
1.  Introduction
Many challenging computational problems involve different scales and complexity in different spatial regions. 
See, for instance, Birchfield (1960), Phillips and Shukla (1973), W. Skamarock et al. (1989), W. C. Skamarock 
and Klemp (1993), Staniforth (1997), Jablonowski et al. (2006, 2009), Harris and Durran (2010), and Marsico and 
Stechmann (2020) for weather and climate prediction; Blayo and Debreu (1999) and Debreu and Blayo (2008) 
for ocean modeling; Evans (1998) and Du and Stechmann (2023a, 2023b, 2023c) for radiative transfer; Berger 
and Oliger (1984), Berger and Colella (1989), and Bell et al. (1994) for hyperbolic systems and shock waves; 
and Pelties et al. (2012) for earth quake simulation. In order for the numerical methods to correctly capture these 
varying complexities at different locations, mesh refinement often plays a key role.

Most of the mesh refinement techniques can be categorized into two groups based on the types of the meshes 
(conforming and non-conforming) on which the refinement is applied. Conforming meshes require a one-to-one 
correspondence between elements sharing edges/faces, while non-conforming meshes allow the case that one 
element intersect with multiple ones through only one of its edges/faces. Both approaches have their unique 
advantages/disadvantages and are combined with suitable numerical schemes for specific application scenarios. 
For instance, conforming meshes allow an easier handling of the inter-element communication, but often require 
more work on the mesh refinement algorithm to ensure the conformity and the shape-regularity of the meshes 
(Rivara, 1984). On the other hand, non-conforming meshes support more straight forward mesh refinement but 
usually need more advanced discretization techniques to handle the inter-element information exchange, such as 
the mortar Finite Element (FE) (Ben Belgacem, 1999), the discontinuous Galerkin (DG) (Arnold et al., 2001; 
Cockburn & Shu, 1989) and the more recent hybridized DG methods (Cockburn et al., 2009; Du & Sayas, 2019). 
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Despite the various choices of meshes and numerical methods, a commonly faced challenge for both the two 
types is the numerical artifacts or spurious reflections encountered at the place where there is a sharp change of 
mesh resolution. This issue becomes especially prominent for the non-conforming case, in which abrupt resolu-
tion changes are common by non-conforming faces or hanging-nodes.

The aim of this paper is to propose a method that can (a) minimize the artifacts due to mesh refinement and also 
(b) have a wide range of applicability to most of the numerical methods and underlying PDEs. To put our work 
in perspective, we review some of the existing work on numerical artifacts by mesh refinement. Early work dates 
back to at least the 1970s (e.g., Browning et al., 1973; Ciment, 1971, 1972; Phillips & Shukla, 1973) and to the 
1980s (e.g., Berger, 1985, 1987), including a series of work of Vichnevetsky (1981, 1985, 1987), where wave 
propagation and spurious reflections were investigated using time-Fourier analysis. This issue was also covered 
in the review article of Trefethen (1982) on group velocity and the work of Celep and Bažant (1983) on elas-
tic waves. Later work includes the study by Ullrich and Jablonowski (2011), where the decay rate of spurious 
reflections was investigated under different numerical settings. In brief, various techniques exist for minimizing 
artifacts by mesh refinement. However, these techniques are often tailored to specific scenarios and can be hard 
to generalize to other cases. For instance, upwind schemes are free from artifacts for the specific case of the 
advection equation, thanks to the use of only upstream information, but they still suffer from artifacts for general 
hyperbolic systems (Ullrich & Jablonowski, 2011). Artificial dissipation may remove spurious oscillations but 
can also hamper the conservation property or lead to a more stringent CFL stability condition. In addition, for 
low viscosity flow, the solutions are often sensitive to artificial dissipation, restricting the possibility of adjusting 
it only for the sake of minimizing artifacts.

Motivated by the previous discussion, in this paper we propose a simple predictor-corrector method to mini-
mize artifacts by mesh refinement. The method introduces an additional grid setting with a different refinement 
interface, and then uses the partner simulation on this additional grid as a corrector for the original dynamics. It 
can also be related to data assimilation approaches (Chen & Stechmann, 2019; Torchinsky & Stechmann, 2023) 
in the sense that the partner simulation can be viewed as an “observation.” This general framework allows the 
method to be easily applied, by construction, to most of the existing numerical methods, as an extension to their 
existing codes. Since the method does not require any modification of the existing methods, but simply serves 
as a corrector/post-processing at each time-step, this property makes it especially convenient to be used for the 
codes for which several options of numerical methods or physics parameterizations can be turned on/off or used 
in different combinations. For instance, this is the case for many weather/climate prediction models such as the 
Community Atmosphere Model (Dennis et al., 2012; Thomas & Loft, 2005), the Nonhydrostatic Unified Model 
of the Atmosphere (Marras et al., 2016), and the Eulerian/Lagrangian model (Prusa et al., 2008). In addition, due 
to the chaotic and turbulent nature of the weather/climate system, ensemble methods are frequently used in these 
models with multiple simulations running simultaneously, which could provide a setting in which our method 
could be applied to complex systems. While the use of a (full) partner simulation can be a valuable option for its 
simplicity, the doubling of the computational cost may be undesirable for some applications, and an alternative 
setup may more appropriate. As an alternative setup, one can use a partner mesh only over a small portion of the 
domain that is localized near the refinement interface, similar in spirit to the localization of the level-set method 
near an interface (Peng et al., 1999) or to the transition or buffer zone used in some grid nesting approaches 
(Davies, 1976; Davies & Turner, 1977; Debreu & Blayo, 2008; Giorgi et al., 1993; Lo et al., 2008; Marbaix 
et al., 2003; Phillips & Shukla, 1973; Urrego-Blanco et al., 2016), so the additional cost could be smaller.

A comparison of some different approaches and different mesh refinement configurations is shown in the sche-
matic diagrams of Figure 1. One approach is to use a fine grid spacing in one region and a coarser grid spacing 
in another region (Figure 1) (e.g., Trefethen, 1982; Ullrich & Jablonowski, 2011). Another approach is to allow 
an overlapping region or feedback zone where the fine and coarse meshes overlap with each other (Figure 1b), 
and within which the fine- and coarse-mesh solutions can be nudged or relaxed toward each other (e.g., Davies & 
Turner, 1977; Marbaix et al., 2003; Urrego-Blanco et al., 2016). The overlapping region allows for a more gradual 
transition in the solution between the fine-mesh and coarse-mesh regions. In the predictor–corrector approach 
that is proposed herein (Figure 1c), the main goal is to correct the solution near a location of mesh refinement. To 
do so, a partner mesh is used and is configured to have a uniformly spaced mesh where needed. The partner mesh 
can be the same as the original mesh, except with a deliberate displacement of the location of mesh refinement. 
In this way, every spatial location in the domain will be covered by at least one mesh that has a uniform grid 
spacing in its local vicinity.
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The rest of the paper is organized as follows. In Section 2, we briefly review the cause of spurious reflections and 
then propose our predictor-corrector method in the setting of an one-dimensional advection problem. Since the 
method requires the specification of a weight function at the coarse/fine mesh interface, in Section 3 we give some 
analysis and numerical tests on the relations between the choice of the weight functions and the artifacts minimiz-
ing ratio. In Section 4, we carry out some numerical tests for nonlinear shallow water equations in one-dimensional 
space, using Finite Volume (FV) methods. Finally in Section 5, we consider the predictor-corrector method in 
multi-dimensional cases, with an additional focus on the implementation of the method for a different type of 
numerical method (Spectral Element [SE]) together with the corresponding numerical experiments.

2.  Numerical Artifacts and the Corrector
In this section, we briefly review the cause of numerical artifacts/spurious reflections and then propose the 
predictor-corrector method in the setting of a one-dimensional advection problem. The simplicity of this model 
problem allows us to more clearly demonstrate our method and explore its properties. The key idea of the method 
can be easily generalized to other problems and high-dimensional cases, which we shall explore in Section 4 and 
Section 5, respectively.

2.1.  The Cause of Artifacts

Let us begin by considering a linear advection on one-dimensional grids. The equation reads

Figure 1.  Comparison of schematic diagrams for different approaches to mesh refinement and mesh configurations. (a) Simple setup of a mesh with fine grid spacing 
in one region and coarser grid spacing in another region (e.g., Trefethen, 1982; Ullrich & Jablonowski, 2011). (b) Transition layer with a fine mesh and a coarse 
mesh that overlap in a transition region, in which the solutions on the two meshes can be nudged toward each other (as indicated by vertical arrows) (e.g., Davies 
& Turner, 1977; Marbaix et al., 2003; Urrego-Blanco et al., 2016). (c) The predictor–corrector approach that is proposed herein, which like panel (b) involves an 
overlapping region, but where the solution at a regularly spaced mesh location is used to correct the solution near a location of mesh refinement. Also see schematic 
diagrams below in Figures 3 and 14.
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𝜕𝜕𝑡𝑡𝑢𝑢 + 𝑎𝑎𝑎𝑎𝑥𝑥𝑢𝑢 = 0,� (1)

where a > 0 is a constant representing an underlying right-going velocity.

To obtain a numerical solution of 1, the first step is to discretize the space:

. . . < 𝑥𝑥−2 < 𝑥𝑥−1 < 𝑥𝑥0 < 𝑥𝑥1 < 𝑥𝑥2 < . . . ,�

and we denote Ij = [xj−1, xj] and Δxj = |Ij|. The situation we are interested in is as follows:

ℎ𝑙𝑙 = . . . = Δ𝑥𝑥−1 = Δ𝑥𝑥0 ≠ Δ𝑥𝑥1 = Δ𝑥𝑥2 = . . . = ℎ𝑟𝑟.�

Namely, a sharp change in the grid spacing occurs at x0, where we may observe numerical artifacts. Based on 
the grid, a semi-discretization in space can be obtained. Here, we consider the FV methods, for which we have

𝜕𝜕𝑡𝑡𝑢𝑢𝑗𝑗 + (𝐹𝐹𝑗𝑗 − 𝐹𝐹𝑗𝑗−1)∕Δ𝑥𝑥𝑗𝑗 = 0,� (2)

where uj represents an average of u on Ij and Fj represents an approximation of the flux at xj. The properties of the 
method are determined by how we choose the numerical flux Fj. By choosing the upwind type flux Fj = aF(…, uj−1, uj) 
we can suppress the artifacts since only upstream information is used. However, this approach is limited to this model 
problem. For more general problems (e.g., compressible gas dynamics, shallow water equations), both directions 
of information have to be used, and for this and other reasons such as ease of implementation, it is sometimes more 
convenient to make the choice of a central-type flux Fj = aF(…, uj−1, uj, uj+1, …) (e.g., Nessyahu & Tadmor, 1990). 
Unfortunately, this type of schemes allows spurious solution traveling in the wrong direction (left-going) that is not 
allowed in the PDE itself. This can be easily seen by investigating the dispersion relation of 2. Assuming the flux 

𝐴𝐴 𝐴𝐴𝑗𝑗 = 𝑎𝑎
𝑢𝑢𝑗𝑗+𝑢𝑢𝑗𝑗+1

2
 and considering locations away from x0, and by substituting the uj in 2 with 𝐴𝐴 𝐴𝐴𝑖𝑖(𝑤𝑤𝑤𝑤−𝜅𝜅𝜅𝜅𝑗𝑗) , we have

𝜔𝜔 =
𝑎𝑎

ℎ
sin(𝜅𝜅𝜅),

d𝜔𝜔

d𝜅𝜅
= 𝑎𝑎 cos(𝜅𝜅𝜅),� (3)

where h is the mesh size, ω is the frequency, κ is the wavenumber, and 𝐴𝐴
d𝜔𝜔

d𝜅𝜅
 represents the group velocity which governs 

the energy propagation (Trefethen, 1982). Apparently, each ω (small enough and positive) corresponds to two different 
wavenumbers. They are 𝐴𝐴 𝐴𝐴1 <

𝜋𝜋

2ℎ
 and 𝐴𝐴 𝐴𝐴2 =

𝜋𝜋

ℎ
− 𝜅𝜅1 , where 𝐴𝐴

d𝜔𝜔

d𝜅𝜅
(𝜅𝜅2) < 0 represents the spurious waves traveling with nega-

tive velocity. To be more specific, based on 3, we know that if the wavelength of a wave packet, denoted as λ, lies in 
(2h, 4h), then this wave packet shall travel leftward at speed 𝐴𝐴 |𝑎𝑎 cos

(
2𝜋𝜋𝜋

𝜆𝜆

)
| . See Figure 2, in the bottom panel, for a wave 

packet that has traveled leftward over a distance of roughly 0.7, which is approximately the value 𝐴𝐴 |cos
(

2𝜋𝜋𝜋

2.67ℎ

)
| . Note 

that the left and right-going waves are decoupled on the uniform grid such as the one used in Figure 2, but they would 
be coupled at the place of the refinement/coarsening if refinement/coarsening were used. Consequently, an artifact 
traveling leftward would be generated at any place where a sharp change of resolution occurs (Vichnevetsky, 1981).

2.2.  Two-Grids Predictor-Corrector

Now we introduce the key idea of the predictor-corrector method. In the previous subsection we have shown that 
the artifacts are generated at the place of a sharp change of grid resolution. Therefore, if we have two grids with 
different refinement locations, then each of them can be used as a corrector for the other partner simulation. To 
be more specific, suppose we have two grids:

. . . < 𝑥𝑥−2 < 𝑥𝑥−1 < 𝑥𝑥0 < 𝑥𝑥1 < 𝑥𝑥2 < . . . ,

. . . < 𝑥̃𝑥−2 < 𝑥̃𝑥−1 < 𝑥̃𝑥0 < 𝑥̃𝑥1 < 𝑥̃𝑥2 < . . . ,
�

satisfying xj − xj−1 = hr for j > 0 and xj − xj−1 = hl for j ≤ 0, and 𝐴𝐴 𝐴𝐴𝐴𝑗𝑗 − ̃𝑥𝑥𝑗𝑗−1 = ℎ̃𝑟𝑟 for j > 0 and 𝐴𝐴 𝐴𝐴𝐴𝑗𝑗 − ̃𝑥𝑥𝑗𝑗−1 = ℎ̃𝑙𝑙 for 
j ≤ 0. By letting 𝐴𝐴 |𝑥𝑥0 − 𝑥̃𝑥0| = 𝑅𝑅 𝑅 0 , or in other words, by deliberately mismatching the resolution-changing posi-
tions of the two grids, we can create two information exchange channels with radius about R, such that in these 
channels, the correct dynamics on uniform grids can be used as correctors for the spurious dynamics.

Consider the case that hl < hr and 𝐴𝐴 ℎ̃𝑙𝑙 < ℎ̃𝑟𝑟 . Suppose a wave packet starts from the very left end and travels right-
ward on both grids with the same initial setting. In this case, the wave shall first reach x0, at which it is crossing 
from the fine grid to the coarse grid on the mesh {xj}, while on the mesh 𝐴𝐴 {𝑥̃𝑥𝑗𝑗} , the wave packet is fully supported 
by a uniform fine grid. This corresponds to the corrector_1 in Figure 3. We can categorize this corrector as type 
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f2c-bf, which represents traveling from fine(f) grid to 2 coarse(c) grid using the background(b) uniform fine(f) 
grid information. Similarly, when the wave reaches 𝐴𝐴 𝐴𝐴𝐴0 , the corrector_2 will be used and it has the type of f2c-bc. 
Since we have considered an advection problem with a specific grid setting (hl < hr and 𝐴𝐴 ℎ̃𝑙𝑙 < ℎ̃𝑟𝑟 ), these two types 
of correctors (type f2c-bf and f2c-bc) are sufficient. However, for more general problems where waves can travel 
in both directions or for other grid settings, we have to also consider the other two types of correctors, namely, 
c2f-bc and c2f-bf. Their meanings are self-explanatory. Let us remark that for general wave problems, since 
waves can travel in both directions, the corrector types c2f-bf and f2c-bf should be regarded as a single type, and 
similarly for c2f-bc and f2c-bc. However, in the setting of advection, we can decouple them into four types, which 
allows us to examine them in more detail for better understanding.

Now we introduce how to choose the correctors specifically. After choosing a time-stepping method (explicit or 
implicit) for 2, we obtain a full-discretization scheme:

Predictor

⎧
⎪
⎨
⎪
⎩

𝑢𝑢𝑛𝑛+1
𝑗𝑗

←𝐼𝐼𝑗𝑗

(
. . . , 𝑢𝑢𝑛𝑛

𝑗𝑗−1
, 𝑢𝑢𝑛𝑛

𝑗𝑗
, 𝑢𝑢𝑛𝑛

𝑗𝑗+1
, . . .

)
,

𝑢̃𝑢𝑛𝑛+1
𝑗𝑗

←𝐼𝐼𝑗𝑗

(
. . . , 𝑢̃𝑢𝑛𝑛

𝑗𝑗−1
, 𝑢̃𝑢𝑛𝑛

𝑗𝑗
, 𝑢̃𝑢𝑛𝑛

𝑗𝑗+1
, . . .

)
,

� (4)

Figure 2.  Behavior of wave packets of different wave-lengths: 8, 4, and 2.67 hr. In these simulations of 2, the initial condition 
is a wave packet at the center x = 1, defined by exp(−100(x − 1) 2) cos(κ(x − 1)) with κ = 50π, 100π, 150π, and the solution is 
plotted after evolving to time T = 1. The simulations use a central-flux finite volume method with fourth-order Runge-Kutta 
(RK4) time-stepping, and a uniform grid spacing. The parameters used are a = 1, h = 0.005, and dt = 0.5 hr.

Figure 3.  Mutual corrector through deliberate displacement of the resolution-changing positions. The two channels are not 
necessarily non-overlapping as is drawn.
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where 𝐴𝐴 𝐴𝐴𝑛𝑛
𝑗𝑗
 and 𝐴𝐴 𝐴𝐴𝐴𝑛𝑛

𝑗𝑗
 correspond to the average of the solution on the interval [xj−1, xj] and 𝐴𝐴

[
𝑥̃𝑥𝑗𝑗−1, 𝑥̃𝑥𝑗𝑗

]
 at the time 

nΔt. Equation 4 represent our predictor step. Note that 𝐴𝐴 𝐴𝐴𝑛𝑛 ∈
∏

𝑗𝑗
0(𝐼𝐼𝑗𝑗) and 𝐴𝐴 𝐴𝐴𝐴𝑛𝑛 ∈

∏
𝑗𝑗
0

(
𝐼𝐼𝑗𝑗
)
 , where we denote 

𝐴𝐴 𝑘𝑘(𝐼𝐼) the polynomial space of degree k on the interval I. Furthermore, let PV and 𝐴𝐴 P𝑉𝑉  denote the L 2 projections 
onto these two solution spaces, respectively. As an example, if 𝐴𝐴 𝐴𝐴 = 0[0, 1] and 𝐴𝐴 𝑉𝑉 = 0[0, 𝜆𝜆] × 0[𝜆𝜆𝜆 1] , then 

𝐴𝐴 P𝑉𝑉 (𝑢𝑢1𝜒𝜒[0,𝜆𝜆] + 𝑢𝑢2𝜒𝜒[𝜆𝜆𝜆1]) = (𝜆𝜆𝜆𝜆1 + (1 − 𝜆𝜆)𝑢𝑢2)𝜒𝜒[0,1] and 𝐴𝐴 P𝑉𝑉 (𝑢𝑢1𝜒𝜒[0,1]) = 𝑢𝑢1𝜒𝜒[0,𝜆𝜆] + 𝑢𝑢1𝜒𝜒[𝜆𝜆𝜆1] . Given two weight functions 
𝐴𝐴 𝐴𝐴𝐴 𝑤̃𝑤 ∈ 𝐿𝐿2

(ℝ) taking values in [0,1], we introduce the corrector step as follows:

Corrector

⎧
⎪
⎨
⎪
⎩

𝑢𝑢𝑛𝑛+1←P𝑉𝑉

(
(1 −𝑤𝑤)𝑢𝑢𝑛𝑛+1 +𝑤𝑤𝑤𝑤𝑤𝑛𝑛+1

)
,

𝑢̃𝑢𝑛𝑛+1←P𝑉𝑉

(
(1 − 𝑤̃𝑤)𝑢̃𝑢𝑛𝑛+1 + 𝑤̃𝑤𝑤𝑤𝑛𝑛+1

)
.

� (5)

These weight functions determine how much “trust” will be put into the partner simulations. The support of these 
functions should be limited by the distance between x0 and 𝐴𝐴 𝐴𝐴𝐴0 , since otherwise incorrect dynamics would be used 
as correctors. For instance, see Figure 3, if the radius of the support for the corrector_2 is larger than 𝐴𝐴 𝐴𝐴𝐴0 − 𝑥𝑥0 , then 
the artifacts generated at x0 on the top grid will be added to the solution on the bottom grid.

3.  Weight Functions
In this section, we will explore the relations between the choices of the weight functions and their effects on 
minimizing the artifacts. The section is divided into three parts. In the first subsection, we explain the mechanism 
of artifact-minimizing by the corrector and give a formula (Equation 6) to estimate the correcting ratio, which is 
defined to be the ratio between the magnitudes of the artifacts with and without using the corrector. The analy-
sis is carried out for the corrector type f2c-bf/c2f-bc since they allow us to exclude the artifacts caused by other 
sources. In the second subsection, we show that new types of artifacts can be generated by a sharp change of the 
weight functions. A formula is given to estimate the size of these artifacts (Equation 8). In the last subsection, we 
combine the results of the previous two parts and conclude on the guidelines of choosing the weight functions.

3.1.  The Mechanism of Artifact-Minimizing

Let us start by investigating the corrector type f2c-bf. Namely, the corrector corrects the spurious artifacts for the 
case of a wave traveling from fine to coarse grid by using the background uniform fine grid information.

For simplicity, for now we assume the weight function w ≡ wm is a constant function in a left-neighborhood (with 
length Lcr) of x0, at which the grid suddenly changes its resolution. To help the explanation, we use Figure 4 for 
visualization. When a right-going wave is crossing x0, for each time-step, artifacts with wavelength lying in (2h, 
2h + ϵ) are generated. By 3, these artifacts, which are represented by the oscillation in Figure 4, have a negative 
group velocity. Therefore, we can decompose the numerical solution into the right-going wave and the left-going 
artifacts. On the other hand, on the uniform fine mesh, the wave is crossing x0 without any artifacts being gener-
ated. The above concludes the predictor step. For the corrector step, both the right-going wave and the artifact are 
multiplied by the weight function (1 − wm). On the background grid, the right-going wave is multiplied by wm and 
added to the solution. This step corrects the missing wm portion of the numerical solution caused by multiplying 
(1 − wm). Most importantly, the artifact has been multiplied by (1 − wm). This suggests that the artifact should 
decay exponentially as it travel leftward until it escapes the support of the weight function. Based on this, we can 
have an estimate for the ratio between the sizes of the artifacts with and without using the corrector:

𝑟𝑟cr = (1 −𝑤𝑤𝑚𝑚)

𝐿𝐿
cr

|𝑣𝑣𝑠𝑠|Δ𝑡𝑡 ,� (6)

where vs represents the group velocity of the artifact. We will call this constant the correcting ratio. Similar argu-
ments can be made for the corrector type c2f-bc.

We next present an experiment to verify  6. The grid nesting is set as follows. For the two grids, we set 
𝐴𝐴 𝐴𝑙𝑙 =

ℎ𝑟𝑟

4
= ℎ̃𝑙𝑙 = ℎ̃𝑟𝑟 = 0.005 . Namely, for the first grid, the size of the coarse grid on the right is four times of the 

fine grid on the left; the second grid is chosen as a uniform fine grid and will be used for the corrector. For the 
solution, we choose a = 1, the exact solution to be u(x, t) = sin(8πx − t), and use an oscillating Dirichlet boundary 
at x = 0 and an absorbing boundary at x = 2. We shall take snapshots at t = 2 when the solution can be observed 
to have obviously entered the time-harmonic region.
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We carried out four tests, where we vary the three determining factors of rcr that appear in 6, namely, the magni-
tude and the support length of the weight function wm and Lcr, and the length of the time-step Δt; these values are 
collected in Table 1. For all simulations, we set 𝐴𝐴 𝑤̃𝑤 = 0 so the simulation on the uniform fine grid is independent 
of its partner simulation. The results of these simulations are collected in Figure 5. Note that we have chosen very 
small values for wm such that the artifacts would not be too small to be observed.

By  3, we can estimate the wavenumber of the artifacts κ2  =  π/hl  −  8π  =  192π and then their group veloc-
ity vs  =  a cos(192/200π)  ≈  −1. By  6, we can easily calculate the correcting ratios for the four simu-
lations: 𝐴𝐴 𝐴𝐴sim1

cr
= (0.99)

0.2∕0.0025
≈ 0.45 , 𝐴𝐴 𝐴𝐴sim2

cr
= (0.98)

0.2∕0.0025
≈ 0.20 , 𝐴𝐴 𝐴𝐴sim3

cr
= (0.99)

0.4∕0.0025
≈ 0.20 , and 

𝐴𝐴 𝐴𝐴sim4

cr
= (0.99)

0.2∕0.00125
≈ 0.20 . By Figure 6, we observe an obvious decaying of the artifacts as they travel leftward 

and the decaying ratios agree well with our predictions by 6.

3.2.  Artifacts Caused by Weight Functions

In the previous subsection, we have shown that the artifacts generated by mesh refinement can be efficiently 
reduced by the corrector in an exponential order; see 6. However, as we will show in this subsection, the weight 
function itself can generate other artifacts.

See Figure 6, for which we have used the same experimental setting for Figure 5, except now we also include 
the test for the corrector type f2c-bc to compare. In the left column, which is for the corrector type f2c-bf, we 

observe that the artifacts decay quickly thanks to the relative large value of 
the weight function w. On the other hand, for  the corrector type f2c-bc, we 
observe artifacts being generated at the left endpoint of the support of the 
weight function.

The artifacts shown in Figure 6, right column, are caused by the sharp change of 
the weight function. We next derive a formula to estimate the amplitude of these 
artifacts. First note that we can rewrite the corrector Equation 5 as follows:

𝑢𝑢
𝑛𝑛+1

←𝑢𝑢
𝑛𝑛+1

+ P𝑉𝑉

(
𝑤𝑤
(
𝑢̃𝑢
𝑛𝑛+1

− 𝑢𝑢
𝑛𝑛+1

))
.� (7)

Figure 4.  Mechanism of artifact-minimizing for corrector type f2c-bf. See the text for a detailed description. The procedure is repeated for every time step. At each 
step, the amplitude of the solution is maintained, while the amplitude of the artifact (or oscillations) shrinks by Aosc ← (1 − wm)Aosc by applying the corrector.

sim1 sim2 sim3 sim4

wm 0.01 0.02 0.01 0.01

Lcr 0.20 0.20 0.40 0.20

Δt 0.5*hl 0.5*hl 0.5*hl 0.25*hl

Table 1 
Parameter Values Used for Tests With Different Weight Functions and 
Time-Steps
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Figure 5.  Comparison of the correcting ratios for the corrector type f2c-bf by using different weight functions and time-steps. The simulations use central-flux finite 
volume with RK4 time-stepping.

Figure 6.  Illustration of artifacts caused by an abrupt change in the weight function. Comparison between corrector type f2c-bf (left) and f2c-bc (right). Same 
experimental setting as those used for Figure 5, except for f2c-bc, the background grid uses coarse resolution 𝐴𝐴 ℎ̃𝑙𝑙 = ℎ̃𝑟𝑟 = ℎ𝑟𝑟 = 0.02 .
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See Figure 7. For each corrector step, 𝐴𝐴 P𝑉𝑉 (𝑤𝑤𝑚𝑚(𝑢̃𝑢 − 𝑢𝑢)) is added to the support region of the weight function (recall 
w ≡ wm in the support region). If 𝐴𝐴 𝐴𝐴𝐴 agrees well with u, no correction is applied in the neighbor of x0 − Lcr so 
the artifacts can be negligible (this corresponds to the corrector types f2c-bf and c2f-bc; see the left column of 
Figure 6). However, when 𝐴𝐴 𝐴𝐴𝐴 has a relatively large difference from u, this added quantity 𝐴𝐴 P𝑉𝑉 (𝑤𝑤𝑚𝑚(𝑢̃𝑢 − 𝑢𝑢)) has to be 
taken into account, which corresponds to the corrector types f2c-bc or c2f-bf. In what follows we focus on these 
cases. Note that the artifacts with negative group velocity are generated in a neighbor of x0 − Lcr by the jump of 
the weight function from 0 to wm. Suppose all the added jump 𝐴𝐴 P𝑉𝑉 (𝑤𝑤𝑚𝑚(𝑢̃𝑢 − 𝑢𝑢)) close to x0 − Lcr contributes to these 
artifacts, and we assume an energy balance between the added energy and the energy traveling leftward, then we 
can have an approximate estimate for the amplitude of the artifacts generated at x0 − Lcr:

𝑎𝑎𝑠𝑠𝑠𝑠 =
𝑤𝑤𝑚𝑚ℎ

Δ𝑡𝑡|𝑣𝑣𝑠𝑠𝑠𝑠|
𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢,� (8)

where vsw is the group velocity of the artifacts generated at x0 − Lcr, and 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢 is a constant that depends on the 
mismatch between the solution u and 𝐴𝐴 𝐴𝐴𝐴 .

We next carry out an experiment to verify 8. We use the same experimental setting as the one used for Figure 5, 
except now we use a coarse grid corrector; namely, we choose 𝐴𝐴 4ℎ𝑙𝑙 = ℎ𝑟𝑟 = ℎ̃𝑙𝑙 = ℎ̃𝑟𝑟 . We vary the value of wm and 
the size of the time-steps and then observe the changes of the amplitude of the artifacts. See Figure 8; the exper-
iment results agree with the estimate by 8. Namely, the artifacts caused by the weight functions are proportional 
to wm but anti-proportional to Δt.

3.3.  Guidelines for Choosing the Weight Functions

For general corrector types, we need to consider the artifacts caused by both the mesh refinement and the weight 
functions. Combing Equations 6 and 8, we have an estimate for the final outcome of the artifacts:

artifacts ≤ (1 −𝑤𝑤𝑚𝑚)

𝐿𝐿
cr

Δ𝑡𝑡 𝐶𝐶1 +
𝑤𝑤𝑚𝑚ℎ

Δ𝑡𝑡
𝐶𝐶2,� (9)

where C1 and C2 are constants independent of wm and Lcr. Group velocity of the artifacts are assumed to be 1 for 
simplicity. By Equation 9, we know that increasing the value of Lcr can decrease the size of the artifacts. Note 
that Lcr should principally be limited by the distance between the two refinement interfaces (see the discussion 
at the end of Section 2.2). This fact would motivate us to choose a larger distance between the two refinements 
to have a better effect on minimizing the artifacts. Though, let us remark that a larger support can increase the 
communication burden between the simulations and hence the support length Lcr needs to be chosen accordingly 
based on the demand. On the other hand, since the first and the second term in 9 are negatively and positively 
correlated with wm, respectively, the value of wm has to be chosen in a way that minimize the contribution from 
both the two terms.

Considering that the second term of 9 is caused by a sharp change of the weight function, namely the jump of w 
from 0 to wm, an alternative way of choosing the weight that can possibly decrease the error from this term is to 
consider a smooth transition of the weight:

𝑤𝑤(𝑥𝑥) =
𝑤𝑤𝑚𝑚

𝐿𝐿cr

(𝑥𝑥 − 𝑥𝑥0 + 𝐿𝐿cr)𝜒𝜒[𝑥𝑥0−𝐿𝐿cr
,𝑥𝑥0]

(𝑥𝑥).� (10)

Figure 7.  Balance between the added energy from the jump of the weight function and the energy traveling leftward.
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Namely, w linearly increases from 0 to wm in the support region [x0 − Lcr, x0]. To see how this makes a difference, 
we next repeat the experiments presented in Figures 5 and 8 except now we change the weight function by 10. 
We keep the maximal value wm and the support length of the weight functions Lcr unchanged so that we can fairly 
compare the results. By comparing Figure 9 and Figure 5, we observe similar decaying pattern of the artifacts by 
using the tent-shape weight function given by 10. Though, the decaying is less obvious. This is expected since 
the value of 1 − w becomes closer to 1 as the artifacts travel leftward and approaches x0 − Lcr, leading to a weaker 
effect of the corrector (locally adopting 6). On the other hand, by comparing Figure 10 with Figure 8, one can see 
that the errors from the artifacts have been reduced by roughly a factor of 20. Hence, we observe that the artifacts 
caused by weight functions have been significantly decreased, thanks to the smooth transition of the weight at 
x0 − Lcr.

Not surprisingly, the tent-shape weight function generates much smaller artifacts thanks to its relatively smooth 
transition from 0 to the maximal value wm. Despite that it is less effective on suppressing the artifacts caused by 
mesh refinement, we find that we can always choose a larger value of wm so that the overall effect of minimiz-
ing the artifacts is better than the case of using a step-function as the weight. While using the step-function as 
weight function may not provide the best results in practice, it is useful for providing theoretical guidance and 
understanding.

To conclude, we find that using a tent-shape function as the weight function achieves better results than using a 
step-function on the overall effect of minimizing the artifacts, at least for the corrector types f2c-bc and c2f-bf, in 

Figure 8.  Comparison of the artifacts generated by weight functions for the corrector type f2c-bc, using different values of the weight and different sizes of the 
time-steps.
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which cases the artifacts introduced by the weight functions themselves become the prominent issue. In addition, 
increasing the support length of the weight Lcr can always decrease the artifacts caused by mesh refinement. But it 
needs to be limited by the distance between the two refinement locations of the two grids, and also by the demand 
to save communication costs between the two simulations. Finally, increasing the maximal value of the weight 
function wm can decrease the artifacts due to mesh refinement, but can also increase the additional artifacts by 
the weight function itself. Therefore, wm needs to be optimized to achieve the best effect. For tent-shape weight 
functions, our experiments suggest that choosing the slope of the function 𝐴𝐴

𝑤𝑤𝑚𝑚

𝐿𝐿
cr

 to be around 0.5 can achieve a good 
balance and provide near optimal results of minimizing the overall artifacts, provided that Lcr is not too small.

At the end let us remark on the other possible choices of the weight functions, such as trigonometric-type func-
tions and higher-order polynomials. Our preliminary experiments suggest a similar artifacts-minimizing effect 
compared to the linear-type weight represented by 10. Consequently, we do not delve into the more details about 
them in this paper, due to their seemingly inconsequential nature and the consideration of the length limitation.

4.  Tests for Shallow Water Equations
In this section, we move beyond the advection equation and present numerical experiments to test the 
predictor-corrector method for shallow water equations. These equations allow waves traveling in both direc-
tions and contain nonlinear terms, and consequently represent a more realistic setting for applications. In addi-
tion, some of the traditional techniques of removing artifacts by mesh refinement fail to work for shallow water 

Figure 9.  Illustration of the correcting ratios from using a weight function that is tent-shaped. Same setting as Figure 5 except using 10 for weight functions.
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equations (see Ullrich and Jablonowski  (2011)), which further motivates our investigation of applying the 
predictor-corrector method to these equations. We begin by considering

𝜕𝜕𝑡𝑡𝐮𝐮 + 𝜕𝜕𝑥𝑥𝐅𝐅(𝐮𝐮) = 0 where 𝐮𝐮 =

⎛
⎜
⎜
⎝

ℎ

𝑚𝑚

⎞
⎟
⎟
⎠
and 𝐅𝐅(𝐮𝐮) =

⎛
⎜
⎜
⎝

𝑚𝑚

𝑚𝑚2

ℎ
+

1

2
𝑔𝑔𝑔2

⎞
⎟
⎟
⎠
,� (11)

on the domain [a, b] with periodic boundary conditions. Here h(x, t) is the pool depth/height, m(x, t) is the 
momentum, and g is a parameter that represents the gravitational acceleration. We consider the discretization of 
[a, b] into two grids {xi} and 𝐴𝐴 {𝑥̃𝑥𝑖𝑖} as is demonstrated in Figure 11. Each grid uses a fine resolution of hf at the 
center region and a coarse resolution of hc in the exterior regions, or vice versa. On both grids, we discretize 11 
by FV methods with central flux

𝜕𝜕𝑡𝑡𝐮𝐮𝑗𝑗 + (𝐅𝐅𝑗𝑗 − 𝐅𝐅𝑗𝑗−1)∕Δ𝑥𝑥𝑗𝑗 = 0 where 𝐅𝐅𝑗𝑗 =
1

2
(𝐅𝐅(𝐮𝐮𝑗𝑗) + 𝐅𝐅(𝐮𝐮𝑗𝑗+1)),�

and use RK4 for time-stepping with the length of the time-step Δt. Again, we have used uj to represent the average 
of the solution on the interval [xj−1, xj], and used Fj to represent the flux at the location xj. The above concludes 
the predictor step. For the corrector step, the weight functions w and 𝐴𝐴 𝑤̃𝑤 are chosen as the tent functions (dashed 
lines) shown in Figure 11. We assume all the tent functions have the same radius of support Lcr and the maximal 
value wm. These notation first appeared in 10.

Figure 10.  Illustration of improved results and smaller artifacts from using a weight function that is tent-shaped. Same setting as Figure 8 except using 10 for weight 
functions.
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We next carry out the numerical tests. The initial solution is chosen to be a Gaussian-type perturbation at the 
center of the domain [a, b] based on the reference height 𝐴𝐴 ℎ ≡ 2 :

ℎ|𝑡𝑡=0 ∶= ℎ + 0.25 exp

(
−10

(
𝑥𝑥 −

𝑎𝑎 + 𝑏𝑏

2

)2
)
, 𝑚𝑚|𝑡𝑡=0 ≡ 0.�

We specify all the aforementioned parameters in this section using the values collected in Table 2.

In the first test, we set the fine grid in the interior and the coarse grid in the exterior regions. In this setting, the 
initial Gaussian distribution at the center will first decompose into a left going and a right going distribution, and 
then leave the interior fine resolution grid and enter the exterior regions of coarse resolution. We compare the 
results without and with using the corrector and collect them in Figure 12. We observe that the numerical artifacts 
have been mostly removed. We remark that in this simulation, the corrector type f2c-bf was used at the location 
mr = 3 on the top grid {xj} and 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 = −1 on the bottom grid; the corrector type f2c-bc was used at the location 

𝐴𝐴 𝐴𝐴𝐴𝑟𝑟 = 4 and ml = −2.

In the second test, we swap the resolution in the interior and the exterior regions of the first test. In this case, the 
solution will travel from the coarse grids to the fine grids, and the correctors with the types c2f-bc and c2f-bf 
will be triggered. The results are collected in Figure 13. We again observe that the corrector has effectively 
removed most of the artifacts. Therefore, the method appears to work well in a case where nonlinear waves can 
simultaneously propagate in multiple directions, both leftward and rightward, with all of the four types of the 
correctors being used.

5.  Multi-Dimensional Problems
5.1.  Mesh Setting and the Approximation Spaces

In this section, we introduce the predictor-corrector method for multi-dimensional problems. As a demonstration, 
we consider the implementation of the method for SE methods on 2D meshes. Note that 2D meshes allow hang-
ing nodes which do not occur in 1D; see Figure 14. We consider two meshes of a rectangular domain Ω = [x0, 
x1] × [z0, z1] which is contained in the x-z plane and we denote them as 𝐴𝐴 𝑎𝑎𝑎𝑎 and 𝐴𝐴 𝑏𝑏𝑏𝑏 . Both meshes are composed 
of the fine meshes in the bottom regions and the coarse meshes in the upper regions, where the divisions between 
fine/coarse regions are given by the horizontal line z = z0 for the mesh 𝐴𝐴 𝑎𝑎𝑎𝑎 and the line 𝐴𝐴 𝐴𝐴 = 𝑧̃𝑧0 for the mesh 𝐴𝐴 𝑏𝑏𝑏𝑏 . 
Again, we have chosen the setting such that 𝐴𝐴 𝐴𝐴0 ≠ 𝑧̃𝑧0 so that we are able to use the dynamics on a region of uniform 
meshes to correct the spurious dynamics at the place where mesh refinement/coarsening or hanging nodes occur.

With the meshes 𝐴𝐴 𝑎𝑎𝑎𝑎 and 𝐴𝐴 𝑏𝑏𝑏𝑏 , the approximation spaces by SE are defined as follows:

𝑉𝑉∗,ℎ ∶=

⎧
⎪
⎨
⎪
⎩

∏

𝐾𝐾∈∗,ℎ

(𝑘𝑘+1)2∑

𝑗𝑗=1

𝑢𝑢∗,𝑗𝑗𝑗𝑗𝑗𝜑𝜑𝑗𝑗𝑗𝑗𝑗 (𝑥𝑥𝑥 𝑥𝑥)

⎫
⎪
⎬
⎪
⎭

with ∗= 𝑎𝑎 or 𝑏𝑏𝑏�

where 𝐴𝐴 {𝑢𝑢∗,𝑗𝑗𝑗𝑗𝑗}𝑗𝑗=1,. . . ,(𝑘𝑘+1)2 are the coefficients of the numerical solution 
restricted on the element K, and 𝐴𝐴 {𝜑𝜑𝑗𝑗𝑗𝑗𝑗}𝑗𝑗=1,. . . ,(𝑘𝑘+1)2 are the SE basis func-
tions on K. Suppose 𝐴𝐴 𝐾𝐾 is the push-forward map from the reference element 
[−1,1] 2 to the physical element K, then we have 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗𝑗𝑗 = 𝜙𝜙𝑗𝑗◦

−1

𝐾𝐾
(𝑥𝑥𝑥 𝑥𝑥) , where 

𝐴𝐴 {𝜙𝜙𝑗𝑗}𝑗𝑗=1,. . . ,(𝑘𝑘+1)2 are the pre-determined SE basis functions on the reference 

Figure 11.  Mesh setting and the weight functions (dashed lines) for a periodic domain.

g a b hc hf Δt ml mr𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 𝐴𝐴 𝐴𝐴𝐴𝑟𝑟  Lcr wm

10 −4 6 0.04 0.01 0.005 −2 3 −1 4 1 0.25

Table 2 
Parameter Values Used for Tests With the Shallow Water Equations
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element [−1,1] 2. They are the tensor products of the Lagrange basis functions based on the Gauss–Lobatto quad-
rature points. For more information about SE methods, see, for instance, Marras et al. (2016).

5.2.  Implementation of the Predictor-Corrector

Now we explain how the predictor-corrector can be implemented for SE methods. Like the 1D case (see 4), the 
predictor step is determined by how we choose the spatial and temporal discretization. For instance, for spatial 
discretization, conforming methods like the traditional FE methods can be used, or we can use DG methods 
together with a choice of the numerical flux; for temporal discretization, Runge-Kutta (RK) or BDF methods can 
be used, either in their explicit or implicit forms. In all cases, the predictor step can be abstracted as the following 
updating algorithm:

𝑢𝑢
𝑛𝑛+1

𝑎𝑎𝑎𝑎
←𝐼𝐼𝑎𝑎

(
𝑢𝑢
𝑛𝑛

𝑎𝑎𝑎𝑎

)
, 𝑢𝑢

𝑛𝑛+1

𝑏𝑏𝑏𝑏
←𝐼𝐼𝑏𝑏

(
𝑢𝑢
𝑛𝑛

𝑏𝑏𝑏𝑏

)
,� (12)

where 𝐴𝐴 𝐴𝐴𝑛𝑛
∗,ℎ

 with ∗  =  a or b represents the numerical solution at the time-step t  =  nΔt. To be more specific, 
𝐴𝐴 𝐴𝐴𝑛𝑛

∗,ℎ
(𝑥𝑥𝑥 𝑥𝑥) =

∑
𝐾𝐾∈∗,ℎ

∑(𝑘𝑘+1)2

𝑗𝑗=1
𝑢𝑢𝑛𝑛
∗,𝑗𝑗𝑗𝑗𝑗

𝜑𝜑𝑗𝑗𝑗𝑗𝑗 (𝑥𝑥𝑥 𝑥𝑥) approximates the exact solution u(nΔt, x, z).

Figure 12.  Comparison of the solution (water depth/height h) for shallow water equations without (left) and with (right) the corrector. Fine and coarse resolution are 
used in the interior and the exterior regions, respectively. The top and the bottom row represent the simulation on the grid {xi} and 𝐴𝐴 {𝑥̃𝑥𝑖𝑖} , respectively.

Figure 13.  Same settings as those used for Figure 12 except for using coarse resolution in the interior and fine resolution in the exterior regions.
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Let 𝐴𝐴 P𝑉𝑉∗,ℎ
 be the L 2 projections to the SE spaces V*,h (∗ = a or b). Then the corrector step is defined as follows:

𝑢𝑢
𝑛𝑛+1

𝑎𝑎𝑎𝑎
←P𝑉𝑉𝑎𝑎𝑎𝑎

(
(1 −𝑤𝑤𝑎𝑎)𝑢𝑢

𝑛𝑛+1

𝑎𝑎𝑎𝑎

)
+ P𝑉𝑉𝑎𝑎𝑎𝑎

(
𝑤𝑤𝑎𝑎𝑢𝑢

𝑛𝑛+1

𝑏𝑏𝑏𝑏

)
,� (13a)

𝑢𝑢
𝑛𝑛+1

𝑏𝑏𝑏𝑏
←P𝑉𝑉𝑏𝑏𝑏𝑏

(
(1 −𝑤𝑤𝑏𝑏)𝑢𝑢

𝑛𝑛+1

𝑏𝑏𝑏𝑏

)
+ P𝑉𝑉𝑏𝑏𝑏𝑏

(
𝑤𝑤𝑏𝑏𝑢𝑢

𝑛𝑛+1

𝑎𝑎𝑎𝑎

)
.� (13b)

The implementation of the above corrector involves the calculation of certain weighted L 2 projections at the two 
narrow bands around z = z0 and 𝐴𝐴 𝐴𝐴 = 𝑧̃𝑧0 , which are the support regions of the weight functions wa and wb; see the 
gray regions in Figure 14. Equation 13a corresponds to the leftward arrow and the gray region in the left mesh in 
Figure 14. It involves the calculation of the element-wise weighted L 2 projections with the weight wa and 1 − wa, 
and also the calculation of a weighted-gathering projection since it takes the degrees of freedom (DOFs) of four 
elements and combine them to update the DOFs on one element. This weighted-gathering projection corresponds 
to the upper part of the gray region on the left. On the other hand, Equation 13b is represented by the rightward 
arrow and the gray region on the right. It involves the calculation of a new type of weighted-restricting projection 
operator, which corresponds to the bottom part of the gray region on the right. In conclusion, there are three types 
of projections that need to be calculated at the narrow bands near z = z0 and 𝐴𝐴 𝐴𝐴 = 𝑧̃𝑧0 : (a) element-wise weighted 
projections, (b) weighted gathering projections, and (c) weighted restricting projections.

To explain how these three types of projections can be calculated for SE methods, we first introduce some 
notation. Let 𝐴𝐴

{
𝝃𝝃𝑗𝑗 , 𝑤𝑤𝑗𝑗

}(𝑘𝑘+1)2

𝑗𝑗=1
 be the quadrature points and weights on the reference element [−1,1] 2. We use λ to 

represent the weight functions for correctors and it could be wa, wb, 1 − wa, or 1 − wb. The calculation of the 
element-wise weighted projections is the most straightforward. Suppose the element is K, whose four vertices, 
counting counter-clockwise from bottom-left to upper-left, are denoted as 𝐴𝐴

(
𝑥𝑥𝐾𝐾

𝑖𝑖
, 𝑦𝑦𝐾𝐾

𝑖𝑖

)
 with i = 1 → 4. Let uj,K be 

Figure 14.  Mesh setting for 2D. The left and the right meshes represent two different discretizations of the same domain Ω 
but are plotted separately for the ease of visualization.
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the coefficients of the solution on the element K and let 𝐴𝐴 𝐴𝐴𝜆𝜆
𝑗𝑗𝑗𝑗𝑗

 be those of the 
projected solution. Then we have

(element-wiseweighted) 𝑢𝑢
𝜆𝜆

𝑗𝑗𝑗𝑗𝑗
= 𝜆𝜆◦𝐾𝐾

(
𝝃𝝃𝑗𝑗
)
𝑢𝑢𝑗𝑗𝑗𝑗𝑗 ,�

where 𝐴𝐴 𝐾𝐾 (𝑥̂𝑥𝑥 𝑥𝑥𝑥) ∶=

(
𝑥𝑥𝐾𝐾

1
+

𝑥𝑥𝐾𝐾
2
−𝑥𝑥𝐾𝐾

1

2
(𝑥̂𝑥 + 1),𝑦𝑦 𝐾𝐾

1
+

𝑦𝑦𝐾𝐾
3
−𝑦𝑦𝐾𝐾

2

2
(𝑦̂𝑦 + 1)

)
 is the 

push-forward map.

To calculate the weighted-gathering projection, suppose element K is the 

union of four sub-elements Kp with p = 1 → 4 which occupy the left-bottom, 
right-bottom, right-top, and the left-top parts of the parent element; see Figure 15. Let 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑝𝑝

 be the coefficients of 
the solution on the element Kp and 𝐴𝐴 𝐴𝐴𝜆𝜆

𝑗𝑗𝑗𝑗𝑗
 be those of the projected solution on K. Then we have

(weighted gathering) 𝑢𝑢
𝜆𝜆

𝑗𝑗𝑗𝑗𝑗
=

1

4𝑤𝑤𝑗𝑗

4∑

𝑝𝑝=1

(𝑘𝑘+1)2∑

𝑖𝑖=1

(𝑀𝑀
𝑝𝑝
)𝑗𝑗𝑗𝑗

(
𝑤𝑤𝑖𝑖 𝜆𝜆◦𝐾𝐾𝑝𝑝

(
𝝃𝝃𝑖𝑖
)
𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑝𝑝

)
,�

where 𝐴𝐴 (𝑀𝑀𝑝𝑝
)𝑗𝑗𝑗𝑗 ∶= 𝜙𝜙𝑗𝑗◦

−1

𝐾𝐾
◦𝐾𝐾𝑝𝑝

(
𝝃𝝃𝑖𝑖
)
 is independent of the choice of K and only needs to be calculated for one time. 

For the weighted-restriction projection, let uj,K represent the solution on the element K and 𝐴𝐴 𝐴𝐴𝜆𝜆
𝑗𝑗𝑗𝑗𝑗𝑝𝑝

 represent the 
projected solution on the sub-element Kp. Then

(weighted restriction) 𝑢𝑢
𝜆𝜆

𝑗𝑗𝑗𝑗𝑗𝑝𝑝
= 𝜆𝜆◦𝐾𝐾𝑝𝑝

(
𝝃𝝃𝑗𝑗
) (𝑘𝑘+1)2∑

𝑖𝑖=1

(𝑀𝑀
𝑝𝑝
)𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖𝑖𝑖𝑖 .�

This concludes the calculation of the three types of projections to be used for the corrector 13 for SE methods.

5.3.  Numerical Tests

In this subsection we consider some numerical tests for the method introduced in the previous parts. Let the 
domain Ω ≔ [0, 6] × [0, 40]. We consider an roughly upward direction advection in Ω with periodic boundary 
conditions:

𝜕𝜕𝑡𝑡𝑢𝑢(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) + ∇ ⋅ 𝐅𝐅(𝑢𝑢(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡)) = 0 with 𝐅𝐅(𝑢𝑢) = (𝜇𝜇𝜇𝜇𝜇𝜇𝜇 ).�

The domain Ω is discretized into two meshes 𝐴𝐴 𝑎𝑎𝑎𝑎 and 𝐴𝐴 𝑏𝑏𝑏𝑏 as is shown in Figure 14 with z0 = 18 and 𝐴𝐴 𝐴𝐴𝐴0 = 20 . 
Namely, we choose Δx = Δz = 1 in the regions below z = z0 and 𝐴𝐴 𝐴𝐴 = 𝑧̃𝑧0 , and Δx c = Δz c = 2 in the regions above 
these two lines. We use the SE-DG method for spatial discretization, which reads

(𝜕𝜕𝑡𝑡𝑢𝑢∗,ℎ, 𝜑𝜑𝑗𝑗𝑗𝑗𝑗 )𝐾𝐾 + ⟨𝐅𝐅ℎ

(
𝑢𝑢∗,ℎ, 𝑢𝑢

nbr

∗,ℎ

)
⋅ 𝐧𝐧𝜕𝜕𝜕𝜕 , 𝜑𝜑𝑗𝑗𝑗𝑗𝑗⟩𝜕𝜕𝜕𝜕 − (𝐅𝐅(𝑢𝑢∗,ℎ),∇𝜑𝜑𝑗𝑗𝑗𝑗𝑗 )𝐾𝐾 = 0,� (14)

for all 𝐴𝐴 𝐴𝐴 ∈ ∗,ℎ with ∗  =  a or b. We choose the numerical flux to be a central type 
𝐴𝐴 𝐅𝐅ℎ

(
𝑢𝑢∗,ℎ, 𝑢𝑢

nbr

∗,ℎ

)
∶= 0.5

(
𝐅𝐅(𝑢𝑢∗,ℎ) + 𝐅𝐅

(
𝑢𝑢nbr
∗,ℎ

))
 . This flux can be regarded as the Rusanov flux with zero artificial 

viscosity, which allows us to exclude the source of artifacts dissipation by viscosity. This method can also be 
related to conforming methods using mortar elements techniques except that no averaging on vertices needs 
to be done. Here 𝐴𝐴 𝐴𝐴nbr

∗,ℎ
 is the projection of the solution of the neighbor elements of an element K to the bound-

ary of K. This projection becomes a simple restriction when there are no hanging-nodes. If hanging-nodes are 
involved, we again need to calculate a gathering and a restriction projection operator, which can be regarded as 
the one-dimensional version of the gathering/restriction operators we have introduced in the previous subsections 
with a constant weight λ ≡ 1. We refer to Kopera and Giraldo (2014) for more on numerical techniques of dealing 
with hanging nodes in the SE setting.

On both meshes 𝐴𝐴 𝑎𝑎𝑎𝑎 and 𝐴𝐴 𝑏𝑏𝑏𝑏 , we initialize the numerical solution 𝐴𝐴 𝐴𝐴0
𝑎𝑎𝑎𝑎

 and 𝐴𝐴 𝐴𝐴0
𝑏𝑏𝑏𝑏

 by using the same exact solution of 
a Gaussian-type distribution

𝑢𝑢(0, 𝑥𝑥𝑥 𝑥𝑥) = exp
(
−2(𝑥𝑥 − 3)

2
− 2(𝑦𝑦 − 14)

2
)
,�

Figure 15.  Weighted restriction and gathering projection operators.
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see Figure 16. For the time-stepping method, we use the fourth order Runge-Kutta (RK4) with the length of the 
time-step chosen to be 𝐴𝐴 Δ𝑡𝑡 =

min{Δ𝑥𝑥𝑥Δ𝑧𝑧}

2𝑘𝑘
√
1+𝜇𝜇2

 . The time-stepping method together with the spatial discretization given 
by 14 determine the predictor-step 12.

For the corrector-step 13, the weight function wa and wb are chosen as the tent-shape functions in z direction, with 
the center lines chosen as z = z0 and 𝐴𝐴 𝐴𝐴 = 𝑧̃𝑧0 , and the radius of the support taken as Lcr = 2; see Figure 17.

We next carry out two experiments. In the first experiment we choose μ = 0, which gives the advection in the 
perfect upward direction. See Figure 18; without the corrector, many high-frequency artifacts appear; see, for 
instance, the region with 2 < x < 4 and 0 < z < 15. When the corrector is used, on the other hand, the numeri-
cal artifacts have been removed to a degree that they can hardly be seen. To help see these artifacts, we present 
another visualization along the z-axis; see Figure 20. We observe that the artifacts have been significantly reduced 
to a tiny amount. Note that the support of the weight function only contain one big and two small elements (along 
the z-axis direction); see Figure 14. This suggests that our method has automatically taken advantages of the high 
order elements, in comparison to the low order FV cases in the previous sections, where often around 10 times 
more elements need to be included in the support to achieve a similar artifacts-minimizing effect.

In the second test, we increase the value of μ to be μ = 0.1, which gives an advection velocity such that the 
Gaussian-type distribution will hit the mesh refinement interface with a tilted angle; see Figure  19. In this 
case, without the corrector, one can again see many high-frequency artifacts; see, for instance, the region with 
3 < x < 5 and 0 < z < 15. When the corrector is used, on the other hand, we again observe that the artifacts have 
been effectively removed.

Figure 16.  Initial conditions of the function u(t, x, z) at time t = 0 for the numerical solution on the mesh 𝐴𝐴 𝑎𝑎𝑎𝑎 (left) and the mesh 𝐴𝐴 𝑏𝑏𝑏𝑏 (right) with polynomial degree 
k = 4. The left and right panels differ in the z location of the mesh refinement interface; it is at z = 18 in the left panel and z = 20 in the right panel.
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6.  Conclusion
In this paper, we have proposed a universal predictor-corrector method to minimize numerical artifacts caused by 
mesh refinement. Analysis is given to understand the mechanism of the method for a model advection problem. 
Numerical experiments are carried out to illustrate its general applicability, for different PDEs (e.g., the linear 
advection equation and nonlinear shallow water equations), for 1D and multi-dimensional problems, and for a 
variety of different numerical methods (e.g., finite difference/FV methods and spectral elements). The numerical 
results suggest the effectiveness of the method for removing numerical artifacts.

The method here is based on the communication between the simulations on two meshes with different refinement 
locations. Considering that this communication only needs to be done at a small neighborhood of the coarse/fine 
mesh interface, its computational cost is in general small compared to the numerical schemes that update the simu-
lations. In addition, the communication can be done after several time-steps instead of every time-step, which can 
further save computational costs. However, reducing the communication frequency can change the effect of the 
corrector, as is suggested by our preliminary numerical tests not included in the paper. The tests show that a smaller 
communication frequency can reduce the artifacts caused by the weight function but may reduce the correcting ratio. 
Therefore, the magnitude of the weight wm needs to be accordingly adjusted larger to have a better effect on reducing 
the overall artifacts. More detailed investigation of this topic and some others, such as the combination with ensemble 
methods, the exploration of other weight functions, exceeds the scope of this paper but may constitute future work.

Compared to existing methods such as applying a smooth transition layer for the mesh-resolution change (Moeng 
et al., 2007; Tang et al., 2013), and/or adding hyper-viscosity (Guba et al., 2014; Tang et al., 2013) to damp out 
unphysical artifacts, the proposed method here is more flexible with the mesh-resolution transition (e.g., allowing 
either an abrupt or smooth change in resolution), and it introduces less artificial viscosity and so it may lead to a 
better energy conservation property.

The tests here were conducted with two grids—an original grid and a partner grid—as a setup that is simple and 
requires minimal changes to a computer code. However, the use of two grids would double the computation cost 
in comparison to a single grid, if computed in serial. Also, if two grids are used for turbulent and chaotic fluid 
motion, synchronization would be needed occasionally to prevent the two simulations from diverging from each 
other.

Figure 17.  The weight functions wa (left) and wb (right).
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To overcome the extra computational cost that could arise from two grids, a different approach is to use a single 
grid setting, accompanied with a partner grid that is local and only exists in the vicinity of the mesh-resolution 
transition boundary. Such an alternative approach is similar in spirit to the localization of the level-set method 
by introducing a partner grid that is localized near an interface (Peng et al., 1999) or to the transition or buffer 

Figure 18.  Comparison between the numerical solution at t = 12 without (top) and with (bottom) the corrector. The solution 
propagates upward, in a direction that is orthogonal to the mesh refinement interface.
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Figure 19.  Comparison between the numerical solution at t = 12 without (top) and with (bottom) the corrector being trigged 
on. The solution propagates upward and rightward, and it crosses the mesh refinement interface at an angle.
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zone used in some grid nesting approaches (Davies, 1976; Davies & Turner, 1977; Debreu & Blayo, 2008; Giorgi 
et al., 1993; Lo et al., 2008; Marbaix et al., 2003; Phillips & Shukla, 1973; Urrego-Blanco et al., 2016) so the 
additional cost could be smaller.

Future work could also include the investigation of the methods here in the presence of complex physics parame-
terizations, such as earth system modeling, with geophysical fluids that are generally turbulent. Physics parame-
terizations, such as parameterizations of moist convection and cloud microphysics, are in use in a variety of forms 
in both idealized and comprehensive numerical simulations (Bendall et al., 2020; Dias & Pauluis, 2009; Khouider 
& Majda, 2005; McIntyre et al., 2020; Tissaoui et al., 2022; Wetzel et al., 2020; Zarzycki et al., 2015). Such 
parameterizations were beyond the scope of the present paper, where here the focus was given to the formulation 
and justification of the methodology for minimizing refinement artifacts, and focus was given here to testing 
other aspects such as different equations in different spatial dimensions and with different classes of numerical 
methods. Given the complex and varied form of many physics parameterizations, it can be difficult to design 
specialized strategies for minimizing refinement artifacts for individual parameterization strategies, and it may 
be promising to investigate the universal strategy proposed here.

Data Availability Statement
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Software—numerical experiments in this paper were generated by the software Matlab2018a and the codes at the 
following address: https://doi.org/10.5281/zenodo.7686608. Translation available via browser plug-in.
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