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Abstract—Ensuring fairness in decision-making systems within
Human-Cyber-Physical-Systems (HCPS) is a pressing concern,
particularly when diverse individuals, each with varying behav-
iors and expectations, coexist within the same application space,
influenced by a shared set of control actions in the system. The
long-term adverse effects of these actions further pose the chal-
lenge, as historical experiences and interactions shape individual
perceptions of fairness. This paper addresses the challenge of fair-
ness from an equity perspective of adverse effects, taking into ac-
count the dynamic nature of human behavior and evolving pref-
erences while recognizing the lasting impact of adverse effects.
We formally introduce the concept of Fairness-in-Adverse-Effects
(FinA) within the HCPS context. We put forth a comprehensive
set of five formulations for FinA, encompassing both the instan-
taneous and long-term aspects of adverse effects. To empirically
validate the effectiveness of our FinA approach, we conducted an
evaluation within the domain of smart homes, a pertinent HCPS
application. The outcomes of our evaluation demonstrate that the
adoption of FinA significantly enhances the overall perception of
fairness among individuals, yielding an average improvement of
66.7% when compared to the state-of-the-art method.

Index Terms—human-cyber-physical-systems,
decision-making, adverse-effect

fairness,

I. INTRODUCTION

The ubiquitous integration of smart technologies into our
daily lives offers unprecedented opportunities but also presents
a lot of challenges. A key challenge lies in understanding the
interplay between humans and Cyber-Physical Systems (CPS)
to shape the societal consequences of future CPS technologies.
As we move towards a future defined by the coexistence of hu-
mans and smart technologies, understanding their interactions
is essential, as suggested by recent studies [1], [2]. Within the
realm of Human-Cyber-Physical Systems (HCPS), one central
challenge emerges when CPS decisions can affect individuals
with diverse preferences and perceptions within the same
environment. This scenario is common in systems like smart
buildings, smart cities, smart traffic management, and smart
crowd control, where fairness, privacy, equity, and personal-
ization issues intersect, sparking new societal tensions [3]-[5].

Existing research in sociology, particularly Social Exchange
Theory [6], [7] and Equity Theory [8] has substantiated a
direct link between ‘“equity” and prosocial behavior. The
higher an individual perceives a system as equitable, the
greater the likelihood of that individual engaging in prosocial
behavior [8]-[10]. This, in turn, significantly impacts the
overall performance of the system. Specifically, the greater
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the number of individuals who engage in prosocial behavior,
the higher the likelihood of compliance and acceptance of
the system’s decisions, ultimately leading to an enhancement
in overall system performance [11]-[13]. Given that CPS
decision-making often aims to optimize system performance
while adhering to operational constraints, it is essential to de-
velop formal metrics and objective functions that enhance the
human perception of these decisions, ultimately fostering more
prosocial behavior and improving overall system performance.

In this paper, we are interested in formalizing some of
the equity objectives in decision-making HCPS. We will
start by exploring a notion of fairness from the equity
perspective. In particular, we will focus on what we term
Fairness-in-Adverse-Effects (FinA). Decision-making agents
in HCPS employ a range of control actions. However, these
control actions can have different adverse effects on a diverse
population, each with its own preferences. Hence, the HCPS
needs to adapt its decision-making to continuously match
different populations across time and ensure that it meets the
preferences of as many populations as possible. Our motivation
in examining the adverse effects or the harmful impact of
decision-making in HCPS stems from the psychology concept
“loss aversion—Losses loom larger than gains” which implies
that losses can be twice as powerful, psychologically, as
gains [14]. This concept underscores the significance of
minimizing adverse effects to promote fairness within HCPS.

II. RELATED WORK

HCPS systems are centered on the challenge of designing
adaptable, real-time decision-making processes that take into
account the social context, including considerations of fairness,
social welfare, ethical concerns, and societal norms [15],
[16]. A substantial body of work in the field of game theory
explores various facets of fairness, often framed as incentive
markets among competing entities or communities striving to
achieve fairness [17], [18]. In the domain of machine learning,
interventions to enhance fairness have been introduced, aiming
to ensure that models’ decisions are devoid of discrimina-
tion [19]-[23]. In the context of decision-making systems,
where agents express favoritism for one action over another,
questions surrounding fairness become even more significant,
especially within multi-agent systems [24]-[31]. However,
imposing fairness constraints as static, one-time decisions akin
to conventional supervised learning methods while neglecting
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dynamic feedback and long-term consequences, particularly
in sequential decision-making systems, can inadvertently lead
to disparities that affect specific sub-populations [32], [33].

Recent research has also shed light on the long-term
ramifications of Reinforcement Learning (RL), revealing that
addressing control decisions’ immediate effects in single steps
does not ensure fairness in subsequent decision actions [34],
[35]. Nevertheless, a significant portion of this research
has predominantly focused on fairness through the lens of
equality, with an emphasis on eliminating favoritism or bias
within the system, and relatively less attention has been
given to the concept of fairness from an equity perspective,
particularly in the context of sequential decision-making [36].
Notably, ensuring fairness in sequential decision-making
systems becomes increasingly complex as policies deemed
fair at one point may inadvertently become discriminatory
over time due to shifts in human preferences influenced by
the inter- and intra-human variation [37].

The concept of “group fairness” has been introduced in the
literature to tackle fairness concerns arising when the same
adaptive model impacts multiple individuals. One notion
is “Equalized Odds” which concentrates on achieving a
level of uniform prediction accuracy across various groups,
primarily within the context of binary classification tasks.
The central objective is to ensure that a predictive model
exhibits comparable true positive rates (sensitivity) and
true negative rates (specificity) across diverse groups [38].
A second notion is “Equal opportunity,”, which aims to
guarantee that a predictive model affords an equal likelihood
of beneficial outcomes for all groups. It places a specific
requirement on the true positive rate, mandating that it should
be approximately equivalent for each group [38].

Prior research in CPS has explored fairness in various ways.
For instance, fairness-aware resource allocation and scheduling
algorithms have been developed for CPS, addressing issues
like energy consumption and real-time constraints while con-
sidering equitable distribution among system components [39].
The concept of fairness in communication protocols for CPS
has been established through strategies to ensure fair access to
network resources for different devices and applications [40].
Furthermore, fairness challenges in decentralized CPS
environments have been examined, focusing on ensuring fair
decision-making in multi-agent systems [41].

However, it’s worth noting that much of the existing CPS
literature concentrates on system-level performance and effi-
ciency, often at the cost of individual-level fairness consider-
ations. In contrast, this paper aims to delve deeper into the
aspects of fairness within HCPS, addressing the interplay be-
tween human preferences, the temporal dimension of adverse
effects, and perceptions of fairness. This approach allows for
a more comprehensive understanding of fairness in the con-
text of HCPS decision-making, particularly in systems where
individuals’ preferences and perceptions can evolve over time.

A. Paper contribution

This paper’s contributions can be summarized as follows:
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o Fairness-in-Adverse-Effect (FinA): In this paper, we
introduce a novel concept known as “Fairness-in-Adverse-
Effect (FinA).” FinA takes a fresh perspective by
considering equity in adverse effects within Human-Cyber-
Physical Systems (HCPS) decision-making. We address
scenarios where adaptive decisions made within HCPS can
impact multiple individuals with diverse preferences. By
formalizing FinA, we provide a means to ensure that the
adverse effects of decision-making are distributed fairly
among the system’s users

o Long-term effects: Our work extends beyond the immediate
effect of CPS decision-making. We delve into the temporal
dimension of adverse effects, recognizing that the impact of
these decisions can have lasting consequences. The interplay
between human preferences, historical data, and the evolving
perception of fairness adds complexity to the notion of
fairness. We introduce five different approaches to formal-
ize FinA within CPS decision-making to account for the
relationship between the instantaneous adverse effects, long-
term adverse effects, and the overall perception of fairness.

o Generalization to different HCPS setups: We
acknowledge that the nature of adverse effects and fairness
considerations can vary across different domains. Therefore,
we offer a general formalization of FinA that can be applied
to various HCPS scenarios. Additionally, we conduct thor-
ough evaluations in the domain of smart home to illustrate
the trade-offs between various interpretations and imple-
mentations of FinA. This demonstrates the flexibility and
effectiveness of our approach across diverse HCPS settings.
The rest of the paper is organized as follows: We introduce

the notion of Fairness-in-Adverse-Effects (FinA) within

Human-Cyber-Physical Systems (HCPS) in Section III. We

formally define FinA using five different approaches in

considering the instantaneous and the long-term adverse
effects while considering the human perception of fairness in

Sections III-B, III-C, III-D, III-E and III-F. Afterward, we

numerically evaluate these approaches using a smart home

HCPS application in Section IV.

III. APPROACH

We consider a CPS depicted in Figure 1, which serves
multiple individuals sharing the same CPS environment, each
with different preferences. The control action generated by
the decision-making agent in CPS can cause different adverse
effects on those individuals.

To achieve Fairness-in-Adverse-Effects (FinA) within
Human-Cyber-Physical Systems (HCPS), we propose five dis-
tinct approaches to guide CPS decision-making when selecting
control actions affecting multiple humans sharing the same en-
vironment. These approaches are rooted in the recognition that
individuals who exhibit pro-social attitudes might be willing
to tolerate certain discrepancies between their preferences and
CPS actions for a limited duration [9]. However, it is important
to acknowledge that this willingness to forgive may not be
indefinite, as the magnitude and persistence of discrepancies
play a pivotal role in shaping individuals’ perception of
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fairness [9]. Moreover, the extent of an individual’s willingness
to forgive is contingent upon the CPS’s responsiveness in
addressing and rectifying such discrepancies [7].

Our first approach formalizes FinA by examining the
concept of instantaneous adverse effects, focusing on the
immediate impact of CPS control actions (Section III-B).
In this context, we recognize that individuals may exhibit a
degree of patience when faced with minor or unintentional
discrepancies between their preferences and CPS actions. This
approach is predicated on the assumption that in scenarios of
minimal and short-term discrepancies, individuals may still
perceive the CPS as acting in their best interest.

Nonetheless, the second approach acknowledges that
as the severity and persistence of discrepancies increase,
individuals, even those with pro-social attitudes, may become
less forgiving (Section III-C). Thus, the historical aspect of
adverse effects becomes a critical factor. It is during extended
periods of inconsistency that individuals may experience a
diminishing willingness to tolerate disparities. This approach
takes into account the temporal dimension of adverse effects,
recognizing that extended discrepancies may erode the
perception of fairness [42].

In our third approach, we examine a balance between the in-
stantaneous adverse effect and the historical record of adverse
effects (Section III-D). By combining these two dimensions,
we aim to provide a tradeoff that accounts for both short-term
variations and long-term consequences. This approach is
particularly valuable in situations where CPS must navigate
the delicate balance between immediate and lasting impact.

Building on the well-established literature on fair resource
distribution, we acknowledge that fairness is not synonymous
with equal resource allocation [42]. Humans’ perception
of fairness is intrinsically tied to how they compare their
resource distribution with that of others in the same system.
In the fourth approach, we consider the collective perception
of fairness among individuals who share the same CPS
environment as a metric for formalizing FinA (Section III-E).
This approach recognizes that individuals may be more
forgiving of discrepancies if they perceive that others are
experiencing similar variations in resource allocation.

Lastly, our fifth approach introduces a tradeoff between
human perception of fairness and a budget of allowable
discrepancy between individual preferences and the applied
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CPS control action (Section III-F). By imposing limits on
the magnitude of permissible discrepancies, this approach
provides a tradeoff between accommodating individual
preferences and ensuring collective fairness.

A. Fairness-in-Adverse-Effect (FinA) Setup

In all of these five approaches, we consider a society S
that consists of IV different individuals and a CPS that serves
this society by providing shared control actions a that may
be tailored toward the preferences and behavior of some of
those individuals. We assume that every individual n € N
has a different set of g preferred actions A,, = {a?,a%,...,a;f
that can serve them better!. Suppose an adverse effect v,,(a)
on individual n occurs due to the chosen control action a.
An initial mechanism to measure the adverse effect on each
vp(a) is to assume that a preferred action aj, € A,, is inversely
proportional to its adverse effects. That is, to measure the
adverse effects of a chosen control action v,,(a) on human n,
we can use the distance between the set of preferred actions
A,, and the chosen control action a, i.e.,

n
vn(a)—agleajinﬂag—aﬂ. (1
B. Approach I: Formalizing the definition of FinA with
instantaneous effect

In our first approach, we formalize FinA by examining
instantaneous adverse effects, delving into the immediate
consequences of CPS control actions.

Hence, an initial definition of FinA can be:

o 1 . 1,
FmAf(rlrngHv(a) N]l v(a)®]l||—|—/\||N]1 v(a)ll, (2)

where v(a) = [v1(a),va(a),...,un(a)]T and A =Y, A,.
In other words, Equation (2) aims to choose the control
action a, out of all possible A,,, that minimizes the difference
between the individual adverse effects on every individual v,,
and the average of the adverse effects across all individuals
LS wn(a) = £17v(a). Indeed, one trivial solution will
be to increase the adverse effect on all individuals to achieve
the same average. Therefore, the second term in Equation (2)
asks that the chosen control action also aims to minimize the
average adverse effect 2.

C. Approach II: Formalizing the definition of FinA using
long-term temporal variations in adverse effect

In the second approach, the historical context of
adverse effects plays a pivotal role. Prolonged instances
of inconsistency are where individuals may exhibit a reduced
willingness to endure disparities. This approach places a
significant emphasis on the temporal dimension of adverse
effects, acknowledging that extended discrepancies can
undermine the perception of fairness [42].

We define a long-term adverse effect v,, by monitoring the
adverse effect for every applied action a over a time horizon
T on human n as follows:

!'While in our first definition A,, we assume a discrete set of preferred
actions, this can be extended to a continuous range of preferred actions.
2We used L2 norm for all || || notations.
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where v/ represents the adverse effect occurred at time j
for human n. However, to focus more on the recent adverse ef-
fects, we assign different weights to v/ and calculate an accu-
mulated value u!, that represents the current history of adverse
effects on human n from time ¢—7' till t—1. Accordingly, by
assigning the weight % to v/, the most recent adverse effects
have more contribution to the the accumulated value wu?,.

lelj
t_
Jj=0

)

T Un for n=1,2,...,N

“)

The historical adverse effect on all /N individuals can be
represented by:

u= [l u,..uy]T ®)
We can then formally define FinA as:
FinA=min B
acA (6)

st.v(a)<B—u

In this equation, v(a)=[vi(a),v2(a),...,un(a)]T represents
the current adverse effect of action a on each individual.
To elaborate, Equation (6) contains N constraints, with
each constraint governing the current adverse effect v, (a)
to remain below a specific budget B. The intuition here is
to use this budget B as the total amount of adverse effect
in the past 7' history. However, it’s essential to note that
this budget B is gauged on the historical adverse effects
of each individual, denoted as ufl. In this context, FinA
tries to identify the minimum budget B that satisfies all N
constraints. Consequently, if a human individual, say n, has
a substantial historical adverse effect value, the constraint
B — ul will direct the optimization process toward finding
an action a that results in a minimal v, (a). This approach is
designed to steer the optimization’s focus towards individuals
with higher historical adverse effect values, encouraging the
selection of new actions that minimize their adverse effects.

D. Approach IlI: Formalizing the definition of FinA as a
tradeoff between instantaneous and long-term adverse effect

In our third approach, we delve into the balance between
immediate adverse effects and cumulative historical adverse
effects. To achieve this, we augment Equation (2) with a term
that considers the historical adverse effects, denoted as u!, as
defined in Equation (4).

The extended formulation can be expressed as:

e IRV 1 7
anA—aIerle}b a(Hv(a) G]l v(a)®IL||+)\||G]l v(a)H)

+(1—a)ub,
s.t. v(a)<b
@)
In this formulation, b = [by, bo, , by]T and

u=[u},ub,...,uly]T. Essentially, the first term in Equation (7)

205

is from the instantaneous adverse effect (Equation (2)), and
then we introduce N new optimization variables, b, for
each individual n, which represents the budget allocated for
the adverse effect (v,,(a)) for each individual n. Importantly,
these budgets b are weighted by the values of the long-term
adverse effects u.

In other words, we have N constraints for different budgets
for adverse effects that are bounded for every individual
(v(a) < b). Accordingly, FinA needs to minimize these
budgets b to minimize the overall adverse effects. However,
the upper bound for these budgets is weighted by the
accumulated historical adverse effects. Hence, the term uTb
is appended to the definition of FinA. To modulate the
trade-off between the immediate and the long-term adverse
effects, we introduce parameter o where o €[0,1].

E. Approach IV: Formalization the definition of FinA using
human perception of fairness

Drawing upon extensive research in the realm of equitable
resource distribution, we recognize that fairness does not
necessarily mean equal resource allocation [42]. Instead,
the perception of fairness in individuals is fundamentally
linked to how they gauge their own resource distribution
concerning that of their peers within the same system. In
particular, fairness in this setup can be viewed generally
as “variances” [42] of the “utility” shared by individuals.
Hence, we exploit the notion of the coefficient of variation
(CoV) of the utilities [42]. In our setup, we define this utility
for human n at time ¢ as the temporal accumulated adverse
effect caused by the control actions of the CPS in the shared
environment, denoted by u!, as expressed in Equation (4).

N

1 (uy, —10)2
N,lz ﬁ2

n=1

CoVy= 8)

In Equation (8), 1 = % Zf:;l ul, represents the average
utility (accumulated adverse effect at time ¢) of all /N humans.
The system is said to be more fair if and only if the CoV is
smaller. The value of CoV can be anywhere between 0 and
infinity. Hence, we use the fairness index (F'[) transformation
to have a value between 0 and 1 to be easily interpreted as a
fairness percentage. In other words, if F'] is 1, it means the
system is 100% fair, otherwise, if disparity increases between
individuals, this F'I value will decrease [42].

1

Fly=—F+—
Y 14CoV2

(€))

Accordingly, we can define FinA to maximize the fairness
index. The core idea is to minimize the reciprocal of this
fairness index, represented as y in the optimization.
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FinA=min y
acA

1 on / fup—a)\ 2
toy>1+— -
ozt (M)

|1, — 1

(10)
<g, for n=1,2,...,N.

where:
up =ut, +v(a)

In this formulation, u!, is a constant value that represents

the accumulated history of the adverse effect up till time
t—1 (Equation (4)) before applying the new a that will add
the new adverse effect v(a) on human n. We also add the
constraint “2=81 < ¢ for n = 1,2,..., N that sets a limit
on how much each individual’s adverse effect can deviate
from the average adverse effect. The parameter e defines the
maximum allowable difference.

E Approach V: Formalizing the definition of FinA using the
human perception of fairness with a tradeoff for a budget for
long-term adverse effect

Lastly, our fifth approach introduces a tradeoff between
human perception of fairness and a budget of allowable
discrepancy between individual preferences and the applied
CPS control action. In particular, we combine our definition
of FinA in Equation (6) and Equation (10) to provide a
tradeoff between fairness index and adverse effect budget 5.

FinA=min a.y+8.8B
acA

1 N
toy>1+—

|, — 1] >2
" (1n
v(a)<B—u
where:
up =ul, +v(a)

The o and B weights allow us to adjust the tradeoff
between fairness index and adverse effect budget.

IV. EVALUATION

We designed an HCPS application in the domain of
smart house. Recent literature focuses on enhancing human
satisfaction in smart heating, ventilation, and air conditioning
(HVAC) systems by employing various techniques to adjust
the set-point based on human activity and preferences [37],
[43]. These HCPS systems consider the current state and
individual preferences, such as body temperature changes
during sleep or physical activity. To evaluate different
approaches of FinA in this application, we consider a setup
where multiple humans share a house with a single HVAC
system, and their activities determine individual HVAC
set-point preferences. Humans can be in the same room
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or separated rooms as long as they are in the same shared
application space that is controlled by the same HVAC.

We exploited recent work in the literature [37] that
simulated a thermodynamic model of a house incorporating
the house’s shape and insulation type. To regulate indoor
temperature, a heater and a cooler with specific flow
temperatures (50°c and 10°c) were employed. A thermostat
maintained the indoor temperature within 2.5°c¢ around the
desired set point. An external controller controls the setpoint
running the optimization of FinA. A pictorial figure of the
application setup is shown in Figure 5.

We implemented our proposed five approaches using
CVXPY, a Python-embedded modeling language for convex
optimization problems [44].

The human was modeled as a heat source, with heat flow
dependent on the average exhale breath temperature (EBT)
and the respiratory minute volume (RM V). These parameters
depend on human activity [45]. We simulated three humans
with four activities: sleeping, relaxing, medium domestic
work, and working from home. Randomness was introduced
by allowing multiple activity choices during the same time
slot. The different activity schedules depicted in Figures 2,
3, and 4. The humans were simulated in separate rooms as
seen in Figure 5, each exhibiting unique behavioral patterns:
(1) hy followed an organized and repetitive weekly routine,
(2) hs had a more random and unpredictable life pattern,
and (3) ho displayed intermediate randomness, alternating
between sleeping, working from home, domestic activities,
and relaxation. The Mathworks thermal house model was
extended to include a cooling system and a human model’.

The desired preferred action (temperature setpoint) per
human ag =T,, for n=1,2, and 3, can be obtained through
fixed policy configuration. We exploit existing approaches [47]
for estimating the desired HVAC setpoint based on activity
and thermal comfort. The desired setpoints for the considered
activities are domestic activity (72°F), relaxed activity (77°F),
sleeping (62°F), and work from home (67°F). These setpoints
aim to enhance thermal comfort [48]. The shared control
action space (applied temperature setpoint) is all possible
temperatures ranging from the minimum preferred action to
the maximum preferred action as defined in Section III-A.

A. Experiment setup

In this application, we used the difference between the
desired temperature (1) and the applied temperature (73,) as
a measure of the adverse effect:

v(a)=|T,—T4||2, where T, € [60—80]°F

We use the most recent 100 samples for our history
of adverse effects for the three humans vy, vi and vg
(as explained in Equation (3)) with sampling time ¢, = 6
min. Hence, every ts, we compute u = [ug, ua, us]T

3While more complex simulators like EnergyPlus [46] exist, considering
energy consumption and electric loads, we opted for a simpler model to
assess FinA.
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Fig. 5: A smart house with three humans. Each human has a different activity, which requires different desired indoor temperature setpoints 7.
An external controller running FinA selects the applied setpoint 7}, based on the calculations of instantaneous and long-term adverse effects.

for the three humans (as explained in Equation (5)), where
Un = 755 D10 745 V- and v, =||T¥ T ||2 for n=1,2, and 3.

The simulation was executed using 3,000 samples, roughly
equivalent to approximately 12 days. This extended duration
allowed us to accurately capture changes in the behavioral
patterns of the three individuals. At every time step, we
check if the desired temperatures of the three humans are not
identical then we run the optimization solver for FinA then
update all the corresponding w.

We consider that the human is satisfied if the T, is within
2.5°F difference from the desired temperature. We measure
the satisfaction rate by considering the 100 sample window
in v,. Hence, the satisfaction rate (SR) for human n is
computed every t5 computed as:

99
SRn:Z]l(v(a) <2.5), for all v(a)€v,
=0

Hence, the SR can give us a measure in % since the total
number of samples we consider is 100. We use this SR to
compute CoV and FI as a function of the SR similar to
Equations (8) and (9) respectively.

N

Z(SR"—@)2
~ Sr®
where N =3 and SR = [SR;,SRs,SR3]T computed for

the three humans every ¢,. Similarly, we consider the FIgsr
as follows:

1

COVSR: N_1

(12)

(13)

207

Furthermore, we compared the five proposed approaches
for FinA with two more approaches:
Mean approach: In this case, the applied temperature 7, is
the mean of the desired temperature from the three humans.
Round Robin: In this case, the applied temperature 73, is
selected in rotation between the desired temperature from
the three humans.
FaiRIoT [37]: We compare with the state-of-the-art
FaiRIoT, which uses hierarchical reinforcement learning
to assign weights to the desired actions to compute the
applied action. Hence, T, :Zizlwan".
In all experiments, we set the trade-off parameter o= 0.5,
as defined in Equation 7.

B. Results

We plot in Table I, the accumulated adverse effect
(u=[uy,us,u3]T), the histogram of the absolute temperature
difference between |Ty;rs| = |T, — Tyl, the satisfaction rate
(SR), and the histogram of the satisfaction rate (SR), across
all approaches for the three individuals in three rooms. First
column in Table I compares the differences in the individual’s
adverse effect (u = [uy, ug, us|T) across all approaches.
Approach II and V show the smallest difference which is
also reflected in average C'oV,, in Table II. Approach IV has
a higher CoV,, (0.027) but it can bound u within a smaller
value compared with other approaches observed in Table 1.

We compare the distribution of |Ty;rs| across all the
approaches in Table I second column. Approach II has the
highest overlap percentage 86.5% as calculated in Table II
which indicates that this approach can make all 3 rooms have
a more similar experience compared with other approaches.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 29,2024 at 18:16:50 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Comparison between all the different five approaches of FinA, Mean approach, and Round Robin.
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Round robin (RR) has a large overlap percentage due to the Table I third and fourth columns present the satisfaction rate
fact that each room can have a |Ty;s¢| =0 on its turn in the (SR) across all approaches. We report the Jensen-Shannon
round. However, RR will result in significant |Ty;;7¢|, which ~ Divergence (JSD) of the histogram for SR in Table IL
is larger than 10°F in a notable number of the samples. Approach II has the lowest JSD, indicating closer SR across
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TABLE II: Comparison of the overlap area percentage, Satisfaction
JSD , and average Fairness Index (F'I) and the average coefficient
of wvariation (CoV) of adverse effect(u) and satisfaction(SR),
respectively.

[Tairel | SR Avg. Avg. Avg. Avg.
over- JSD Fly CoVy Flgr CoVsr
lap%
Appr. 22.4% 0.086 0.998 0.026 0.994 0.057
|
Appr. 86.5% 0.010 0.999 0.004 0.994 0.066
II
Appr. 37.6% 0.639 0.998 0.038 0.870 0.365
111
Appr. 19.2% 0.659 0.998 0.027 0.929 0.624
v
Appr. 83.4% 0.139 0.999 0.004 0.992 0.077
\%
Mean 24.8% 0.648 0.974 0.157 0.868 0.370
RR 68.4% 0.723 0.973 0.160 0.984 0.124

rooms. RR has the highest overall SR but it has the highest
JSD indicating no fairness in the SR among 3 rooms®*.

We summarize the average values of F'I and C'oV for long-
term adverse effect u and satisfaction rate SR in Table II with
more detailed results shown in Table III. The fairness index
(FI) is a metric ranging from O to 1, where 1 means absolute
fair as explained in Section III-E. In particular, as shown in
Table III, Approach I, II, III, and IV have F'I,, values close to
1 and their C'oV,, values are less than 0.04. On the contrary,
Mean and RR have FI,, around 0.97 and a C'oV,, of 0.16.

C. Comparison between these approaches

Approach II and V have the best F'I, and CoV,, which
indicates better fairness in terms of long-term adverse effect
u. Approach IIT and IV have comparable F'I,, and C'oV,, but
their fairness in terms of satisfaction rate (SR), measured in
metrics FIgr, and CoVgR, is not improved. Based on these
analysis from Tables I, II, and III, we observe that Approach
II, and Approach V provide the best results in terms of F'I,
and C'oVy,, while Approach I provides better results in terms
of FISR, and OOVSR.

D. Implementation and Execution time

We used M1 Pro chip as the platform to run our optimization
solver. We use open source solver ECOS in CVXPY [44].
Since we only call the optimization solver when the desired
actions between the N humans are different, we measure the
execution time only when the solver is called. Then, we aver-
aged 1000 calls for the solver for different FinA approaches.
The average execution time per 1000 calls for the optimization
solver for Approach I, II, III, IV and V are 6.308s, 8.249s,
9.876s, 10.355s and 10.217s respectively. This indicates that
around 1ms overhead on average to call the solver. We used
time () function in Python 3 to measure the execution time.

4The Jensen—Shannon divergence is a method of measuring the similarity
between two probability distributions. The JSD is symmetric and always non-
negative, with a value of O indicating that the two distributions are identical,
and a value greater than O indicating that the two distributions are different.
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Fig. 6: Coefficient of Variation (C'oV’) comparison between FaiRIoT,
Mean, Round Robin(RR), and all approaches of FinA .
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E. Compare with the state of the art FaiRIoT [37]

The closest to our approach is FaiRIoT which computes
the applied action through a weighted sum of all the desired
actions by the N individuals 7, = Zi};l wy Ty, . FaiRIoT
uses a notion of utility which is the average weight assigned
by a layer called “Mediator RL” for a particular human A
over a time horizon [0:¢]. In particular, FaiRIoT measures the
fairness of the Mediator RL using the coefficient of variation
(CoV) of the human utilities. The Mediator RL is said to be
more fair if and only if the CoV is smaller. Accordingly, in
Figure 6, we compare the C'oV in FaiRIoT with the C'oV;,
in all approaches in this paper. Approaches I - V achieve
average C'oV around 0.20, while FaiRIoT C'oV is larger than
0.6. Approach II and IV has the lowest C'oV at 0.04. Hence,
using FinA approaches improves the fairness where CoV
is reduced by 66.7% on average.

V. DISCUSSION

In this paper, we proposed an initial mechanism that we used
to define adverse effect v,,(a) of action @ on human n as de-
scribed in Equation 1. This assumes that the human preferred
action is inversely proportional to its adverse effects. This
definition can be gauged by the human perception of adverse
effects. In particular, cognitive psychology offers insights
on human perception. For example, Bounded Rationality
Theory suggests that individuals satisfice rather than optimize
decision-making [49]. Satisficing means seeking solutions that
are “good enough” or satisfactory for a given situation rather
than exhaustively exploring all possible options to identify
the optimal choice. Hence, the adverse effect can be a time-
varying function based on human perception of satisfaction.

VI. CONCLUSION

Addressing fairness in decision-making not only aligns with
the principles of ethical Al and responsible technology, but
also highlights the importance of socially-aware CPS, as indi-
viduals are more likely to cooperate with, and ultimately ac-
cept, systems that they perceive to treat them fairly. In this pa-
per, our approaches to formalizing FinA within CPS decision-
making capture the interplay between human preferences, the
temporal dimension of adverse effects, and perceptions of
fairness. Recognizing the complexities of these interactions is
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TABLE III: Comparison between all the different five approaches of FinA, Mean approach, and Round Robin
H Fly ‘ CoVyu ‘ Flsr ‘ COVSR
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