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Abstract  

Density Functional Theory (DFT) calculations combined with Cluster Expansions (CE) were 
employed to explore the catalytic activity of stoichiometric and non-stoichiometric Cu3Au(100), 
Cu3Au(111), CuAu3(100), and CuAu3(111) surfaces for CO2 reduction to CO. We identified 
several adsorption sites which otherwise would not be considered using slab models generated by 
cleaving ordered bulk structures. For Cu3Au(111) and CuAu3(111), the adsorption sites with the 
highest and lowest estimated onset potential values found through our approach would be missed 
if modeled from bulk-derived slabs, showing the ability of our strategy to explore the richness of 
alloy catalysts that arises from the formation of near-surface atomic ordering effects. Finally, we 
performed simulated annealing calculations based on CE fit to predict CO and COOH adsorption 
energies. This analysis led us to find adsorption site ensembles that can deviate from the linear 
scaling relationship that usually hinders the discovery of more active and selective catalysts for 
CO production.    

1. Introduction 

The risks associated with CO2 accumulation in the atmosphere have motivated the scientific 
community to develop economically viable technologies for carbon capture, storage, and 
utilization.(1) The electroreduction of CO2, known as the CO2 reduction reaction (CO2RR), can 
contribute to such a challenge by enabling the recycling of CO2 into value-added products. 
Moreover, if the CO2RR is performed with clean energy sources, it can also help with problems 
associated with the intermittency of wind or solar energy.(2) The CO2RR can yield various 
products, such as CO, CH4, C2H5OH, and C2H4, depending on the catalyst used for the chemical 
process. However, CO2RR generally requires high overpotentials using known catalysts. 
Therefore, there is a need to develop improved CO2RR catalysts, which can be accomplished by 
better understanding the relationship between the atomic structure of a catalyst and its activity and 
selectivity.  
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After the pioneering works of Hori et al.,(3-5) copper (Cu) and Cu-based materials have 
been widely studied as possible catalysts for the CO2RR. One of the reasons for the interest in Cu 
catalysts is their unique ability to reduce CO2 to a variety of molecules such as CO, CH4, C2H4, 
and C2H5OH, totaling up to 16 different products.(6) Studies of the CO2RR on Cu have 
investigated possible reaction mechanisms,(7-10) structural characteristics such as specific facet 
exposure or nanoparticle size shape and size that might impact the mechanisms and activity,(11-
16) and other effects.(17-23) Meanwhile, gold (Au) and Au-based catalysts are also interesting 
options for the CO2RR due to their ability to produce CO with high faradaic efficiency.(5) The 
generated CO, together with H2, constitutes a mixture called syngas, which can be further reformed 
to other products such as methane or methanol through thermally activated reactions.(24) Several 
studies involving the CO2RR on Au catalysts have explored the reasons for the high CO selectivity 
or ways to increase the catalyst activity and/or selectivity.(25-29) 

A strategy commonly employed to tune the activity and selectivity of Cu- and Au-based 
catalysts is the addition of one or more elements to the catalyst composition to generate an alloy. 
Alloying creates new variables that can be manipulated to advance beyond single-metal catalysts, 
such as the choice of the metals used for the alloys, the ratio between the elements, and the 
exploration of different phases, such as ordered or disordered alloys. The use of alloys can change 
the catalytic behavior as compared to single-metal catalysts due to the presence of strain 
effects,(30-34) ensemble effects,(33-36) ligand effects,(33, 34, 37) or by generating bifunctional 
catalysts.(38-40) The increased number of variables provides new routes for optimization but 
increases the complexity of the exploration, making in-depth atomistic knowledge about each 
effect important information for catalyst design. 

For the above reasons, Cu-Au bimetallic systems become natural catalyst candidates. The 
results observed in the literature for CuxAuy catalysts vary depending on the catalyst morphology 
and composition. Kim et al.(41) observed that Cu3Au, CuAu, and CuAu3 nanoparticles with 
average diameter of approximately 11 nm generate CO as the main product. While the selectivity 
does not vary significantly for these nanoparticles, the activity follows a volcano shape with CuAu3 
at the peak.  The CuAu3 and CuAu turnover rates for CO were 93.1 and 40.4 times higher than Cu, 
respectively. Similar results indicating high CO selectivity were also obtained for other CuxAuy 
compositions, such as Cu90Au10, Cu80Au20, and CuAu, with the latter being the most active among 
the tested compositions.(42)  

CO production from the CO2RR was also observed for CuxAuy foils and 6 and 2 nm 
nanoparticles, with the small alloy nanoparticles having a yield per surface area up to 175 times 
higher than bulk Au, which was attributed to both the increase of low-coordinated sites and 
synergistic effects from alloys.(43) In addition to nanoparticle size and composition, the atomic 
ordering of CuAu nanoparticles was also demonstrated to impact the activity for such alloys, with 
ordered CuAu nanoparticles being up to 3.2 times more active than disordered nanoparticles with 
the same composition.(32) While the selectivity towards CO seems to be predominant on certain 
CuxAuy surfaces and nanoparticles, other strategies in the literature can be employed to favor other 
products. For instance, Cu3Au nanowire arrays have been shown to generate C2+ products,(44) 
while a Au-Cu catalysts with 7% atomic percentage of Au in the surface shows controlled 
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availability of adsorbed CO due to regulated concentration of CO2 and are selective for CH4 
production.(45)  

Because of the several effects that impact the activity and selectivity of bimetallic catalysts, 
the generation of realistic models to treat these systems computationally remains a challenge. One 
commonly employed approach is to generate models for bimetallic catalysts from experimental 
information. For example, upon experimental evidence of Au shell formation, the CO2RR on 
ordered CuAu nanoparticles was modeled using strained Au slabs.(32) However, experimental 
information about alloy catalysts will not always be readily available. When this is the case, a 
possible solution is the generation of slabs cleaved along a particular direction from ordered bulk 
alloys. However, slabs derived from ordered bulk alloys can neglect the important atomic 
ensembles that could form in the surface due to the break of symmetry, which can induce different 
atomic order than that found in the bulk structure. For example, for the oxygen reduction reaction, 
calculations indicate that the surface and subsurface elemental distribution for Pt3Ni intermetallic 
alloys play a significant role in the catalyst activity.(46) 

Here, we use grand canonical Monte Carlo (GCMC) and DFT calculations to explore 
different adsorption sites based on first-nearest neighbors on Cu3Au and CuAu3 (100) and (111) 
slabs and how the diversity of sites can change the CO2RR activity towards CO. We discuss the 
elemental distribution on surface and subsurface layers as a function of chemical potential used in 
the GCMC calculations. Subsequently, we present a method that can be used to distinguish sites 
using information on the atom closest to the adsorbate and its nearest neighbors. This method is 
used within GCMC calculations, allowing us to find, without prior experimental information, 
several types of adsorption sites that would not be present on slabs generated by cleaving the bulk 
structure. For all distinct and frequent types of adsorption sites, we compute the adsorption of CO 
and COOH using DFT calculations, which are used to describe the CO2RR activity towards CO 
on each site. Interestingly, we find sites responsible for the lowest and highest CO2RR onset 
potentials that would not be present on bulk-derived slabs. We finish our exploration of atomic 
ordering effects by finding atomic ensembles that deviate from linear-scaling relationships 
between CO and COOH adsorption energies by up to −0.33 eV when both molecules are assumed 
to adsorb on the same top site. 

2. Theoretical Approach and Computational Details 
2.1. Energy Calculations 

All density functional theory calculations were performed using the Vienna ab initio simulation 
package (VASP)(47-49) together with the projected augmented wave (PAW) method.(49, 50) We 
employ the Perdew-Burke-Ernzerhof (PBE) exchange-correlation energy functional(51) and the 
semi-empirical D3 correction proposed by Grimme.(52) The Cu3Au and CuAu3 slabs were 
constructed using their optimized bulk lattice constants, 3.717 Å and 3.993 Å, respectively, 
obtained with the same DFT-PBE+D3 approach. For the Brillouin zone integration, we employed 
efficient grids generated by the k-point grid server (53, 54) to generate a grid corresponding to a 
real-space supercell with a minimum distance of at least 45.0 Å between lattice points.  This was 
found to converge the formation energy within 1 meV/atom, which is sufficient for our approach, 
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(see ESI†). The plane wave cutoff energy was set to 489 eV, which is 12.5% higher than the 
maximum cutoff energy suggested for all the PAW potentials used in our calculations. For the slab 
calculations that are used to train the cluster expansions, the convergence criteria for the electronic 
self-consistent iteration was set to be 10−4 eV/simulation cell and the ionic relaxation loop stopped 
when the change in energy between two ionic steps was smaller than 10−3 eV/simulation cell. For 
the adsorption of molecules, we used as convergence criteria 10−5 eV/simulation cell for the 
electronic iterations and 0.05 eV/ Å for the atomic forces on all atoms. A vacuum thickness of at 
least 12 Å was added perpendicularly to the surface to ensure negligible interaction among periodic 
images.  Further technical details related to the DFT calculations and a concatenation of the 
employed convergence thresholds can be found in the supplementary information. 

2.2. Cluster Expansion and Monte Carlo Calculations 

We calculated energies as a function of atomic order using the cluster expansion method,(55, 56) 
which is a generalized Ising model including many-body interactions. The cluster expansion 
method is widely used to study atomic order in materials including bulk systems,(57-59)  
surfaces,(46, 60, 61) and nanoparticles.(62-64) A brief introduction to cluster expansion is 
provided within this section, while further details on the theory can be found in review and 
software implementation papers.(65-67) In the cluster expansion framework, the structure of the 
material is represented as a set of lattice sites that may be occupied by different species, and the 
occupancy of the ith site is given by the site variable si.  For the case of a binary alloy, a site variable 
value of +1 indicates one species is present at the site, and -1 indicates the other species is present, 
as illustrated in Figure 1a). Each configuration, i.e., distribution of chemical species at the different 
sites, is therefore represented by the set of all site variables, s . Using this representation one can 
express a property of the material, such as the total energy, as a linear combination of basis 
functions known as cluster functions, where each cluster function is the product of all site variables 
in a cluster of sites:  

 0( ) ,cluster i
clusters i cluster

E V V s


= +  s  (1) 

where, 0V  is the empty cluster and clusterV are the coefficients of this expansion, known as effective 
cluster interactions (ECIs).  We fit the ECIs to DFT-calculated formation energies using a Bayesian 
multivariable linear regression.(68)  The formations are defined as: 

 x yCu Au Cu Au
Form tot tot totE E xE yE= − − , (2) 

where x yCu Au
totE  is the energy of a slab with  Cu atoms and y Au atoms, and Cu

totE  and Au
totE  represent 

the energies per atom of bulk Cu and Au, respectively.   

Figure 1a) shows examples of single-site, nearest-neighbor and second-nearest-neighbor two-
site, and three-site clusters for a given configuration. Any subset of sites could form a cluster, and 
if all the possible clusters are included in the expansion, it is exact. In practice, the number of 
clusters is truncated, and only symmetrically distinct small and compact clusters are included.(65) 
Our cluster expansion construction includes the empty cluster, the one-body cluster, all 2-body 
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clusters with no more than 10 Å between sites, and all 3- and 4-body clusters with no more than 4 
Å between sites. As we have used the maximum distance between sites as a parameter to truncate 
the clusters that were included in the cluster expansion construction, the systems with larger lattice 
parameters end up with fewer clusters in the expansion than systems with small lattice parameters. 
In total, we had 188, 196, 167, and 174 symmetrically distinct cluster functions for the CE of 
Cu3Au(100), Cu3Au(111), CuAu3(100), and CuAu3(111), respectively. The effective cluster 
interactions were fit to DFT data using the Bayesian approach(68, 69) with a similar prior 
distribution as used in a previous study,(46) as detailed in Section 5-ESI†. 

 

 
Figure 1: Schematics of employed methodology a). Illustration of how clusters and site variables are defined 
within a CE. b) Flowchart of the methodology used to generate slab models and identify and monitor distinct 
adsorption sites. c) Illustration of the criteria used to identify distinct adsorption sites based on the atom 
that is nearest to the adsorbate and its first-nearest neighbors.    

 

Figure 1b) shows the general methodology used to train the CE and run the Monte Carlo 
(MC) simulations to search for slabs and adsorption sites that represent stoichiometric and off-
stoichiometric alloy surfaces. For each composition and surface orientation, we generated 50 nine-
layer slabs as initial training data using the computed lattice constant for the underlying bulk 
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composition. Here we assume that the compositions and lattice constants of the underlying bulk 
intermetallic phases are relatively constant across a range of chemical potentials, consistent with 
previous analysis.(70) The structures for the initial training data were selected using the 
methodology described in Mueller et al.(69) in which the variance in the predicted property values 
is minimized. The use of nine layers provides sufficient sub-surface depth to explore the formation 
of near-surface alloys.(46) After the initial training of the CE, we searched for new ground state 
structures using grand canonical Monte Carlo (GCMC) simulated annealing calculations on (3×3) 
and (4×4) slabs. The GCMC simulations are parameterized by the difference in chemical potentials 
between Cu and Au:  

 ( ) ( )Au Cu   = −  (3) 

where ( )Cu  is the chemical potential of Cu and ( )Au  is the chemical potential of Au. The 
simulated annealing calculations were performed at temperatures ranging from 1500K to 20K, 
where the temperature changed in each iteration as ( 1) 0.9 ( )T i T i+ = . For each combination of T 

and   values, we performed 10000 * sitesN  equilibration and recording steps, where sitesN  is the 
number of sites in the system. 

To estimate the windows in which Cu3Au and CuAu3 should be in equilibrium, we constructed 
a 0 K convex hull of DFT-calculated formation energies (Figure S3b)). The slopes of the tie lines 
on the convex hull on either side of a given phase provide the upper and lower limits of   at 
which that phase is calculated to be stable at 0 K. To search for new ground state structures, we 
ran MC simulations at chemical potentials within this range, sampling at increments of 0.01 eV. 
Using the formation energies, we determined the structures in the convex hull for each facet and 
composition (see Section 5-ESI†). We included the distinct ground-state structures found in this 
process in our training set and repeated the process until no new structures were found. In total, 
we calculated 112, 252, 113, and 157 structures for the Cu3Au(100), Cu3Au(111), CuAu3(100), 
and CuAu3(111) surfaces, respectively. Additional details are provided in Section 5-ESI †. 

To determine the room-temperature distribution of adsorption sites on each of the facets of 
each of the phases, we ran GCMC simulations on (12×12) slabs at 300K with different values of 
chemical potential within the values at which each phase was calculated to be stable sampling at 
increments of 0.01 eV. For each GCMC calculation, we took 100 snapshots at intervals of 
20000 sitesN  MC steps after an initial 200000 sitesN  MC steps used for equilibration. Using the 
snapshots, we tracked the frequency at which different types of adsorption sites appeared in the 
outermost layer. The procedure for defining these adsorption sites is discussed in Section 3.2. 

2.3. Reaction free energies 

To assess the onset potentials and estimate the catalytic activity of the different adsorption sites 
for the CO2 reduction toward CO, we computed the adsorption energies, E , for reaction 
intermediates using the following equation: 
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 (* ) ( ) ( ) ( ) ( ) = − − − −tot n m p tot tot tot totE E C O H E slab nE C mE O pE H , (4) 

where (* )tot n m pE C O H  is the energy of a molecule with composition CnOmHp adsorbed on the slab, 

( )totE slab  is the energy of the clean slab, ( )totE O  is the energy difference between H2O and H2, 

( )totE C   is calculated as the difference between the energy of CO2 and 2 times ( )totE O , and 

( )totE H  is half of the energy of the H2 molecule. Using this convention, more negative values of 
the adsorption energy, E , indicate stronger bonds. 

To study the reduction of CO2 to CO, we considered the reaction pathway CO2(g) → 
*COOH → *CO → CO‡ → CO(g), which has been identified in previous studies.(12, 29, 36) We 
considered that the reduction happens through a sequence of proton coupled electron steps 
(PCETs) and modeled them under a low-coverage assumption. We also assumed that contributions 
obtained from vibrational frequencies and the solvation energies would not present strong 
dependency on the different adsorption sites. Following this methodology, the adsorption energies 
of *CO and *COOH on each adsorption site becomes sufficient to generate free energy reaction 
diagrams for CO2RR towards CO using the computational hydrogen electrode (CHE)(7, 71) 
model. Additional details of the approximations, reaction mechanism, CHE model, and the 
equations showing how to obtain free energy diagrams based on adsorption energies are described 
in the electronic supporting information, Section 2-ESI†. 

In addition to using the CE to investigate the adsorption site distribution on different 
surface facets and composition, we also trained two cluster expansions to predict *CO and *COOH 
adsorption energies on top sites. These CEs were used to explore the construction of new 
descriptors for adsorption energies and explore other adsorption site ensembles that could be 
interesting for CO2RR. The formation energies, as described in equation 2, were used to fit the 
cluster expansions for adsorbate-free slabs. For the systems with adsorbed molecules, we redefined 
the formation energies as:  

 (* ) ( ) ( ) ( )x yCu Au Cu Au
Form tot n m p tot tot tot tot totE E C O H xE yE nE C mE O pE H= − − − − − , (5) 

where (* )x yCu Au
tot n m pE C O H  is the energy of a CnOmHp molecule adsorbed on a CuxAuy slab, Cu

totE

and Au
totE are the energies per atom of bulk Cu and Au, respectively, while ( )totE O , ( )totE C , and 

( )totE H  are the energies used as reference for oxygen, carbon and hydrogen atoms as defined for 
equation 4. In this way, subtracting the formation energy with (equation 5) and without an adsorbed 
molecule (equation 2) yields the adsorption energies, ΔE, as defined in equation 4. 

For each cluster expansion used to obtain the adsorption energies, we included all the 
previous structures and additional 23 systems with an adsorbed molecule (*CO or *COOH). The 
energies used in fitting the cluster expansions were the lowest energy configuration of the molecule 
on each top site. In Section 3.4, these cluster expansions are also used within simulated annealing 
calculations to search for adsorption site ensembles that would favor CO2RR by deviating from 
linear-scaling relationships (LSR) between adsorption energies of *CO and *COOH. These 
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simulated annealing calculations were performed at temperatures ranging from 2000K to 0.5K, 
where the temperature changed in each iteration as ( 1) 0.9 ( )T i T i+ = . For each value of T, we 
performed 10000 sitesN equilibration and recording steps, where sitesN  is the number of sites in 
the system. 

3. Results and Discussion 

To explore the impact of atomic ordering on CO2RR using Cu3Au and CuAu3 (100) and (111) 
slabs as models, we separate our results and discussion into four sections. We first show how our 
CEs compare to DFT-calculated formation energies and discuss the elemental distribution as a 
function of the chemical potential for different facets and underlying bulk compositions. Then, we 
discuss our method for distinguishing adsorption sites and explore their prevalence as a function 
of slab Au composition. The sites distinguished in this process are tested for CO2RR by computing 
*CO and *COOH adsorption energies and analyzing them with the CHE method. Finally, we 
employ new CEs and simulated annealing calculations to find adsorption site ensembles that can 
deviate from linear-scaling relationships between *CO and *COOH binding, further exploring and 
discussing the impact of atomic ordering on CO2RR.  

 
3.1. Cluster Expansion and Surface Atomic Ordering 

The cluster expansions for Cu3Au(100), Cu3Au(111), CuAu3(100), and CuAu3(111) had root-
mean-squared error leave-one-out cross-validation errors (LOOCV) of 2.18, 3.18, 2.00, 1.61, 
meV/atom, respectively, with very good agreement between the CE-calculated and DFT-
calculated energies (Figure 2). The LOOCV values compare well to other machine-learned energy 
models for alloys that have recently shown accuracies from 1 to 13 meV/atom. (72-75)  

 

Figure 2: Parity plot between the formation energies obtained via the CE Hamiltonian as predicted using 
leave-one-out cross-validation (LOOCV) and DFT calculations, together with the LOOCV errors for each 
CE.  

We used the cluster expansions in Monte Carlo simulations to predict near-surface atomic 
structure. Here we investigate the properties of clean surfaces to study the relationship between 
local atomic order and adsorption, but we note that potential adsorbate-induced structural changes 
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would be an interesting topic for future study. Even when the bulk of material is in an ordered, 
intermetallic phase, there can be significant variation in the near-surface structure and composition 
as a function of Au and Cu chemical potentials. In general, we find that the near-surface Au 
composition increases as a function of  , as expected (Figure 3).  Moreover, we observe a Au 
enrichment of the slab first layer as compared to the overall slab composition for all values of 

, facets, and underlying bulk composition, which is expected due to the tendency of atoms with 
lower surface energy to segregate to the surface.(76, 77) For Cu3Au at 300 K, we observe that 
across the entire chemical potential range the surface layer is the most Au-rich, with this effect 
being more significant for (100) than for (111) slabs (Figure 3a). For the subsurface, we observe 
the opposite effect, with Cu3Au(100) slabs showing a second layer composed solely of Cu atoms. 
On Cu3Au(100) at low values of  , the first and second layers have 50% and 0% Au, 
respectively, which is also the pattern found in the bulk L12 structure. As   increases, nearly all 
the additional Au resides in the outermost layer, increasing the composition of this layer to about 
72% Au.  For (111) facets, there is less dramatic segregation between the first and second layers. 
We observe a first layer that varies from 33 to 51% Au composition, while the subsurface layer is 
more Cu-rich, with Au composition between 0% and 25%. For the Cu3Au(111) slab with nearly 
the ideal 25% Au composition, we observed the first layer having around 42% Au.  

The Au enrichment of the topmost surface layer is consistent with results from the literature 
that present Au compositions ranging from 39 to 51%.(78, 79) The results from our statistical 
analysis are also comparable with the insights previously obtained with different computational 
approaches.(73, 80, 81) These show the tendency to form a Au-rich shell on CuxAuy nanoparticles. 
Moreover, some of the different behaviour between (111) and (100) facets that we observed is also 
present, e.g nanoparticles with Cu atoms in the surface are observed more commonly on the (111) 
facet than on the (100) facet. 
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Figure 3:  Near-surface composition profiles of the slabs obtained through GCMC calculations for the 
systems at 300 K for a) Cu3Au(100) and (111) surfaces and b) CuAu3(100) and (111) surfaces. Blue (red) 
curves show the Au composition as a function of  for the first (second) layer of the slab, while black 
curves show the Au composition for the 9-layer slab. Triangles and squares represent the data obtained for 
(111) and (100) facets, respectively. 

For CuAu3(100) and (111) surfaces, we observe that the first layer contains only Au atoms 
across the entire chemical potential range at which the bulk structure is estimated to be stable. For 
the subsurface, we observe a similar trend as the one observed for Cu3Au(100) and (111) slabs, 
i.e., this layer is more Cu-rich than the overall slab. For (100) slabs, we observe two distinct surface 
phases: at low values of  , we observe a nearly 100% Cu subsurface layer, followed by a phase 
with nearly 50% Au composition at higher  values. Near the highest values of   for which 
CuAu3 is stable, the second-layer Au composition rises above 50%. For (111) slabs, the increase 
in Au composition happens more continuously, with the Au content from the subsurface layer 
going from 51% to up to 83% across the range of  values. There is a plateau at about 75% Au 
that corresponds to the formation of an ordered second layer similar to what one obtains for the 
(111) surface cleaved from the ordered CuAu3 bulk.  
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3.2. Selection of Adsorption Sites 

To better understand how the variations in surface structure may affect the catalytic activity, we 
identify the most common types of adsorption sites that frequently occurred in Monte Carlo 
simulations, classified by their local environments. We base our classification on top sites 
following findings from a previous study (14) that indicated that COOH would preferentially 
adsorb on such sites. For *COOH, we consider different molecule orientations with the C atom 
adsorbed on the top site. For *CO, we calculate the adsorption on the classified top site and on all 
distinct bridge sites nearby. We selected top and bridge adsorption sites for *CO after preliminary 
calculations showed these as the preferred ones for *CO adsorption on CuxAuy alloys. For both 
molecules, the lowest energy configuration was used to create free energy diagrams.   

Thus, each top site was represented with a single vector containing three values: 1) the 
number of Cu atoms in the surface site directly below the adsorbed molecule (1 or 0); 2) the number 
of Cu nearest-neighbors for the adsorption site; 3) the average of the coordination number of Cu 
nearest-neighbors. We employ a cutoff radius larger than the average bond length for each 
underlying bulk to determine the first-nearest-neighbors of each atom. As we include the number 
of Cu-nearest neighbors as a descriptor, both surface and subsurface sites are accounted for in the 
representation and the proportion of Cu atoms as surface or subsurface neighbors is distinguished 
by using the average coordination number as an additional descriptor. As this analysis is applied 
on snapshots of MC calculations, there are no concerns about bond length increases due to 
relaxation processes, making the determination of first-nearest-neighbors straightforward. A few 
examples of how this vector is constructed are provided in Figure 1c). This approach allows us to 
identify whether a Cu or Au atom is present at the adsorption site, the composition of the nearest 
neighbors, and how the nearest neighbors are distributed in the surface or subsurface. This 
approach is similar to the one employed in a recent study focused on NixGay catalysts.(82) The 
main difference is that here we apply the descriptor always considering a single surface orientation 
and bulk stoichiometry, which allow us to reduce the number of fingerprints from seven to three. 

To identify the types of sites to be studied regarding their catalytic activity for the CO2RR, 
we select all types of sites with a prevalence higher than 0.1% during the GCMC calculations at 
300 K on (12×12) surface models for each facet and bulk composition. Then, representations of 
the selected adsorption sites were searched within the (3×3) and (4×4) models that were used to 
generate the CE. This step was necessary to ensure that we had systems that we could use for DFT 
calculations that contained the representative adsorption sites. The catalytic activity for CO2 
reduction toward CO was estimated by generating free energy diagrams using DFT-calculated 
*CO and *COOH adsorption energies.  

For stoichiometric Cu3Au(100), we identify five different types of common adsorption 
sites.  One of these is a Cu site surrounded by an equal number of Cu and Au atoms, and the other 
four are Au sites with different numbers of Cu and Au first-nearest-neighbors. For Cu3Au(100), 
the adsorption sites marked as Site 1 and Site 2 have the same characteristics of first-nearest-
neighbors as the adsorption sites one should obtain by cleaving an ordered Cu3Au bulk to expose 
a (100) facet. Figure 4 a) shows that the surface of the slabs obtained through GCMC at 300K is 
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dominated by Site 1 and Site 2 for all slabs between 21% and 28% Au composition. For slabs with 
Au composition greater than 28%, the Site 2 population drops dramatically, being replaced by Au 
adsorption sites with a higher number of Au first-nearest-neighbors due to the excess Au in the 
slab’s first layer.  

For Cu3Au(111), the number of distinct adsorption sites observed during GCMC 
calculations was much higher, with 11 sites appearing more than 1% of the time compared to the 
total number of sites. From the 11 distinct adsorption sites, 4 represent Cu adsorption sites and 7 
Au sites with different numbers of Cu and Au first-nearest-neighbors. For Cu3Au(111), only the 
adsorption site marked as Site 1 has the same characteristics of adsorption sites that can be obtained 
from (111) facets derived by the as-cleaved Cu3Au bulk. Differently from what was observed for 
Cu3Au(100), the distribution of sites for the (111) facet is smoother, and several atomic ensembles 
could appear and contribute to the reactivity of the surface, depending on the slab composition. 

 

Figure 4: Frequency that each adsorption site is observed during the GCMC calculations versus the Au slab 
composition with the systems at 300 K, followed by representative structures for each adsorption site 
together with its representation vector for a) Cu3Au(100) and b) Cu3Au(111) surfaces. 
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Figure 5 a) and Figure 5 b) show types of identified adsorption sites for CuAu3(100) and (111), 
respectively. For all cases, the adsorption sites are Au sites, with all first-nearest-neighbors in the 
first layer being Au atoms and with different number of Cu and Au neighbors in the subsurface. 
For CuAu3(100), Site 3 has the same characteristics of the adsorption site present on Cu3Au(100) 
facets cleaved from the ordered bulk. Meanwhile, Site 1, which only appears for Cu-rich 
compositions and rapidly disappears for slab compositions with more than 68% Au, is the 
adsorption site one can obtain from the cleavage of an ordered CuAu(100) facet. For CuAu3(111), 
no site obtained through our approach would be observed by cleaving the bulk because such a 
process cannot yield a Au surface. For both CuAu3(100) and (111), the change in adsorption site 
frequency as a function of slab composition happens because of the increase in Au content in the 
subsurface. Interestingly, the number of distinct adsorption sites for this composition is smaller 
than for Cu3Au due to the full Au surface layer that characterized all the obtained slabs.  

Figure 5: Frequency that each adsorption site is observed during the GCMC calculations versus the Au slab 
composition with the systems at 300 K, followed by the representation of each adsorption site together with 
its representation vector for a) CuAu3(100) and b) CuAu3(111) surfaces. 

To assess the catalytic activities of different site types, we calculated *CO and *COOH 
adsorption energies on a variety of sites of different types.  The complete set of sites and the 
calculated adsorption energies are provided in Section 6 - ESI†.  We observe that most of the sites 
with the same fingerprints show similar adsorption energies for both *CO and *COOH.  However, 
for some adsorption sites that have the same fingerprints, we find variation in *CO adsorption 
energies as large as −0.18 eV, implying that sites of the same type can have different catalytic 
properties. We find that this problem could be partially addressed by extending our fingerprint 
vector to include information about the second-nearest neighbors and their coordination numbers, 
distinguishing sites that otherwise look similar based on their first-nearest neighbors (Section 6 - 
ESI†).  For the site types (based on first-nearest neighbors) that had the best onset potentials we 
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performed additional sampling to find a variety of sites of each type that were distinguished by 
their second-nearest neighbors. We also calculated *CO and *COOH adsorption energies on these 
sites, to better quantify the spread in adsorption energies on each site type and increase the 
likelihood of finding a highly active ensemble.  These calculations reveal that in nearly all cases 
the sites that have the same first-nearest-neighbor feature vector had adsorption energies within 
0.1 eV of each other, with the exception of site 2 for Cu3Au(111) surfaces, for which the spreads 
in *CO and *COOH adsorption energies were 0.18 and 0.23 eV, respectively. 

3.3. CO2RR to CO Catalytic Behavior for Different Adsorption Sites 

To investigate the impact of the atomic order in the catalytic behavior of the near-surface Cu-Au 
alloys, for each facet and bulk composition we calculated the *CO and *COOH adsorption 
energies on representative adsorption sites identified based on the three-value fingerprints defined 
as described above. Adsorption sites distinguished by the second-nearest neighbors were not 
included in this analysis. Figure 6 a) and b) show free energy reaction diagrams for the CO2 
reduction to CO on (100) and (111) facets for Cu, Au, Cu3Au, and CuAu3 slabs, while Table 1 
summarizes the main findings of the free energy reaction diagrams. For Cu and Au, we show the 
diagram using the adsorption configuration with the strongest ΔE for each adsorbate. For the 
alloys, we show the reaction diagram using the best and worst adsorption sites from all the 
calculated sites in terms of onset potential, Uonset. 

Figure 6 a) shows that the most endergonic reaction step for the alloys and Au(100) surface 
is the formation of *COOH from CO2, while for Cu(100) is the *CO desorption to CO‡. However, 
the *CO desorption step is not directly affected by the applied potential within our model, making 
*COOH formation the potential determining step, PDS, for all surfaces. Figure 6 b) shows the same 
effect for (111) facets. The study of the best and worst adsorption sites for each alloy surface also 
helps to illustrate the importance of modeling the alloy through the sampling of different sites 
compared to using a slab derived from an ordered bulk for each case. For both surfaces, we observe 
that the best site for both alloys show Uonset values higher than Cu and smaller, or at least 
comparable, to Au, showing a trend where the higher the Au content, the higher the Uonset. 

More specifically, the Uonset for Cu3Au and CuAu3 for the best sites on (100) facets are, 
respectively, −0.59 and −0.63 eV, showing a slight improvement as compared to the −0.67 eV 
computed for Au(100) and a more endergonic reaction step as compared to the –0.32 eV from 
Cu(100). Moreover, the *CO desorption from the best sites of both alloy surfaces demands less 
energy as compared to Cu(100) and Au(100) surfaces. Meanwhile, for the worst sites from both 
surfaces, the *CO desorption is still facile compared to monometallic surfaces; however, the Uonset 
for Cu3Au and CuAu3 increases to −0.94 eV and −0.88 eV, respectively. 
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Figure 6: Reaction free energy diagrams for CO2 reduction to CO on Cu, Au, Cu3Au, and CuAu3 slabs for 
a) (100) and b) (111) facets. For Cu3Au and CuAu3 slabs, we show the reaction diagram using the adsorption 
sites that yielded the lowest (best) and highest (worst) Uonset. c) ΔE values for *CO and *COOH obtained 
for all the adsorption sites used to represent Cu3Au(100), Cu3Au(111), CuAu3(100), and CuAu3(111) 
surfaces, as well as the values calculated for Cu(100), Cu(111), Au(100), Au(111), Ag(100), Ag(111). The 
linear scaling relationships are drawn from the monometallic calculations for (111) and (100) surfaces 
together with the values from Pt(100), and Pt(111) and are displayed through solid and dashed lines for the 
(111) and (100) systems, respectively. Squares and triangles represent ΔE values obtained for (100) and 
(111) facets, respectively. 
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Table 1: Results from reaction free energy diagrams, including the site related to the best and worst Uonset 
calculated for CO2RR to CO, the Uonset value, and a note indicating if the site would be observed on bulk-
derived slabs or not. *Site 12 for Cu3Au(111) is not represented in Figure 4 because its prevalence on 
GCMC was smaller than 1%.  

System Site Uonset(eV) Observable from bulk-derived slab 
Cu(100) - −0.32 - 
Au(100) - −0.67 - 
Cu3Au(100) - Best Site 2 - (0,8,10.00) −0.59 Yes 
Cu3Au(100) - Worst Site 1 - (1,4,12.00) −0.94 Yes 
CuAu3(100) - Best Site 3 - (0,2,12.00) −0.63 Yes 
CuAu3(100) - Worst Site 1 - (0,4,12.00) −0.88 No 
Cu(111) - −0.52 - 
Au(111) - −0.71 - 
Cu3Au(111) - Best Site 3 - (0,8,9.75) −0.56 No 
Cu3Au(111) - Worst Site 12* - (1,4,11.25) −0.93 No 
CuAu3(111) - Best Site 2 - (0,1,12.00) −0.71 No 
CuAu3(111) - Worst Site 3 - (0,0,0.00) −0.76 No 

 

For Cu3Au(100), the best and worst sites are the two sites that one would observe by 
cleaving an ordered Cu3Au bulk material to expose the (100) facet. For CuAu3, the best site 
represents the site one would obtain from bulk-derived CuAu3(100), while the worst site is the one 
that represents the (100) facet cleaved from an ordered CuAu system, which only appears in Cu-
rich stoichiometries in our GCMC calculations. Thus, for (100) surfaces, a naïve approach of using 
as models the surfaces obtained directly from ordered bulk structures can be sufficient to represent 
the best and worst scenarios one would obtain from our strategy. 

For (111) facets, the best sites of Cu3Au and CuAu3 show Uonset values of −0.56 eV and 
−0.71 eV that are, respectively, lower and comparable to the −0.71 eV computed for Au(111) and, 
again, more endergonic as compared to the –0.52 eV from Cu(111). The energy change of the *CO 
desorption step for the best site of Cu3Au(111) is also smaller than what is observed for Cu(111), 
while the best site for CuAu3(111) shows smaller free energy changes for *CO desorption than 
both Cu(111) and Au(111). For the worst sites, we also observe a significant increase in Uonset for 
Cu3Au(111) to −0.93 eV, while the difference between the best and worst sites for CuAu3 was 
only 0.05 eV. 

The best and worst sites from Cu3Au(111) are different from the sites that are present in 
bulk-derived Cu3Au(111) surfaces. The best results are obtained with Site 3 from Figure 3b), 
which shows a higher prevalence for slabs with Au composition lower than 30%. For CuAu3(111), 
both sites would not be present in bulk-derived surfaces; however, the energy spread between the 
best and worst calculations is small, and both results are also similar to the ones from the Au(111) 
surface. Differently to the (100) surfaces, the best and worst adsorption sites from our strategy 
would not be present in slabs obtained directly from ordered bulk structures, showing that the 
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usage of surface models obtained by cleaving ordered bulk structures could hamper the description 
of the activity of these surfaces. 

The reaction diagrams also help to illustrate one of the limiting factors that one faces when 
searching for improved catalysts, known as the linear scaling relationship, LSR. The material must 
strengthen the *COOH adsorption to facilitate the first reaction step without strengthening the *CO 
adsorption, which would hinder product desorption. Figure 6 c) shows the LSR between *CO and 
*COOH adsorption energies drawn from calculations on monometallic catalysts. Adsorption sites 
that deviate from the LSR, staying below the lines in Figure 6 c), would strengthen the *COOH 
formation as expected from their *CO adsorption energies. All the values obtained from the 
distinct alloy adsorption sites are near or between Cu and Au values, with no deviation from the 
LSR larger than −0.14 eV. Figure 6 c) also shows that the approach adopted here can provide a 
detailed view of the distinct adsorption sites that might affect the activity of alloy catalysts. The 
similarity in adsorption energies on different ensembles and the difficulty in deviating from the 
LSR for the different adsorption sites may result from the comparable binding properties of Cu 
and Au, implying that the same approach, when applied to other systems, could lead to a larger 
spread in adsorption energies as a function of atomic ordering.   

3.4. Exploring the Impact of Near-surface Atomic Ordering on Adsorption 
Energies Through Cluster Expansions   

As previously discussed, our approach to classifying adsorption sites based on the atom near the 
adsorbate and its first neighbors is adequate for a first-order classification but may have large 
uncertainties in predicted adsorption energies. To yield insights on how to construct new 
descriptors and predict adsorption energies using a more complete set of interactions, we trained 
two cluster expansions to predict *CO and *COOH adsorption on top sites and explored which 
atoms, in addition to those already included in our approach, could contribute the most to the 
calculated adsorption energies. We performed this analysis only for Cu3Au(111) surfaces, as this 
facet and underlying bulk composition has the largest number of distinct sites. Moreover, 
Cu3Au(111) surfaces presented the largest deviation for *CO and *COOH adsorption energies for 
sites with the same fingerprints based on first-nearest neighbors and distinct second-nearest 
neighbors.  

Figure 7 shows the parity plot of the leave-one-out cross-validation ΔE values from the CE 
and the same ΔE values calculated through DFT.  The plots for Figure 7 a) *CO and b) *COOH, 
together with the values displayed in Table 2, show that the inclusion of trimer (three-body) 
clusters is essential to improving the prediction of adsorption energies. When pair and trimers are 
included with rcut of 4.8 Å, which ensures that only the atom nearest to the adsorbate and its first 
neighbors are included in our CE, we observe predictions with MAE of 0.06 and 0.05 eV for *CO 
and *COOH, respectively. By increasing the cutoff of pair clusters to 7 Å, we slightly improve the 
description for *COOH, lowering by another 0.03 eV the maximum error in the prediction. The 
MAE values found in our approach are comparable with values from models used in the literature 
to explore high-entropy alloys for both the CO2 reduction and oxygen reduction reactions.(83, 84)  
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Figure 7: Parity plot of adsorption energies obtained by CE (LOOCV values) and DFT for a) *CO and b) 
*COOH adsorption on Cu3Au(111). The results from CE were obtained considering only pair or pair and 
trimer clusters with different values of cutoff radius, rcut, for the clusters included in the expansion.  

 

Table 2: Parameters obtained for the parity plots between adsorption energies obtained by the CE (LOOCV 
values) and DFT for *CO and *COOH adsorption on Cu3Au(111) surfaces. We show the equations slope, 
offset, MAE, RMSE, R2 and maximum absolute error obtained with only pair or pair and trimer clusters 
with different values of the cutoff radius, rcut, used to determine the clusters included in the expansion. 

 Slope Offset MAE 
(eV) 

RMSE 
(eV) 

R2 Max Error 
(eV) 

*CO Adsorption 
Pair rcut=4.8 Å, no trimers 0.33 0.03 0.13 0.14 0.87 0.24 

Pair rcut=4.8 Å, Trimer rcut=4.8 Å 0.84 0.00 0.06 0.07 0.84 0.13 
Pair rcut=7.0 Å, Trimer rcut=5.0 Å 0.79 0.00 0.07 0.08 0.79 0.16 

*COOH Adsorption 
Pair rcut=4.8 Å, no trimers 0.70 −0.02 0.11 0.12 0.58 0.24 

Pair rcut=4.8 Å, Trimer rcut=4.8 Å 0.58 0.09 0.05 0.07 0.53 0.16 
Pair rcut=7.0 Å, Trimer rcut=5.0 Å 0.85 0.02 0.05 0.06 0.74 0.13 

 

The results corroborate our analysis that a vector including the site near the adsorbate and 
its first nearest neighbors is a good tool to distinguish sites, but the importance of three-body 
clusters suggests that it would be best to also consider interactions among the first nearest 
neighbors to distinguish types of sites based on adsorption energies. If further accuracy is 
necessary for the prediction of adsorption energies, one would need to include more information, 
as evidenced by the CE prediction of COOH with higher rcut for pair clusters. 

The importance of considering a wider variety of interactions when predicting adsorption 
energies is also supported by recent findings in the literature. For instance, comparison between 
coordination numbers and generalized coordination numbers demonstrate the importance of 
considering second-nearest-neighbors when predicting adsorbate adsorption energies.(85) A 
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similar conclusion for monometallic and alloy systems has been reached based on other physics-
based models derived using machine learning.(86) Including more information to distinguish the 
adsorption sites, however, leads to a higher number of representative sites, which would rapidly 
increase the computational cost of a thorough investigation of all sites via DFT. In these situations, 
machine-learned surrogate models such as the CE could facilitate the search for active ensembles. 

In the CE approach, the predicted adsorption energies are determined only by the clusters 
that contain the adsorbate binding site. We use this characteristic of CE models to gain insight into 
which simple descriptors are most important for predicting adsorption energies. We analyze the 
CE models trained with rcut of 7 Å and 4.8 Å for pair and trimer clusters, respectively. The cluster 
that makes the largest contribution to the adsorption energies in these CEs, apart from the clusters 
that contain the atom near the adsorbate and its first nearest neighbors, includes atoms in the 
surface that are the next in line to the first neighbors of the atom near the adsorbate, see Figure 8. 
Thus, the number of Au or Cu atoms at this location relative to the adsorbate could be used as an 
additional fingerprint in future studies, in addition to including interactions between first-nearest 
neighbors. 

 

Figure 8: Representation of pair cluster with the largest contribution to the *CO and *COOH 
adsorption energies as predicted by the cluster expansion, apart from the clusters that contain the 
atom near the adsorbate and its first nearest neighbors. The red sphere represents the adsorbate 
binding site, while gray (blue) spheres represent atoms that are (are not) present in the cluster. 

 

Our exploration of different adsorption sites formed in CuxAuy near-surface alloy catalysts, 
was not able to find adsorption site ensembles that significantly deviate from the linear scaling 
relationship (LSR) between the adsorption energies of *COOH and *CO that one finds when 
studying monometallic catalysts. So, we employed our CEs fit to predict the *CO and *COOH 
adsorption energies in simulated annealing calculations designed to minimize the following 
quantity: 
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Figure 9: DFT calculations for *CO and *COOH on different adsorption site ensembles found 
through a simulated annealing approach designed to maximize the deviation of the linear scaling 
relationship, LSR. a) Representations of the lowest energy configuration for *COOH, the 
configuration with *CO on the top site suggested via the simulated annealing calculations, COTop, 
and the configuration with the lowest energy for *CO considering the same top site and all its 
neighboring bridge sites, COMin. b)  ΔE values for *CO and *COOH obtained for all the ensembles, 
where squares and circles represent the ΔE values for COTop and COMin, respectively. We also 
include the values calculated for Cu(111), Au(111), and Ag(111) and the linear scaling 
relationships drawn as a solid line based on these monometallic surfaces together with the values 
from Pt(111). c) Deviations from the LSR, *COOH *COOH

Bind Bind-LSRE -E , for each ensemble. Black (red) bars 
represent the data when COTop (COMin) were used as input for the calculation of *COOH

Bind-LSRE , while 
yellow bars represent the values calculated via CE.  

 

During the simulated annealing calculations, we kept the atom nearest to the adsorbate 
fixed as either Au or Cu to predict different atom arrangements for both cases. For calculations 
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with Au as the nearest atom to the adsorbate, we observe four different ensembles that are predicted 
by the cluster expansion to deviate from the LSR by more than –0.2 eV. When the adsorption site 
atop was a Cu atom, the simulated annealing calculations predict that only one ensemble would 
significantly deviate from LSR. The predicted ensembles are illustrated in Figure 9 a). We also 
searched for ensembles that would deviate from the LSR in the other direction, which would hinder 
the reaction. For this case, we observe Cu single atoms on surfaces mainly composed of Au as 
possible ensembles, but as these cases are not predicted to improve the catalytic activity for this 
reaction, we decided not to further investigate the predictions with DFT. 

The sites predicted to break the scaling relationship in a favorable direction were tested 
using *CO and *COOH adsorption calculations via DFT. The cluster expansions used for this 
strategy were fitted against DFT data for *CO and *COOH adsorbed on top sites. However, we 
followed the same approach as discussed for the whole work and tested with DFT the *CO 
adsorption on the top site and on all neighboring bridge sites.  

Figure 9 b) shows that when considering the results when both *CO and *COOH adsorbed 
on Au top sites, all the isolated Au ensembles show interesting features. For these ensembles, we 
observe stronger ΔE for *COOH than Au(111) without leading to *CO ΔE values that hinder *CO 
desorption as much as Cu(111). This effect is most significant for the Au dimer. For all the 
ensembles found in the simulated annealing with Au as the nearest atom to the adsorbate, a 
significant deviation of the LSR only happens when considering the results from *COTop, Figure 
9 b) and c)). These results indicate that if the *CO molecule can move to a neighboring bridge site 
during the reaction, the benefit of these ensembles, as compared to a Cu(111) catalyst, would not 
be attainable. However, if other effects, such as a high *CO coverage, hinder the *CO migration 
to a neighboring bridge site and both reaction steps happen on the same site, one could expect that 
such isolated Au clusters on Cu(111) would favor active and selective catalysts for CO production. 
The CE-predicted deviations from the LSR are generally in good agreement with the DFT-
calculated values on the top sites, with a notable exception on the pure Cu site (Figure 9 c)). For 
the Cu island, despite the prediction using the CEs, the results with DFT do not show any 
significant deviation from the LSR.   

4. Conclusions 

Generating models to treat bimetallic catalysts without prior experimental information can be 
challenging since surfaces cleaved from ordered bulk can miss atomic ensembles important for the 
overall catalytic activity of the system. Here, we explored this topic using Cu3Au and CuAu3(111) 
and (100) surfaces applied to the CO2RR to CO. We employed grand canonical Monte Carlo 
(GCMC) calculations together with a cluster expansion approach trained on DFT calculations to 
monitor the presence and frequency of distinct adsorption sites on stoichiometric and non-
stoichiometric slabs.  

The GCMC calculations showed the presence of several types of adsorption sites with a 
prevalence higher than 1% as compared to the total number of sites, as characterized using a simple 
three-value descriptor based on first-nearest neighbors. Comparing the adsorption sites for each 
system in terms of Uonset values, we observed differences of 0.35, 0.25, 0.37, 0.05 V between the 
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highest and lowest Uonset from the calculated sites for Cu3Au(100),  CuAu3(100), Cu3Au(111), and 
CuAu3(111), respectively. The best and worst sites determined based on Uonset values for 
Cu3Au(100) and the best site for CuAu3(100) are present on surfaces that could have been obtained 
by cleaving ordered bulk alloys, but this does not necessarily mean that such surfaces should 
generally be expected to be stable and / or highly active. 

For CuAu3(111), the calculated sites are not present for bulk-derived surfaces, but the 
difference between the calculated Uonset values for different sites is small and similar to the ones 
from Au(111), showing that this system could potentially be modeled as a Au overlayer following 
similar strategies used in the literature.(32) The most significant differences were observed for 
Cu3Au(111), in which bulk-derived slabs would not contain the sites responsible for the highest 
and lowest Uonset values observed for the system, showing that more simple approaches for the 
generation of models could miss important adsorption sites. None of the adsorption sites selected 
through this approach significantly deviate from LSR between adsorption energies of *CO and 
*COOH, which hinders the search for more active catalysts for this reaction.  

Cluster expansions designed to predict *CO and *COOH adsorption energies show the limits 
of the simple strategy to distinguish adsorption sites, providing information on many-body and 
longer-range interactions that could be included in future attempts to classify sites based on 
adsorption energies. The cluster expansions trained on top-site adsorption energies were used to 
search for adsorption site ensembles that deviate from the LSR between *CO and *COOH. Their 
predictions were confirmed, to an extent, with DFT calculations showing ensembles that deviate 
by up to -0.33 eV from the LSR when both *CO and *COOH are assumed to adsorb on the same 
top site. However, in these cases it was found that the energy of *CO could be significantly 
lowered, offsetting the deviation from the scaling relationship, if it were able to migrate to a nearby 
vacant bridge site. 
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