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Abstract—Achieving fairness in sequential decision making sys-
tems within Human-in-the-Loop (HITL) environments is a criti-
cal concern, especially when multiple humans with different be-
havior and expectations are affected by the same adaptation deci-
sions in the system. This human variability factor adds more com-
plexity since policies deemed fair at one point in time may become
discriminatory over time due to variations in human preferences
resulting from inter- and intra-human variability. This paper ad-
dresses the fairness problem from an equity lens, considering hu-
man behavior variability, and the changes in human preferences
over time. We propose FAIRO, a novel algorithm for fairness-
aware sequential decision making in HITL adaptation, which in-
corporates these notions into the decision-making process. In par-
ticular, FAIRO decomposes this complex fairness task into adap-
tive sub-tasks based on individual human preferences through
leveraging the Options reinforcement learning framework. We
design FAIRO to generalize to three types of HITL application
setups that have the shared adaptation decision problem.

Furthermore, we recognize that fairness-aware policies
can sometimes conflict with the application’s utility. To
address this challenge, we provide a fairness-utility tradeoff in
FAIRO, allowing system designers to balance the objectives of
fairness and utility based on specific application requirements.
Extensive evaluations of FAIRO on the three HITL applications
demonstrate its generalizability and effectiveness in promoting
fairness while accounting for human variability. On average,
FAIRO can improve fairness compared with other methods
across all three applications by 35.36%.

Index Terms—sequential-decision making, fairness, human-
in-the-loop, adaptation, equity

I. INTRODUCTION

The emerging technologies of sensor networks and mobile

computing give the promise of monitoring the humans’ states

and their interactions with the surroundings and have made it

possible to envision the emergence of human-centered design

of cyber-physical systems (CPS) applications in various

domains. This tight coupling between human behavior and

computing enables a radical change in human life. By contin-

uously developing a cognition about the environment and the

human state and adapting/controlling the environment accord-

ingly, a new paradigm for CPS systems provides the user with

a personalized experience, commonly named Human-in-the-

Loop (HITL) systems. With the increasing number of HITL

CPS applications being controlled by artificial intelligence

(AI) algorithms, the algorithmic fairness of such decision-

making algorithms has drawn considerable attention in the last

few years [1]. Nevertheless, the unique nature of HITL CPS

opens a new frontier of algorithmic fairness issues that must be

carefully addressed before the wide use of such technologies.

In particular, the immense challenge in designing the future

HITL CPS lies in respecting human rights and values, ensuring

ethics and fairness, and meeting regulatory guidelines while

safeguarding our environment and natural resources [2].

The following summarizes the key distinctions between the

existing literature on algorithmic fairness and the nature of

Human-in-the-Loop (HITL) systems:

• Fairness in static/singular decision-making vs fairness
in dynamic/sequential decision making: The current

literature on algorithmic fairness primarily addresses the

unfairness arising from biases in data and algorithms used in

static systems, often employing supervised learning meth-

ods. A canonical example comes from a tool used by courts

in the United States to make pretrial detention and release

decisions (COMPAS) [3]. Other applications include loan

applications, employment processes and markets [4]. In con-

trast, HITL systems are dynamic, where actions taken at one

time have consequences for future states and actions. There-

fore, ensuring fairness in HITL systems requires considering

the impact of decisions over time, leading to a sequential

decision making problem. Neglecting the dynamic feedback

and long-term effects in such systems, as commonly done

in static decision-making, can harm sub-populations [5].

• Fairness in decisions (or equality) vs fairness in the
impact of decisions (or equity): Existing fairness defini-

tions predominantly focus on equality, aiming to eliminate

prejudice or favoritism based on individuals’ characteristics.

However, insufficient attention has been given to equity,

which entails allocating resources to individuals or groups

to support their success [6]. Equity becomes crucial in

HITL systems. Hence, a shift from fairness defined in

terms of equality to fairness based on equity is essential.

Motivated by these observations, this paper revisits fairness

literature and emphasizes the importance of fairness in

sequential decision making from an equity perspective for

HITL systems. The main objective is to operationalize equity

in the context of sequential decision making to develop

improved adaptation algorithms tailored to HITL applications.

This paper introduces FAIRO, a novel fairness-aware

adaptation framework for sequential decision making designed

for HITL systems. The framework specifically tackles the

issue of fairness in situations where multiple humans share

the same application space and are collectively impacted by
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adaptation decisions. While usually, these decisions aim to

optimize overall system performance, they may inadvertently

lead to undesired consequences as humans interact with the

system or as the system’s physical dynamics evolve.

II. RELATED WORK

A. Fairness in decision-making systems

At the heart of HITL systems is achieving the objective

of designing scalable, real-time decision-making mechanisms

that are aware of the social context, such as the perceived

notion of fairness, social welfare, ethics, and social norms [7].

A vast work in the game theory literature studies various

notions of fairness between communities by defining incentive

markets between competitors to achieve fairness [8]. Fairness-

enhancing interventions have been introduced to machine

learning to ensure non-discriminatory decisions by the trained

models [9], [10]. In particular, the question of fairness in

decision-making systems where the agent prefers one action

over another [11], [12] becomes more significant in multi-

agent systems [13]. However, imposing fairness constraints

as a static, singular decision (as standard supervised learning

methods do) while ignoring subsequent dynamic feedback

or its long-term effect, especially in sequential decision

making systems, can harm sub-populations [5]. Recent work

investigates the long-term effects of Reinforcement Learning

(RL). It shows that modeling the instantaneous effect of

control decisions for single-step bias prevention does not

guarantee fairness in later downstream decision actions [14].

Unfortunately, all of this work focused on fairness from the

lens of equality—where the target is to ensure no favoritism

or bias is present in the system—with very little work

that focused on fairness from the lens of equity (mostly

in singular/static decision making as opposed to sequential

decision making) [6]. Indeed, achieving fairness in sequential

decision making systems becomes more complex since

policies deemed fair at one point may become discriminatory

over time due to variations in human preferences resulting

from inter- and intra-human factors [12]. This paper focuses

on answering this question, especially for HITL systems.

B. Different notions of group fairness
The notion of “group fairness” is used in the literature

to address the fairness problem when multiple humans are

affected by the same adaptation model. While there are

several definitions and approaches to defining group fairness,

it’s important to note that these approaches may have nuanced

variations and can be interpreted differently depending on the

context and specific application domain. We only summarize

two widely used notions of group fairness: (1) equalized odds,

which focuses on achieving similar prediction accuracy across

different groups while considering binary classification tasks.

It ensures that the true positive rate (sensitivity) and true

negative rate (specificity) of a predictive model are comparable

across different groups [15], and (2) equal opportunity: aims to

ensure that the predictive model provides an equal chance of

benefiting from positive outcomes for all groups. In particular,

equal opportunity requires that the true positive rate for each

group should be approximately equal [15]. While these two

definitions primarily focus on binary classification tasks, this

paper will exploit some of their ideas towards sequential

decision-making and not specifically for classification tasks.

C. Multi-agent RL and hierarchical RL
Reinforcement Learning (RL) is a widely used approach for

monitoring and adapting to human intentions and responses

in various contexts [16]. To account for individual variability

and response times, approaches like multisample RL has

been proposed [17]. Hierarchical reinforcement learning

(HRL) decomposes complex learning tasks into manageable

components by using a hierarchical structure. The high-

level policy selects optimal sub-tasks, considered high-level

actions, while the lower-level policy focuses on solving

these sub-tasks using reinforcement learning techniques.

This decomposition strategy transforms long timescale

tasks into multiple shorter timescale sub-tasks, potentially

simplifying individual sub-task solving. For instance, the

Option-critic Framework introduces an architecture capable of

learning higher and lower-level policies without needing prior

knowledge of sub-goals [18]. HRL has demonstrated superior

performance in various domains, including long-horizon

games, continuous control problems [19] and fairness in

human-in-the-loop IoT [12]. In this paper, we will decompose

the fairness problem into sub-tasks over smaller time horizons

and exploit the options framework to solve these sub-tasks.

D. Paper contribution

This paper’s contributions can be summarized as follows:

• Fairness from the lens of equity: We tackle the fairness

problem in sequential decision-making systems within

HITL environments by addressing the notion of equity.

• FAIRO: We propose FAIRO, a novel algorithm designed

for fairness-aware sequential-decision making in HITL

adaptation. Our approach leverages the Options RL

framework to effectively incorporate fairness.

• Generalization to different HITL application setups: We

extend FAIRO to cater to three types of HITL application

setups. These setups involve multiple humans sharing

the application space and being impacted by: (1) global

numerical adaptation decisions, (2) shared global resources,

and (3) shared global categorical adaptation decisions.

• Evaluation on multiple HITL applications: We conduct

comprehensive evaluations of FAIRO on three different

HITL applications to demonstrate its generalizability and

compare with previous work in the literature.

The paper is structured as follows: Section III summarizes

the Options framework, which serves as the foundation for

our proposed approach. Section IV details how to incorporate

fairness considerations into the decision-making process. The

subsequent sections of the paper focus on evaluating our pro-

posed approach, FAIRO, in three distinct application domains.

III. OPTIONS FRAMEWORK FOR TEMPORAL ABSTRACTION

Markov Decision Process (MDP) is widely employed

for modeling sequential decision making. Various methods

are utilized to solve MDPs and obtain the optimal Markov
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Fig. 1: The state trajectory of an MDP with small discrete-time
transitions. Options enable overlaid larger abstracted discrete events.

decision chain, including dynamic programming and

reinforcement learning (RL). RL is particularly used when

the transition probabilities within the MDP are unknown.

Within the discrete-time finite MDP setting, the standard RL

framework can be applied. In particular, an agent engages

with an environment that is modeled as an MDP at discrete

time steps, denoted as t = 0, 1, 2, .... At each time step t,
the agent observes the current state of the environment,

denoted as st∈S , and selects an action at∈A based on this

observation. This action leads to a transition to the next state,

st+1, and yields a reward value, rt←R, associated with this

transition. By engaging in this interaction, the agent learns

a policy π(s, a) that guides its decision-making, aiming to

select the best action a for each state s to maximize the

expected total reward over sequential decision actions.

The options framework was first introduced by Sutton et

al. [20] to generalize primitive actions to include temporally

extended courses of lower-level action. In particular, the term

options represents a temporal abstraction of the lower-level

actions in the MDP. A pictorial figure of options over MDP is

shown in Figure 1. An MDP’s state trajectory comprises small,

discrete-time transitions, whereas the options enable an MDP

to be abstracted and analyzed in larger temporal transitions.

Option o within the option set O consists of three main

components: a policy π(a|s, o) for selecting actions within

option o, an initiation set I ⊆ S, a termination condition β.

An option o:(I,π,β) is available to be selected by the agent in

state st if and only if st∈I. If the option is selected, actions

are selected according to the option policy π until the option

terminates according to the termination condition β. When the

option terminates, the agent can select another option. This

definition of options makes them act as much like actions

while adding the possibility that they are temporally extended1.

In this paper, the rationale behind employing the options

framework to achieve fairness in a multihuman setting stems

from the inherent limitations imposed by an option’s initiation

set I and termination condition β. These constraints confine

the applicability of an option’s policy, π, to a subset defined

by I rather than encompassing the entire state space S.

Consequently, options can be viewed as a means of achieving

fairness subgoals, wherein each option’s policy is adapted to

enhance the attainment of its specific subgoal, thereby con-

tributing to the overall fairness of the decision-making agent.

The dynamic nature of the multihuman environment necessi-

tates diverse fairness policies at different temporal instances.

1Options framework can be extended to include policies over options. When
multiple options are available to the agent at st, the agent can learn which
option to select using the policy over options. We consider the policy over op-
tions to be a fixed policy, and the initiation sets of all options are disjoint sets.

IV. FAIRO: FAIRNESS USING OPTIONS FRAMEWORK

We exploit options framework to design FAIRO to achieve

fairness in sequential decision-making agents in multihuman

environment [20]. As seen in Figure 2, the agent interacts in

sequential discrete-time steps with an environment that has N
humans (h1,h2,...,hN ) through observing their preferences or

their desired adaptation actions (d1,d2,...,dN ) and the current

fairness state of the environment st. Guided by the current

fairness state st, the agent selects an appropriate option ot
from the set of N available options O. The chosen option

ot then determines a lower-level action based on its specific

option policy πo, resulting in a global action agt that is applied

to the shared environment. This global action subsequently

modifies the current fairness state, and the agent receives

a reward rt+1. This reward is utilized to refine the option

policy. In the following subsections, we provide a detailed

description of each module within the FAIRO framework.

A. Fairness state space S
Our approach to viewing fairness from the lens of equity

is by using a fairness state that encompasses the history of

the positive and negative effects of the global decision action.

1) Satisfaction history records ci : Fairness state st is

inferred from the history of the satisfaction of each human.

To model the satisfaction of the human hi, we keep a history

record for each human:

ci=(ui,vi),where i∈{1,2,...,N}. (1)

The value ui ∈R represents a record of the number of times

the human hi was unsatisfied by the applied global action ag .

In contrast, vi∈R represents a record for the number of times

the human hi was satisfied by the applied global action ag .

At time step t, every human hi has a desired adaptation

action dit . For example, a human may prefer a particular

temperature setpoint to HVAC system (Heating, ventilation,

and air conditioning) in their room for thermal comfort that

matches their physical activities, such as sleeping, domestic

work, or sitting. Based on the difference in the values of

dit and agt , the record ci is updated to capture whether

the human was satisfied or unsatisfied. For example, if this

difference is within a threshold τ then we consider the human

hi is satisfied and increment vi by a value δ.

ci=

{
(ui,vi+δ) ‖dit−agt‖≤τ.

(ui+δ,vi) ‖dit−agt‖>τ.
(2)

After all the records C = (ci, i = 1,2, ...,N) are updated,

they are normalized to a unit vector. Choosing the value τ is

application dependent; however, the value δ needs to be less

than 1 and small enough to ensure that the unit vector direction

C does not change drastically. Hence, we choose δ to be 0.01.

Ideally, these records ci should be (0, 1) indicating that

the global adaptation action ag meets the preferences of

the human over time. However, as we mentioned earlier,

these preferences may conflict with humans sharing the same

environment. Hence, the same agt may be perceived by one

human as meeting their preference (increasing v) and by

another human as not meeting theirs (increasing u).
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Fig. 2: FAIRO for fairness-aware framework in Human-in-the-Loop systems using options framework. FAIRO is designed for three types
of applications: Type I: one global action based on numerical demands affecting multiple humans, Type II: one shared resource distributed
over multiple humans, and Type III: one global action based on categorical preferences.

Fig. 3: Satisfaction history record C is represented as 2D unit
vector, where the two components u and v represent history of
“unsatisfied” and “satisfied” respectively.

A pictorial visualization of C is shown in Figure 3. Each

ci can be represented as a 2D vector within a unit circle. We

show two examples for ci for three humans where h3 has

c3 closer to the v axis compared to the other two humans

(Figure 3-left) versus the case when h3 has c3 closer to the u
compared to the other two humans (Figure 3-right). Figure 3

shows an example of a relatively unfair situation, where h3

is either treated most of the time favorably (Figure 3-left) or

unfavorably (Figure 3-right).

It is worth mentioning here that C captures the history of

the effect of the trajectory of sequential adaptation action on

the shared environment. Hence, the intuition is to tune the

global action in the next time step agt+1
to either decrease the

focus on considering the preferences of h3 (Figure 3-left)

or vice versa (Figure 3-right). However, as mentioned in

Section I, the same action affects all the humans sharing the

same environment.

2) Fairness state st: We use the geometric intuition

in Figure 3 to design our fairness state st to compare the

directions of all N records in C. Ideally, we would like to

have all ci as close as possible to each other. Hence, we

define st to capture how close each ci is to the other N\i
records. Hence, we define (st) as follows:

Li=
1

N

∑
j∈N\i

ci ·cj
‖ci‖·‖cj‖

, Li∈]0,1]⊂R (3)

st=(L1,L2,...,LN ), st∈S=]0,1]N (4)

In particular, Li represents the closeness of record ci to the

rest of the records using the average of the cosine of the angle

between pair of vectors. Hence, if the cosine value between

two vectors is 1, they coincide. Since the values of ci can only

be positive and are normalized to a unit vector, the minimum

cosine value between these vectors is 0, indicating that they are

far from each other (at 90◦)2. Equation 4 represents st which

holds all the values of Li. Ideally, from our fairness point of

view, the goal state st should be (1,1,...1), which indicates that

all Ch have the same direction, meaning that the history of

the satisfaction and unsatisfaction for all the humans are close.

B. Initiation set I and fairness subgoals
While the ultimate goal is to learn a policy that can

achieve the goal state st=(1,1,...1), this is challenging since

it is a huge state space. Accordingly, the intuition behind

exploiting the options framework is to divide this goal into

smaller subgoals where we learn over a subset of states or the

initiation set (I⊆S) as explained in Section III. We divide S
into N initiation sets Ii where i ∈ {1,2,...,N}, such that Ii
contains all the states with Li as the minimum value.

Ii={st={L1,...,LN}∈S|Li=min(st)} (5)

Specifically, this means that each initiation set Ii considers

only the states where hi has received unfair adaptation either

favorably or unfavorably. For example, both cases in Figure 3

are considered unfair state where L3 is less than L1 and L2.

C. Termination State β

Each option oi terminates when the current state st reaches

a terminal state for this option. Hence, in FAIRO, the set of

terminal states for oi is when Li is no longer the minimum

value in st.
βi={st=L1,...,LN}∈S|Li �=min(st)} (6)

Intuitively, this means that each option oi will run to

improve the value of Li until it is no longer the minimum

value which is the fairness subgoal for this option. This will

trigger a new initiation set I and this option terminates and a

new option starts to achieve another subgoal: improving Li.

D. Global action of different HITL applications

As shown in Figure 2, every human (hi) has a desired

preference (di). However, only one action ag is chosen to

be applied to the shared environment. In FAIRO, we identify

three types of applications:

• (Type I) Shared numerical global action: The desired

preferences di have numerical values and the global action

ag is a numerical value. We design each option to take

2ci∈R,Li is unlikely to reach 0 but can decrease to a very small value ε.
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a weighted sum of these N preferences. These weights

represent the contribution of each human preference di
in the applied global action agt . Hence, agt =

∑N
i=1widi,

where wi∈ [0,1]. We will show an instant of this type in a

simulated smart home application in Section V.

• (Type II) Shared global resource: The desired preferences

di have numerical values. There is one shared time-varying

resource Z and it has to be distributed. The global action agt
is the weighted share of this resource Rt dictated by their

desired preferences. Hence, agt = [w1Zt,w2Zt,...,wNZt],
where wi∈ [0,1]. We will show an instant of this type in a

simulated water distribution application in Section VI.

• (Type III) Shared categorical global action: The desired

preferences di have categorical values, with the global

action ag selecting one of these categorical values, which

represents the maximum weighted effect of applying di
on all other N − i humans, where the effect ki can be

estimated from the context-aware engine, resulting in

agt = argmaxdi [w1k1,w2k2,...,wNkN ], where wi ∈ [0,1].
We will show an instant of this type in a smart education

application in Section VII.

E. Learning the option policy (πi)
Each option policy πo learns the appropriate

w = (w1, w2, ... , wN ) for the global action agt for every

state st ∈ Ii to reach the termination condition βi such that∑N
i=1wi=1. These weights are continuous values and learning

them for every st ∈ Ii is challenging. Hence, we opt for a

simpler design of using Deep Q-Network (DQN) to reduce

the search space for the appropriate weights as detailed below.

1) Deep Q-Network (DQN): DQN is a reinforcement

learning algorithm that utilizes deep neural networks in

combination with Q-learning within Markov Decision

Processes (MDP), estimates the action-value function Q(s,a),
representing expected rewards for actions in states. This

function is typically represented by a neural network with

state inputs and estimated action values as outputs, and at

each time step t, the DQN agent uses ε-greedy policy to

select action, updating the Q-function based on observed

states, rewards, and the next state using an update rule:

Q(st,at)←Q(st,at)+α(rt+1+γmax
a

Q(st+1,a)−Q(st,at)), (7)

where α is the learning rate, γ is the discount factor, and

maxaQ(st+1,a) is the estimated maximum action-value in the

next state st+1. DQN aims to learn a policy that maximizes

the cumulative reward over time in a given environment. It

combines Q-learning with deep learning, allowing the agent to

handle high-dimensional observations and non-linear function

approximations. Figure 4 shows a pictorial illustration for the

design of the DQN in every option oi in FAIRO.

2) Input to Option DQN (s′t): Every option oi runs a

DQN where the input is the st. However, to differentiate

between the two cases shown in Figure 3 where both L3

is the minimum value in st, we append to st the relative

location of c3 with respect to the c1 and c2.

s′t=(st,l), where st∈Ii, l=

{
1, vi=maxv(st).

0, otherwise.
(8)

Fig. 4: DQN for option oi. The input is the state s′t. The output is the
q_value for the possible three actions of weight adjustment δw.

This means that if Li is the minimum in st, option oi will

run since st ∈ Ii. The input to the DQN in option oi will

indicate whether Li has the minimum value (unfair situation)

because hi received favorable treatment relative to all hNni

(i.e., ci has a high vi component) and in this case l = 1 in

Equation 8, or l=0 otherwise.

3) Output from Option DQN (δwi): To reduce the action

space of the DQN since we need to learn N weights with

continuous values [0,1], we designed the output from the DQN

in option oi to focus only on adjusting wi instead of all the N
weights w. In particular, as shown in Figure 4, the output from

the DQN are the Q-values (Q(s,a)) which decides to select

between three actions to (a1) increase the weight wi ↑, (a2)

decrease the weight wi ↓, or (a3) keep the same weight wi �.

Hence, the output from DQN (which is the selected action of

the DQN as explained in Section IV-E1) is the weight adjust-

ment for wi by δwi=(+δ,−δ,0) where the value δ determines

how fast the DQN for option oi changes the weight wi.

wi←wi+δwi,
N∑
i=1

wi=1. (9)

Since all the weights w have to be normalized to 1, all the

weights will be adjusted accordingly. Using this design, we

choose between 3 possible adjustments for weight wi instead

of the whole space [0,1] and instead of all the N weights.

4) Option DQN reward (Ri): Each option DQN learns

the appropriate policy πi(s
′
t,δwi), which is the right weight

adjustment δwi at state sit. The DQN learns this policy through

a notion of a feedback reward as explained in Section IV-E1.

As each option oi aims at increasing the fairness subgoal

of enhancing Li while improving the performance of the

application, the reward function Ri can be expressed with

two terms; a fairness term F , and a performance term P
using a trade-off parameter ζ∈ [0,1].

Ri=ζFi+(1−ζ)Pi,∈ [−1,1]⊂R

Fi=absolute fairness+option improvement

=(2∗Lit−1)+f(Lit−1 ,Lit),∈ [−1,1]⊂R

Pi=application dependent,∈ [−1,1]⊂R

(10)

The fairness Fi considers the current value of Li, which

we call the “absolute fairness”, and the “improvement in the

fairness” value of Li from last time step for this particular

option. It is a function (f ) of the current value of Lit and

the value from last time step Lit−1 as shown in Equation 10.

The overall FAIRO algorithm is listed in Algorithm 1.
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V. APPLICATION TYPE I: SMART HOME HVAC

Recent literature focuses on enhancing human satisfaction

in smart heating, ventilation, and air conditioning (HVAC)

systems by employing reinforcement learning (RL) techniques

to adjust the set-point based on human activity and

preferences [12]. These HITL systems consider the current

state and individual preferences, such as body temperature

changes during sleep or physical activity. To evaluate FAIRO

in Type I applications, we consider a setup where multiple

humans share a house with a single HVAC system, and their

activities determine individual desired setpoint.

A. House-Human Physical Model

We used a thermodynamic model of a house incorporating

the house’s shape and insulation type. To regulate indoor

temperature, a heater and a cooler with specific flow

temperatures (50◦c and 10◦c) were employed. A thermostat

maintained the indoor temperature within 2.5◦c around the

desired set point. An external controller controls the setpoint.

The human was modeled as a heat source, with heat flow

dependent on the average exhale breath temperature (EBT )

and the respiratory minute volume (RMV ). These parameters

depend on human activity [21]. We simulated three humans

with four activities: sleeping, relaxing, medium domestic

work, and working from home. The different activity schedules

depicted in Figure 8-Left in the Appendix. The humans were

simulated in separate rooms, each exhibiting unique behavioral

patterns: (1) h1 followed an organized and repetitive weekly

routine, (2) h3 had a more random and unpredictable life

pattern, and (3) h2 displayed intermediate randomness,

alternating between sleeping, being away from home,

domestic activities, and relaxation. The Mathworks thermal

house model was extended to include a cooling system, a

human model, and an external controller running FAIRO3.

B. Context-aware engine

A context-aware engine estimates the desired action di per

human hi in a smart home. The desired action di can be

obtained through fixed policy configuration or learned policy.

To focus on our main contribution and not on designing a

new context-aware engine, we leverage existing RL-based

approaches for estimating the desired HVAC setpoint di based

on activity and thermal comfort [22]. The desired setpoints for

the considered activities are domestic activity (72◦F), relaxed

activity (77◦F), sleeping (62◦F), and work from home (67◦F).

These setpoints aim to enhance thermal comfort. Thermal

comfort is assessed using Prediction Mean Vote (PMV) on a

scale from very cold (−3) to very hot (+3). Optimal indoor

thermal comfort falls within the recommended range of

[−0.5,0.5], as per the ISO standard ASHRAE 55 [23].

C. Evaluation
We compare 5 different approaches including one of the

state-of-the-art approaches FaiRIoT [12]:

3While more complex simulators like EnergyPlus exist, we opted for a
simpler model to assess FAIRO.

Algorithm 1 FAIRO algorithm

Require:
Humans H=(h1,...,hN )
Satisfaction records C=(c1,...,cN),ci=(u,v)∈R

2

States s∈S=]0,1]N ⊂R
N

Initiation sets Ii∈I={s∈S}
Options O=(o1,...,oN ),oi=(Ii,πi,βi)
Application type T ={Type1,T ype2,T ype3}

1: procedure RUN-FAIRO
2: while True do
3: dt← context-aware-engine (H)
4: if T ==Type2 then
5: Rt← get-current-available-resource()

6: if T ==Type3 then
7: kt← get-current-effects(dt)

8: st← get-fairness-state(C)
9: s′t← append-state(st)

10: ot← choose-option (st) 	 ot∈O
11: δw← run-option(ot) 	 option policy πo(st,δw)
12: wt← update-normalize-weights(δw)
13: agt ← calculate-global-action(dt, wt,Rt, kt )
14: 	 Apply global action agt on the shared environment
15: Rt← receive-reward ()
16: πo(st,δw)← Update-option-policy (Rt)
17: C← Update satisfaction records (dt,agt )

• FAIRO: The global applied action is agt =
∑3

i=1 widi.
The reward per option i is as explained in Equation 10.

We set ζ = 0.5. As for the performance term Pi in the

reward, we assign a high reward when the PMV falls in the

acceptable range [−0.5,0.5]. Further, we used the values

of the satisfaction counters ci=(ui,vi) as an indication of

the performance Pi since their values are correlated to the

desired temperature di which maps to the best PMV. The

value Pi is then normalized to be [−1,1]:

f(Lit−1 ,Lit)=sign(Lit−1−Lit)×Z

Z=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 |Lit−1−Lit |∈]0,0.001]
0.25 |Lit−1−Lit |∈]0.001,0.005]
0.5 |Lit−1−Lit |∈]0.005,0.01]
0.75 |Lit−1−Lit |∈]0.01,0.015]
1 |Lit−1−Lit |>0.015

Pi=0.2
vi

ui+vi
+0.8f(PMV),∈ [−1,1]⊂R

(11)

• Average approach: The setpoint is the mean value of

desired setpoints of all rooms. Hence, agt =
1
3

∑3
i=1di.

• Equality using round robin (RR): The setpoint is selected

from one of the desired setpoints of all rooms in a rotation.

The intuition of this approach is to compare with the case

where we give every room the same opportunity to use

its desired setpoint across time (equality). Hence, for 3

humans, ag1 =d1,ag2 =d2,ag3 =d3,ag4 =d1,..., etc.

• No subgoals using 1 DQN: The setpoint is calculated using

a single model of 1 DQN structured as Figure 4. The inputs

are the three values of the fairness state (st=(L1,L2,L3)).
The intuition of this approach is to evaluate whether we

can achieve the overall fairness goal without the need for

subgoals that FAIRO provides. The reward for the single
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Fig. 5: Fairness state and satisfaction across all approaches in application 1 showing the probabilities of equal opportunity and equalized odds.

DQN is the average reward value across all rooms:

R=0.5F+0.5P, where N=3∈ [−1,1]⊂R

F=
1

N

N∑
i=1

LN
i +f(

1

N

∑
i

Lit−1 ,
1

N

N∑
i=1

Lit),

P=0.2
1

N

N∑
i=1

vi
ui+vi

+0.8
1

N

N∑
i=1

f(PMV )

(12)

• FaiRIoT [12]: The closest to our approach is FaiRIoT

which uses hierarchical RL.
We investigated multiple evaluation metrics to evaluate the

fairness across these three rooms; 1) the values of the fairness

state (st=(L1,L2,L3), 2) a satisfaction metric, 3) PMV, and

4) the covariance cv of the learnt weights.
1) Fairness state and group fairness definition: As

explained in Section IV-A2, the best fairness state should

be st = (L1,L2,L3) = (1,1,1). To measure st, we need to

use the satisfaction history counters by updating them per

to Equation 2. In this application, we set the threshold τ to

be 2.5. Figure 5 shows the fairness states results with 15k

samples equivalent to 62.5 simulated days.
To better get insights on how the different methods compare

with respect to the values of st, in every time sample, we report

the maximum value of L in st (Figure 5-first row) and the

minimum value of L in st (Figure 5-second row). We plot the

values L1 for Room 1(red), L2 for Room 2(blue), and L3 for

Room 3(green). The results for using only 1 DQN are unstable,

and have fluctuations in the fairness state values. This result

is expected for 1 DQN since the fairness goal was not divided

into sub-goals, unlike what the options framework provided.

The commonly used metrics for group fairness are equal op-
portunity and equalized odds. Although these metrics are typi-

cally applied to binary classification tasks, we adopt their orig-

inal definitions to compare FAIRO with the other approaches.

• Equal opportunity aims to ensure that individuals

from different groups have an equal chance or probability

of experiencing positive outcomes or receiving beneficial

treatment or resources. To assess the performance of FAIRO,

we analyze the results presented in Figure 5 by examining

the reported maxL st values. Specifically, we compare the

probabilities of different rooms Mi having the highest

maxL st values. For equal opportunity, these probabilities

need to be close, as denoted in Equation 13.

p(Mi==find(max
L

st))≈p(MN\i==find(max
L

st)) (13)

As observed in Figure 5-first row, these probabilities

are 34%, 29.4%, and 36.6% for Room M1, M2, and M3

respectively, which are closer in values compared with

the other approaches. In particular, using FAIRO, the

average absolute difference between the probabilities of

equal opportunity across the 3 rooms is reduced by 57.0%,

54.8%, and 35.8% from Average Approach, RR, and 1 DQN

respectively. Across all the approaches, FAIRO improves
the equal opportunity fairness by 49.2% on average.
• Equalized odds focuses on the balance between positive

and negative outcomes across different groups. Hence, for

the negative outcomes, we can examine the probabilities of
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different rooms having the minLst values and assess whether

they are approximately equal.

p(Mi==find(min
L

st))≈p(MN\i==find(min
L

st)) (14)

As observed in Figure 5-second row, these probabilities

are 34.5%, 34.9%, and 30.7% for Room M1,M2, and M3

respectively, which are closer in values compared with the

other approaches. In particular, using FAIRO the average

absolute difference between the probabilities of equalized
odds across the 3 rooms is reduced by 47.8%, 35.8%, and

41.3% from Average Approach, RR, and 1 DQN respectively.

Across all the approaches, FAIRO improves the equalized
odds fairness by 41.63% on average.

2) Satisfaction performance: Figure 5-third row shows the

satisfaction values ( v
v+u ) for all methods. FAIRO achieves

close satisfaction values across the three rooms over time. Av-

erage and RR approaches have stable but different satisfaction

values across rooms while 1 DQN shows more fluctuations

per room. We focused on samples after FAIRO converges

(12k to 15k) and examined the satisfaction value histograms.

We report the Jensen-Shannon Divergence (JSD) of these

histograms4. FAIRO has the lowest average JSD (0.013), indi-

cating closer satisfaction values across rooms. Across all the
approaches, FAIRO reduces JSD by 92.06% on average.
More details are shown in Figure 8-right in Appendix.

To gain further insights into human satisfaction, we plot

the covariance of temperature differences between the applied

setpoint ag and the desired temperature di for the three

humans, and Figure 6 shows that FAIRO exhibits the lowest

cv of 0.04, indicating better fairness.

3) PMV results: FAIRO achieves the second lowest aver-

age JSD and a comparable variance on PMV results, which in-

dicates FAIRO can improve fairness without hurting the PMV

performance. RR achieves the lowest PMV JSD average since

every time step one of the rooms can get exactly its desired

temperature. Hence, the 3 rooms can get almost identical PMV

performance in the long term. Across all the approaches,
FAIRO’s PMV JSD is reduced by 13.7% on average. More

details are shown in Figure 8-Right in the Appendix.

4) Comparison with the State-of-the-Art FaiRIoT [12]:
FaiRIoT uses a notion of utility uht =

1
t

∑t
j=0

j
twhj which

is the average weight assigned by a layer called “Mediator

RL” for a particular human h over a time horizon [0 : t],
where the factor j

t is used to give more value to the recent

weights learnt by the Mediator RL over the ones in the

past. FaiRIoT measures the fairness of the Mediator RL

using the coefficient of variation (cv) of the human utilities:

cv =
√

1
n−1

∑n
h=1

(uh−ū)2

ū2 , where ū is the average utility of

all humans. The Mediator RL is said to be more fair if and

only if the cv is smaller. Accordingly, we compare the cv in

FaiRIoT and FAIRO in Figure 7. FAIRO achieves cv around

0.15, while FaiRIoT cv is larger than 0.6. Hence, FAIRO
improves the fairness where cv is reduced by 75%.

4The Jensen–Shannon divergence (JSD) is a symmetric measure of
similarity between two probability distributions, always non-negative, with 0
denoting identical distributions and any value above 0 indicating differences.

Fig. 6: Coeff. of variation (cv)
of the temperature differences.

Fig. 7: Coeff. of variation (cv)
of the utility ut over w.

VI. APPLICATION TYPE II: WATER SUPPLY APPLICATION

In the context of global climate change and rapid

population growth, Water Demand Models (WDMs)

are crucial for gaining insights into water consumption

behavior and forecasting demand, aiding decision-making

in water distribution system (WDS) operation policies

and infrastructure planning. However, managing limited

water resources while ensuring equitable distribution among

households remains a challenge, with various pricing and

non-pricing policies explored in the literature [24]. For

evaluating FAIRO in application Type II, it is assumed that

WDM estimates desired water demand for three households

from a time-varying, insufficient shared water resource.

A. Household-Water Demand Physical Model
We utilized a WDM to model water demand based on

residents’ activity patterns, matching the activity patterns

presented in Section V-A to water demand behavior [25]. The

water demand patterns for three households are illustrated in

Figure 11-Left in the Appendix. Each household has a water

reservoir T and aims to meet its specific water demand di, with

the shared water resource (Zt) being variable and insufficient

to satisfy all demands. Assuming the availability of the WDM,

we set Zt to 1.5 times the maximum demand among the three

profiles, with the water demand profiles being independent

due to distinct human activities. We expanded the Mathworks

water supply physical model to accommodate these household

water demand profiles and multiple houses [26].

B. Context-aware engine
Our main contribution is not designing a new water con-

sumption behavior or forecasting demand models, hence, the

context-aware engine provides the desired action for every

household hi, which is the current water demand di based on

the water demand pattern. This demand is supposed to be sat-

isfied via the water supply si from the shared limited resource

Zt and the current reserved water in the household water

reservoir Ti. Hence, we define the application performance

as the percentage of balancing the demand and the supply.

Balance Rate (BR)=
supply si+reserve Ti

demand di
(15)

C. Evaluation
We compare the same methods as in the first application.

• FAIRO: The supply si for each household hi is calculated

by FAIRO. In particular, si receives wiZt as explained in

Section IV-D where the global action agt is the weighted dis-

tribution of this resource Zt. The reward is the same as ex-

plained in the first application (Equation 11), where perfor-

mance Pi is based on the BR (Pi=0.2 vi
ui+vi

+0.8f(BR)).

94

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 29,2024 at 18:25:10 UTC from IEEE Xplore.  Restrictions apply. 



• Average approach: Each household hi has the same

amount of supply. Hence, si=
1
3 Zt. We further augment the

average approach in this application by using a Weighted
Average approach. In particular, each household supply is

proportional to its demand. Hence, si=
di∑3
i=1di

Zt.

• Round Robin (RR): Each time step, one of the households

in a rotation will be guaranteed sufficient supply to cover

its demand. Leftovers from the resource will be shared

equally with all households. For example, at time t = 1,

s1 = d1 while s2 = s3 = Zt−d1

2 . We further augmented

the RR to consider a Weighted RR. In this case, supplies

are calculated similarly to RR, but the leftover water will

be distributed proportionally to their demands as in the

weighted average approach.

• No subgoals using 1 DQN : Supply for each household is

calculated by 1 DQN structure as explained in Section V-C.

We investigated multiple evaluation metrics as follows:
1) Fairness state and group fairness definition: We

simulated 62.5 simulated days equivalent to 15k samples. To

measure st, we need to use the satisfaction history counters

by updating them per Equation 2. In this application, we set

the ‖di − (si + ti)‖ ≤ τ with τ equals 20% of the demand

di which means BR is 80%. Similar to the analysis we

did in application 1, FAIRO achieves equal opportunity
probabilities 31.9%, 35.4%, and 32.7% for household #1,

#2, and #3 respectively, which are closer in values than other

methods. Across all the approaches, FAIRO improves the
equal opportunity fairness by 26.38% on average. As for

equalized odds probabilities, FAIRO reports 34.4%, 30.1%,

and 35.5% for households #1, #2, and #3 respectively,

which are also closer in values compared to the other

approaches. Across all the approaches, FAIRO improves
the equalized odds fairness by 32.1% on average. More

numerical details are shown in Figure 9 in the Appendix.

2) Satisfaction performance: We use 3k samples after

FAIRO converge (12k to 15k) to examine the satisfaction

value histograms. We report the Jensen-Shannon Divergence

(JSD) of these histograms. FAIRO has the lowest average JSD

(0.017), indicating closer satisfaction values across rooms.

Across all the approaches, FAIRO JSD is reduced by
91.06% on average. More numerical details are shown in

Figure 11-Right in the Appendix.
3) Balance rate (BR) results: We report the average

number of samples that have >80% BR across all households

and average it over 3k samples. Samples have > 80%
BR correspond to satisfactory samples. Across all the
approaches, FAIRO’s average >80% BR is improved by
46.66% on average. More numerical details are shown in

Figure 11-Right in the Appendix.

VII. APPLICATION TYPE III: SMART LEARNING SYSTEM

Monitoring human learning state and performance is crucial

for assessing progress and personalizing instruction [27].

Immersive technologies like virtual reality (VR) in education

and workforce training show promise for improving learning

experiences. However, over extended online or VR education

periods, human performance can decline due to distractions,

drowsiness, and fatigue [27]. This application examines

multiple users sharing the same educational environment,

with a HITL learning system that adapts this environment

by enabling an immersive VR experience to improve the

learning experience.

A. Human-Learning VR Model
We used a real human dataset from recent literature

studying VR’s impact on learning [22]. The dataset describes

human learning experience through three features: alertness,

fatigue, and vertigo, resulting in 8 states with binary values

(e.g., Alert: 1, Not Alert: 0). A HITL learning environment

adapts based on these states using actions like (1) a1 giving

a break, (2) a2 enabling VR, or (3) a3 disabling VR.

We analyzed this dataset to categorize 15 participants

into three groups based on VR tolerance: the most tolerant,

those with some cybersickness, and those with the least VR

tolerance. We model these groups’ behavior using MDP

models (see Figure 10 in Appendix), with state 8 representing

the best human state and state 1 the worst. Three humans,

one from each profile, were instantiated for a daily class

schedule, with their states initialized to state 3 or state 1

randomly at the beginning of each day.

B. Context-aware engine
Unlike the previous two applications, this application has a

non-numerical action space, as mentioned in Section VII-A.

Hence, to use FAIRO we need to quantify this categorical

action in terms of its effect as explained in Section IV-D.

We exploit the MDP model in Figure 10 in the Appendix

to quantify these actions. In particular, as S8 and S0 encode

the best and the worst state, respectively, we assign a value

to each state linearly with S8 as the highest value. Hence,

the desired action di that can make a transition to a better

state in the MDP has a high numerical value. However, every

human may be in a different state. Hence, for every desired

action di, we calculate the effect denoted as ki of applying di
on the other humans. Using the MDP models, if the desired

action di from human hi were to be applied in the shared

environment, we check the state transition it will cause on all

the other humans hN\i. The difference in the values of the

two states in the transition is used to measure its effect. After

applying an adaptation action, the human learning experience

can be measured as the improvement in the human state

values and the current human state value.

Learn Exp. (LE)=state improvement+state value ∈ [−1,1] (16)

C. Evaluation

• FAIRO: The global action agt = di is the desired action

of the humani with the maximum weighted effect as

explained in Section IV-D. The reward is the same as

explained in the first application (Equation 11), where

performance Pi is based on the learning experience (LE)

(Pi=0.2 vi
ui+vi

+0.8f(LE)).
• Average approach: The global action agt =di is the desired

action of the humani with the median weighted effect.
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• Round Robin (RR): The global action agt is selected from

one of the desired actions of all humans in a rotation.

• No subgoals using 1 DQN: The weighted effects are

determined by using 1 DQN structure (Section V-C).

We investigated multiple evaluation metrics as follows:

1) Fairness state results and group fairness definition: To

measure st, we need to use the satisfaction history counters

by updating them per Equation 2. If the learning experience

(LE) of the human is >0 as measured in Equation 16, it will

be considered satisfied. Across all the approaches, FAIRO
improves the equal opportunity fairness by 36.35% and
equalized odds fairness by 30.55% on average. More

details are shown in Figure 12 in the Appendix.

2) Satisfaction performance: We use 3k samples after

FAIRO convergence(12k to 15k) to examine the satisfaction

value ( v
v+u ) histograms. FAIRO has the lowest average JSD

(0.021), indicating closer satisfaction values across rooms.

Across all the approaches, FAIRO satisfaction JSD is
reduced by 83.53% on average. More numerical details are

shown in Table I in the Appendix.

3) Learning experience (LE) results: We count the

number of samples with positive LE and average over 3k
samples. FAIRO achieves comparable LE results. FAIRO LE

is improved by 11.4% from Average Approach, reduced by

3.4% from RR, and reduced by 3.2% from 1 DQN 3 inputs.

VIII. DISCUSSION, LIMITATION, AND CONCLUSION

This paper addresses the challenge of ensuring fairness

in Human-in-the-Loop (HITL) systems by breaking it down

into manageable subgoals that span a timeline for fairness-

aware sequential decision-making. We introduce the FAIRO

framework, which is tailored to account for the dynamic nature

of human variability and preferences as they evolve over

time. Our approach centers on a novel fairness state dedicated

to achieving satisfaction equity, grounded in meeting human

preferences. This concept of fairness is designed to enhance

CPS that involve human interactions by ensuring equitable

satisfaction levels. Nevertheless, our current model of fairness

presents a limitation as it does not fully consider how inter-

personal interactions may influence individuals’ perceptions

of satisfaction, indicating an area for future enhancement.
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APPENDIX

Fig. 8: Left: Human activities, Right: Comparison of the satisfaction values v
u+v

and the PMV across all the approaches in application 1.

Compared with all methods, the JSD of FAIRO satisfaction is reduced by 94.0% from Average Approach, reduced by 97.5% from RR, and
reduced by 84.7% from 1 DQN. Similarly, FAIRO’s PMV JSD is reduced by 24.0% from Average Approach, increased by 15.9% from
RR, and reduced by 1.4% from 1 DQN.

Fig. 9: Fairness state and satisfaction across all approaches for application 2. First and second rows show the maximum and minimum
value of st. The fairness states results with 15k samples equivalent to 62.5 simulated days. Using FAIRO, the average absolute difference
between the probabilities of equalized odds across the 3 households is reduced by 31.9%, 31.0%, 37.1%, 27.6%, and 32.9% from Weighted
Average, Weighted RR, Average, RR,and 1 DQN 3 inputs respectively with an average of 32.1. Third row reports the satisfaction values
across the three households. Satisfaction values in FAIRO are closer compared with other approaches with satisfaction values around 0.55.
RR satisfaction values are from 0.6 to 0.4 with different between households. The Weighted Average Approach satisfaction values are
close, but values stay below 0.3. 1 DQN-3 inputs has unstable fluctuations across 3 households.
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Fig. 10: MDP for three human profiles in VR learning environment.
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Fig. 11: Left: Water demand profile for three households during three days, Right: Comparison of the satisfaction values v
u+v

and the
balance rate (BR) across all the approaches in application 1. In particular, for satisfaction, compared with other methods, FAIRO JSD is
reduced by 79.8%, 92.4%, 96.5%, 95.5%, and 91.1% from Weighted Average Approach, Weighted RR, Average Approach, RR, and 1
DQN 3 inputs methods respectively with an average of 91.06%. In terms of BR, FAIRO has the highest average >80% BR value (0.535).
Compared with other methods, FAIRO’s average > 80% BR is improved by 110.6%, 20.0%, 75.4%, 3.5%, and 23.8% from Weighted
Average Approach, Weighted RR, Average Approach, RR, and 1 DQN 3 inputs methods respectively with an average of 46.66%.

Fig. 12: Fairness state and satisfaction metric across all different approaches for application 3. First and second rows show the maximum
and minimum value of st. FAIRO achieves equal opportunity probabilities 42.1%, 24.0%, and 33.9% for human #1, #2, and #3
respectively. As for equalized odds probabilities, FAIRO reports 24.3%, 49.4%, and 26.3% for humans #1,#2, and #3 respectively.
While the difference in these values across the three humans is not as small as we had in the other two applications, we observe that this
difference in FAIRO is better than the other approaches.

Histogram Rooms FAIRO Average RR 1 DQN

Satisfaction
Gaussian

fitting μ,σ2

Room 1 0.639, 0.017 0.761, 0.033 0.594, 0.015 0.692, 0.062
Room 2 0.647, 0.020 0.821, 0.020 0.671, 0.018 0.787, 0.050
Room 3 0.638, 0.018 0.554, 0.020 0.583, 0.012 0.604, 0.094

Satisfaction
JSD

Room 1&2 0.022 bits 0.528 bits 0.801 bits 0.396 bits
Room 1&3 0.000 bits 1 bits 0.060 bits 0.229 bits
Room 2&3 0.021 bits 1 bits 0.884 bits 0.657 bits
JS Average 0.094 bits 0.843 bits 0.582 bits 0.427 bits

Learning

Experience (LE)

Overlap

Samples % 0.488 0.438 0.507 0.497

TABLE I: Comparison of the satisfaction values v
u+v

and the learning experience (LE) in application 3. FAIRO satisfaction JSD is reduced

by 88.8%, 83.8%, and 78.0% from Average Approach, RR, and 1 DQN respectively.
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