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Abstract—Ensuring fairness in decision-making systems within
Human-Cyber-Physical-Systems (HCPS) is a pressing concern,
particularly when diverse individuals, each with varying behav-
iors and expectations, coexist within the same application space,
influenced by a shared set of control actions in the system. The
long-term adverse effects of these actions further pose the chal-
lenge, as historical experiences and interactions shape individual
perceptions of fairness. This paper addresses the challenge of fair-
ness from an equity perspective of adverse effects, taking into ac-
count the dynamic nature of human behavior and evolving pref-
erences while recognizing the lasting impact of adverse effects.
We formally introduce the concept of Fairness-in-Adverse-Effects
(FinA) within the HCPS context. We put forth a comprehensive
set of five formulations for FinA, encompassing both the instan-
taneous and long-term aspects of adverse effects. To empirically
validate the effectiveness of our FinA approach, we conducted an
evaluation within the domain of smart homes, a pertinent HCPS
application. The outcomes of our evaluation demonstrate that the
adoption of FinA significantly enhances the overall perception of
fairness among individuals, yielding an average improvement of
66.7% when compared to the state-of-the-art method.

Index Terms—human-cyber-physical-systems, fairness,
decision-making, adverse-effect

I. INTRODUCTION

The ubiquitous integration of smart technologies into our

daily lives offers unprecedented opportunities but also presents

a lot of challenges. A key challenge lies in understanding the

interplay between humans and Cyber-Physical Systems (CPS)

to shape the societal consequences of future CPS technologies.

As we move towards a future defined by the coexistence of hu-

mans and smart technologies, understanding their interactions

is essential, as suggested by recent studies [1], [2]. Within the

realm of Human-Cyber-Physical Systems (HCPS), one central

challenge emerges when CPS decisions can affect individuals

with diverse preferences and perceptions within the same

environment. This scenario is common in systems like smart

buildings, smart cities, smart traffic management, and smart

crowd control, where fairness, privacy, equity, and personal-

ization issues intersect, sparking new societal tensions [3]–[5].

Existing research in sociology, particularly Social Exchange

Theory [6], [7] and Equity Theory [8] has substantiated a

direct link between “equity” and prosocial behavior. The

higher an individual perceives a system as equitable, the

greater the likelihood of that individual engaging in prosocial

behavior [8]–[10]. This, in turn, significantly impacts the

overall performance of the system. Specifically, the greater

the number of individuals who engage in prosocial behavior,

the higher the likelihood of compliance and acceptance of

the system’s decisions, ultimately leading to an enhancement

in overall system performance [11]–[13]. Given that CPS

decision-making often aims to optimize system performance

while adhering to operational constraints, it is essential to de-

velop formal metrics and objective functions that enhance the

human perception of these decisions, ultimately fostering more

prosocial behavior and improving overall system performance.

In this paper, we are interested in formalizing some of

the equity objectives in decision-making HCPS. We will

start by exploring a notion of fairness from the equity

perspective. In particular, we will focus on what we term

Fairness-in-Adverse-Effects (FinA). Decision-making agents

in HCPS employ a range of control actions. However, these

control actions can have different adverse effects on a diverse

population, each with its own preferences. Hence, the HCPS

needs to adapt its decision-making to continuously match

different populations across time and ensure that it meets the

preferences of as many populations as possible. Our motivation

in examining the adverse effects or the harmful impact of

decision-making in HCPS stems from the psychology concept

“loss aversion–Losses loom larger than gains” which implies

that losses can be twice as powerful, psychologically, as

gains [14]. This concept underscores the significance of

minimizing adverse effects to promote fairness within HCPS.

II. RELATED WORK

HCPS systems are centered on the challenge of designing

adaptable, real-time decision-making processes that take into

account the social context, including considerations of fairness,

social welfare, ethical concerns, and societal norms [15],

[16]. A substantial body of work in the field of game theory

explores various facets of fairness, often framed as incentive

markets among competing entities or communities striving to

achieve fairness [17], [18]. In the domain of machine learning,

interventions to enhance fairness have been introduced, aiming

to ensure that models’ decisions are devoid of discrimina-

tion [19]–[23]. In the context of decision-making systems,

where agents express favoritism for one action over another,

questions surrounding fairness become even more significant,

especially within multi-agent systems [24]–[31]. However,

imposing fairness constraints as static, one-time decisions akin

to conventional supervised learning methods while neglecting
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dynamic feedback and long-term consequences, particularly

in sequential decision-making systems, can inadvertently lead

to disparities that affect specific sub-populations [32], [33].

Recent research has also shed light on the long-term

ramifications of Reinforcement Learning (RL), revealing that

addressing control decisions’ immediate effects in single steps

does not ensure fairness in subsequent decision actions [34],

[35]. Nevertheless, a significant portion of this research

has predominantly focused on fairness through the lens of

equality, with an emphasis on eliminating favoritism or bias

within the system, and relatively less attention has been

given to the concept of fairness from an equity perspective,

particularly in the context of sequential decision-making [36].

Notably, ensuring fairness in sequential decision-making

systems becomes increasingly complex as policies deemed

fair at one point may inadvertently become discriminatory

over time due to shifts in human preferences influenced by

the inter- and intra-human variation [37].

The concept of “group fairness” has been introduced in the

literature to tackle fairness concerns arising when the same

adaptive model impacts multiple individuals. One notion

is “Equalized Odds” which concentrates on achieving a

level of uniform prediction accuracy across various groups,

primarily within the context of binary classification tasks.

The central objective is to ensure that a predictive model

exhibits comparable true positive rates (sensitivity) and

true negative rates (specificity) across diverse groups [38].

A second notion is “Equal opportunity,”, which aims to

guarantee that a predictive model affords an equal likelihood

of beneficial outcomes for all groups. It places a specific

requirement on the true positive rate, mandating that it should

be approximately equivalent for each group [38].

Prior research in CPS has explored fairness in various ways.

For instance, fairness-aware resource allocation and scheduling

algorithms have been developed for CPS, addressing issues

like energy consumption and real-time constraints while con-

sidering equitable distribution among system components [39].

The concept of fairness in communication protocols for CPS

has been established through strategies to ensure fair access to

network resources for different devices and applications [40].

Furthermore, fairness challenges in decentralized CPS

environments have been examined, focusing on ensuring fair

decision-making in multi-agent systems [41].

However, it’s worth noting that much of the existing CPS

literature concentrates on system-level performance and effi-

ciency, often at the cost of individual-level fairness consider-

ations. In contrast, this paper aims to delve deeper into the

aspects of fairness within HCPS, addressing the interplay be-

tween human preferences, the temporal dimension of adverse

effects, and perceptions of fairness. This approach allows for

a more comprehensive understanding of fairness in the con-

text of HCPS decision-making, particularly in systems where

individuals’ preferences and perceptions can evolve over time.

A. Paper contribution

This paper’s contributions can be summarized as follows:

• Fairness-in-Adverse-Effect (FinA): In this paper, we

introduce a novel concept known as “Fairness-in-Adverse-

Effect (FinA).” FinA takes a fresh perspective by

considering equity in adverse effects within Human-Cyber-

Physical Systems (HCPS) decision-making. We address

scenarios where adaptive decisions made within HCPS can

impact multiple individuals with diverse preferences. By

formalizing FinA, we provide a means to ensure that the

adverse effects of decision-making are distributed fairly

among the system’s users

• Long-term effects: Our work extends beyond the immediate

effect of CPS decision-making. We delve into the temporal

dimension of adverse effects, recognizing that the impact of

these decisions can have lasting consequences. The interplay

between human preferences, historical data, and the evolving

perception of fairness adds complexity to the notion of

fairness. We introduce five different approaches to formal-

ize FinA within CPS decision-making to account for the

relationship between the instantaneous adverse effects, long-

term adverse effects, and the overall perception of fairness.

• Generalization to different HCPS setups: We

acknowledge that the nature of adverse effects and fairness

considerations can vary across different domains. Therefore,

we offer a general formalization of FinA that can be applied

to various HCPS scenarios. Additionally, we conduct thor-

ough evaluations in the domain of smart home to illustrate

the trade-offs between various interpretations and imple-

mentations of FinA. This demonstrates the flexibility and

effectiveness of our approach across diverse HCPS settings.

The rest of the paper is organized as follows: We introduce

the notion of Fairness-in-Adverse-Effects (FinA) within

Human-Cyber-Physical Systems (HCPS) in Section III. We

formally define FinA using five different approaches in

considering the instantaneous and the long-term adverse

effects while considering the human perception of fairness in

Sections III-B, III-C, III-D, III-E and III-F. Afterward, we

numerically evaluate these approaches using a smart home

HCPS application in Section IV.

III. APPROACH

We consider a CPS depicted in Figure 1, which serves

multiple individuals sharing the same CPS environment, each

with different preferences. The control action generated by

the decision-making agent in CPS can cause different adverse

effects on those individuals.

To achieve Fairness-in-Adverse-Effects (FinA) within

Human-Cyber-Physical Systems (HCPS), we propose five dis-

tinct approaches to guide CPS decision-making when selecting

control actions affecting multiple humans sharing the same en-

vironment. These approaches are rooted in the recognition that

individuals who exhibit pro-social attitudes might be willing

to tolerate certain discrepancies between their preferences and

CPS actions for a limited duration [9]. However, it is important

to acknowledge that this willingness to forgive may not be

indefinite, as the magnitude and persistence of discrepancies

play a pivotal role in shaping individuals’ perception of
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Fig. 1: Human-Cyber-Physical-System with multiple individuals
sharing the same environments with different preferences. The
decision-making agent control action can cause different adverse
effects on those individuals.

fairness [9]. Moreover, the extent of an individual’s willingness

to forgive is contingent upon the CPS’s responsiveness in

addressing and rectifying such discrepancies [7].

Our first approach formalizes FinA by examining the

concept of instantaneous adverse effects, focusing on the

immediate impact of CPS control actions (Section III-B).

In this context, we recognize that individuals may exhibit a

degree of patience when faced with minor or unintentional

discrepancies between their preferences and CPS actions. This

approach is predicated on the assumption that in scenarios of

minimal and short-term discrepancies, individuals may still

perceive the CPS as acting in their best interest.

Nonetheless, the second approach acknowledges that

as the severity and persistence of discrepancies increase,

individuals, even those with pro-social attitudes, may become

less forgiving (Section III-C). Thus, the historical aspect of

adverse effects becomes a critical factor. It is during extended

periods of inconsistency that individuals may experience a

diminishing willingness to tolerate disparities. This approach

takes into account the temporal dimension of adverse effects,

recognizing that extended discrepancies may erode the

perception of fairness [42].

In our third approach, we examine a balance between the in-

stantaneous adverse effect and the historical record of adverse

effects (Section III-D). By combining these two dimensions,

we aim to provide a tradeoff that accounts for both short-term

variations and long-term consequences. This approach is

particularly valuable in situations where CPS must navigate

the delicate balance between immediate and lasting impact.

Building on the well-established literature on fair resource

distribution, we acknowledge that fairness is not synonymous

with equal resource allocation [42]. Humans’ perception

of fairness is intrinsically tied to how they compare their

resource distribution with that of others in the same system.

In the fourth approach, we consider the collective perception

of fairness among individuals who share the same CPS

environment as a metric for formalizing FinA (Section III-E).

This approach recognizes that individuals may be more

forgiving of discrepancies if they perceive that others are

experiencing similar variations in resource allocation.

Lastly, our fifth approach introduces a tradeoff between

human perception of fairness and a budget of allowable

discrepancy between individual preferences and the applied

CPS control action (Section III-F). By imposing limits on

the magnitude of permissible discrepancies, this approach

provides a tradeoff between accommodating individual

preferences and ensuring collective fairness.

A. Fairness-in-Adverse-Effect (FinA) Setup

In all of these five approaches, we consider a society S
that consists of N different individuals and a CPS that serves

this society by providing shared control actions a that may

be tailored toward the preferences and behavior of some of

those individuals. We assume that every individual n ∈ N
has a different set of g preferred actions An={an1 ,an2 ,...,ang }
that can serve them better1. Suppose an adverse effect vn(a)
on individual n occurs due to the chosen control action a.

An initial mechanism to measure the adverse effect on each

vn(a) is to assume that a preferred action ang ∈An is inversely

proportional to its adverse effects. That is, to measure the

adverse effects of a chosen control action vn(a) on human n,

we can use the distance between the set of preferred actions

An and the chosen control action a, i.e.,

vn(a)= max
an
g∈An

‖ang−a‖. (1)

B. Approach I: Formalizing the definition of FinA with
instantaneous effect

In our first approach, we formalize FinA by examining

instantaneous adverse effects, delving into the immediate

consequences of CPS control actions.

Hence, an initial definition of FinA can be:

FinA=min
a∈A

‖v(a)− 1

N
1Tv(a)⊗1‖+λ‖ 1

N
1Tv(a)‖, (2)

where v(a) = [v1(a), v2(a), ... , vN (a)]ᵀ and A =
⋃N

n=1An.

In other words, Equation (2) aims to choose the control

action a, out of all possible An, that minimizes the difference

between the individual adverse effects on every individual vn
and the average of the adverse effects across all individuals
1
N

∑N
n=1vn(a) =

1
N 1Tv(a). Indeed, one trivial solution will

be to increase the adverse effect on all individuals to achieve

the same average. Therefore, the second term in Equation (2)

asks that the chosen control action also aims to minimize the

average adverse effect 2.

C. Approach II: Formalizing the definition of FinA using
long-term temporal variations in adverse effect

In the second approach, the historical context of

adverse effects plays a pivotal role. Prolonged instances

of inconsistency are where individuals may exhibit a reduced

willingness to endure disparities. This approach places a

significant emphasis on the temporal dimension of adverse

effects, acknowledging that extended discrepancies can

undermine the perception of fairness [42].

We define a long-term adverse effect vn by monitoring the

adverse effect for every applied action a over a time horizon

T on human n as follows:

1While in our first definition An we assume a discrete set of preferred
actions, this can be extended to a continuous range of preferred actions.

2We used L2 norm for all ‖•‖ notations.
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vn=[v0n,v
1
n,...,v

T−1
n ]ᵀ, (3)

where vjn represents the adverse effect occurred at time j
for human n. However, to focus more on the recent adverse ef-

fects, we assign different weights to vjn and calculate an accu-

mulated value ut
n that represents the current history of adverse

effects on human n from time t−T till t−1. Accordingly, by

assigning the weight j
T to vjn, the most recent adverse effects

have more contribution to the the accumulated value ut
n.

ut
n=

1

T

T−1∑
j=0

j

T
vjn, for n=1,2,...,N (4)

The historical adverse effect on all N individuals can be

represented by:
u=[ut

1,u
t
2,...,u

t
N ]ᵀ (5)

We can then formally define FinA as:

FinA=min
a∈A

B
s.t. v(a)<B−u

(6)

In this equation, v(a)=[v1(a),v2(a),...,vN (a)]ᵀ represents

the current adverse effect of action a on each individual.

To elaborate, Equation (6) contains N constraints, with

each constraint governing the current adverse effect vn(a)
to remain below a specific budget B. The intuition here is

to use this budget B as the total amount of adverse effect

in the past T history. However, it’s essential to note that

this budget B is gauged on the historical adverse effects

of each individual, denoted as ut
n. In this context, FinA

tries to identify the minimum budget B that satisfies all N
constraints. Consequently, if a human individual, say n, has

a substantial historical adverse effect value, the constraint

B − ut
n will direct the optimization process toward finding

an action a that results in a minimal vn(a). This approach is

designed to steer the optimization’s focus towards individuals

with higher historical adverse effect values, encouraging the

selection of new actions that minimize their adverse effects.

D. Approach III: Formalizing the definition of FinA as a
tradeoff between instantaneous and long-term adverse effect

In our third approach, we delve into the balance between

immediate adverse effects and cumulative historical adverse

effects. To achieve this, we augment Equation (2) with a term

that considers the historical adverse effects, denoted as ut
n as

defined in Equation (4).

The extended formulation can be expressed as:

FinA= min
a∈A,b

α
(
‖v(a)− 1

G
1Tv(a)⊗1‖+λ‖ 1

G
1Tv(a)‖

)

+(1−α)uᵀb,

s.t. v(a)<b
(7)

In this formulation, b = [b1, b2, ... , bN ]ᵀ and

u=[ut
1,u

t
2,...,u

t
N ]ᵀ. Essentially, the first term in Equation (7)

is from the instantaneous adverse effect (Equation (2)), and

then we introduce N new optimization variables, bn, for

each individual n, which represents the budget allocated for

the adverse effect (vn(a)) for each individual n. Importantly,

these budgets b are weighted by the values of the long-term

adverse effects u.

In other words, we have N constraints for different budgets

for adverse effects that are bounded for every individual

(v(a) < b). Accordingly, FinA needs to minimize these

budgets b to minimize the overall adverse effects. However,

the upper bound for these budgets is weighted by the

accumulated historical adverse effects. Hence, the term uᵀb
is appended to the definition of FinA. To modulate the

trade-off between the immediate and the long-term adverse

effects, we introduce parameter α where α∈ [0,1].

E. Approach IV: Formalization the definition of FinA using
human perception of fairness

Drawing upon extensive research in the realm of equitable

resource distribution, we recognize that fairness does not

necessarily mean equal resource allocation [42]. Instead,

the perception of fairness in individuals is fundamentally

linked to how they gauge their own resource distribution

concerning that of their peers within the same system. In

particular, fairness in this setup can be viewed generally

as “variances” [42] of the “utility” shared by individuals.

Hence, we exploit the notion of the coefficient of variation

(CoV ) of the utilities [42]. In our setup, we define this utility

for human n at time t as the temporal accumulated adverse

effect caused by the control actions of the CPS in the shared

environment, denoted by ut
n as expressed in Equation (4).

CoVu=

√√√√ 1

N−1

N∑
n=1

(un−ū)2

ū2
(8)

In Equation (8), ū = 1
N

∑N
n=1 u

t
n represents the average

utility (accumulated adverse effect at time t) of all N humans.

The system is said to be more fair if and only if the CoV is

smaller. The value of CoV can be anywhere between 0 and

infinity. Hence, we use the fairness index (FI) transformation

to have a value between 0 and 1 to be easily interpreted as a

fairness percentage. In other words, if FI is 1, it means the

system is 100% fair, otherwise, if disparity increases between

individuals, this FI value will decrease [42].

FIu=
1

1+CoV 2
u

(9)

Accordingly, we can define FinA to maximize the fairness

index. The core idea is to minimize the reciprocal of this

fairness index, represented as y in the optimization.
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FinA=min
a∈A

y

s.t. y≥1+
1

N

N∑
n=1

( |un−ū|
ū

)2

|un−ū|
ū

≤ε, for n=1,2,...,N.

where:

un=ut
n+v(a)

(10)

In this formulation, ut
n is a constant value that represents

the accumulated history of the adverse effect up till time

t−1 (Equation (4)) before applying the new a that will add

the new adverse effect v(a) on human n. We also add the

constraint
|un−ū|

ū ≤ ε, for n = 1, 2, ... , N that sets a limit

on how much each individual’s adverse effect can deviate

from the average adverse effect. The parameter ε defines the

maximum allowable difference.

F. Approach V: Formalizing the definition of FinA using the
human perception of fairness with a tradeoff for a budget for
long-term adverse effect

Lastly, our fifth approach introduces a tradeoff between

human perception of fairness and a budget of allowable

discrepancy between individual preferences and the applied

CPS control action. In particular, we combine our definition

of FinA in Equation (6) and Equation (10) to provide a

tradeoff between fairness index and adverse effect budget B.

FinA=min
a∈A

α.y+β.B

s.t. y≥1+
1

N

N∑
n=1

( |un−ū|
ū

)2

v(a)<B−u

where:

un=ut
n+v(a)

(11)

The α and β weights allow us to adjust the tradeoff

between fairness index and adverse effect budget.

IV. EVALUATION

We designed an HCPS application in the domain of

smart house. Recent literature focuses on enhancing human

satisfaction in smart heating, ventilation, and air conditioning

(HVAC) systems by employing various techniques to adjust

the set-point based on human activity and preferences [37],

[43]. These HCPS systems consider the current state and

individual preferences, such as body temperature changes

during sleep or physical activity. To evaluate different

approaches of FinA in this application, we consider a setup

where multiple humans share a house with a single HVAC

system, and their activities determine individual HVAC

set-point preferences. Humans can be in the same room

or separated rooms as long as they are in the same shared

application space that is controlled by the same HVAC.

We exploited recent work in the literature [37] that

simulated a thermodynamic model of a house incorporating

the house’s shape and insulation type. To regulate indoor

temperature, a heater and a cooler with specific flow

temperatures (50◦c and 10◦c) were employed. A thermostat

maintained the indoor temperature within 2.5◦c around the

desired set point. An external controller controls the setpoint

running the optimization of FinA. A pictorial figure of the

application setup is shown in Figure 5.

We implemented our proposed five approaches using

CVXPY, a Python-embedded modeling language for convex

optimization problems [44].

The human was modeled as a heat source, with heat flow

dependent on the average exhale breath temperature (EBT )

and the respiratory minute volume (RMV ). These parameters

depend on human activity [45]. We simulated three humans

with four activities: sleeping, relaxing, medium domestic

work, and working from home. Randomness was introduced

by allowing multiple activity choices during the same time

slot. The different activity schedules depicted in Figures 2,

3, and 4. The humans were simulated in separate rooms as

seen in Figure 5, each exhibiting unique behavioral patterns:

(1) h1 followed an organized and repetitive weekly routine,

(2) h3 had a more random and unpredictable life pattern,

and (3) h2 displayed intermediate randomness, alternating

between sleeping, working from home, domestic activities,

and relaxation. The Mathworks thermal house model was

extended to include a cooling system and a human model3.

The desired preferred action (temperature setpoint) per

human ang =Tn, for n=1,2, and 3, can be obtained through

fixed policy configuration. We exploit existing approaches [47]

for estimating the desired HVAC setpoint based on activity

and thermal comfort. The desired setpoints for the considered

activities are domestic activity (72◦F), relaxed activity (77◦F),

sleeping (62◦F), and work from home (67◦F). These setpoints

aim to enhance thermal comfort [48]. The shared control

action space (applied temperature setpoint) is all possible

temperatures ranging from the minimum preferred action to

the maximum preferred action as defined in Section III-A.

A. Experiment setup

In this application, we used the difference between the

desired temperature (Td) and the applied temperature (Ta) as

a measure of the adverse effect:

v(a)=‖Ta−Td‖2, where Ta∈ [60−80]◦F

We use the most recent 100 samples for our history

of adverse effects for the three humans v1, v1 and v3

(as explained in Equation (3)) with sampling time ts = 6
min. Hence, every ts, we compute u = [u1, u2, u3]

ᵀ

3While more complex simulators like EnergyPlus [46] exist, considering
energy consumption and electric loads, we opted for a simpler model to
assess FinA.
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Fig. 2: Human 1 activity pattern.
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Fig. 3: Human 2 activity pattern.
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Fig. 4: Human 3 activity pattern.

Fig. 5: A smart house with three humans. Each human has a different activity, which requires different desired indoor temperature setpoints Td.
An external controller running FinA selects the applied setpoint Ta based on the calculations of instantaneous and long-term adverse effects.

for the three humans (as explained in Equation (5)), where

un=
1

100

∑99
j=0

j
100v

j
n, and vjn=‖T j

a−T j
d1
‖2 for n=1,2, and 3.

The simulation was executed using 3,000 samples, roughly

equivalent to approximately 12 days. This extended duration

allowed us to accurately capture changes in the behavioral

patterns of the three individuals. At every time step, we

check if the desired temperatures of the three humans are not

identical then we run the optimization solver for FinA then

update all the corresponding u.
We consider that the human is satisfied if the Ta is within

2.5◦F difference from the desired temperature. We measure

the satisfaction rate by considering the 100 sample window

in vn. Hence, the satisfaction rate (SR) for human n is

computed every ts computed as:

SRn=

99∑
j=0

1(v(a)≤2.5), for all v(a)∈vn

Hence, the SR can give us a measure in % since the total

number of samples we consider is 100. We use this SR to

compute CoV and FI as a function of the SR similar to

Equations (8) and (9) respectively.

CoVSR=

√√√√ 1

N−1

N∑
n=1

(SRn−SR)2

SR
2 , (12)

where N = 3 and SR = [SR1,SR2,SR3]
ᵀ computed for

the three humans every ts. Similarly, we consider the FISR
as follows:

FISR=
1

1+CoV 2
SR

(13)

Furthermore, we compared the five proposed approaches

for FinA with two more approaches:

• Mean approach: In this case, the applied temperature Ta is

the mean of the desired temperature from the three humans.

• Round Robin: In this case, the applied temperature Ta is

selected in rotation between the desired temperature from

the three humans.

• FaiRIoT [37]: We compare with the state-of-the-art

FaiRIoT, which uses hierarchical reinforcement learning

to assign weights to the desired actions to compute the

applied action. Hence, Ta=
∑3

n=1wnTdn .

In all experiments, we set the trade-off parameter α=0.5,

as defined in Equation 7.

B. Results

We plot in Table I, the accumulated adverse effect

(u= [u1,u2,u3]
ᵀ), the histogram of the absolute temperature

difference between |Tdiff | = |Ta − Td|, the satisfaction rate

(SR), and the histogram of the satisfaction rate (SR), across

all approaches for the three individuals in three rooms. First

column in Table I compares the differences in the individual’s

adverse effect (u = [u1, u2, u3]
ᵀ) across all approaches.

Approach II and V show the smallest difference which is

also reflected in average CoVu in Table II. Approach IV has

a higher CoVu (0.027) but it can bound u within a smaller

value compared with other approaches observed in Table I.

We compare the distribution of |Tdiff | across all the

approaches in Table I second column. Approach II has the

highest overlap percentage 86.5% as calculated in Table II

which indicates that this approach can make all 3 rooms have

a more similar experience compared with other approaches.
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TABLE I: Comparison between all the different five approaches of FinA, Mean approach, and Round Robin.

Accumulated adverse effect(u) Hist. temperature difference |Tdiff | Satisfaction rate (SR) % Hist. satisfaction rate (SR)
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Round robin (RR) has a large overlap percentage due to the

fact that each room can have a |Tdiff |=0 on its turn in the

round. However, RR will result in significant |Tdiff |, which

is larger than 10◦F in a notable number of the samples.

Table I third and fourth columns present the satisfaction rate

(SR) across all approaches. We report the Jensen-Shannon

Divergence (JSD) of the histogram for SR in Table II.

Approach II has the lowest JSD, indicating closer SR across
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TABLE II: Comparison of the overlap area percentage, Satisfaction
JSD , and average Fairness Index (FI) and the average coefficient
of variation (CoV ) of adverse effect(u) and satisfaction(SR),
respectively.

|Tdiff |
over-
lap%

SR
JSD

Avg.
FIu

Avg.
CoVu

Avg.
FISR

Avg.
CoVSR

Appr.
I

22.4% 0.086 0.998 0.026 0.994 0.057

Appr.
II

86.5% 0.010 0.999 0.004 0.994 0.066

Appr.
III

37.6% 0.639 0.998 0.038 0.870 0.365

Appr.
IV

19.2% 0.659 0.998 0.027 0.929 0.624

Appr.
V

83.4% 0.139 0.999 0.004 0.992 0.077

Mean 24.8% 0.648 0.974 0.157 0.868 0.370
RR 68.4% 0.723 0.973 0.160 0.984 0.124

rooms. RR has the highest overall SR but it has the highest

JSD indicating no fairness in the SR among 3 rooms4.

We summarize the average values of FI and CoV for long-

term adverse effect u and satisfaction rate SR in Table II with

more detailed results shown in Table III. The fairness index

(FI) is a metric ranging from 0 to 1, where 1 means absolute

fair as explained in Section III-E. In particular, as shown in

Table III, Approach I, II, III, and IV have FIu values close to

1 and their CoVu values are less than 0.04. On the contrary,

Mean and RR have FIu around 0.97 and a CoVu of 0.16.

C. Comparison between these approaches

Approach II and V have the best FIu and CoVu, which

indicates better fairness in terms of long-term adverse effect

u. Approach III and IV have comparable FIu and CoVu but

their fairness in terms of satisfaction rate (SR), measured in

metrics FISR, and CoVSR, is not improved. Based on these

analysis from Tables I, II, and III, we observe that Approach

II, and Approach V provide the best results in terms of FIu,

and CoVu, while Approach I provides better results in terms

of FISR, and CoVSR.

D. Implementation and Execution time

We used M1 Pro chip as the platform to run our optimization

solver. We use open source solver ECOS in CVXPY [44].

Since we only call the optimization solver when the desired

actions between the N humans are different, we measure the

execution time only when the solver is called. Then, we aver-

aged 1000 calls for the solver for different FinA approaches.

The average execution time per 1000 calls for the optimization

solver for Approach I, II, III, IV and V are 6.308s, 8.249s,

9.876s, 10.355s and 10.217s respectively. This indicates that

around 1ms overhead on average to call the solver. We used

time() function in Python 3 to measure the execution time.

4The Jensen–Shannon divergence is a method of measuring the similarity
between two probability distributions. The JSD is symmetric and always non-
negative, with a value of 0 indicating that the two distributions are identical,
and a value greater than 0 indicating that the two distributions are different.

Fig. 6: Coefficient of Variation (CoV ) comparison between FaiRIoT,
Mean, Round Robin(RR), and all approaches of FinA .

E. Compare with the state of the art FaiRIoT [37]
The closest to our approach is FaiRIoT which computes

the applied action through a weighted sum of all the desired

actions by the N individuals Ta =
∑N

n=1 wnTdn . FaiRIoT

uses a notion of utility which is the average weight assigned

by a layer called “Mediator RL” for a particular human h
over a time horizon [0 : t]. In particular, FaiRIoT measures the

fairness of the Mediator RL using the coefficient of variation

(CoV ) of the human utilities. The Mediator RL is said to be

more fair if and only if the CoV is smaller. Accordingly, in

Figure 6, we compare the CoV in FaiRIoT with the CoVu

in all approaches in this paper. Approaches I - V achieve

average CoV around 0.20, while FaiRIoT CoV is larger than

0.6. Approach II and IV has the lowest CoV at 0.04. Hence,
using FinA approaches improves the fairness where CoV
is reduced by 66.7% on average.

V. DISCUSSION

In this paper, we proposed an initial mechanism that we used

to define adverse effect vn(a) of action a on human n as de-

scribed in Equation 1. This assumes that the human preferred

action is inversely proportional to its adverse effects. This

definition can be gauged by the human perception of adverse

effects. In particular, cognitive psychology offers insights

on human perception. For example, Bounded Rationality

Theory suggests that individuals satisfice rather than optimize

decision-making [49]. Satisficing means seeking solutions that

are “good enough” or satisfactory for a given situation rather

than exhaustively exploring all possible options to identify

the optimal choice. Hence, the adverse effect can be a time-

varying function based on human perception of satisfaction.

VI. CONCLUSION

Addressing fairness in decision-making not only aligns with

the principles of ethical AI and responsible technology, but

also highlights the importance of socially-aware CPS, as indi-

viduals are more likely to cooperate with, and ultimately ac-

cept, systems that they perceive to treat them fairly. In this pa-

per, our approaches to formalizing FinA within CPS decision-

making capture the interplay between human preferences, the

temporal dimension of adverse effects, and perceptions of

fairness. Recognizing the complexities of these interactions is
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TABLE III: Comparison between all the different five approaches of FinA, Mean approach, and Round Robin

FIu CoVu FISR CoVSR
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essential for designing more equitable Human-Cyber-Physical

Systems. These approaches offer a multifaceted perspective on

addressing the challenges posed by the impact of CPS control

actions on diverse individuals within shared environments.
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