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ABSTRACT: Alkyl halide side groups are selectively incorpo-
rated into monodispersed, computationally designed coiled coil-
forming peptide nanoparticles.  Poly 2-(dimethylamino)ethyl 
methacrylate (PDMAEMA) is polymerized from the coiled coil 
periphery using photoinitiated atom transfer radical polymeriza-
tion (photoATRP) to synthesize well-defined, thermo-responsive 
star copolymer architectures. This facile synthetic route is readily 
extended to other monomers for a range of new complex star-
polymer macromolecules. 

Peptide–polymer conjugates are an emerging class of biomaterials 
that combine the sequence-to-structure fidelity and the encoded 
functionalities associated with biological materials (peptides and 
proteins) with the stability and processability associated with 
synthetic polymers1-8. Coiled-coil peptide bundle units, or ‘bun-
dlemers’, consist of individual peptide strands that are encoded 
via their primary amino acid sequence to form helical structures 
that subsequently assemble into well-defined, monodisperse na-
noparticles.9  Bundlemers can be viewed as modular monomeric 
building blocks for the creation of more complex hierarchical 
macromolecular architectures.10-12  Previous research has depicted 
bundlemers as an ideal substrate for bundlemer-polymer conju-
gates, since biophysical evidence supports that coiled coil bundles 
retain their oligomerization structure after terminal13-15 or side-
chain16, 17 polymer conjugation. 
Bundlemer-polymer conjugates combine a well-defined core 
structure with tunable polymer interactions.  Early work on 
coiled-coil polymer grafts examined the effects of polymer conju-
gation (i.e., using grafting-to approach) on coiled coil oligomeri-
zation state and stability16, 18-22.  Some of the well-known draw-
backs of the grafting-to approach include the need for a large 
excess of polymer, difficulties in purification, and steric hinder-
ance lowering probability that complementary functional groups 
will meet.  These issues may be overcome by a ‘grafting-from’ 
approach, where polymerization occurs from the substrate. 
Here, a halide side group was selectively incorporated into a bun-
dlemer-forming peptide sequence to create a thermo-responsive 
bundlemer–polymer conjugate using atom transfer radical 
polymerization (ATRP) (illustrated in Figure 1). ATRP is a re-
versible deactivation radical polymerization (RDRP) strategy that 
utilizes a metal complex to mediate radical growth of polymer 
chains via the temporary transfer of the halide to the metal 
center23, 24.  By controlling this transfer process, the chains can be 
polymerized simultaneously at nearly the same rate to produce a 
low dispersity product. There are several advantages of the graft-
ing-from strategy, such as compatibility with a wide range of 
monomers, easy incorporation of the initiating species, and widely 
available and relatively inexpensive reagents. Additionally, the 
use of oxygen tolerant activator regeneration ATRP approaches, 

such as photoinduced ATRP (photoATRP)25, 26, increases the 
applicability of ATRP for new applications, such as modification 
and stabilization of biomolecular materials27-30.  
As illustrated in Figure 1B, bundlemer grafts of poly 2-
(dimethylamino)ethyl methacrylate (PDMAEMA) were synthe-
sized via a grafting-from approach utilizing photo-ATRP. 
PDMAEMA is a water-soluble polymer that exhibits a lower crit-
ical solution temperature (LCST) and exhibits an extended-to-
globular chain transition in responsive to a range of pH, ionic 
strength, and temperature conditions.  While there is a growing 
body of work utilizing ATRP to graft polymer from proteins31-36, 
to our knowledge, this is the first example to synthesize coiled-
coil peptide–polymer conjugates using ATRP.  The unique control 
over the macromolecular architecture is enabled by the use of 
solid phase peptide synthesis (SPPS)37, 38, which allows for the 
exact placement of polymer initiating sites on the bundlemer exte-
rior.    Additionally, since ATRP is only initiated from specific 
sites on the bundlemer surface, challenges associated with separa-
tion of products from polymer biproducts are mitigated. 
 
 

 
 
Figure 1: Schematic of bundlemer macroinitiator and subsequent 
grafting-from process. A) The bundlemer forming peptide amino acid 
sequence (denoted as BNDLE in the text) was synthesized with a halide 
terminated amino acid side chain to produce a tetramer ATRP macroinitia-
tor.  B) Bundlemer-DMAEMA grafts are formed via the introduction of 
the ATRP activator (i.e., Cu(I)Br) to produce a four-armed star-polymer 
architecture. 
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The bundle forming peptide used in this work was computational-
ly designed de novo to form an antiparallel homotetrameric coiled 
coil.  Generally, this peptide sequence follows a seven amino acid 
repeat pattern, where the first and fourth amino acids are alanine 
and isoleucine, which ultimately reside in the hydrophobic core of 
the bundlemer.  The other amino acids are generally charged and 
were selected through an energy minimization routine outlined 
elsewhere39, 40. The coiled coil sequence chosen for this work 
(shown in Figure 1A) has been thoroughly investigated in other 
studies41-43. Specifically, the tetrameric oligomerization state of 
this computational designed peptide bundle has been confirmed in 
past works through biophysical techniques such as analytical ul-
tracentrifugation41 and small angle neutron scattering43, demon-
strating that tetramers still form even at high peptide concentra-
tions or with added salts. All prior work on this bundle sequence 
suggests remarkable stability with respect to changes in tempera-
ture, pH, and ionic strength.   This stability enables the bundlemer 
to be viewed as a well-defined nanoparticle with exact display of 
chemistry defined by the primary sequence of the peptide, which 
can be used as a substrate from which one can perform polymeri-
zation. 
The peptide was synthesized via microwave SPPS, where one of 
the amino acids protecting groups was selectively removed and 
converted to an alkyl halide initiator.  Specifically, a select lysine 
residue was added to the peptide, which contained an alloc pro-
tecting group that was selectively removed on resin using Pd to 
reveal a free amine (see SI for details).  The amine is used as a 
branch point for subsequent modification and functionalization.  
While the middle of the sequence was selected (i.e., position 13), 
SPPS allows for easy placement of the alkyl halide at any amino 
acid position in the sequence that resides on the exterior of the 
coiled coil. Initially, the alkyl halide initiator was added directly 
onto the lysine using 2-bromoisobutyrl bromide (BIBB).  The 
peptide was liberated from the resin by acid treatment, which 
additionally removes the remaining amino acid protecting groups. 
After purification via HPLC and lyophilization, the coiled coil 
formation and aqueous solution stability of the purified peptide 
was assessed via circular dichroism (CD).  
The addition of the BIBB initiator negatively affected the thermal 
stability of the bundlemer as demonstrated by a decrease helicity, 
characterized by a maximum at 195 and minima at 208 and 222 
nm in the CD spectra44 (cf. Figure 2A&B), and decreased melting 
temperature (see SI).  Specifically, the coiled coil undergoes an 
alpha helical to Gaussian coil transition at 57.3 ± 0.7 °C, as de-
termined by the inflection in the sigmodal fit of the MRE versus 
temperature at 222nm.  The direct addition of the BIBB initiator 
to the lysine side group replaces the ammonium charged side 
group for a relatively hydrophobic tertiary alkyl halide spe-
cies.  This substitution is speculated to negatively impact the as-
sembly of the bundlemer, which is driven by hydrophobic interac-
tions.  While the bundlemer does maintain the coiled coil struc-
ture at room temperature, it is critical that the halide is readily 
accessible to participate in the photo-ATRP reaction.  The syn-
thetic route of the peptide readily enables further modification to 
the amine branch point to incorporate additional amino acid func-
tionality. 
Improved thermal stability of the coiled coil was achieved by the 
inclusion of a lysine within the branch, which preserved the origi-
nal positive charge and disfavors interactions of the branch side 
group with the hydrophobic core of the coiled coil.  This new 
bundlemer construct, which also included a glycine spacer in 
peptide the branch (i.e., BNDLE-KG-Br), resulted in similar CD 
spectra to the original bundlemer structure shown in Figure 2C 
(see SI for other glycine-glycine-Br branch point modifications).  
The peptide remained assembled even after being held for several 
hours at 90 °C.  Given the stability and halide accessibility of the 

bundlemer, BNDLE-KG-Br was selected for all subsequent pho-
to-ATRP reactions.  
 
 

 
Figure 2: Sequence and CD spectra of BNDLE peptide with various 
side chains, measured over a range of temperatures to demonstrate its 
melting behavior and overall stability. A lysine is modified at position 
13, resulting in CD spectra of A) the unmodified BNDLE, B) BNDLE-Br, 
and C) BNDLE-KG-Br.  
 
A grafting-from ATRP approach was performed on the assembled 
bundlemer under aqueous conditions, which is similar to strate-
gies in which protein–polymer conjugates are generated to main-
tain biological function33, 45-47. Within an aqueous medium, there 
are several mechanisms associated with a loss of the ATRP con-
trol, which leads to poor dispersity27, 48-51. Since bromide anions 
have a high degree of solubility in water, the reversible dissocia-
tion of the halide anion from the deactivating complex (i.e., 
Cu(II)Br2 in Figure 1B), can lower the concentration of deactivat-
ing species and lead to uncontrolled polymerization. The addition 



 

of halide salts suppresses this dissociation25, 49, 50, 52. Additionally, 
activator regenerative ATRP methods can be implemented to 
reduce the Cu(II) species back into the Cu(I) species, providing a 
competing reaction to Cu(II) dissociation.  Here, photoATRP is 
utilized, which additionally enables the reaction to be more oxy-
gen tolerate, to not require exogeneous radicals or high tempera-
tures, and to be turned on and off (i.e., temporal control).25, 28, 49, 

52-54 
Suitable photoATRP reaction conditions were determined to pol-
ymerize 2-(dimethylamino)ethyl methacrylate from the bundlemer 
macroinitiator (see SI for details). Specifically, a solution was 
prepared consisting of 2.5 mM peptide, 2.5 mM copper (II) bro-
mide, 10 mM tris(2-pyridylmethyl)amine (TPMA), and 75 mM 
sodium bromide.  TPMA was used as a copper ligand and, as 
discussed, sodium bromide was added to suppress the dissociation 
of the Cu(II)Br2 species.  TPMA is a tripodal ligand that contains 
three picolyl substituents that help stabilize the copper in the de-
activated state, thus leading to better polymerization control as 
compared to other ligands27, 53-56.  Monomer amounts were added 
based on desired degree of polymerization (50, 100, or 200 eq.). 
The reaction was performed in D2 O to make subsequent NMR 
analysis easier. The samples were exposed to 365 nm light at 2.5 
mW cm-2 intensity to initiate the polymerization via the photore-
duction of Cu(II) to Cu(I).  (See SI for details about optimization 
of the stoichiometric amounts of reagents).  The polymerization 
proceeded for 2 hours, reaching approximately 50% conversion 
(determined by NMR, see SI).  While conversions as high as 90% 
were attainable at reaction times of 4-5 hours, lower conversions 
led to a lower molecular weight dispersity.  
The target molar masses of 4, 8, and 16 kDa were selected to be 
similar to the peptide, twice the peptide, and four times the pep-
tide (i.e., similar to the bundlemer) molecular weight, respective-
ly.  Upon optimization of reaction times, polymer conjugates hav-
ing number average molar masses of 3.7, 8.0, 15.6 kDa were ob-
tained (determined by NMR, see SI).   The control reaction, 
where a peptide without a halide initiating species was used (un-
modified BNDLE), exhibited no polymerization. After polymeri-
zation, dialysis, and lyophilization, the bundlemer–polymer con-
jugate exhibited the higher-order coiled coil structure at room 
temperature, as determined by the minima at 208 and 222 nm in 
the CD spectroscopy (Figure 3A).   
The polymer grafts were uniform in size as indicated by LC-MS 
and GPC. The purified peptide exhibited a single MW species 
(see SI). To isolate the molecular weight of the polymer product, 
the peptide was digested utilizing acid hydrolysis as described by 
Murata et al33 (also see SI for details).   GPC of the polymers, 
using 0.5wt% LiBr in dimethylacetamide as eluent and relative to 
a PMMA standard, reveals an estimated dispersity of around 1.3 
(see Figure 3B and SI).  This data indicates that the molecular 
weight can be rationally tuned by the stoichiometry of monomer 
and the reaction time, which ultimately influences the bundlemer–
PDMAEMA star responsiveness. 
At temperatures above the LCST, the PDMAEMA grafted chains 
become dehydrated and collapse into core-shell nanoparticles that 
precipitate to cause a phase change within the solution. The LCST 
of PDMAEMA is dependent on the temperature, pH, and ionic 
strength of the solution, as well as the molecular weight and con-
centration of the sample. Literature values for its LCST are well- 
documented33, 57-60 and tend to be approximately 50 °C at pH 8.0. 
As the LCST of PDMAEMA decreases with increasing molecular 
weight, the phase change behavior can be controlled through mo-
lecular design of the conjugate, namely the original monomer–
bundlemer stoichiometry and reaction time.  
 

 
Figure 3: Characterization of the bundlemer-PDMAEMA conjugate. 
A) Room temperature CD spectra indicates the preservation of the coiled 
coil structure after polymerization. B) GPC of the cleaved polymer shows 
three distinct molecular weights having a narrow dispersity of approxi-
mately 1.3.  C) Light absorption at 490 nm confirms the presence of a 
molecular weight dependent LCST for the bundlemer-polymer conjugates.  
The reported Tm are the inflection point in the data and the images are of a 
specimen before and after phase separation. 
 
The LCST of each conjugate was determined by turbidity meas-
urements by monitoring the absorbance of visible light as a func-
tion of temperature (see Figure 3C). As expected, increasing the 
polymer conjugate chain length decreased the LCST of the solu-
tion.   This study demonstrates the conjugates’ responsiveness to 
changes in solution conditions, and the ability to control the archi-



 

tectures behavior simply by increasing the solution temperature. 
Moreover, this transition is reversible, with a decrease in tempera-
ture causing the chains to expand and resolubilize in their aqueous 
environment, as shown in the SI. CD spectroscopy reveals that 
bundlemer-polymer conjugates remain assembled throughout this 
heating and cooling cycle (see SI). The reversible nature of the 
LCST can be exploited for future functionalities, such as purifica-
tion, and demonstrates success in imparting specific features of 
the synthetic polymer onto the bundlemer material.  
The ability to introduce synthetic polymer side chains rationally 
and robustly into peptidic materials allows for an immense expan-
sion in peptide design possibilities. While we selected DMAEMA 
in this study, the versatility of this surface-initiated photo-ATRP 
approach to bundlemer-polymer grafts is readily extended to a 
wide range of aqueous vinyl free-radical polymerizing systems, 
such as oligoethylene glycol methacrylate and N-
Isopropylacrylamide.  The combination of being able to place 
ATRP initiators at precise positions along the bundlemer periph-
ery with extensive chemical diversity and interaction provided by 
synthetic polymers, enables new materials discovery and funda-
mental exploration of polymer interactions on the surface of a 
nanoparticle. Although there has been much work in the incorpo-
ration of RDRP initiators into proteins, their incorporation into 
peptide-based nanomaterials is relatively unexplored. The ability 
to precisely incorporate ATRP initiators into coiled coil peptide 
bundles coupled with the development of more user-friendly 
forms of ATRP, should lead to a surge of studies using this meth-
od to modify bundles or other peptidic structures to contain syn-
thetic moieties.   
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