predictive and well-tested theoretical
framework that describes the electroweak and strong interactions, which together account for
the known fundamental forces of nature apart from gravity. Although its predictions are in
agreement with a vast number of experimental measurements, performed over a wide range of
energies, the SM is unable to provide explanations for many key questions, both observational
and theoretical. For example, the minimal SM does not account for the small, but nonzero
neutrino masses [1]; for the large amount of dark matter (DM) inferred from astrophysical
and cosmological measurements [2]; and for the asymmetry in the abundance of matter and
antimatter in the universe [3]. A central challenge of particle physics is therefore to develop
and experimentally test new theoretical frameworks that encompass the successful predictions
of the SM, but which also provide explanations for physics beyond the SM.

An example of such an extension of the SM is the neutrino minimal standard model (nMSM) [4,
5]. This model predicts the existence of a new type of particle, the heavy neutral lepton (HNL),
also referred to as a heavy neutrino, denoted here by N. The dominant component of such a
particle has a right-handed chirality and does not have SM gauge couplings, which is why it
is often referred to as a sterile neutrino. Its interactions with SM particles arise through the
admixture of an SM neutrino. In the scenario in which three heavy neutrinos are predicted,
one with a mass in the keV range and the other two with nearly degenerate masses in the
GeV range, this model can provide not only a DM candidate [6] but also a possible mechanism
for baryogenesis [7], as well as a possible explanation for the smallness of the masses of the SM
neutrinos, through the Type I seesaw mechanism [8]. An overview of theoretical models that
predict the existence of HNLs is presented, e.g. in Ref. [9] and references therein.

The present search takes as a framework the phenomenology described in Ref. [10]. The un-
derlying assumption is that the N states are not mass degenerate, which implies that they are
produced and decay independently, or, alternatively, that their degeneracy is so close that they
can be considered a single particle for all practical purposes in this search. This search can be
formulated in terms of a single N, parametrized by its mass mN and its mixing amplitudes to
the three lepton flavour families, denoted as VeN, VµN, and VtN. The quantity |VN |2 is defined
as |VN |2 ⌘ |VeN |2 + |VµN |2 + |VtN |2, and the mixing ratios r`, with ` = (e, µ, t), are defined
as r` ⌘ |V`N |2/|VN |2, with re + rµ + rt = 1 by construction. The proper mean lifetime of the
heavy neutrino, tN, depends on mN and |VN |2 as tN ⇠ |VN |�2m�5

N .

Searches for HNLs have been performed by several experiments using a wide range of tech-
niques. In the mass range investigated in the present analysis, 1 < mN < 3 GeV, early searches
were performed in beam-dump experiments; e.g. the CHARM [11], the NuTeV [12], and the
BEBC [13, 14] experiments were sensitive to HNL masses up to about 2 GeV. Searches have
been performed by e+e� B-factory experiments, such as Belle [15] and BaBar [16]. At the CERN
LHC, limits on heavy neutral leptons have been set by the ATLAS [17, 18], CMS [19–24], and
LHCb [25, 26] experiments.

This search probes long-lived N states that can be produced in the leptonic or semileptonic
decays of B mesons, through the small admixture of SM neutrinos. A novel and key feature
of the analysis is the use of a special b-hadron-enriched sample of proton-proton (pp) collision
data, referred to as the B-parking data sample [27, 28], which was collected at a centre-of-
mass energy of 13 TeV by the CMS experiment. This data sample corresponds to an integrated
luminosity of 41.6 fb�1 and contains of order 1010 bb events.
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The use of B meson decays as the source of neutrinos provides sensitivity complementary to
that of previous CMS HNL searches [19–24], which have exploited on-shell W boson decays
as the source of neutrinos. The B mesons are more abundant in LHC events than W bosons
and, because mB ⌧ mW, N states produced in B decays generally have lower momenta than
those produced in W boson decays. For the long-lived HNLs considered in this search, with
ctN ranging from a few microns to a few metres, the softer momentum spectrum leads to a
higher fraction of heavy neutrinos decaying within the CMS tracker volume. This volume
corresponds to a distance, Lxy, in the transverse plane between the HNL decay vertex and the
luminous region of Lxy < 1 m.

Heavy neutrinos produced in B meson decays are kinematically constrained to have a mass
mN . mB, with mB ranging from 5.27 GeV for the lighter B± and B0 mesons to 6.25 GeV for the
heavier B±

c meson. However, heavy neutrino states with masses below 1 GeV and above 3 GeV
are not studied here, as this region of parameter space is well covered by other searches [23, 29].
The B mesons considered for this search are B±, B0, B0

s , and B±
c , which we denote generically

as Bq with q = (u, d, s, c), respectively. Semileptonic decays of b baryons are not included
in the signal simulation; as a consequence of their smaller fragmentation fraction [30], their
contribution to the signal yield is expected to be significantly smaller than that from B mesons.
The production model is discussed in more detail in Section 7, where an explanation is also
given of how the extracted signal yields are normalized using the decay B± ! J/y(1S)(!
µ+µ�)K±, which has a similar topology.

The B meson decays considered are either semileptonic (Fig. 1, upper row), producing a lepton,
a neutrino, and an accompanying hadronic system, X, or leptonic (Fig. 1, lower row), producing
a lepton and a neutrino. The contribution to the expected signal yields of the leptonic channel
starts to become relevant for mN > 2 GeV. To maximize the signal acceptance, the semileptonic
processes are treated inclusively, without attempting to reconstruct the hadronic system X,
which can involve complex decay chains. The charged-lepton candidate from the B meson
decay, `B, can either be a muon or an electron. In a signal event, the neutrino flavour eigenstate,
n`B

, from the B meson decay chain contains a small admixture of an N mass eigenstate, which
subsequently decays via its admixture of the same or another neutrino flavour eigenstate, n`,
into a lepton `±, which is also required to be a muon or an electron, and a charged pion p⌥.
Together, these particles form a neutral `±p⌥ system, which can be reconstructed to obtain
the invariant mass mN = m(`±p⌥). In the region of parameter space probed here, the HNL
is long lived, and its decay gives rise to a displaced vertex (DV), which is a powerful feature
of the search signature. Thus, the strategy is defined by three main elements: the `B(`

±p⌥)
event topology, a signal peak in the invariant mass distribution of the `±p⌥ system, and a DV
associated with the two tracks that form this system. A strength of this analysis is that the mass
of the N can be directly probed if a signal is present.

The search is performed under the assumption that N is either a Majorana or a Dirac-like neu-
trino [31]. For the case in which the N is assumed to be a Majorana particle, the charge of ` is
not constrained by that of `B, and both opposite-sign (OS) and same-sign (SS) lepton combina-
tions, corresponding to lepton-number-conserving (LNC) and lepton-number-violating (LNV)
decays, respectively, are considered. For the case in which two quasi-degenerate Majorana
states form a Dirac-like state, their destructive interference cancels the LNV decays, constrain-
ing the two leptons to be OS [32].

The event sample used in this analysis was recorded using single muon triggers with relatively
low threshold on the muon transverse momentum, pT, as described in Section 3. The search
algorithm requires that the trigger muon be part of the signal process, shown in Fig. 1, either
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Figure 1: Feynman diagrams showing the semileptonic (upper row) and leptonic (lower row)
decay of a B meson into a lepton (`B), a hadronic system (X) in case of the semileptonic decay,
and a neutrino (n`B

), which contains a small admixture of a heavy neutrino (N). The N mass
eigenstate propagates and, according to its admixture of the neutrino flavour eigenstate (n`),
decays weakly into a lepton `± and a charged pion p⌥.

as `B, or as `. This muon trigger requirement leads to a classification of events according to
the flavour combinations of the leptons: (`B, `) = (µµ, eµ, µe). The µµ channel is referred to
as the dimuon channel, while the other two possibilities, i.e. µe and eµ, are referred to as the
mixed-flavour channel.

This paper is organized as follows: the CMS detector is described in Section 2, and the data
sample is discussed in Section 3, which highlights the role of the special B-parking data stream.
The simulated samples, which are only used to model signal events, are described in Section 4.
Sections 5 and 6 describe the event reconstruction and selection, respectively. The signal nor-
malization is discussed in Section 7. Section 8 presents the signal extraction method, which is
performed using a parametric fit to the data, while Section 9 discusses the systematic uncertain-
ties. The results are presented in Section 10 and are interpreted in the context of the theoretical
framework described above. Section 11 summarizes the principal results of the paper.

Tabulated results are provided in the HEPData record for this analysis [33].
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2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (h) coverage provided by the barrel and endcap detec-
tors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke
outside the solenoid. Events of interest are selected using a two-tiered trigger system. The
first level (L1), composed of custom hardware processors, uses information from the calorime-
ters and muon detectors to select events at a rate of around 100 kHz within a fixed latency of
4 µs [34]. The second level, known as the high-level trigger (HLT), consists of a farm of proces-
sors running a version of the full event reconstruction software optimized for fast processing,
and reduces the event rate to around 1 kHz before data storage [35]. This analysis utilized a spe-
cial data stream collected at HLT rates up to a few kHz, described in more detail in Section 3.
A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [36].

3 The B-parking data sample
The search uses the CMS B-parking data sample [27, 28], which was collected in 2018 using a
dedicated data stream to acquire of order 1010 bb events, corresponding to an integrated lu-
minosity of 41.6 fb�1 [37]. A set of single-muon triggers designed to record events containing
B meson semileptonic decays was used. A variety of requirements were placed on the mini-
mum muon pT and the muon transverse impact parameter significance dxy/sdxy

, where dxy is
the transverse impact parameter of the muon with respect to the beam axis and sdxy

is its un-
certainty. More stringent requirements were in place during higher instantaneous luminosity
periods and were progressively relaxed at lower instantaneous luminosities to exploit the spare
capacity of the CMS data acquisition system and, therefore, maximize the number of recorded
bb events. To maintain good efficiency for muons produced in B decays, the muon pT thresh-
olds were kept low, from 7 to 12 GeV. To control trigger rates, the minimum values used for
dxy/sdxy

were relatively high, ranging from 3 to 6, thus reducing contamination from prompt
muons or muons from charm decays with minimal efficiency penalty for muons from relatively
long-lived b hadron decays. Trigger muons were also required to have |h| < 1.5. The purity of
this sample, i.e. the fraction of events containing a bb pair, is approximately 80% [27]. Events
in this sample, satisfying the HLT, were collected at a peak rate exceeding 5 kHz, a much higher
trigger rate than is normally possible. The sample was stored temporarily in local buffers and
then transferred to permanent storage (”parked”), to be processed at the end of the 2018 data-
taking period, when computing resources previously allocated otherwise became available.

4 Simulated event samples
Simulated signal event samples are used to design the event selection criteria, to extract the
signal shape in the m(`±p⌥) distribution used for fitting the data, and to obtain the signal effi-
ciencies as functions of mN and ctN. Signal events involve quantum chromodynamics (QCD)
production of a b quark-antiquark pair, followed by the fragmentation of these quarks into a
variety of B mesons. In the simulation, one of these B mesons undergoes either a semileptonic
or a leptonic decay, as shown in Fig. 1, either of which yields an HNL characterized by its mass,
mN, and its proper mean lifetime, tN.
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Two sets of signal samples are generated: the first corresponds to N production in the decays
of Bu, Bd, and Bs mesons, while the second corresponds to N production in Bc meson decays.
A dedicated simulation of Bc decays is required because of its low fragmentation fraction com-
pared to other b hadron species [30, 38]. For the (Bu, Bd, Bs) samples, the pp collisions and had-
ronization are simulated with PYTHIA 8.230 [39], using the underlying event tune CP5 [40], the
parton distribution functions NNPDF3.1 [41], and the SoftQCD:nonDiffractive process (aimed
to inclusively reproduce minimum-bias interactions), while the B meson and N decays are sim-
ulated using EVTGEN 1.30 [42], with a phase space decay model (PHSP). For the Bc samples, the
pp collisions are first generated with the BCVEGPY 2.2b generator [43], with one Bc meson per
event. The events are then passed to PYTHIA and EVTGEN for the hadronization and signal de-
cay, respectively, in a fashion similar to that used for the (Bu, Bd, Bs) samples. In both cases, the
generated events are then propagated through the simulated CMS detector using the GEANT4
package [44] and eventually reconstructed using the standard CMS software. The presence of
extra pp collisions within the same or neighbouring bunch crossings (pileup) is taken into ac-
count in these event samples by adding simulated minimum bias events. An event weight is
applied to correct the underlying pileup distribution to match that observed in the B-parking
data, which has an average of about 25 simultaneous collisions per event. In the signal sam-
ples, the same triggers used to record the data are simulated. However, the dependence of the
trigger thresholds on the instantaneous luminosity present in data, as described in Section 3, is
not accounted for in the simulated samples. Therefore, simulated events are weighted to repro-
duce this effect, using corrections measured in data with the tag-and-probe method [45] and
the benchmark J/y(1S) ! µµ process. Finally, weights are applied to improve the modelling
of the lepton identification algorithm.

Simulated signal event samples are generated with a range of different values of mN and ctN to
span the accessible parameter space in these quantities. By default, the HNL is assumed to be a
Majorana fermion, allowing both N ! `+p� and N ! `�p+ decays with equal probabilities.
As will be discussed in Section 10, these simulated samples can also be used to model the Dirac-
like case. Signal samples with 1.0  mN  3.0 GeV are simulated with a step size of 20 MeV for
masses 1.0  mN < 1.5 GeV, 30 MeV for masses 1.5  mN < 2.0 GeV, and 50 MeV for masses
2.0  mN < 3.0 GeV. This set contains more than 60 signal mass hypotheses. The step size
increases with the tested mass to match the detector resolution. For each value of mN, one to
four samples with different ctN hypotheses are generated, with 1 < ctN < 1000 mm. The grid
of the values of ctN was chosen to be relatively coarse, because, for each mN, it is possible to
obtain samples of events corresponding to different ctN values by applying an event weight
correcting the decay length distribution of the generated sample to a new ctN value. This
procedure, referred to hereafter as ctN-reweighting, is an important tool in the analysis, as it
allows a fine grid of ctN points to be tested.

Simulated background samples are not required, either for the design of the analysis or the
signal extraction.

5 Event reconstruction
The event reconstruction identifies candidates for the lepton originating from the B decay (`B),
the displaced lepton (`±), and the displaced charged pion (p⌥). We discuss the criteria used
to define each of these reconstructed objects, as well as the procedure used to reconstruct the
DV associated with the `±p⌥ system. At this stage, kinematic and topological selections are
applied to ensure the presence of a candidate event in the acceptance. Backgrounds are further
suppressed using the multivariate discriminator discussed in Section 6.
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Muons are reconstructed from the tracks measured in the silicon tracker system, together with
track segments measured in the muon detectors. The candidates must not have significant
associated energy deposits in the calorimeters [45]. Muons that satisfy the HLT requirements
for the B-parking data stream are required to have pT > 7 GeV and |h| < 1.5, while other
muons are required to have pT > 2 GeV and |h| < 2.

The muon candidates originating from the B vertex are required to satisfy the following criteria:
the associated track in the silicon tracker must correspond to a high-quality track [46, 47] (at
least 5 hits in the silicon tracker and at least 1 hit in the pixel detector), and this track must
be matched to at least one muon segment in the muon spectrometer. The track’s longitudinal
impact parameter, dz, measured with respect to the primary vertex (PV), defined as the vertex
with the largest sum of square of the pT of its tracks, must be less than 20 cm, and its transverse
impact parameter, dxy, must be less than 0.3 cm to be consistent with a typical b hadron decay.
For displaced muon candidates, a particle-flow reconstruction algorithm [46] is used, and the
candidates must satisfy loose displacement criteria: dz > 15 µm, dxy > 10 µm and dz/sdz

> 1.0,
dxy/sdxy

> 1.5.

Electrons are reconstructed from energy clusters deposited in the ECAL and the track in the sil-
icon tracker, using a procedure [48] that recovers the energy lost via bremsstrahlung. Electron
candidates are required to have pT > 1.5 GeV and to be within the ECAL barrel, i.e. |h| < 1.48.
To improve the selection efficiency of real electrons relative to the background, the electrons,
either originating from the B or N vertex, are identified with a multivariate discriminant [48],
based on a boosted decision tree (BDT) architecture. The algorithm uses the properties of the
reconstructed electron, including the electromagnetic shower shape, the track-cluster match-
ing, the ECAL/HCAL energy ratio, the track quality, and the track impact parameters with
respect to the PV. This BDT discriminant, widely used in CMS, was optimized for electrons
with transverse momentum greater than 10 GeV; thus it has been retrained to focus on electrons
with comparatively lower pT, down to 1.5 GeV, and improve its performance in the context of
this analysis [28]. The displaced electrons are further required to satisfy minimal displacement
criteria and to have dz > 15 µm and dxy > 10 µm, as well as dz/sdz

> 1.0 and dxy/sdxy
> 1.5.

Displaced pions are reconstructed from high-quality tracks to which the pion mass is assigned.
They must have pT > 1.0 GeV, |h| < 2, as well as dz > 50 µm, dxy > 50 µm, and dz/sdz

> 1.5,
dxy/sdxy

> 5.0.

Given that the HNL is electrically neutral, the charges of the displaced lepton and pion are
required to be opposite. A common DV associated with the intersection of the `± and p⌥

tracks is computed using a kinematic vertex fit [49], which is based on a least mean square
minimization with Lagrange multipliers and Kalman filter techniques. The momenta of the
displaced lepton and pion are then recomputed using the DV as a constraint, improving the
resolution. The p-value associated with the fit’s c2 is required to be greater than 0.01.

Since only HNLs decaying into visible particles are considered as signal, the reconstructed
transverse momentum ~pT of the `±p⌥ system is aligned with the projection of the direction of
flight of the HNL in the transverse plane ~uN. However, the exact HNL direction of flight is not
known, as we do not identify the B decay vertex. Nevertheless, given that, in the most relevant
part of the tested phase space, the parent B meson travels a significantly shorter distance than
an HNL, we assume, with good approximation, that ~uN is represented by the vector joining the
luminous region and the DV. The angle q between these two vectors ~uN and ~pT, referred to as
the back-pointing angle, peaks at small values and is required to satisfy cos q > 0.999. Finally,
the significance of the transverse displacement of the DV with respect to the luminous region,
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Figure 2: Distribution of the displaced µ±p⌥ invariant mass (left) and Lxy/sLxy
(right) in

data and in simulated event samples corresponding to two different signal hypotheses, in the
Majorana scenario, and with the N mixing exclusively with the muon sector: mN = 1 GeV,
ctN = 1000 mm, |VN |2 = |VµN |2 = 5.4 ⇥ 10�4; and mN = 2 GeV, ctN = 100 mm, |VN |2 =

|VµN |2 = 1.7 ⇥ 10�4. The signal distributions are scaled with factors given in the legend. The
vertical lines show the statistical uncertainty in each bin.

Lxy/sLxy
, is required to be greater than 15.

As the displacement Lxy increases, the tracking and DV reconstruction efficiencies decrease,
limiting the acceptance for long-lived candidates. The efficiency of the signal candidate recon-
struction reaches a few percent for Lxy > 50 cm.

The event reconstruction requirements described above are referred to hereafter as the baseline
event selection. This selection consists only of requirements designed to ensure that the two
leptons and the charged pion are well reconstructed, the relative charges of the `±p⌥ system
are compatible with the signal hypothesis, and the tracks associated with the `±p⌥ system
are consistent with a common, displaced decay vertex. For simulated signal events, the re-
constructed candidates are matched to the generator-level particles, to ensure that the signal
candidates are genuine. For moderate decay lengths, background events passing the baseline
selection arise primarily from QCD processes, which can lead to cascade decays of B mesons
that mimic certain features of the signal signature. In addition, a variety of other combinatorial
backgrounds can enter the signal region, and detector reconstruction effects, including particle
misidentification, secondary interactions in the tracker material, and pileup, can also play a
role.

Figure 2 shows distributions of the key variables m(`±p⌥) and Lxy/sLxy
for events in the

dimuon channel in data and in simulated signal samples, after imposing the baseline event
selection. Two examples of the corresponding distributions for signal events in simulation are
shown. These signals peak sharply at the assumed masses of the N, in this case, mN = 1.0
and 2.0 GeV, as shown in Fig. 2 (left). The distributions of Lxy/sLxy

are shown in Fig. 2 (right).
The data distribution falls with increasing values of Lxy/sLxy

, as expected from its dominant
composition of promptly decaying and short-lived particles.

A number of peaks are observed in the reconstructed invariant mass distributions that are asso-
ciated with known decay modes of SM particles. The peaks can occur in the two-body systems
µBµ±, µBp⌥, and eBp⌥, which sometimes result from particle misidentification. To suppress
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backgrounds in which such resonances are present, a set of vetoes is applied, as listed in Table 1.
The only residual peaking background in the `±p⌥ mass spectra consists of the D0 ! K±p⌥

process, where one hadron (typically the kaon) is misidentified as a lepton. Therefore, to avoid
the possible contamination from two-body D0 meson decays, no signal extraction, described in
detail in Section 8, is performed between 1.74 and 1.80 GeV. The vetoed region does not centre
on the nominal D0 meson mass owing to mass shift effects related to the final state misidentifi-
cation.

6 Event categories and selection
After the baseline selection described in Section 5, events are assigned to categories accord-
ing to (i) three ranges in the significance of the transverse decay length, Lxy/sLxy

, of the `±p⌥

system, (ii) two possibilities for the relative sign of the charged leptons, (iii) two ranges in the
invariant mass of the `B`

±p⌥ system, and (iv) the dimuon and mixed-flavour channels intro-
duced in Section 1. Table 2 lists the categories associated with these quantities, as well as the
three lepton-flavour categories allowed for the selected `B` combinations. Combining these
criteria leads to an event classification in terms of 24 mutually exclusive categories. The cate-
gory based on Lxy/sLxy

provides a way to increase the sensitivity to different ctN hypotheses.
Because the dominant backgrounds arise from promptly or quasi-promptly decaying QCD pro-
cesses (relative to the N lifetime), the background falls with Lxy/sLxy

, as seen in Fig. 2 (right).
The relative sign of the candidate leptons originating from the B and N decay vertex is also a
useful quantity for event classification: signal events can contain either SS or OS leptons, while
background events are predominantly OS, e.g. B to D cascade decays. Finally, the categoriza-
tion in the `B`

±p⌥ mass provides a way to discriminate signals originating from a Bu, Bd, or
Bs meson from those originating from a Bc meson. In fact, heavy neutrinos from Bc mesons are
produced almost exclusively through leptonic decays, where all three final state particles, `B,
`±, and p⌥, are reconstructed, allowing the reconstruction of the Bc invariant mass.

Table 1: List of considered SM resonances and the corresponding vetoes in the various two-
particle invariant mass spectra. The first seven lines consider any possible opposite-sign pair
comprising the lepton originating from the B decay and either of the displaced `± and p⌥.
Events that fail the veto conditions are removed from the analysis. The last two lines pertain
to the displaced `±p⌥ candidate and indicate that the signal extraction is not performed and
exclusion limits are not provided for mN in the vetoed regions. The presence of misidentified
particles is also indicated. For the D0 meson vetoes, the mass range is adjusted to account for
the incorrect mass hypothesis assigned to the misidentified particle.

Mass spectrum Process Veto (GeV) Categories Misidentification
m(µBµ±) f(1020) ! µµ |m(µBµ±)� 1.02| > 0.01 OS 0

J/y(1S) ! µµ |m(µBµ±)� 3.10| > 0.15 OS 0
y(2S) ! µµ |m(µBµ±)� 3.69| > 0.08 OS 0

m(µBp⌥) J/y(1S) ! µµ |m(µBp⌥)� 3.10| > 0.05 SS 1 misid. p

D0 ! Kp |m(µBp⌥)� 1.76| > 0.05 SS 1 misid. µ

m(eBp⌥) J/y(1S) ! ee |m(eBp⌥)� 3.10| > 0.05 SS 1 misid. p
D0 ! Kp |m(eBp⌥)� 1.76| > 0.05 SS 1 misid. e

m(µ±p⌥) D0 ! Kp |m(µ±p⌥)� 1.77| > 0.03 all 1 misid. µ

m(e±p⌥) D0 ! Kp |m(e±p⌥)� 1.77| > 0.03 all 1 misid. e
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Table 2: Summary of the event categorization. The events are classified into 24 mutually exclu-
sive categories.

Quantity Label Definition
Lxy/sLxy

low Lxy/sLxy
Lxy/sLxy

< 50
medium Lxy/sLxy

50 < Lxy/sLxy
< 150

high Lxy/sLxy
Lxy/sLxy

> 150

Relative lepton sign OS `B charge 6= ` charge
SS `B charge = ` charge

`B`
±p⌥ mass low `B`

±p⌥ mass `B`
±p⌥ mass < 5.7 GeV

high `B`
±p⌥ mass `B`

±p⌥ mass > 5.7 GeV

Flavour channel dimuon `B` = µµ
mixed-flavour `B` = (µe, eµ)

To further improve the sensitivity of the search, a multivariate discriminator is constructed
using a wide range of event variables that distinguish statistically between signal and back-
ground processes. Because the signal distributions of these variables generally depend on mN,
a method is needed to allow the discriminator quantity to incorporate a functional dependence
on mN. This capability is provided by a parametric neural network (pNN) [50]. Such a neural
network (NN) has, in addition to a set of input variables, ~x, a set of discrete parameters,~q, and
it returns a score that is a function of the full variable set f

⇣
~x, ~q

⌘
. For this analysis, only a

single parameter, mN, is used. By incorporating mN as a parameter, the need for separate train-
ings for different values of mN (more than 60 in this analysis) is avoided, and the pNN behaves
smoothly for mass values between those used in the training sample. The mass parameters
chosen for the training are mN = 1.0, 1.5, 2.0, and 3.0 GeV for both signal and background.
The signal signatures also depend on the value of ctN. However, this variable is not used as
an additional parameter of the pNN, as it was found that training the pNN separately in the
different categories of Lxy/sLxy

ensures good performance for all of the ctN hypotheses.

The pNN is trained separately in each of the categories defined in Table 2. The baseline event
selection described in Section 5 is applied to all training samples. The simulated signal event
samples for mN = 1.0, 1.5, 2.0, and 3.0 GeV are aggregated into a common signal training
sample in which the discrete mN values are provided to the pNN as a parameter. Because sim-
ulating the large cross section background processes is too resource intensive, the background
training sample is taken from data but comprises less than one thousandth of all the available
data events. The use of a limited data set ensures that the contamination from a hypothetical
N signal would be negligible, while not impacting the performance of the pNN in any sig-
nificant way. To properly train the pNN, it is important to ensure that, for each value of the
parameter mN, the events in the background sample have kinematic properties that correspond
to the background events in the m(`±p⌥) invariant mass region near mN. Therefore, selected
background events lie within a ±10s window around the mN mass peak, where s is the mass
resolution obtained in the reconstruction of the simulated signal events.

The pNN is trained using input variables that provide a good discrimination between signal
and background. These variables, which are discussed in more detail below, are

1. Transverse momenta: pT(`B), pT(`
±), pT(p

⌥).

2. Invariant-masses: m(`Bp⌥), m(`B`
±), m(`B`

±p⌥).
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3. Track separation in the h-j space (where j is the azimuthal angle), DR ⌘
p
(Dh)2 + (Dj)2:

DR(`B, `±), DR(`B, p⌥).

4. Displaced vertex properties: cos q, fit p-value.

5. Displacement-related quantities: Lxy/sLxy
and dxy/sdxy

of the pion.

6. Track-related information: number of layers of the CMS silicon pixel and strip tracker
traversed by the lepton(s) and pion from the DV.

7. Lepton isolation, defined in a cone of DR smaller than 0.3 around the lepton momentum
vector [45, 48].

Comparisons of signal and background distributions for some of these variables are given in
Fig. 3, for representative signals (i) in the dimuon channel, with mN = 2 GeV and ctN =
100 mm and (ii) in the category with high Lxy/sLxy

, OS, and low `B`
±p⌥ mass. Because the pT

distribution of the background is typically softer than that of the signal, as can be seen in Fig. 3
(upper left) for the displaced pion, the transverse momentum of the three particles in the final
state is added to the variable set. The separation power offered by these quantities depends on
the value of mN. For example, the pT of the displaced particles `± and p⌥ gets harder as mN
gets larger, offering even greater discrimination between the signal and the background.

The set of discriminating variables listed above includes the invariant masses m(`B`
±), m(`Bp⌥),

and m(`B`
±p⌥). Figure 3 (upper right) shows the distribution of m(`B`

±p⌥). For lower values
of mN, the B meson decays predominantly via semileptonic processes, while for large values,
the semileptonic decay rate falls rapidly and the leptonic rate becomes dominant. In the case
where B decays via a semileptonic process, m(`B`

±p⌥) does not peak at the mass of the B me-
son, mB, as the accompanying hadronic system X, introduced in Section 1, is not reconstructed.
In the leptonic case, a peak at mB is observed, which provides further background rejection.

Because the momenta of the HNL’s decay products typically have similar directions in the
laboratory frame, the pNN is also trained on the track separation in h-f space, DR(`B, `±), and
DR(`B, p⌥). The quantity DR(`±, p⌥) is not added to the training variable set, as, otherwise,
the signal mass mN could be learned by the pNN during training because of the addition of the
transverse momenta.

The pNN uses two quantities that characterize the N decay vertex, providing additional sen-
sitivity to the ctN hypothesis within each bin of Lxy/sLxy

. These quantities are cos q, where q

is the back-pointing angle defined in Section 5, and the DV fit p-value. Figure 3 (lower left)
shows signal and background distributions of the quantity cos q, which typically peaks at 1
more steeply for signal than for background. As shown in the list above, the pNN is also
trained on the Lxy/sLxy

and the dxy/sdxy
of the pion. The distribution of the latter quantity

is shown in Fig. 3 (lower right), in which we can see that the long-lived signal reaches larger
values compared to the background.

Because the signal is a long-lived particle, additional information on the tracks is provided to
the pNN. In particular, the number of layers in the silicon pixel and strip tracker traversed
by the charged particles provides good signal-to-background discrimination. Larger values of
ctN typically correspond to fewer tracker layers traversed by the daughter lepton and charged
pion from the N decay. Finally, the lepton isolation is added to the training variable set, as
leptons in a signal event tend to be more isolated than leptons in a background event. This
quantity is defined, for both the muon and the electron, as the energy sum of the charged and
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Figure 3: The distributions of the pion pT (upper left), m(µBµ±p⌥) (upper right), cos q (lower
left), and pion dxy/sdxy

(lower right) are shown for data, as well as for a signal hypothesis of

mN = 2 GeV and ctN = 100 mm. The data correspond to an integrated luminosity of 5.2 fb�1

and are selected in the mass window of size 10s around mN = 2 GeV. The distributions, which
are normalized to unit area, are shown for the dimuon channel in category with high Lxy/sLxy

,
OS, and low `B`

±p⌥ mass. The vertical lines show the statistical uncertainty in each bin.

neutral particles lying in a cone within a distance DR = 0.3 from the lepton, from which the
contribution from pileup particles is subtracted.

For each mass hypothesis, mN, the pNN score assigned to an event can be interpreted as an
estimate of the probability that the event was produced by the signal process with HNL mass
mN. This quantity is therefore used to enhance the signal significance with respect to the back-
ground. In each mass window, introduced in Section 8, and in each category, listed in Table 2,
the events are selected by requiring the pNN score to be greater than 0.99. This threshold was
obtained from a dedicated study in which the performance of the tested thresholds was evalu-
ated based on the median expected exclusion limit of benchmark signal hypotheses. To avoid
bias, this optimization was performed without viewing the complete data sample.

The pNN architecture is that of a fully connected NN with three layers:

1. Input layer: contains as many nodes as the number of input features, plus one extra node
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for the mass parameter mN.

2. Hidden layer: contains 64 nodes and is activated by the rectified linear unit (ReLU) func-
tion [51, 52], defined as ReLU(x) = max(0, x), with x 2 R.

3. Output layer: returns the pNN score, normalized to unity through the sigmoid activation
function.

The training is performed using the TENSORFLOW package [53], with the KERAS interface [52]
and the ADAM optimizer [54]. The training aims at minimising the cross-entropy loss func-
tion, and the weights are updated using batch gradient descent. The batch size is chosen to
be 32 and the initial learning rate to be 0.01. The input features are normalized using the RO-
BUSTSCALER [55] before the training.

The performance of the pNN is quantified using the area under the ROC curve (AUC), as
shown, for example, in Fig. 4 (left) for events in the dimuon channel, and in the category with
medium Lxy/sLxy

, OS, and low `B`
±p⌥ mass. The AUC is given as a function of the signal

mass for different ctN hypotheses. The large values of the AUC show that the pNN performs
well for the various signal hypotheses. The pNN performs well for a wide range of ctN values,
with marginal degradation for signals with a smaller decay length.

To validate the use of pNNs instead of regular NNs trained for specific masses, we com-
pare the AUC values obtained for the two approaches. The results of this study are sum-
marized in Fig. 4 (right) for events in the dimuon channel, in the medium Lxy/sLxy

, OS, and
low `B`

±p⌥ mass category. The first set of AUC values shown corresponds to the pNN de-
scribed above and trained on signal masses of mN = 1.0, 1.5, 2.0, and 3.0 GeV. The second set
of AUC values was obtained using a NN with the same architecture and training conditions as
the pNN, but instead trained only on the mass mN = 2 GeV sample. The different points have
ctN = 10 mm and are obtained from a corresponding simulated sample, without the use of the
ctN-reweighting procedure introduced in Section 4. We conclude that the pNN and NN yield
the same AUC score for mN = 2 GeV, the common mass they are trained on. Furthermore, the
pNN performance remains approximately constant for masses lying between those used for
the training, in contrast to the performance loss of the NN for masses other than mN = 2 GeV.

7 Signal normalization
The number of expected signal events, Nsig, in the flavour channel `B` = (µµ, eµ, µe), for a
given N hypothesis specified by mN and ctN, and mixing scenario specified by~r = (re , rµ , rt ),
is given by

Nsig

⇣
`B`, mN, ctN,~r

⌘
=

seff
B±

fu
LÂ

q
Fq

N

⇣
`B`, mN, ctN,~r

⌘
e

q
sig

⇣
`B`, mN, ctN

⌘
, (1)

where seff
B± is the effective total cross section for both B+ and B� meson production, extrapo-

lated from the measured fiducial cross section of the process B± ! J/y(1S)(! µ+µ�)K± in
the phase space covered by the trigger conditions described in Section 3; fu is the fragmenta-
tion fraction of the charged B meson Bu; L is the integrated luminosity for the B-parking data
sample; the quark flavour index, q, runs over (u, d, s, c); Fq

N is the product of the N production
rate and decay branching fractions associated with a signal originating from the decay of a me-
son Bq; and e

q
sig is the associated signal efficiency, incorporating the acceptance, reconstruction,
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Figure 4: (Left) Performance of the pNN as a function of signal mass for events in the 50 <
Lxy/sLxy

< 150, OS, and low `B`
±p⌥ mass category in the dimuon channel. The performance

is shown by the AUC curve, where a value at unity corresponds to a perfect separation between
signal and background. The different coloured curves correspond to different ctN hypotheses.
(Right) Validation of the use of a pNN for intermediate mN mass points, for events in the 50 <
Lxy/sLxy

< 150, OS and low `B`
±p⌥ mass category in the dimuon channel: a pNN trained on

masses mN = 1.0, 1.5, 2.0, and 3.0 GeV (blue) and a NN trained on mass mN = 2 GeV (red). All
the points have ctN = 10 mm. The full circles correspond to mass points on which the pNN
and NN were trained on, while the open circles show mass points that have not been trained
on.

trigger, and selection efficiencies. The signal factor, Fq
N, in Eq. (1) is defined as

Fq
N

⇣
`B`, mN, ctN,~r

⌘
= Â

Xb

fq

eG(Bq ! `BNXb)

G(Bq)
r`B

|VN |2

| {z }
N production

eG (N ! `p)

reeGe (N) + rµ
eGµ (N) + rt

eGt (N)
r`

| {z }
N decay

. (2)

In the N production term, the sum runs over the possible hadronic systems, Xb, associated
with the decay of the meson Bq; fq is the fragmentation fraction of the meson Bq; G(Bq) is the
SM Bq decay width [30]; and eG(Bq ! `BNXb) is the partial decay rate for inclusive production
of the N with lepton of flavour `B (as computed from Ref. [10]) divided by |V`B N |2, which is

factored out and written explicitly as r`B
|VN |2. In the N decay term, the factor eG(N ! `p) is

the partial decay width with |V`N |2 factored out, and eGa(N) is the total decay width for an N
decaying into a charged or neutral lepton of flavour a = (e, µ, t), with |VaN |2 factored out.
In the ratio between |V`N |2 and |VaN |2, the factor |VN |2 cancels out, leaving the mixing ratio
r`, in the numerator, and the mixing ratios, ra, in the denominator. The N decay widths are
computed based on Ref. [10].

The quantities |VN |2, ctN, and~r are linked to each other by the following relation:

1
ctN

= |VN |2
⇣

reeGe (N) + rµ
eGµ (N) + rt

eGt (N)
⌘

, (3)

which implies that different combinations of~r and |VN |2 yield the same N lifetime ctN. This
property underpins the interpretations of the results in various flavour mixing, as well as in
the Majorana or Dirac-like scenarios, discussed in Section 10.



14

Figure 5: Branching fractions as functions of mN for Bq ! µNX decays, q = (u, d, s, c), multi-
plied by the corresponding fragmentation fraction, fq. Both leptonic and semileptonic decays
are considered. The results are shown for the mixing scenario |VN |2 = |VµN |2 = 1. The branch-
ing fractions are computed based on the method described in Ref. [10].

The decay branching fractions multiplied by the fragmentation fractions, fq, for the four B
meson species are shown in Fig. 5 as a function of mN for the scenario in which N can only
couple to muons. For masses approaching mN = 3 GeV, the Bc meson contribution becomes
significant, despite its low fragmentation fraction, because of the predominance of leptonic
decays and the larger Bc mass. For smaller masses, the dominant contribution is from the Bu,
Bd, and Bs mesons. The branching fractions for the process N ! µ±p⌥ range from 22% down
to 2.4% for mN masses from 1.0 to 3.0 GeV, respectively, in the scenario where the N couples
exclusively to muons.

The total effective cross section, seff
B± , is extrapolated from the measurement of the cross sec-

tion for the SM control process B± ! J/y(1S)(! µ+µ�)K±, performed in the fiducial phase
space imposed by the trigger requirements of the B-parking sample, discussed in Section 3. In
particular, the leading muon must have pT > 7 GeV and |h| < 1.5. We note that a similar mea-
surement has already been performed by CMS, within a defined fiducial phase space [56]. In a
manner similar to Eq. (1), the expected number of control events is computed as the product of
the cross section, seff

B± ; the relevant SM branching fractions; the integrated luminosity; and the
efficiency of the SM decay, accounting for the acceptance, selection, and trigger effects. The effi-
ciency is obtained from a simulation of the control process. The associated sample is simulated
using the same generator conditions as for the signal samples described in Section 4, such that
the measurement of seff

B± using the control process can be extrapolated to the signal process. The

cross section seff
B± is then obtained by measuring the number of control events in data. The event

yield is extracted from the data using an extended unbinned maximum likelihood fit, shown
in Fig. 6. The total fit accounts for three components: (i) the signal peak, (ii) the background
arising from misreconstructed b hadron decays, such as B ! J/y(1S) + hadrons (partially re-
constructed background), and (iii) the background originating from a spurious combination
of a J/y(1S) meson and an uncorrelated track (combinatorial background). The sample used
for this purpose has an integrated luminosity of 0.77 fb�1, a fraction of that of the full event
sample. However, the statistical uncertainty in the yield for the control process is much smaller
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Figure 6: Distribution of the K±µ+µ� invariant mass for a luminosity of 0.77 fb�1. A large
signal is observed at the Bu mass. The blue curve shows the fit to signal plus background,
while the orange, green, and red curves show the contributions from the signal, composite
background, and combinatorial background, respectively.

than the systematic uncertainty (discussed in Section 9). No theoretical uncertainty for the
PYTHIA model used for the extrapolation is considered here, since the fiducial phase space se-
lected in this ancillary measurement is close to that covered by the signal in the analysis, such
that this uncertainty cancels out in the signal normalization procedure. The measured value is
seff

B± = (572.0 ± 4.9 (stat) ± 85.8 (syst)) µb.

8 Signal extraction
The signal event yield for each heavy-neutrino mass hypothesis, mN, is extracted from a simul-
taneous parametric fit to the m(`±p⌥) distributions in data in the different categories listed in
Table 2. The baseline selections, the 2-body resonance vetoes listed in Table 1, and the require-
ment on the pNN score to be greater than 0.99 are all applied before these fits are performed.
Because mN is not predicted and can assume any value allowed by the kinematics of the decays
under study in this analysis, we perform the fits to the data in a series of sliding m(`±p⌥) mass
windows centred around a set of closely spaced trial mass values. The separation of these trial
values is about twice the mass resolution, s, and the window around each trial mass value is
±10s. The values of s range approximately from 9 MeV to 25 MeV for signal masses of 1.0 and
3.0 GeV, respectively.

The sum of signal plus background models is fitted to the mass distributions. The signal mass
shape is parametrized, in all the categories, and for all N hypotheses, with a double-sided Crys-
tal Ball function [57, 58]. While the parameters describing the power-law tails of the function
are fixed, the signal mass resolution, s, increases linearly with the signal mass mN.

As anticipated in Section 5, the background is generally falling; however, its shape is not known
a priori, and it is allowed to vary in the different mass windows and categories. The back-
ground shape is studied prior to the final fit in the sidebands, defined as the regions outside
the signal window of size ±3s around the mass hypothesis mN. The parameters controlling
the background shapes used in the fit are free-floating and are treated as uncorrelated for the
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24 categories and the different mass windows.

To account for possible background shape variations, the discrete profiling method [59] is used.
This method employs a set of alternative background shape functions in each mass window
and category. The method also provides a way to incorporate a systematic uncertainty as-
sociated with the choice of functional form for the background shape by treating this choice
as a discrete nuisance parameter (NP). During the fit, at each point of the scan over the signal
strength, the profile-likelihood is evaluated for each function indexed by NP and the best fit one
is chosen. The final set of functions considered consists of three families: power-law polynomi-
als, Laurent-series polynomials, and a sum of exponentials. Initially, each family contemplates
all functions of any order N.

To avoid overfitting, the maximum order, Nmax, of the function that is considered in each family,
in the sense that a higher order function would not improve the fit, is assessed using a Fisher
test [60]. To determine the value of Nmax for a given family of functions, successive orders
are tested iteratively. If the function at order N provides an adequate fit, or N is the lowest
order, the function of order N + 1 is tested by computing DNLL = 2(NLLN � NLLN+1), with
NLLN being the negative log-likelihood of the fit with the function of order N. According
to Wilk’s theorem [61], DNLL behaves asymptotically as a c2 with one degree of freedom,
allowing one to compute the associated p-value of the test as pF = p(c2 > DNLL). If pF < 0.05,
the function of order N + 1 is supported by the data, and the same test will be run for the next-
order function. If not, then the testing stops and Nmax = N + 1. For each family, the functional
form of order Nmax is directly added to the final set of functions, as well as the functions with
lower order, provided that their associated c2-goodness of fit probability exceeds 0.01.

Figure 7 shows an example of a background-only fit in a mass window around 1.5 GeV, in the
high Lxy/sLxy

, OS, and low `B`
±p⌥ mass category in the dimuon channel. The functional form

of the background is the one in the set returned as having the best c2-goodness of fit. The
invariant mass distribution expected for a representative signal is overlaid.

9 Systematic uncertainties
The systematic uncertainty in the signal event yield due to the modelling of the background is
assessed using the discrete profiling method in the signal extraction, as described in Section 8.
All of the other uncertainties are summarized in Table 3 and are associated with the shape
parametrization of the signal invariant mass and the normalization of the signal event yield.
These uncertainties are discussed below and are small compared to the uncertainties arising
from the size of the event sample or from the fit procedure.

The first source of systematic uncertainty listed in Table 3 is associated with parametrization of
the shape of the signal invariant mass distribution. As discussed in Section 8, the signal mass
distribution is parametrized using a double-sided Crystal Ball function. In each flavour chan-
nel, the parameters of the power-law tails are fixed and the resolution is parametrized linearly
in the signal mass, while being treated inclusively between the different ctN hypotheses; the
flavour channels; and the categories in Lxy/sLxy

, relative lepton sign, and `B`
±p⌥ mass. A sys-

tematic uncertainty of 15%, obtained by studying the relative change on the median expected
limit when varying some of the fit parameters, is applied to account for the possible effects of
the choice of signal parametrization. While all the resolution and parameters of the tails are
fixed in the final fit, the mean of the distribution has a freedom of 0.1% and 2% for the dimuon
and mixed-flavour signals, respectively, to account for the lepton energy uncertainties.
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Figure 7: Distribution of the µ±p⌥ invariant mass in the mass window around 1.5 GeV in the
high Lxy/sLxy

, OS, and low `B`
±p⌥ mass category in the dimuon channel. The result of the

background-only fit to the data (red) is shown together with the mass distribution expected
from a Majorana signal with mN = 1.5 GeV and ctN = 500 mm, for the case in which the N
mixes with the muon sector only (green).

The other systematic uncertainties listed in Table 3 are associated with how the signal event
yield is related to the theoretical parameters of interest, as obtained in Eq. (1). The main sources
of systematic uncertainty in the determination of the effective B± cross section, seff

B± , (discussed
in Section 7) arise from the choice of the model used in the likelihood fits, the reconstruction
of the B meson decay vertex, and the muon trigger. These contributions amount to a total
uncertainty of 15% in seff

B± . Signal events from Bc decays (in the high `B`
±p⌥ mass categories)

are subject to an additional uncertainty of 24% in the fc fragmentation because of the currently
limited experimental accuracy of the fc measurement [38]. The remaining uncertainties listed
in Table 3 are associated with the signal efficiency, e

q
sig. These are

• Uncertainty in the signal efficiency arising from the pNN selection. To estimate this
uncertainty, we consider the control process B± ! J/y(1S)(! µ+µ�)K±. This se-
lection, described in Section 6, is applied in both data and simulation. The residual
difference between the pNN output score distribution between data and simulation
is taken as the systematic uncertainty. It ranges between 5 and 20%, depending on
the event category and it is assigned equally to the dimuon and the mixed-flavour
channels, as the pNN is flavour agnostic.

• Uncertainty associated with the matching, described in Section 5, between a recon-
structed signal candidate and the underlying generated signal candidate. This un-
certainty is 5%.

• Uncertainty in the signal efficiency arising from potential mismodelling of tracking-
and vertexing-related quantities that affect measurements of the decay vertices. These
are accounted for with a systematic uncertainty of 5%, based on Ref. [22].

• Uncertainties in the signal efficiency arising from correction factors applied to the
simulated signal event samples. Several types of such scale factors are applied to
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Table 3: Sources of systematic uncertainty affecting the expected signal event yield. The ranges
given correspond to the uncertainties across the different event categories. The uncertainty in
the integrated luminosity is not reported as it is incorporated in the uncertainty in the cross
section measurement used to normalize the signal.

Source Value (%)
Signal shape 15
seff

B± 15
fc 24
Signal selection 5–20
Limited simulated signal sample size <15
Matching 5
Tracking efficiency 5
Trigger scale factors 5
Muon identification scale factors 1
Electron identification scale factors 3

Total <42

improve the agreement between the actual and simulated behavior of the detector,
including efficiency scale factors for electrons, muons, and the trigger. The uncer-
tainties in the corrections are 5% and 1% for the trigger and lepton identification
scale factors, respectively. These uncertainties are computed by varying the respec-
tive scale factor weights up and down by 1 standard deviation and studying the
impact on the number of expected signal events. Lepton scale factors are computed
using a tag-and-probe method [45].

The systematic uncertainties discussed above are modelled as log-normal uncertainties. Apart
from the uncertainty in seff

B± and fc , the uncertainties are treated as uncorrelated across the
different analysis categories.

Finally, the statistical uncertainty associated with the limited size of the simulated signal sam-
ples and the per-event ctN-reweighting is taken into account. These uncertainties are assumed
to be described by G distributions.

10 Results and interpretation
For each mass window around a given signal mass hypothesis, mN, the signal yield is extracted
from the data using the procedure explained in Section 8 using the uncertainties summarized
in Section 9. No significant excesses over the background-only expectations are observed. As
an example, Fig. 8 shows the `±p⌥ invariant mass distributions in the dimuon channel for
the high Lxy/sLxy

, OS, and low `B`
±p⌥ mass category; the mass windows shown are centred

around mN = 1.0, 1.5, 2.0, and 2.5 GeV. For these four mass windows, the figure shows the
corresponding fits to the data assuming signal hypotheses for the cases ctN = 10000.0, 2000.0,
700.0, and 100.0 mm, respectively. These values are close to the exclusion limit when the HNL
mixes exclusively with the muon sector, which is the scenario with the greatest sensitivity. The
plots in the mass windows around mN = 1.0, 1.5, and 2.0 GeV are examples showing data
that do not present a signal-like structure and are representative of most of the distributions
considered. The plot in the mass window around mN = 2.5 GeV is an example chosen to show
a signal-like fluctuation in the fit region.
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Figure 8: Fits of the mass distribution for a signal of mass mN = 1.0 GeV (upper left), 1.5 GeV
(upper right), 2.0 GeV (lower left), and 2.5 GeV (lower right), in the high Lxy/sLxy

, OS, and
low `B`

±p⌥ mass category of the dimuon channel. The blue curve corresponds to signal-plus-
background fit, while the green and red curves indicate its individual signal and background
components, respectively. The yellow band shows the total post-fit systematic plus statistical
uncertainty.

For each value of mN, the results are interpreted using Eqs. (1) and (2), which relate the ob-
served number of signal events, Nsig, to the quantity |VN |2. Upper limits on the signal yields at
the 95% confidence level (CL) are used to establish corresponding limits on the quantity |VN |2,
assuming a variety of different mixing scenarios specified by the ratios (re , rµ , rt ) at a fixed
proper mean lifetime tN. These limits are obtained with the combination of the different event
categories listed in Table 2. For each signal hypothesis (mN, ctN) and each mixing scenario,
an unbinned maximum likelihood function, L(r,~q), is constructed using the signal strength, r,
as the parameter of interest and the full set of NPs, ~q, that account for the different sources of
uncertainty.

The limits are derived using the CLs criterion [62] in the asymptotic approximation [63]. A
given signal hypothesis is considered to be excluded if a signal strength equal to (or larger
than) unity is not compatible with the observed data at 95% CL. A scan of |VN |2 on a fine grid
is performed using the ctN-reweighting methodology described in Section 4.
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Table 4: Summary of the most stringent upper limits on |VN |2 at 95% CL. For each scenario, the
minimum excluded value of |VN |2 is reported together with the mass at which it occurs.

(re , rµ , rt ) Scenario |VN |2 Mass (GeV)
(0, 1, 0) Majorana 2.0 ⇥ 10�5 1.95
(0, 1/2, 1/2) Majorana 4.0 ⇥ 10�5 1.42
(1/2, 1/2, 0) Majorana 3.3 ⇥ 10�5 2.15
(1/3, 1/3, 1/3) Majorana 5.0 ⇥ 10�5 2.15

(0, 1, 0) Dirac-like 3.2 ⇥ 10�5 1.68
(0, 1/2, 1/2) Dirac-like 6.5 ⇥ 10�5 1.68
(1/2, 1/2, 0) Dirac-like 5.7 ⇥ 10�5 1.68
(1/3, 1/3, 1/3) Dirac-like 8.5 ⇥ 10�5 1.68

Limits are derived for both the Majorana and Dirac-like nature of the HNL. As discussed in
Section 4, the signal simulation samples are generated for the Majorana case. In the Dirac-like
scenario, lepton flavour is conserved, and only OS `±B `

⌥ pairs are allowed in the signal process.
In the OS categories, for a given mN and ctN point, the expected event yield for the Dirac-like
scenario can be obtained from that of the Majorana scenario considering the fact that the decay
widths of a Dirac-like N are half of those of a Majorana N [10], resulting in twice the yields
in the former case than in the latter. Finally, another consequence of the change of the decay
widths is that, for a given mN and ctN hypothesis, the |VN |2 in the Dirac-like scenario is twice
as large as in the Majorana scenario.

The upper exclusion limits on |VN |2 as a function of the N mass are shown in Figs. 9 and 10,
for the Majorana and Dirac-like cases, respectively. In each figure, four benchmark scenarios,
chosen based on the proposal in Ref. [64], are considered: two mixing scenarios derived with
the dimuon channel only, with (re , rµ , rt ) = (0, 1, 0) and (re , rµ , rt ) = (0, 1/2, 1/2); and
two mixing scenarios derived with the dimuon and mixed-flavour channels combined, namely
(re , rµ , rt ) = (1/2, 1/2, 0) and (re , rµ , rt ) = (1/3, 1/3, 1/3). Using Eqs. (2) and (3) and a
reweighting procedure, we can obtain exclusion limits for an arbitrary mixing scenario.

The best limit on |VN |2 is obtained for the muon exclusive mixing scenario (re , rµ , rt ) =

(0, 1, 0). This limit excludes at 95% CL values of |VN |2 > 2.0 ⇥ 10�5 for a signal mass mN =
1.95 GeV for the Majorana case, and |VN |2 > 3.2 ⇥ 10�5 for a signal mass mN = 1.68 GeV for
the Dirac-like case. The best limits on |VN |2 for the other scenarios are summarized in Table 4.

The muon-exclusive mixing scenario allows a direct comparison with the results from previous
work. Compared to results of the ATLAS [18] and CMS [22] Collaborations, targeting long-
lived HNLs produced in the decays of W bosons, and analysing 139 fb�1 and 138 fb�1 of data,
respectively, the limits are improved by up to a factor of about 3 for masses below 1.75 GeV
for the Majorana case, and a factor of about 2 for masses below 1.7 GeV for the Dirac-like case.
Furthermore, in the Majorana case, a direct comparison with results from the LHCb [25] (and
revised in Ref. [65]) and Belle [15] Collaborations, both targeting the same signal process as in
the present search, is possible. Compared to the LHCb search, the limits are improved by up
to one order of magnitude, while compared to the Belle results, the limits are improved by up
to a factor of about 2 for all masses. Compared to other recent results from CMS [23, 24], this
analysis extends and improves the exclusion limits by up to a factor of about 2 in the mass
region between 1 and 2 GeV.

The sensitivity for the three other mixing scenarios, with rµ 6= 1, is less than in the muon
exclusive mixing scenario, as the reconstruction efficiency for the muon is greater than that of
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the electron with CMS.

Figure 9: Expected and observed 95% CL limits on |VN |2 as a function of mN, in the Majorana
scenario. On the upper row, the limits are derived uniquely with the dimuon channel, and are
shown for the mixing scenarios (re , rµ , rt ) = (0, 1, 0) on the left and for (re , rµ , rt ) = (0, 1/2,
1/2) on the right; on the lower row, the limits are obtained with the dimuon and mixed-flavour
channel combined, for the mixing scenarios (re , rµ , rt ) = (1/2, 1/2, 0) on the left and for (re ,
rµ , rt ) = (1/3, 1/3, 1/3) on the right. In the upper left figure, results from the CMS [22, 24],
ATLAS [18], LHCb [25], and Belle [15] Collaborations are shown as a comparison; in the other
figures, results from the CMS Collaboration [23] are reported. The mass range with no results
shown corresponds to the D0 meson veto listed in the lower part of Table 1.

The observed lower limits at 95% CL on ctN for 66 different mixing scenarios (re , rµ , rt ), for
three values of masses, mN = 1.0, 1.5, and 2.0 GeV, are shown in Fig. 11 for the Majorana and
Dirac-like cases. The constraint re + rµ + rt = 1 allows the values to be shown in the form
of ternary plots. We verify that the limits improve with increasing values of rµ , while they
slightly degrade with increasing values of re . The latter trend is explained by smaller values
of eGt with respect to eGµ and eGe in Eq. (3). The best limits on ctN are obtained for a signal
mass mN = 1 GeV for the mixing scenario (re , rµ , rt ) = (0, 1, 0). Values of ctN < 9.2 m and
ctN < 10.5 m are excluded at 95% CL for the Majorana and Dirac-like cases, respectively. The
most stringent limits on ctN for the all masses are summarized in Table 5 for the Majorana and
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Figure 10: Expected and observed 95% CL limits on |VN |2 as a function of mN, in the Dirac-like
scenario. On the upper row, the limits are derived uniquely with the dimuon channel, and are
shown for the mixing scenarios (re , rµ , rt ) = (0, 1, 0) on the left and for (re , rµ , rt ) = (0, 1/2,
1/2) on the right; on the lower row, the limits are obtained with the dimuon and mixed-flavour
channel combined, for the mixing scenarios (re , rµ , rt ) = (1/2, 1/2, 0) on the left and for (re , rµ ,
rt ) = (1/3, 1/3, 1/3) on the right. In the upper left figure, results from the CMS [22, 24] and
ATLAS [18] Collaborations are shown as a comparison; in the other figures, results from the
CMS Collaboration [23] are reported. The mass range with no results shown corresponds to
the D0 meson veto listed in the lower part of Table 1.

Dirac-like hypotheses. Unlike the limits obtained on |VN |2 discussed above, the limits on ctN
are more stringent in the Dirac-like scenario than in the Majorana scenario. This behaviour is
a consequence of eGe , eGµ , and eGt in Eq. (3) being twice as low in the Dirac-like case as in the
Majorana case.
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Figure 11: Observed 95% CL lower limits on ctN as functions of the mixing ratios (re , rµ , rt )
for fixed N masses of 1 GeV (upper row), 1.5 GeV (middle row), and 2 GeV (lower row), in the
Majorana (left column) and Dirac-like (right column) scenarios. The red crosses indicate that
there is no exclusion found for that point. The orientation of the value markers on each axis
identifies the associated internal lines on the plot.
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Table 5: Summary of the most stringent lower limits on ctN at 95% CL, obtained for the mixing
scenario (re , rµ , rt ) = (0, 1, 0). The maximum excluded value of ctN is reported for masses
mN = 1.0, 1.5 and 2.0, and for the Majorana and Dirac-like scenarios.

Mass (GeV) Scenario ctN (m)
1.0 Majorana 9.2
1.5 Majorana 2.3
2.0 Majorana 0.7

1.0 Dirac-like 10.5
1.5 Dirac-like 2.2
2.0 Dirac-like 0.8

11 Summary
A search for long-lived heavy neutrinos, N, in the leptonic and semileptonic decays of B
mesons produced in proton-proton collisions at

p
s = 13 TeV has been performed. The search

uses a special data sample, referred to as the B-parking data sample, accumulated by the CMS
experiment during 2018. The sample corresponds to an integrated luminosity of 41.6 fb�1 and
contains of order 1010 bb events.

The search is based on the process B ! `BNX, N ! `±p⌥, where the charged leptons `B and `
are required to be `B` = µµ, µe, or eµ; the hadronic recoil system, X, is treated inclusively and
is not reconstructed and the B = (Bu, Bd, Bs, Bc) decays are summed. Results are reported for
the N mass range 1 < mN < 3 GeV.

The main elements of the search signature are (i) two charged leptons, at least one of which
must be a muon that satisfies the B-parking trigger requirements, (ii) a displaced vertex associ-
ated with the N ! `±p⌥ decay, and (iii) a peak in the invariant mass distribution of the `±p⌥

system consistent with the expected signal shape. Backgrounds, which arise primarily from
strong-interaction processes, are suppressed using a parametric neural network that considers
a broad range of event properties.

A search for N states is performed using simultaneous maximum likelihood fits to the `±p⌥

invariant mass distributions in 24 mutually exclusive event categories. No significant excess of
events over the SM background is observed in any of the fit regions.

The results are interpreted for the separate hypotheses of a Majorana or Dirac-like particle as
(i) upper limits at 95% CL on |VN |2 as functions of mN, for representative scenarios specified
by different values of the mixing ratios re , rµ , and rt ; and as (ii) lower limits at 95% CL on
ctN for 66 combinations of re , rµ , and rt for signal masses mN = 1.0, 1.5, and 2.0 GeV. The
most stringent limits are |VN |2 < 2.0 ⇥ 10�5 and ctN > 10.5 m, obtained for the Majorana and
Dirac-like cases, respectively, and for the scenario in which the N mixes exclusively with the
muon sector.

This search provides the most stringent exclusion limits on |VN |2 for masses 1 < mN < 1.7 GeV
from a collider experiment to date. Assuming the benchmark scenario (re , rµ , rt ) = (0, 1, 0)
and the Majorana hypothesis, the exclusion is improved by almost one order of magnitude
compared to LHCb [25], and by up to a factor of about 2 compared to Belle [15] and the
most stringent previous hadron collider result [24]. Furthermore, the first upper limits on
|VN |2 are set for the mass range 1 < mN < 2 GeV for the mixing scenarios (re , rµ , rt ) =
(0, 1/2, 1/2), (1/2, 1/2, 0), and (1/3, 1/3, 1/3). Finally, lower limits on ctN in the form of
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ternary plots for masses mN  2.0 GeV are presented for the first time.
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M. Schröder , J. Schwandt , M. Sommerhalder , H. Stadie , G. Steinbrück , A. Tews,
M. Wolf

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
S. Brommer , M. Burkart, E. Butz , T. Chwalek , A. Dierlamm , A. Droll, N. Fal-
termann , M. Giffels , A. Gottmann , F. Hartmann29 , R. Hofsaess , M. Horzela ,
U. Husemann , J. Kieseler , M. Klute , R. Koppenhöfer , J.M. Lawhorn , M. Link,
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zalez Caballero , J.R. González Fernández , P. Leguina , E. Palencia Cortezon ,
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J.-P. Merlo, A. Mestvirishvili86 , O. Neogi, H. Ogul87 , Y. Onel , A. Penzo , C. Snyder,
E. Tiras88

Johns Hopkins University, Baltimore, Maryland, USA
B. Blumenfeld , L. Corcodilos , J. Davis , A.V. Gritsan , L. Kang , S. Kyriacou ,
P. Maksimovic , M. Roguljic , J. Roskes , S. Sekhar , M. Swartz

The University of Kansas, Lawrence, Kansas, USA
A. Abreu , L.F. Alcerro Alcerro , J. Anguiano , S. Arteaga Escatel , P. Baringer ,
A. Bean , Z. Flowers , D. Grove , J. King , G. Krintiras , M. Lazarovits ,
C. Le Mahieu , J. Marquez , N. Minafra , M. Murray , M. Nickel , M. Pitt ,
S. Popescu89 , C. Rogan , C. Royon , R. Salvatico , S. Sanders , C. Smith , G. Wilson

Kansas State University, Manhattan, Kansas, USA
B. Allmond , R. Gujju Gurunadha , A. Ivanov , K. Kaadze , A. Kalogeropoulos ,
Y. Maravin , J. Natoli , D. Roy , G. Sorrentino

University of Maryland, College Park, Maryland, USA
A. Baden , A. Belloni , J. Bistany-riebman, Y.M. Chen , S.C. Eno , N.J. Hadley ,
S. Jabeen , R.G. Kellogg , T. Koeth , B. Kronheim, Y. Lai , S. Lascio , A.C. Mignerey ,
S. Nabili , C. Palmer , C. Papageorgakis , M.M. Paranjpe, L. Wang

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
J. Bendavid , I.A. Cali , P.c. Chou , M. D’Alfonso , J. Eysermans , C. Freer ,
G. Gomez-Ceballos , M. Goncharov, G. Grosso, P. Harris, D. Hoang, D. Kovalskyi ,
J. Krupa , L. Lavezzo , Y.-J. Lee , K. Long , C. Mcginn, A. Novak , C. Paus ,
D. Rankin , C. Roland , G. Roland , S. Rothman , G.S.F. Stephans , Z. Wang ,
B. Wyslouch , T. J. Yang

University of Minnesota, Minneapolis, Minnesota, USA
B. Crossman , B.M. Joshi , C. Kapsiak , M. Krohn , D. Mahon , J. Mans ,
B. Marzocchi , M. Revering , R. Rusack , R. Saradhy , N. Strobbe

University of Mississippi, Oxford, Mississippi, USA
L.M. Cremaldi

University of Nebraska-Lincoln, Lincoln, Nebraska, USA

https://orcid.org/0000-0001-8049-5143
https://orcid.org/0000-0003-3490-8407
https://orcid.org/0000-0002-7172-1396
https://orcid.org/0000-0001-8775-0696
https://orcid.org/0000-0002-3161-8300
https://orcid.org/0000-0002-3791-1989
https://orcid.org/0000-0002-5439-8224
https://orcid.org/0000-0002-8645-186X
https://orcid.org/0000-0003-2381-5117
https://orcid.org/0000-0002-0211-6109
https://orcid.org/0000-0002-4077-2713
https://orcid.org/0000-0001-6794-3079
https://orcid.org/0000-0002-0124-9065
https://orcid.org/0000-0002-9792-8619
https://orcid.org/0000-0003-3423-9581
https://orcid.org/0000-0001-6701-9265
https://orcid.org/0000-0001-9930-6445
https://orcid.org/0000-0003-4578-9319
https://orcid.org/0000-0001-8493-3737
https://orcid.org/0000-0001-5310-3466
https://orcid.org/0000-0001-7169-3420
https://orcid.org/0000-0003-2090-5010
https://orcid.org/0000-0002-1250-8931
https://orcid.org/0000-0002-8116-9021
https://orcid.org/0000-0002-2449-3845
https://orcid.org/0000-0002-5574-4192
https://orcid.org/0000-0003-1982-8978
https://orcid.org/0000-0003-3922-6464
https://orcid.org/0000-0001-8035-4818
https://orcid.org/0000-0003-0550-4083
https://orcid.org/0000-0003-0744-1063
https://orcid.org/0009-0000-2570-1100
https://orcid.org/0000-0002-4210-2780
https://orcid.org/0000-0001-7000-6510
https://orcid.org/0000-0001-7299-7653
https://orcid.org/0000-0002-7366-4225
https://orcid.org/0000-0002-2617-9315
https://orcid.org/0000-0002-9397-5514
https://orcid.org/0000-0002-0653-0761
https://orcid.org/0000-0001-6091-6772
https://orcid.org/0000-0002-3826-1332
https://orcid.org/0000-0002-9239-470X
https://orcid.org/0000-0003-0138-3368
https://orcid.org/0000-0002-3021-5032
https://orcid.org/0000-0001-8739-9648
https://orcid.org/0000-0001-9040-3468
https://orcid.org/0000-0002-8591-5247
https://orcid.org/0000-0002-5121-2893
https://orcid.org/0000-0002-8141-7769
https://orcid.org/0000-0003-3436-047X
https://orcid.org/0000-0002-5628-7464
https://orcid.org/0000-0003-1150-1735
https://orcid.org/0000-0001-6751-3108
https://orcid.org/0000-0001-6488-6195
https://orcid.org/0000-0002-3545-7970
https://orcid.org/0000-0002-0941-4512
https://orcid.org/0000-0002-9254-4368
https://orcid.org/0000-0002-2358-2168
https://orcid.org/0000-0001-5311-3007
https://orcid.org/0000-0001-8761-0490
https://orcid.org/0000-0002-8307-7518
https://orcid.org/0000-0002-0286-5070
https://orcid.org/0000-0002-9000-2215
https://orcid.org/0000-0001-5770-5077
https://orcid.org/0000-0002-7349-350X
https://orcid.org/0000-0002-1439-3226
https://orcid.org/0000-0002-3691-8388
https://orcid.org/0000-0001-5967-8674
https://orcid.org/0000-0001-8314-2052
https://orcid.org/0000-0002-0740-2462
https://orcid.org/0000-0001-9652-9854
https://orcid.org/0000-0002-0380-7577
https://orcid.org/0000-0002-5565-3119
https://orcid.org/0000-0001-5924-1130
https://orcid.org/0000-0003-3887-4048
https://orcid.org/0000-0003-4002-1888
https://orcid.org/0000-0001-7219-4818
https://orcid.org/0000-0003-0419-1329
https://orcid.org/0000-0003-2461-5985
https://orcid.org/0000-0002-0345-2171
https://orcid.org/0000-0002-4166-4503
https://orcid.org/0000-0002-7672-9709
https://orcid.org/0000-0002-2751-0567
https://orcid.org/0000-0002-9491-6022
https://orcid.org/0000-0003-0505-0528
https://orcid.org/0000-0003-0917-4763
https://orcid.org/0000-0002-5593-7736
https://orcid.org/0000-0003-3783-1361
https://orcid.org/0000-0002-9270-5643
https://orcid.org/0000-0003-0571-163X
https://orcid.org/0000-0003-3444-0314
https://orcid.org/0000-0002-9449-0666
https://orcid.org/0000-0001-6675-3564
https://orcid.org/0000-0002-8659-7762
https://orcid.org/0000-0002-2253-819X
https://orcid.org/0000-0002-6159-3861
https://orcid.org/0000-0002-1727-656X
https://orcid.org/0000-0002-5795-4783
https://orcid.org/0000-0003-4282-2515
https://orcid.org/0000-0002-1209-6471
https://orcid.org/0000-0002-0155-7383
https://orcid.org/0000-0001-9235-521X
https://orcid.org/0000-0002-0082-0514
https://orcid.org/0000-0002-7795-8693
https://orcid.org/0000-0001-8579-5874
https://orcid.org/0000-0001-5164-6969
https://orcid.org/0000-0002-6893-1018
https://orcid.org/0000-0002-5801-5737
https://orcid.org/0000-0003-4548-0346
https://orcid.org/0000-0003-3443-0626
https://orcid.org/0000-0002-7907-1789
https://orcid.org/0000-0002-2822-3375
https://orcid.org/0000-0002-5842-8566
https://orcid.org/0000-0002-7409-7904
https://orcid.org/0000-0001-6483-7123
https://orcid.org/0000-0002-7967-4635
https://orcid.org/0000-0003-1683-9460
https://orcid.org/0000-0002-6923-293X
https://orcid.org/0000-0003-0785-7552
https://orcid.org/0000-0002-1364-9920
https://orcid.org/0000-0003-2593-7767
https://orcid.org/0000-0003-0664-1653
https://orcid.org/0000-0002-0389-5896
https://orcid.org/0000-0002-6047-4211
https://orcid.org/0000-0001-8411-9620
https://orcid.org/0000-0002-7312-5854
https://orcid.org/0000-0001-8983-2169
https://orcid.org/0000-0002-1377-9119
https://orcid.org/0000-0003-3106-4894
https://orcid.org/0000-0002-3074-3767
https://orcid.org/0000-0003-3681-0649
https://orcid.org/0000-0003-4317-4660
https://orcid.org/0000-0002-2700-5085
https://orcid.org/0000-0002-4723-0968
https://orcid.org/0009-0008-7743-5316
https://orcid.org/0000-0002-1711-2506
https://orcid.org/0000-0002-2640-5941
https://orcid.org/0000-0003-2840-1087
https://orcid.org/0000-0001-6687-6214
https://orcid.org/0000-0001-5051-0293
https://orcid.org/0000-0002-7633-749X
https://orcid.org/0000-0001-8720-293X
https://orcid.org/0000-0001-8835-8282
https://orcid.org/0000-0001-5550-7827


45

K. Bloom , D.R. Claes , G. Haza , J. Hossain , C. Joo , I. Kravchenko , J.E. Siado ,
W. Tabb , A. Vagnerini , A. Wightman , F. Yan , D. Yu

State University of New York at Buffalo, Buffalo, New York, USA
H. Bandyopadhyay , L. Hay , H.w. Hsia, I. Iashvili , A. Kharchilava , M. Morris ,
D. Nguyen , S. Rappoccio , H. Rejeb Sfar, A. Williams , P. Young

Northeastern University, Boston, Massachusetts, USA
G. Alverson , E. Barberis , J. Dervan, Y. Haddad , Y. Han , A. Krishna , J. Li ,
M. Lu , G. Madigan , R. Mccarthy , D.M. Morse , V. Nguyen , T. Orimoto ,
A. Parker , L. Skinnari , D. Wood

Northwestern University, Evanston, Illinois, USA
J. Bueghly, S. Dittmer , K.A. Hahn , Y. Liu , Y. Miao , D.G. Monk , M.H. Schmitt ,
A. Taliercio , M. Velasco

University of Notre Dame, Notre Dame, Indiana, USA
G. Agarwal , R. Band , R. Bucci, S. Castells , A. Das , R. Goldouzian , M. Hildreth ,
K.W. Ho , K. Hurtado Anampa , T. Ivanov , C. Jessop , K. Lannon , J. Lawrence ,
N. Loukas , L. Lutton , J. Mariano, N. Marinelli, I. Mcalister, T. McCauley , C. Mcgrady ,
C. Moore , Y. Musienko17 , H. Nelson , M. Osherson , A. Piccinelli , R. Ruchti ,
A. Townsend , Y. Wan, M. Wayne , H. Yockey, M. Zarucki , L. Zygala

The Ohio State University, Columbus, Ohio, USA
A. Basnet , B. Bylsma, M. Carrigan , L.S. Durkin , C. Hill , M. Joyce , M. Nunez Or-
nelas , K. Wei, B.L. Winer , B. R. Yates

Princeton University, Princeton, New Jersey, USA
H. Bouchamaoui , P. Das , G. Dezoort , P. Elmer , A. Frankenthal , B. Greenberg ,
N. Haubrich , K. Kennedy, G. Kopp , S. Kwan , D. Lange , A. Loeliger , D. Marlow ,
I. Ojalvo , J. Olsen , A. Shevelev , D. Stickland , C. Tully

University of Puerto Rico, Mayaguez, Puerto Rico, USA
S. Malik

Purdue University, West Lafayette, Indiana, USA
A.S. Bakshi , V.E. Barnes , S. Chandra , R. Chawla , A. Gu , L. Gutay, M. Jones ,
A.W. Jung , A.M. Koshy, M. Liu , G. Negro , N. Neumeister , G. Paspalaki ,
S. Piperov , V. Scheurer, J.F. Schulte , M. Stojanovic , J. Thieman , A. K. Virdi ,
F. Wang , W. Xie

Purdue University Northwest, Hammond, Indiana, USA
J. Dolen , N. Parashar , A. Pathak

Rice University, Houston, Texas, USA
D. Acosta , T. Carnahan , K.M. Ecklund , P.J. Fernández Manteca , S. Freed, P. Gardner,
F.J.M. Geurts , W. Li , J. Lin , O. Miguel Colin , B.P. Padley , R. Redjimi, J. Rotter ,
E. Yigitbasi , Y. Zhang

University of Rochester, Rochester, New York, USA
A. Bodek , P. de Barbaro , R. Demina , J.L. Dulemba , A. Garcia-Bellido ,
O. Hindrichs , A. Khukhunaishvili , N. Parmar, P. Parygin90 , E. Popova90 , R. Taus

The Rockefeller University, New York, New York, USA
K. Goulianos

https://orcid.org/0000-0002-4272-8900
https://orcid.org/0000-0003-4198-8919
https://orcid.org/0009-0001-1326-3956
https://orcid.org/0000-0001-5144-7919
https://orcid.org/0000-0002-5661-4330
https://orcid.org/0000-0003-0068-0395
https://orcid.org/0000-0002-9757-470X
https://orcid.org/0000-0002-9542-4847
https://orcid.org/0000-0001-8730-5031
https://orcid.org/0000-0001-6651-5320
https://orcid.org/0000-0002-4042-0785
https://orcid.org/0000-0001-5921-5231
https://orcid.org/0000-0001-9726-4915
https://orcid.org/0000-0002-7086-7641
https://orcid.org/0000-0003-1948-5901
https://orcid.org/0000-0002-3913-0326
https://orcid.org/0000-0002-2830-6488
https://orcid.org/0000-0002-5185-8504
https://orcid.org/0000-0002-5449-2560
https://orcid.org/0000-0003-4055-6532
https://orcid.org/0000-0002-5666-6499
https://orcid.org/0000-0001-6651-1178
https://orcid.org/0000-0002-6417-5913
https://orcid.org/0000-0003-4916-7752
https://orcid.org/0000-0002-3510-6505
https://orcid.org/0000-0002-4319-818X
https://orcid.org/0000-0001-5245-2074
https://orcid.org/0000-0002-6999-3931
https://orcid.org/0000-0001-8796-5865
https://orcid.org/0000-0002-9391-2599
https://orcid.org/0000-0003-3163-2169
https://orcid.org/0000-0003-1278-9208
https://orcid.org/0000-0002-8388-3341
https://orcid.org/0000-0002-9421-3335
https://orcid.org/0000-0002-2019-6755
https://orcid.org/0000-0002-6477-801X
https://orcid.org/0000-0002-5359-9614
https://orcid.org/0000-0001-7892-1676
https://orcid.org/0000-0002-5588-1760
https://orcid.org/0000-0002-2023-2082
https://orcid.org/0000-0002-8377-1999
https://orcid.org/0000-0003-0814-3578
https://orcid.org/0000-0002-5119-6280
https://orcid.org/0000-0002-2593-5297
https://orcid.org/0000-0003-4873-0523
https://orcid.org/0000-0003-2618-3856
https://orcid.org/0000-0001-9115-9698
https://orcid.org/0000-0002-0295-249X
https://orcid.org/0000-0002-4454-3934
https://orcid.org/0000-0003-2229-7223
https://orcid.org/0000-0002-9779-3566
https://orcid.org/0000-0003-0489-9191
https://orcid.org/0000-0002-6885-3611
https://orcid.org/0000-0002-9706-0098
https://orcid.org/0000-0001-6326-7210
https://orcid.org/0000-0003-0049-6918
https://orcid.org/0000-0002-3212-4505
https://orcid.org/0000-0001-6589-8286
https://orcid.org/0000-0002-8821-2045
https://orcid.org/0000-0002-8140-4183
https://orcid.org/0009-0006-3545-1938
https://orcid.org/0000-0001-5592-0785
https://orcid.org/0000-0002-9760-9976
https://orcid.org/0000-0003-0386-0527
https://orcid.org/0000-0002-3151-1386
https://orcid.org/0000-0002-3696-689X
https://orcid.org/0000-0001-8204-6157
https://orcid.org/0000-0003-1510-5772
https://orcid.org/0000-0001-9665-7282
https://orcid.org/0000-0001-8460-0019
https://orcid.org/0000-0003-0538-5854
https://orcid.org/0000-0002-0477-1051
https://orcid.org/0000-0003-0059-0779
https://orcid.org/0000-0003-1112-5880
https://orcid.org/0000-0003-2663-7379
https://orcid.org/0000-0001-9980-4698
https://orcid.org/0000-0001-7366-1318
https://orcid.org/0000-0002-9776-1935
https://orcid.org/0000-0002-9770-1377
https://orcid.org/0000-0002-5890-0445
https://orcid.org/0000-0001-6830-3356
https://orcid.org/0000-0002-2583-5982
https://orcid.org/0000-0002-4922-1934
https://orcid.org/0000-0002-7625-8169
https://orcid.org/0000-0001-8160-0208
https://orcid.org/0000-0002-5308-7707
https://orcid.org/0000-0002-9086-5184
https://orcid.org/0000-0002-5017-1487
https://orcid.org/0000-0002-6395-1079
https://orcid.org/0000-0003-1455-6272
https://orcid.org/0000-0002-9361-5762
https://orcid.org/0000-0003-4600-0228
https://orcid.org/0000-0003-4702-8820
https://orcid.org/0000-0001-6771-2174
https://orcid.org/0000-0002-6356-2655
https://orcid.org/0000-0002-2857-6883
https://orcid.org/0000-0001-6939-3445
https://orcid.org/0009-0000-7412-4071
https://orcid.org/0000-0003-4802-6819
https://orcid.org/0000-0002-6230-1138
https://orcid.org/0000-0002-9951-4583
https://orcid.org/0000-0003-3068-3212
https://orcid.org/0000-0001-9012-395X
https://orcid.org/0000-0002-1418-2154
https://orcid.org/0000-0003-2356-1700
https://orcid.org/0000-0001-6815-1065
https://orcid.org/0000-0002-9266-7819
https://orcid.org/0000-0003-4421-680X
https://orcid.org/0000-0002-1542-0855
https://orcid.org/0000-0001-7684-6588
https://orcid.org/0000-0002-0866-8932
https://orcid.org/0000-0002-8313-0809
https://orcid.org/0000-0003-1430-9191
https://orcid.org/0000-0003-1141-3823
https://orcid.org/0009-0009-1717-0413
https://orcid.org/0000-0001-9861-2942
https://orcid.org/0000-0001-5367-1738
https://orcid.org/0000-0001-7492-3201
https://orcid.org/0000-0002-6976-4637
https://orcid.org/0000-0003-2566-7496
https://orcid.org/0000-0003-2856-9090
https://orcid.org/0000-0003-4136-3409
https://orcid.org/0009-0001-8169-1020
https://orcid.org/0000-0001-6612-432X
https://orcid.org/0000-0002-3572-5701
https://orcid.org/0009-0009-4040-7407
https://orcid.org/0000-0002-9595-2623
https://orcid.org/0000-0002-6812-761X
https://orcid.org/0000-0003-0409-0341
https://orcid.org/0000-0002-5508-1827
https://orcid.org/0000-0002-7852-167X
https://orcid.org/0000-0002-9842-7015
https://orcid.org/0000-0002-1407-1972
https://orcid.org/0000-0001-7640-5264
https://orcid.org/0000-0002-3834-1316
https://orcid.org/0000-0001-6743-3781
https://orcid.org/0000-0001-7556-8969
https://orcid.org/0000-0002-5168-2932
https://orcid.org/0000-0002-6230-9535


46

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
B. Chiarito, J.P. Chou , S.V. Clark , D. Gadkari , Y. Gershtein , E. Halkiadakis ,
M. Heindl , C. Houghton , D. Jaroslawski , O. Karacheban27 , S. Konstantinou ,
I. Laflotte , A. Lath , R. Montalvo, K. Nash, J. Reichert , H. Routray , P. Saha ,
S. Salur , S. Schnetzer, S. Somalwar , R. Stone , S.A. Thayil , S. Thomas, J. Vora ,
H. Wang

University of Tennessee, Knoxville, Tennessee, USA
H. Acharya, D. Ally , A.G. Delannoy , S. Fiorendi , T. Holmes , A.R. Kanuganti ,
N. Karunarathna , L. Lee , E. Nibigira , S. Spanier

Texas A&M University, College Station, Texas, USA
D. Aebi , M. Ahmad , T. Akhter , O. Bouhali91 , R. Eusebi , J. Gilmore , T. Huang ,
T. Kamon92 , H. Kim , S. Luo , R. Mueller , D. Overton , D. Rathjens , A. Safonov

Texas Tech University, Lubbock, Texas, USA
N. Akchurin , J. Damgov , N. Gogate , V. Hegde , A. Hussain , Y. Kazhykarim,
K. Lamichhane , S.W. Lee , A. Mankel , T. Peltola , I. Volobouev

Vanderbilt University, Nashville, Tennessee, USA
E. Appelt , Y. Chen , S. Greene, A. Gurrola , W. Johns , R. Kunnawalkam Elayavalli ,
A. Melo , F. Romeo , P. Sheldon , S. Tuo , J. Velkovska , J. Viinikainen

University of Virginia, Charlottesville, Virginia, USA
B. Cardwell , B. Cox , J. Hakala , R. Hirosky , A. Ledovskoy , C. Neu

Wayne State University, Detroit, Michigan, USA
S. Bhattacharya , P.E. Karchin

University of Wisconsin - Madison, Madison, Wisconsin, USA
A. Aravind, S. Banerjee , K. Black , T. Bose , S. Dasu , I. De Bruyn , P. Everaerts ,
C. Galloni, H. He , M. Herndon , A. Herve , C.K. Koraka , A. Lanaro, R. Loveless ,
J. Madhusudanan Sreekala , A. Mallampalli , A. Mohammadi , S. Mondal, G. Parida ,
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33Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd
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