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Abstract
Ensemble density functional theory (EDFT) is a generalization of ground-state DFT, which is
based on an exact formal theory of finite collections of a system’s ground and excited states. EDFT
in various forms has been shown to improve the accuracy of calculated energy level differences in
isolated model systems, atoms, and molecules, but it is not yet clear how EDFT could be used to
calculate band gaps for periodic systems. We extend the application of EDFT toward periodic
systems by estimating the thermodynamic limit with increasingly large finite one-dimensional
‘particle in a box’ systems, which approach the uniform electron gas (UEG). Using
ensemble-generalized Hartree and local spin density approximation exchange-correlation
functionals, we find that corrections go to zero in the infinite limit, as expected for a metallic
system. However, there is a correction to the effective mass, with results comparable to other
calculations on 1D, 2D, and 3D UEGs, which indicates promise for non-trivial results from EDFT
on periodic systems.

1. Introduction

A well known difficulty with ground-state (GS) density functional theory (DFT) is the band gap problem,
where the difference between the highest occupied and lowest unoccupied Kohn–Sham (KS) energy states is
smaller than the true band gap [1, 2]. There are several methods used to extend GS DFT to excited states,
including time-dependent DFT (TDDFT) [3–5] and the∆SCF method [6–8]. TDDFT has become the
standard method for calculating the excitation energies of molecules, achieving accuracies comparable to
quantities in GS DFT [9–12]. However, in its typical application within the adiabatic approximation, TDDFT
inadequately describes double and multiple excitations [13], and struggles with periodic systems. Typical
approximations to the exchange-correlation (XC) kernel fxc lack the correct long-range behavior, which
indeed goes to zero in the local-density approximation (LDA) [4, 5, 14–18]. Similarly, the correction to
excitation energies provided by the∆SCF method for standard XC approximations goes to zero in periodic
systems [19, 20], which some methods have been proposed to solve [21]. The theory of ensemble DFT
(EDFT) is another DFT approach to excited states which could be promising for periodic systems, but it
remains to be seen how the theory as formulated by Theophilou [22] and later by Gross, Oliveira, and Kohn
[23] can be properly formulated for such systems.

Like GS DFT, EDFT is based on a variational theorem. The difference in the two theories is that in GS
DFT, the GS energy is a functional of the GS density, while in EDFT, the ensemble energy is a functional of
both the ensemble density and a set of ensemble weights, providing access to excited-state quantities [23–25].
Excitation energies can, in theory, be extracted from the total ensemble energy, and EDFT can account for
the discontinuous nature of the XC potential through explicit dependence on weights [1, 26–29]. Thus EDFT
offers a non-perturbative alternative to TDDFT which can more easily treat multiple- and charge-transfer
excitations. Additionally, EDFT can treat both the fundamental (charged) [1, 27] and optical (neutral) [23]
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gaps of systems. Relatively accurate EDFT calculations have been performed for small atoms [30, 31], the
hydrogen molecule [32], for two electrons in boxes or in a 3D harmonic well (Hooke’s atom) [33], the
asymmetric Hubbard dimer [26, 34, 35], and for some molecules [36, 37]. However, developing the
necessary weight-dependent functionals in order to use EDFT is a complicated task that remains at an early
stage of development and limits EDFT’s application to a wider span of systems [38–46]. The key difficulty of
EDFT for periodic systems is that the excited states of solids are a continuum of states and as such cannot be
modelled with existing EDFT approaches which construct the ensemble from a finite number of individual
states [23].

In this paper, rather than studying a periodic system in EDFT directly, we study EDFT by means of finite
one-dimensional (1D) systems approaching the thermodynamic limit, performing DFT calculations in the
open-source real-space code Octopus [47, 48]. In section 2.1 we introduce a 1D system whose KS potential is
a ‘particle in a box’ (PIB). We build ensembles for the system with the weighting scheme described in
section 2.2. We motivate our choice of weight-dependent functionals in section 2.3 and describe the
multiplet structure and construction of many-electron densities for our system in section 2.4. In sections 2.5
and 2.6 we outline the necessity of studying systems in the approach to the thermodynamic limit rather than
direct study of periodic systems within EDFT. In section 3, we describe our computational methodology for
calculations of first (triplet) and second (singlet) excitation energies. Finally, in section 4, we discuss
ensemble corrections to excitation energies and effective masses obtained in the approach to the
thermodynamic limit. We find non-trivial renormalization of the effective masses with results from the
tri-ensemble similar to the uniform electron gas (UEG) in other dimensionalities, showing the promise of
EDFT for describing periodic systems.

2. Theory

2.1. The 1D PIB Potential is the KS Potential
The PIB potential is defined as a free particle within the confines of a box of length 2L, subject to an infinite
potential outside these boundaries:

V(x) =

{
0, −L< x< L,

∞, x⩽−L or x⩾ L.
(1)

The PIB is more readily adaptable to study in the thermodynamic limit than atom-based models, and in the
limit it becomes the UEG which is a prototypical model in electronic structure theory and is used as a
simplified model for the behavior of electrons in metals [49]. The 1D UEG is known from the Lieb–Mattis
theorem [50] to be a singlet at all densities, which has also been found in quantumMonte Carlo (MC)
calculations [51, 52]. It is also expected to be metallic according to Luttinger liquid theory [53, 54]. In this
work, we set the KS potential, vKS, equal to the PIB potential such that vKS(x,σ) = 0 within the boundaries of
the box. Setting vKS rather than vext to the PIB potential allows us to determine the KS wavefunctions and
eigenvalues exactly, and bypasses the need to solve for them self-consistently. A similar approach has been
used in studies of a model atom whose KS potential is 1/r [55]. In the thermodynamic limit, we obtain the
UEG, whether we set vext or vKS equal to the PIB potential. In this limit, the density is constant, leading to a
constant vHxc [ρ], which provides only an overall offset to the eigenvalues and no difference in the excitation
energies.

Here we first discuss such a set-up in the context of GS DFT, and then describe the construction of the
ensemble in section 2.2. In GS-DFT, the KS potential is defined as

vKS [ρ] (x,σ) = vext (x)+ e2
ˆ ∑β

σ ′=α ρ(x
′,σ ′)

|x− x ′|
dx ′ +

δExc [ρ]

δρ(x,σ)
, (2)

where σ is the spin variable. For simplicity, we limit our study to 1D, though a similar procedure could be
followed for 2D or 3D. Here the first term on the right is the external potential, the second term is the Hartree
potential (where e is the electron charge), and the third term is the XC potential. The KS equations are:{

− h̄2

2m
∇2 + vKS [ρ] (x,σ)

}
φj (x,σ) = ϵjφj (x,σ) , (3)

where the set of spin-polarized wavefunctions {φj : j ⩾ 1} are the solutions ordered by energy. The KS
many-body wavefunctionΨ, generally assumed to be a single Slater determinant, is built from {φj}. Both
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{φj} and their corresponding energies {ϵj : j ⩾ 1} are typically obtained iteratively from self-consistent field
(SCF) calculations, but in this case, because we have set vKS(x,σ) = 0, we know ϵj exactly from the analytical
solutions to the non-interacting PIB problem and do not need to find the solutions through minimization:

ϵn =
n2π2h̄2

8meL2
, (4)

whereme is the mass of an electron and n is the quantum number. For the same reason, we know the
wavefunctions solving equation (3) exactly, without the need for minimization:

ϕn (x) =

√
1

L
sin
(nπ
2L

x
)
, (n= 2,4, . . .) , (5)

ϕn (x) =

√
1

L
cos
(nπ
2L

x
)
, (n= 1,3, . . .) . (6)

From each spatial wavefunction, ϕ(x), one can form two different orthonormal spin and
space-dependent wavefunctions by multiplying the spatial function by the up α(σ) or down β(σ) spin
function [56]:

φ(x,σ) =


ϕ(x)α(σ)

or

ϕ(x)β (σ) .

(7)

The density for a system of non-interacting particles is:

ρ(x,σ) =
∞∑
j=1

fj|φj (x,σ) |2, (8)

with occupations fj ∈ {0,1} to specify occupied and unoccupied states. Up to two φj may correspond to the
same ϕn, which is the case for a doubly occupied spatial state. Knowing the non-interacting density, the sum
of the wavefunction energies, the Hartree energy and an approximation to the XC energy functional, the total
interacting energy is obtained as [49]

Etot [ρ] =
∞∑
j

fjϵj − EH [ρ]−
β∑

σ=α

ˆ
(vxc [ρ] (x,σ))ρ(x,σ)dx+ Exc [ρ] , (9)

where δExc[ρ]
δρ(x,σ) = vxc[ρ](x,σ). Equation (9) is exact if the XC functional is known exactly.

2.2. Ensemble density functional theory
EDFT as discussed here stems from Theophilou and Gidopoulos’s work in 1987 which built ensembles from
KS states [57]. This variational principle for equi-ensembles was generalized to ensembles of monotonically
decreasing, non-equal weights by Gross–Oliveira–Kohn (GOK) in 1988 [23]. To avoid confusion, we note
that the theory of thermal ‘Mermin’ DFT [58], commonly used for periodic systems such as metals, has been
referred to as ‘ensemble DFT’ also [59], but it is based on a Fermi–Dirac thermal ensemble and thus is quite
different from GOK EDFT.

The ensemble-generalized form of equation (3) is the non-interacting ensemble KS equation:{
−1

2
∇2 + vwKS [ρ

w] (x,σ)

}
φw
j (x,σ) = ϵwj φ

w
j (x,σ) , (10)

where φw
j are the non-interacting single-particle wavefunctions that reproduce the ensemble density,

ρw(x,σ). The KS many-body wavefunctions {Ψw
m[ρ] : 1⩽m⩽MI}, assumed to be Slater determinants or

linear combinations of Slater determinants, are built from {φw
j (x,σ) : j ⩾ 1} having individual energies ϵwj

which are obtained from the ensemble KS equation, equation (10). Symmetry-adapted linear combinations

3
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of Slater determinants may be used, as the conventional restriction to single Slater determinants has been
found to be overly restrictive in EDFT [60]. The ensemble-generalized form of equation (2) is:

vwKS [ρ
w] (x,σ) = vext (x)+

δEwHxc [ρ
w]

δρw (x,σ)
, (11)

and the ensemble functional for Hartree, exchange, and correlation (HXC), EwHxc, may be separated into its
constituent parts:

δEwHxc [ρ
w]

δρw (x,σ)
=

ˆ ∑β
σ=α ρ

w (x ′,σ)

|x− x ′|
dx ′ +

δEwx [ρ
w]

δρw (x,σ)
+

δEwc [ρ
w]

δρw (x,σ)
. (12)

While the single-particle wavefunctions {φw
j } and their corresponding energies {ϵj} are calculated in the

same way as in the GS case presented in section 2.1, the ensemble density is constructed in a different way
than the GS equation (8):

ρw (x,σ) =
MI∑
m=1

wm

 ∞∑
j=1

f mj |φw
j (x,σ) |2

 , (13)

where fmj denotes the occupation of φw
j (x,σ) in themth KS wave functionΨw

m[ρ
w] [43]. I denotes the set of

degenerate states (or ‘multiplet’) with the highest energy in the ensemble. This set can be equivalently
referred to as the (MI)th state, as we consider an ensemble ofMI (possibly degenerate) electronic states each
consisting of Ne electrons, numbered fromm= 1 toMI . Then, gI is the multiplicity of the Ith multiplet, and
MI is the total number of states up to and including the Ith multiplet,MI =

∑I
j=0 gj [23, 43]. I= 2 denotes a

bi-ensemble, and I= 3 denotes a tri-ensemble, as depicted in figure 1.
GOK ensembles must include all of each degenerate subspace to be well-defined. Each many-electron

state’s energy is denoted by Em=1 ⩽ . . .⩽ Em=MI , and the energy of themth KS state is

Em =
∞∑
j=1

f mj ϵj, (14)

which can be obtained exactly in this case from equation (4). Each state is assigned a weight wm from the set
{w} ≡ (wm=1, . . .,wm=MI) of monotonically non-increasing (wm=1 ⩾ . . .⩾ wm=MI) weights obeying

MI∑
m=1

wm = 1. (15)

For the GOK ensembles considered here, the weights are defined as [23]

wm =

{
1−wgI
MI−gI

m⩽MI − gI,

w m>MI − gI,
(16)

where w ∈ [0,1/MI], such that all states but those in the highest (Ith) multiplet have the same weight, and
only the GOK weight, w, is needed to define the weighting of the ensemble. By definition, w= wMI . The total
ensemble energy [23] is approximated as

Ew [ρw] =

MI∑
m=1

Em − EH [ρ
w] −

β∑
σ=α

ˆ
(vxc [ρ

w] (x,σ))ρw (x,σ)d3x+ ELDAx [ρw] + ELDAc [ρw] . (17)

The exact ensemble energy would be obtained if the exact ensemble HXC functional were used.
In the case of our bi-ensemble in which KS eigenvalues are spin-independent, we differentiate

equation (17) with respect to w, as in reference [23] but considering states which are not necessarily single
Slater determinants and allowing fmj to be 0, 1/2, or 1. Then we obtain the first excitation energy from the GS:

Ω1 = ϵn=Ne/2+1 − ϵn=Ne/2 +
1

3

∂Ew,I=2
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=2

. (18)

4
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The third term on the right of equation (18) is the ‘ensemble correction’ to the non-interacting difference of
energies from equation (14). For the tri-ensemble, one obtains from equations (100) and (89) of [23]:

Ω2 =
1

g3

dEw
I=3

dw

∣∣∣∣
w=wI=3

+
1

M2

dEw
I=2

dw

∣∣∣∣
w=wI=2

=
1

g3

 ∞∑
j=1

(
M3∑

m=M2+1

fmj ϵj −
g3
M2

M2∑
m=1

fmj ϵj

)
+

∂Ew,I=3
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=3


+

1

M2

 ∞∑
j=1

(
M2∑

m=M1+1

fmj ϵj −
g2
M1

M1∑
m=1

fmj ϵj

)
+

∂Ew,I=2
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=2

 . (19)

For our specific tri-ensemble, as in figure 1, the excitation energy for I= 3 can be written in terms of the
individual KS orbital energies as:

Ω2 =
1

4

(
ϵw2

n=Ne/2+1 − ϵw2

n=Ne/2

)
+

3

4

(
ϵw1

n=Ne/2+1 − ϵw1

n=Ne/2

)
+

∂Ew,I=3
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=3

+
1

4

∂Ew,I=2
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=2

, (20)

where superscripted wi indicate that these are the weight-dependent KS eigenvalues for the ensemble
including up to the I= imultiplet. (Note that it is essential for such expression to be not just a linear
combination of eigenvalues but a linear combination of eigenvalue differences, to avoid any dependence on
an overall energy offset.) We now assume that the eigenvalues of our KS system for the bi-ensemble and the
tri-ensemble have negligible differences, consistent with our assumption that the PIB states are our
ensemble-KS states for the minimizing ensemble density, ρw. Then we can further simplify to the
approximate expression in terms of the eigenvalues of the tri-ensemble KS system,

Ω2 ≈ ϵw2

n=Ne/2+1 − ϵw2

n=Ne/2
+

∂Ew,I=3
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=3

+
1

4

∂Ew,I=2
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=2

. (21)

2.3. Approximations to HXC
The development of accurate weight-dependent density-functional approximations (DFAs) for EDFT is an
ongoing challenge. Existing ensemble approximations to Ewxc include the quasi-LDA (qLDA) functional [38,
39], the ‘ghost’-corrected exact exchange (EXX) functional [40, 41], the exact ensemble exchange functional
(EEXX), [42] local system-dependent and excitation-specific ensemble exchange functionals for double
excitations (CC-S) [43] and for single excitations [61], a universal weight-dependent local correlation
functional (eVWN5) based on finite UEGs [43], and the orbital-dependent second-order perturbative
approximation (PT2) for the ensemble correlation energy functional [44, 62]. As noted in all the
aforementioned works, ensemble HXC has special complications beyond those of GS DFT, such as the
consideration that ensemble Hartree and exchange are not naturally separated in EDFT [45]. Though each of
these approaches above to approximating ensemble XC energies provides insight into the necessary
characteristics of ensemble DFAs, it is unclear whether any of them are appropriate for periodic systems since
they were developed for localized systems. In this work, for a first exploration of EDFT on periodic systems,
we choose a simple approximation based on a local spin density approximation (LSDA).

The ‘traditional’ DFAs of GS DFT can be used for ensembles by evaluating them on ensemble densities:

EtradHxc [ρ] = EHxc

[
MI∑
m=1

wmρm

]
. (22)

This use of the ensemble density with GS DFAs, typically only applied to Hartree and exchange, has been
called ‘Ansatz’1’ [45]. The use of ensemble densities in ‘traditional’ GS DFAs results in fictitious interactions
of ground- and excited-state densities, or ‘ghost interaction errors’ (GIEs), in both Hartree and exchange
which do not cancel each other [33, 38, 41, 45, 63]. A DFA for open-shell systems which is free of
ghost-exchange-error approach has also been proposed to address this issue [62]. Additionally, with this
form of ensemble DFA, the derivatives in equation (18) become zero, since the weight dependence is within
the ensemble density only. As such, nothing is learned from application of EDFT in such an approximation.
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Figure 1. Diagram of the multiplet structure for the ensemble of interacting particles for a PIB, obeying spin symmetry. I= 2
corresponds to the bi-ensemble, which includes up tom= 4 (2nd multiplet). I= 3 corresponds to the tri-ensemble, which
includes up tom= 5 (3rd multiplet). The degeneracy of the highest multiplet included in the ensemble is given by the
corresponding value of gI, andMI is the total number of states included in the Ith ensemble. The assignment ofm’s within a
multiplet are arbitrary.

We instead opt to use ensemble-generalized LSDA, in which we build an ensemble average by evaluating the
GS Hartree and LSDA functionals on the density of each state in the ensemble individually:

ELSDA,wHxc [ρ] =

MI∑
m=1

wmE
LSDA
Hxc [ρm] , (23)

which has been called ‘Ansatz 2’ [45]. In this way, we ensure the ensemble functionals are weight-dependent,
giving us nonzero corrections in equation (18). While in this work we do not need to evaluate the ensemble
energy variationally since the exact KS solutions are known by construction, we note that the variational
evaluation of the ensemble energy with equation (23) is complicated because it does not lead to conventional
KS equations [64].

Derivatives of this equation with respect to w depend on the weights defined in equation (16), which in
turn are determined by the multiplet structure and I, e.g. whether a bi-ensemble or tri-ensemble is used
(figure 1), and have the general form:

∂ELSDA,w,IHxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

=− gI
MI − gI

MI−gI∑
m=1

EHxc [ρm] +

MI∑
m=MI−gI+1

EHxc [ρm] . (24)

Note a useful property: the sum of the coefficients of theMI states is

− gI
MI − gI

(MI − gI)+ (1)gI =−gI + gI = 0. (25)

This property is essential allow the excitation energy be intensive (size-consistent) as we approach the
thermodynamic limit, since individual total energy terms are extensive and grow without bound.

While the true interacting wavefunctions have no weight-dependence, the KS wavefunctions, and
consequently the KS state densities, are weight-dependent. This weight-dependence results in principle in an
additional term in the HXC derivatives in our equations for Ω:

∂EwHxc [ρ]

∂w

∣∣∣∣
ρ=ρw

=

MI∑
m=1

{
∂wm
∂w

EHxc [ρm] +wm

β∑
σ=α

ˆ
∂ρwm (x,σ)

∂w
dx

∂EHxc [ρ]

∂ρ(x,σ)

∣∣∣∣
ρ=ρm

}
. (26)

Practically, we neglect this weight-dependence which is related to taking derivatives at constant ρ. This is
consistent with our construction of a system with vKS (x,σ) = 0 for the ground state, for which no SCF
calculations are needed. We assume that vKS (x,σ) = 0 for all excited states as well, which cannot necessarily
be satisfied by construction. Note, however, that in the thermodynamic limit of the 1D UEG, the densities of
all states are identical (and uniform), and the spin densities of singlet excited states are also identical to the
ground state, implying identical vKS for the singlet states. Therefore the approximation should improve in the
thermodynamic limit.

6
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The definition of ensemble-generalized Hartree in equation (23) is GIE-free [33]. Though this choice
avoids a significant source of GIE, our current form of ensemble-generalized LSDA does introduce some GIE
from XC [45]. We report results for ensemble corrections which have been built using the weight-dependent
Hartree of equation (23), denoted by HXC, and also for the case where there is no Hartree contribution to
the correction, denoted by XC, due to the ‘traditional’ Hartree definition in equation (22).

2.4. Densities of ground and excited states
Here we show explicitly the spin-polarized densities involved in the ground and excited states which we use
in our EDFT calculations. All densities involved here include a contribution from the closed shell,

ρclosed (x,σ) =

Ne/2−1∑
n=1

|ϕn (x,σ) |2
(
|α(σ) |2 + |β (σ) |2

)
, (27)

and the GS density is

ρGS (x,σ) = |ϕ1 (x)|
(
|α(σ)|2 + |β (σ)|2

)
+ ρclosed (x,σ) , (28)

where ϕ1 is the highest occupied state.
In the spin-polarized PIB system of even Ne, based on spin symmetry, the system has a nondegenerate

GS, a triplet first excited state, and a singlet second excited state, as depicted in figure 1. An odd number of
Ne would result in a different multiplet structure, but we do not investigate that case here, since odd/even
distinctions should disappear in the thermodynamic limit anyway. The density of the αα state (ms = 1) in the
triplet, obtained from its Slater determinant and then written in terms of its constituent wavefunctions, is:

ραα (x,σ) = |ϕ1 (x)α(σ)|2 + |ϕ2 (x)α(σ)|2 + ρclosed (x,σ) , (29)

where ϕ2 is the lowest unoccupied state, with reference to the ground state. Then, for the ββ (ms =−1) state
in the triplet, we obtain a similar equation where the α spins are flipped to β spins:

ρββ (x,σ) = |ϕ1 (x)β (σ)|2 + |ϕ2 (x)β (σ)|2 + ρclosed (x,σ) . (30)

While ραα(x,σ) ̸= ρββ(x,σ), our approximations to the energy-density functional, evaluated on these two
densities, yields the same numerical result for their energies as required by symmetry, and is the result
obtained from any LSDA. For thems = 0 excited states, we must use linear combinations of two Slater
determinants to obtain the density:

ραβ±βα (x,σ) =
1

2

(
|ϕ1 (x)α(σ) |2 + |ϕ1 (x)β (σ) |2 + |ϕ2 (x)α(σ) |2 + |ϕ2 (x)β (σ) |2

)
+ ρclosed (x,σ) . (31)

We obtain the same density for the symmetric triplet (+) and antisymmetric singlet (−) sum of the two
Slater determinants. No pure density functional can tell the two states, having identical densities, apart,
despite the fact that the triplet should be degenerate with the other two triplet states.

We will consider later, in sections 3.1 and 3.2, two approaches to treating the triplet energy. The first
method, outlined in 3.2, is the symmetry-broken bi-ensemble, in which the correct densities for each state in
the triplet, obtained from equations (29)–(31), are used. Although Exc[ραα] and Exc[ρββ ] are equal, the
energy Exc[ραβ+βα] of the third member of the triplet has a higher energy in LSDA, with their difference
decreasing asymptotically towards 0 as Ne →∞. Since both the singlet and tripletms = 0 states have the
same density, we will write ραβ±βα to refer to their shared density. To address this symmetry-breaking issue,
we have also considered the symmetry-enforced bi-ensemble in section 3.1, in which we do not use the
computed value of E[ραβ+βα] at all, and instead use the value of E[ραα] = E[ρββ ] to represent all three states,
maintaining the degeneracy of the KS states forming the spin triplet.

GOK ensemble theory requires that states are ordered based on the energies of the interacting system,
and that all states from the GS up to and including the Ith multiplet are included in the ensemble. It is not
always practically feasible to be certain that there are no additional states lying between those we have
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Figure 2. Band structure of the free electron gas, shown with a discrete set of 6 k-points in a Brillouin zone based on a periodic
length 2L. Arrow depicts an excitation with∆k> 0.

included in the system [43], but we work under the assumption that we have included all states between the
ground state and Ith excited state, such that we have not violated the rules of the GOK ensemble.

2.5. 1D UEG
We first consider a possible way that a periodic system could be discretized to allow application of EDFT.
Leaving aside the question of whether such an approach is theoretically sound, we find that in the case of the
UEG (the limit of our model) corrections to the KS excitation energies are identically zero, demonstrating
that alternate strategies are needed in order to obtain non-trivial results.

We consider an infinite limit of our system in which the KS potential is zero everywhere, and periodic
boundary conditions ϕ(x+ 2L) = ϕ(x) are imposed for an arbitrary repeating cell of length 2L. The KS
wavefunctions have the form

ϕk (x) =

√
1

2L
eikx, (32)

and the KS energies for such a 1D system are

E=
h̄2k2

2me
, (33)

as discussed further in section 4.3.
This system has a continuous spectrum of states and, as noted earlier, the GOK EDFT has been defined

only for a discrete spectrum. We consider, consistent with our boundary conditions, a set of k-points
k= (πn/L) where n= {0,±1,±2,3}. This discretization is equivalent to construction of a ‘finite, but
topologically periodic system,’ like a particle on a ring [65], such as one might construct to avoid the edge
effects of our finite PIBs. We consider an excitation with∆k> 0, to keep things simple and involve only one
excited KS energy level—while this bends the rules of the GOK EDFT by not assigning the same weights to all
of a degenerate set, it can be justified in a generalization in which states of different symmetry (e.g. crystal
momentum k) can be treated separately [66]. With the two KS energy levels, we obtain a singlet-triplet
structure which is the same as in our finite well with even Ne (section 2.1 and figure 1). Filling the system
with 2 electrons per cell of 2L results in two electrons in the lowest k-point, as in figure 2. With two electrons
per unit cell, moving an electron from one k-point to the next represents exciting 1/2 of all electrons in the
periodic system. All of the ground- and excited-state densities are constant; e.g. from equation (29) we
obtain:

ραα (x,σ) =

∣∣∣∣
√

1

2L
eik1xα(σ)

∣∣∣∣2 + ∣∣∣∣
√

1

2L
eik2xα(σ)

∣∣∣∣2 = 1

L
, (34)

8
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where k2 = k1 +∆k. We find the same result for the three states which make up the triplet of the first excited
state, equations (31), (29), and (30), and for the GS. The energy correction, as will be shown in section 3.1, is

∂Ew,I=2
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=2

=−3EHxc [ρGS] + EHxc [ραα] + EHxc [ρββ ] + EHxc [ραβ±βα] = 0, (35)

where each density is identical, and the total correction goes to zero because the coefficients in front of each
energy term always sum to zero (equation (25)). Since the GOK ensemble correction depends on the
ensemble density defined in equation (13), and each state has the same density, it is not possible to obtain a
non-zero correction from EDFT to the UEG in this manner. Changing the number of electrons, number of
k-points, length of the box, or which excitation we calculate (e.g. including∆k< 0) would change the
complexity for this model, but not the basic conclusion. We instead study a finite system which increases in
size towards the thermodynamic limit to gain information about the behavior of EDFT’s correction as it
approaches a periodic system.

2.6. Thermodynamic limit of the finite-length well
We increase the number of electrons in our system along with the length of the box, holding the average
density constant:

Ne

2L
= 0.5 Å

−1
Ne,L→∞. (36)

As Ne →∞, a region of increasingly constant density begins to form at the center of the box, with decreasing
oscillations and decreasing edge regions. According to the Wentzel–Kramers–Brillouin Approximation, there
will always be a peak at the classical turning points [67], i.e. the edges of the box. As both Ne and L approach
infinity, the density of the system becomes more uniform, with the nonuniform edge regions decreasing in
width. To quantify this property (figure 3), we first find the height ρmax of the highest peak within
−L⩽ x⩽ 0. We average the values of the peaks and troughs of the density at the center (x= 0) to find the
average uniform density ρuniform. We then define∆ρmax = ρmax − ρuniform. Next, we consider an envelope
function that excludes the oscillations of the density by linearly connecting the peaks of the density. We
determine the width∆x of the region between the edge of the box and the position at which the envelope has
decreased to∆ρmax/emeasured from ρuniform. We note that∆x decreases not only as a fraction of L but also
in absolute terms, demonstrating that our model becomes increasingly uniform with increasing L and that
edge effects become negligible (figure 4). In this way, our model systems in the approach to the
thermodynamic limit can be used to study how EDFT performs in a uniform periodic system.

3. Computational methodology

Octopus is uniquely suited for this work due to its ability to define arbitrary potentials and therefore easily
treat model systems and 1D systems [47, 48]. In this work we use Octopus version 11.4. In order to realize
our condition of setting the KS potential equal to the 1D finite well potential in Octopus, the potential is set
to zero within a finite domain determined by L. The wavefunction is constrained to zero at the boundaries of
the box. We limit our system to an even number of electrons Ne whose ratio to L is held fixed as in
equation (36), and consider its spin-polarized solutions obtained from the PIB as in equations (5), (6)
and (8). The starting initial guesses in the KS equations are random wavefunctions. We used the
conjugate-gradients eigensolver with a tolerance of 10−6 eV, which can require up to 1000 eigensolver
iterations, and did not use a preconditioner. Eigensolver convergence was difficult to achieve and we settled
on this fixed density ratio, grid, and the eigensolver to give adequate convergence behavior. The average

density of 0.5 Å
−1

was used to achieve eigensolver convergence since systems with the larger average density

of 1 Å
−1

were unable to be converged for all values of Ne. A grid spacing of 0.01 Å is used for all calculations
in order to converge energy eigenvalues to within 0.05 eV of the analytic solutions of the PIB. Though the KS
eigenvalues and eigenfunctions can be obtained analytically, we use the values obtained from Octopus for
consistency in comparing to the ensemble-generalized LSDA HXC values which we obtain from Octopus.

For each choice of Ne, we first run a spin-polarized GS calculation for independent particles in 1D,
calculating Ne/2+ 1 states to include all the filled states plus one unoccupied state. We then run a ‘one-shot’
DFT calculation with the same value of Ne, but occupations of the KS states for each state in the ensemble are
built based on f mj of equation (13), which are obtained from Slater determinants as outlined in section 2.4.
These calculations use fixed wavefunctions from the previous independent-particles calculation, and provide
EH, Ex, and Ec for a density built from the given occupations.

9
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Figure 3. The non-interacting ensemble densities for Ne = 20, Ne = 50, and Ne = 150, with interpolation line (dashed) between
peaks. The maximum of the density within−L ⩽ x ⩽ 0 is ρmax. The average density at the center of the box is shown as a dotted
horizontal line. The width of the edge region,∆x, is defined as the width from the edge of the box to the point at which the
interpolation line is∆ρmax/e from the center peak-to-peak amplitude average, as described in section 2.6. The width of∆x spans
a smaller portion of the box as Ne increases.

Given the problematic nature of the Coulomb interaction in 1D, we describe the electron-electron
interactions with the 1D soft Coulomb potential, where we set the softening parameter, a, to 1 Bohr radius
(a0):

vsc (x) =
1√

x2 + a2
. (37)

We use the 1D LSDA exchange [68] and correlation functionals [69] as implemented in libxc 4.3.4 [70],
which were parametrized for this interaction and value of a.

3.1. Bi-ensemble: symmetry-enforced
Starting from equation (23), the GOK weighting scheme from equation (16), and the multiplet structure of
figure 1 with a choice of the bi-ensemble (I= 2, g2 = 3 andM2 = 4), our weights are:

wm =

{
1− 3w m⩽ 1,

w m> 1.
(38)
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Figure 4. Decreasing width of the edge regions of the density, with increasing L. The average density is held constant to 0.5 Å−1 as
in equation (36). The right axis is the width of the region∆x, and the left axis is the percentage of the half-length of the box
spanned by∆x.

The corresponding excitation energy correction from equation (24), as in equation (35) for the UEG, is

∂Ew,I=2
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=1

=−3EHxc [ρGS] + EHxc [ραα] + EHxc [ρββ ] + EHxc [ραβ+βα] . (39)

To use this expression directly would break the spin-symmetry of the triplet, as noted in section 2.4. We note
that other EDFT methods have avoided this symmetry-breaking issue via approximations based on
multi-determinant spin eigenstates rather than just the density [33, 41]. To enforce spin symmetry, we use
the energy EHxc[ραα] for all states in the triplet, simplifying equation (39) to:

∂Ew,I=2
Hxc [ρ]

∂w

∣∣∣∣
ρ=ρw

I=2

=−3EHxc [ρGS] + 3EHxc [ραα] , (40)

as was written similarly in equation (35), where the coefficient of 3 on the second term reflects the
degeneracy of the highest multiplet, which we have enforced in this section. The difference of KS energies
E2 − E1 can be reduced to a difference of eigenvalues via equation (14):

E2 − E1 =
∞∑
j=1

f 2j ϵj −
∞∑
j=1

f 1j ϵj. (41)

This expression reduces to the same result for both the bi-ensemble and, as needed later in section 3.3, the
tri-ensemble—that is, E2 − E1 = E3 − E1 = ϵn=Ne/2+1 − ϵn=Ne/2. The first excitation energy from
equation (18), denoted Ωe

2 with ‘e’ for symmetry-enforced approach, is:

Ωe
1 = ϵn=Ne/2+1 − ϵn=Ne/2 − EHxc [ρGS] + EHxc [ραα] . (42)

3.2. Bi-ensemble: Symmetry-broken
In a second alternative method, we do not enforce any symmetry, and only simplify equation (47) based on
equalities that are satisfied in practice by LSDA. We use EHxc[ραα] for only two states in the triplet.
EHxc[ραβ±βα] is then used for the third state of the triplet, breaking the spin symmetry. We use the same
weights as in equation (38) and obtain:

∂Ew,I=2
Hxc [ρ]

∂w

∣∣∣∣
ρ=ρw

I=2

=−3EHxc [ρGS] + 2EHxc [ραα] + EHxc [ραβ±βα] . (43)

The first excitation energy from equation (18), denoted Ωb
1 with ‘b’ for symmetry-broken approach, is then

calculated as:

Ωb
1 = ϵn=Ne/2+1 − ϵn=Ne/2 − EHxc [ρGS] +

2

3
EHxc [ραα] +

1

3
EHxc [ραβ±βα] . (44)
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The difference between triplet energies from the symmetry-enforced and symmetry-broken bi-ensembles,
from equations (42) and (44) is:

Ωe
1 −Ωb

1 =
1

3
Exc [ραα]−

1

3
Exc [ραβ±βα] . (45)

Because the Hartree term is spin-independent, its value is the same when evaluated on ραα and ραβ±βα. For
this reason, the difference in corrected excitation energies obtained in equation (45) only has a contribution
from XC, and is the same whether an ensemble-generalized Hartree is used or not.

3.3. Tri-ensemble
We now consider a tri-ensemble, I= 3, based on figure 1. In order to calculate the singlet energy, Ω2, we
begin with equation (21). Knowing the difference of non-interacting energies from the PIB, all that is left is
to calculate the derivative of EHxc. Given the multiplet structure of figure 1(A) with g3 = 1 andM3 = 5, we
have weights

wm =

{
1−w
4 m⩽ 4,

w m> 4.
(46)

The I= 3 derivative with respect to the weight is:

∂Ew,I=3
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

I=3

=−1

4
(EHxc [ρGS] + EHxc [ραα] + EHxc [ρββ ] + EHxc [ραβ+βα])+ EHxc [ραβ−βα] . (47)

As done for the bi-ensemble in section 3.1, we again enforce spin symmetry by using the energy EHxc[ραα] for
all states in the triplet. The last term, representing the singlet, we write as EHxc[ραβ±βα]. The second
excitation energy (i.e. the singlet), then is calculated by combining equations (21), (47), and (40) from the
symmetry-enforced bi-ensemble:

Ω2 ≈ ϵn=Ne/2+1 − ϵn=Ne/2 − EHxc [ρGS] + EHxc [ραβ±βα] . (48)

Regardless of whether the symmetry-broken or symmetry-enforced approach is used, the same result is
obtained. The second excitation energy can also be computed by means of a symmetry-projected ensemble
(as in references [33] and [66]), comprising of states with the same spin-symmetry only. The equation for the
ensemble-corrected singlet energy as obtained from the symmetry-projected ensemble can be obtained using
equation (34) of reference [23] for non-degenerate ensembles. Equation (48) for the singlet energy is once
again obtained from this approach, showing the consistency of these three ensemble approaches.

4. Results and discussion

4.1. Triplet energies from bi-ensembles
The corrected first excitation energies Ω1 from the bi-ensemble, according to the symmetry-enforced and
symmetry-broken schemes, are shown in figure 5. All numerical results are also tabulated in table 1. We find
that in these cases, and all cases we study in this paper, the excitation energies go to zero in the
thermodynamic limit, in agreement with the metallic expectation from Luttinger liquid theory [53, 54].
Triplet energies calculated from both the symmetry-broken and symmetry-enforced bi-ensembles are
smaller than the non-interacting energy difference but are positive for all Ne. When a ‘traditional’ Hartree
DFA is used (the XC case), larger excitation energies are obtained than in the ensemble-generalized LSDA
HXC case. The energy difference between symmetry-enforced and symmetry-broken is plotted in figure 6.

We find positive excitation energies in all cases in this paper, indicating a lack of a triplet instability,
consistent with the known singlet ground state [50]. This is a point in favor of EDFT since triplet instabilities
are known to exist in other theories, such as Hartree–Fock [71–73], time-dependent Hartree–Fock (TDHF)
[74, 75], and TDDFT [76], and triplet instabilities have also been reported in the 3D electron gas at metallic
densities [77].

4.2. Singlet energies from tri-ensembles
All ensemble-corrected singlet excitation energies from the tri-ensemble are positive (figure 7). The corrected
second excitation energy Ω2 is lower in value than the KS second excitation energy, computed as E2 − E1,
when weight-dependent Hartree (HXC) is used, and greater than the KS energy difference when ‘traditional’
Hartree DFA is used (XC).

12



Electron. Struct. 6 (2024) 035003 R J Leano et al

Figure 5. Ensemble-corrected first excitation energies compared to KS energy differences for: (a) the tripletΩe
1 of the

symmetry-enforced bi-ensemble described in section 3.1 and by equation (42); (b) the triplet Ωb
1 of the symmetry-broken

bi-ensemble described in section 3.2 and by equation (44). The labels ‘e’ and ‘b’ denote results from the symmetry-enforced and
symmetry-broken ensembles. HXC denotes results with a weight-dependent Hartree, while XC denotes the use of a ‘traditional’
Hartree, as explained in section 2.3.

Table 1. Ensemble-corrected excitation energies tabulated versus number of electrons Ne, compared with KS energy difference
E2 − E1 = E3 − E1, all reported in eV.Ω1 is the first excitation energy (triplet), obtained from the bi-ensemble.Ω2 is the second
excitation energy (singlet), obtained from the tri-ensemble. The labels ‘e’ and ‘b’ denote results from the symmetry-enforced and
symmetry-broken ensembles. HXC denotes results with a weight-dependent Hartree, while XC denotes the use of a ‘traditional’ Hartree,
as explained in section 2.3.

Ωe
1 Ωb

1 Ω2

Ne E2 − E1 XC HXC XC HXC XC HXC

2 6.988 4.741 1.229 5.722 2.210 7.684 4.172
4 2.925 2.061 0.5767 2.474 0.9901 3.301 1.817
6 1.822 1.298 0.3970 1.557 0.6563 2.076 1.175
8 1.319 0.9356 0.2989 1.127 0.4902 1.509 0.8727
10 1.032 0.7268 0.2382 0.8793 0.3906 1.184 0.6954
20 0.4931 0.3372 0.1159 0.4140 0.1928 0.5676 0.3464
30 0.3236 0.2179 0.0761 0.2695 0.1277 0.3727 0.2309
40 0.2408 0.1607 0.0566 0.1996 0.0954 0.2774 0.1732
42 0.2291 0.1527 0.0538 0.1897 0.0909 0.2639 0.1650
48 0.1999 0.1327 0.0469 0.1652 0.0794 0.2302 0.1444
50 0.1917 0.1272 0.0450 0.1584 0.0762 0.2208 0.1386
60 0.1592 0.1052 0.0373 0.1313 0.0634 0.1834 0.1155
70 0.1362 0.0897 0.0319 0.1121 0.0543 0.1568 0.0990
80 0.1189 0.0782 0.0279 0.0978 0.0475 0.1370 0.0867
90 0.1056 0.0693 0.0248 0.0867 0.0422 0.1216 0.0770
100 0.0949 0.0622 0.0222 0.0779 0.0379 0.1093 0.0693
110 0.0862 0.0564 0.0202 0.0707 0.0345 0.0993 0.0631
120 0.0780 0.0516 0.0185 0.0647 0.0316 0.0910 0.0578
130 0.0729 0.0476 0.0171 0.0597 0.0292 0.0839 0.0534
140 0.0676 0.0441 0.0158 0.0554 0.0270 0.0779 0.0496
150 0.0631 0.0412 0.0148 0.0517 0.0253 0.0726 0.0463
160 0.0591 0.0385 0.0139 0.0484 0.0237 0.0681 0.0434

4.3. Effective Masses
Given that our excitation energies go to zero in the thermodynamic limit, we cannot meaningfully study
corrections to the band gap, but we instead investigate the effective mass to look for non-vanishing
corrections. The effective mass is a useful parameter by which to validate a model’s treatment of interactions,
and it can be directly studied in real systems. For instance, studies with different theories have tried to
reproduce the experimentally measured occupied bandwidth of sodium, with varying success [78, 79]. The
first and second excitation energies become identical in the metallic continuum limit (i.e. no singlet-triplet
splitting) which is why we treat all effective masses as estimates of the same quantity, and can compare our
results approaching the thermodynamic limit to the UEG. To compute an effective mass in our case, we
consider the excitation as an energy difference between k-points k2 and k1 on parabolic bands in a UEG, as in
equation (33). We assume that the k-points for the excitation are the same for the non-interacting system
and the interacting, ensemble-corrected system, which is appropriate if the Fermi level is not shifted with
respect to the states by the interaction, like the condition for a conserving approximation in many-body
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Figure 6. Difference between excitation energies of triplet excited states from the symmetry-enforced (Ωe
1) and symmetry-broken

(Ωb
1) bi-ensembles, as given in equation (45). The labels ‘e’ and ‘b’ denote results from the symmetry-enforced and

symmetry-broken ensembles.

Figure 7. Energy of singlet states obtained as second excitation energiesΩ2 from the tri-ensemble described by equation (48),
compared to KS energy differences E2 − E1. Insets show detail of regions for small Ne. HXC denotes results with a
weight-dependent Hartree, while XC denotes the use of a ‘traditional’ Hartree, as explained in section 2.3.

perturbation theory [80]. With these considerations, we obtain the effective mass as a ratio between the
independent-particle and interacting excitation energies:

∆Eip

∆Eint
=

E2 − E1
Ω

=

h̄2k2
2

2me
− h̄2k1

2

2me

h̄2k22

2m* − h̄2k12

2m*

=
m*

me
. (49)

While formally the effective mass is only defined for periodic systems, we study the behavior of this ratio
for our finite systems and the limit as our model approaches a periodic system, which may be compared to
the use of bulk effective masses in studying quantum dots [81]. The effective masses at the thermodynamic
limit (estimated as the results at our largest Ne, 160) are reported in table 2. In each case, the electron mass
ratio approaches a limit different from 1. By contrast, it can be shown analytically that GS DFT with LDA
gives the effective mass in a UEG always equal to the free electron mass [82]. That a nontrivial change in the
effective mass is found through EDFT shows the promise of EDFT for periodic systems, and the promise for
additional insight to be obtained through the use of more sophisticated ensemble DFAs.
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Table 2. Effective masses in the thermodynamic limit, estimated from Ne = 160, obtained from equation (49) using the
ensemble-corrected excitation energies. The labels ‘e’ and ‘b’ denote results from the symmetry-enforced and symmetry-broken
ensembles. HXC denotes results with a weight-dependent Hartree, while XC denotes the use of a ‘traditional’ Hartree, as explained in
section 2.3.

Excitation HXC XC

Ωe
1 (singlet) 4.263 1.534

Ωb
1 (singlet) 2.495 1.222

Ω2 (triplet) 1.363 0.8684

Figure 8. Effective masses, calculated from equation (49), for the symmetry-enforced bi-ensemble described in section 3.1 and the
symmetry-broken bi-ensemble described in section 3.2 in the (a)HXC, and (b) XC cases. The labels ‘e’ and ‘b’ denote results from
the symmetry-enforced and symmetry-broken ensembles. HXC denotes results with a weight-dependent Hartree, while XC
denotes the use of a ‘traditional’ Hartree, as explained in section 2.3.

Figure 9. Effective masses, calculated from equation (49), for the tri-ensemble. HXC denotes results with a weight-dependent
Hartree, while XC denotes the use of a ‘traditional’ Hartree, as explained in section 2.3.

All effective masses obtained are positive in value, indicating electron, rather than hole, character which
is expected for a metallic system. In the XC case for the singlet, we find an effective mass of 0.8684, notably
< 1, while the results obtained from all other cases are> 1. The effective masses for the bi-ensemble exhibit
several different behaviors (figure 8). For both the symmetry-enforced and symmetry-broken bi-ensembles
with ‘traditional’ Hartree (XC), the effective masses are>1 and decrease from their value at Ne = 2 to a
minimum at Ne = 6, after which point the effective mass increases slightly as it converges to its limit. By
contrast, HXC values decrease monotonically from Ne = 2. We find positive and monotonically decreasing
effective masses for the tri-ensemble. The use of weight-dependent Hartree in the tri-ensemble results
increases the effective mass by a fairly constant value of 0.5, as shown in figure 9. For both bi-ensemble and
tri-ensemble, the HXC results are systematically larger than for XC, and the symmetry-enforced results are
systematically larger than the symmetry-broken results. We can identify Exc [ραα] as the cause of the
non-monotonic behavior in the bi-ensemble with ‘traditional’ Hartree: this term has a sharp decrease in
magnitude (becoming less negative) at low Ne, faster than Ne, but it is outweighed by the Hartree terms in
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the weight-dependent Hartree case, and it is absent in the tri-ensemble case. It is not clear what deeper
meaning might be associated with this non-monotonic behavior.

We are not aware of any reported values for the effective mass of electrons in the 1D UEG with soft
Coulomb interactions. Instead we have two points of comparison. First, for a 1D UEG with a contact
interaction V(x− x ′) = V0δ (x− x ′), a GW calculation [83] foundm∗ in the range 1 to 2.5 (and presumably
continuing to increase), depending on V0 and the density. These values are comparable to most of our
results, ranging between 1 and 5. Second, there is extensive literature for 2D and 3D UEGs. Conventionally,
UEGs are characterized by the density parameter rs, which is the Wigner-Seitz radius measured in Bohr radii
a0. The 1D generalization [69] is rs = a0/2ρ, which in our case is 1.89. We compared our results to the
effective mass for the UEG obtained via MC for 2D and 3D systems with rs ⩽ 4, representing the metallic
regime, where rs ⩽ 1 represents the high-density regime [84, 85]. In the 3D case, effective masses in the UEG
obtained by variational diagrammatic MC have been found to be 0.955(1) for rs = 1, and 0.996(3) at rs = 4
[84]. Other calculations on the 3D UEG done via diffusion MC extrapolated to the thermodynamic limit
have reported an effective mass of 0.85 at rs ≈ 4 [86]. For a 2D UEG, diffusion MC gave results for a
paramagnetic case of 0.955(2) at rs = 1 and 1.04(2) at rs = 5 [87]. The ferromagnetic case gave 0.851(5) at
rs = 1 and 0.74(1) at rs = 5; [87]. In the high-density limit for a 3D electron gas, the effective mass is
expected to be less than one [88]. Our 1D result of 0.8684 from the tri-ensemble with weight-independent
Hartree (XC) is fairly similar to the 2D and 3D cases, which seems reasonable given the weak dependence on
dimensionality seen between 2D and 3D, and the spread in literature values for the effective masses. More
conclusive assessment of the accuracy of our effective masses would need a reliable calculation with another
method for the 1D UEG with soft-Coulomb interactions.

5. Conclusion

Since EDFT was designed for the treatment of discrete energy levels, it does not readily adapt to the band
structure of solids. We have therefore instead approached the application of EDFT to a periodic system
through a set of systems having the same fixed average density, and studied its approach to the
thermodynamic limit. We have considered ensemble-corrected excitation energies for systems where the KS
potential is set to the PIB potential, becoming the UEG in the thermodynamic limit, and avoiding the need
for SCF calculations.

Corrections to the singlet energy obtained from a tri-ensemble are positive in the XC case, increasing the
KS energy differences, and negative in the HXC case. In both the symmetry-enforced bi-ensemble, with
‘traditional’ Hartree and the symmetry-broken bi-ensemble with ‘traditional’ Hartree, corrections are
smaller than those obtained with weight-dependent Hartree, both results decreasing the KS energy
difference. While EDFT provides nonzero corrections to excitation energies in the finite regime, in the
approach to the thermodynamic limit, these tend to zero, as do the KS energy differences as well, which is
expected for a metallic system [49]. We consider symmetry-enforced and symmetry-broken schemes of
handling the triplet states that are indistinguishable in density, and find that for the bi-ensemble the
symmetry-enforced case leads to larger corrections to the KS energy difference. The excitation energies are
positive in all cases, showing no sign of the triplet instability that can show up in some theories.

Effective masses for each of the methods were calculated, and found to approach a positive limit in all
cases. A non-trivial correction to the effective mass is found in the thermodynamic limit, even with our
simple Hartree and LSDA XC approximations. These results indicate the potential of EDFT in the periodic
limit to provide meaningful results.

Prior work by Kraisler and Kronik [65] examined the derivative discontinuity of XC functionals (which
corrects the KS gap) in the thermodynamic limit, based on ensemble considerations (but not on GOK
EDFT). They note that the Hartree-based contribution to the missing derivative discontinuity vanishes in the
thermodynamic limit, with the exact XC component being the source of a useful correction. They note that,
as we see in our results, LDA-based corrections to the gap vanish due to known insufficiencies in this
approximation. By contrast, our work, investigating effective masses as well, found that there can be a
nontrivial correction from LDA in the thermodynamic limit.

We have investigated the impact of using two different forms of ensemble-generalized Hartree, one in
which there is explicit weight dependence in the functional, which is then applied to densities of individual
states, and one in which the weight-dependence is only accounted for in the ensemble density (the
‘traditional’ Hartree). However, it is known that neither method treating the ensemble Hartree is sufficient to
treat systems with ‘difficult’ spin multiplets in finite systems [45]. The weight-dependent Hartree
contribution has a significant impact for the singlet energy, changing the sign of the correction. In all cases
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we have used the former explicitly weight-dependent ensemble-generalized LDA XC. Given that neither LDA
nor GGA in periodic systems exhibit the necessary divergence of fxc [14], it is reasonable to expect that
implementation of more sophisticated ensemble DFAs, particularly non-local and GIE-free exchange [62]
and/or correlation, would be needed for fuller analysis of EDFT’s applicability and limitations in treating
periodic systems.

While the treatment of increasingly large finite systems at a fixed average density may not be practical for
extracting information about real systems, our results from this approach suggest that a formulation of
EDFT for periodic systems could provide non-trivial results even with simple DFAs, and motivate further
work on finding a suitable formulation. Further study of UEG systems in the thermodynamic limit can be
extended to 2D and 3D, with a more realistic Coulomb interaction, as well as to models with a nonuniform
potential, such as the Kronig-Penney model [89], which is not metallic and can be used to investigate
whether non-trivial band gap corrections can be found. Though a lack of density variations for
same-spin-symmetry states in the thermodynamic limit presents a challenge for investigating density-driven
correlations [46], it may be possible still to extract relevant information from states for which the densities
are different in the thermodynamic limit, as in the Kronig-Penney model. Such calculations would require a
self-consistent EDFT scheme that would accommodate solving for the set of KS potentials needed for
matching the set of individual states, as discussed in reference [46]. Finally, we note that the study of systems
with an odd number of electrons, which have a different multiplet structure, may offer further insight into
behavior in the thermodynamic limit.
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