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Abstract—Achieving fairness in sequential decision making sys-
tems within Human-in-the-Loop (HITL) environments is a criti-
cal concern, especially when multiple humans with different be-
havior and expectations are affected by the same adaptation deci-
sions in the system. This human variability factor adds more com-
plexity since policies deemed fair at one point in time may become
discriminatory over time due to variations in human preferences
resulting from inter- and intra-human variability. This paper ad-
dresses the fairness problem from an equity lens, considering hu-
man behavior variability, and the changes in human preferences
over time. We propose FAIRO, a novel algorithm for fairness-
aware sequential decision making in HITL adaptation, which in-
corporates these notions into the decision-making process. In par-
ticular, FAIRO decomposes this complex fairness task into adap-
tive sub-tasks based on individual human preferences through
leveraging the Options reinforcement learning framework. We
design FAIRO to generalize to three types of HITL application
setups that have the shared adaptation decision problem.

Furthermore, we recognize that fairness-aware policies
can sometimes conflict with the application’s utility. To
address this challenge, we provide a fairness-utility tradeoff in
FAIRO, allowing system designers to balance the objectives of
fairness and utility based on specific application requirements.
Extensive evaluations of FAIRO on the three HITL applications
demonstrate its generalizability and effectiveness in promoting
fairness while accounting for human variability. On average,
FAIRO can improve fairness compared with other methods
across all three applications by 35.36%.

Index Terms—sequential-decision making, fairness, human-
in-the-loop, adaptation, equity

[. INTRODUCTION

The emerging technologies of sensor networks and mobile
computing give the promise of monitoring the humans’ states
and their interactions with the surroundings and have made it
possible to envision the emergence of human-centered design
of cyber-physical systems (CPS) applications in various
domains. This tight coupling between human behavior and
computing enables a radical change in human life. By contin-
uously developing a cognition about the environment and the
human state and adapting/controlling the environment accord-
ingly, a new paradigm for CPS systems provides the user with
a personalized experience, commonly named Human-in-the-
Loop (HITL) systems. With the increasing number of HITL
CPS applications being controlled by artificial intelligence
(AI) algorithms, the algorithmic fairness of such decision-
making algorithms has drawn considerable attention in the last
few years [1]. Nevertheless, the unique nature of HITL CPS
opens a new frontier of algorithmic fairness issues that must be
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carefully addressed before the wide use of such technologies.

In particular, the immense challenge in designing the future

HITL CPS lies in respecting human rights and values, ensuring

ethics and fairness, and meeting regulatory guidelines while

safeguarding our environment and natural resources [2].

The following summarizes the key distinctions between the
existing literature on algorithmic fairness and the nature of
Human-in-the-Loop (HITL) systems:

« Fairness in static/singular decision-making vs fairness
in dynamic/sequential decision making: The current
literature on algorithmic fairness primarily addresses the
unfairness arising from biases in data and algorithms used in
static systems, often employing supervised learning meth-
ods. A canonical example comes from a tool used by courts
in the United States to make pretrial detention and release
decisions (COMPAS) [3]. Other applications include loan
applications, employment processes and markets [4]. In con-
trast, HITL systems are dynamic, where actions taken at one
time have consequences for future states and actions. There-
fore, ensuring fairness in HITL systems requires considering
the impact of decisions over time, leading to a sequential
decision making problem. Neglecting the dynamic feedback
and long-term effects in such systems, as commonly done
in static decision-making, can harm sub-populations [5].

o Fairness in decisions (or equality) vs fairness in the
impact of decisions (or equity): Existing fairness defini-
tions predominantly focus on equality, aiming to eliminate
prejudice or favoritism based on individuals’ characteristics.
However, insufficient attention has been given to equity,
which entails allocating resources to individuals or groups
to support their success [6]. Equity becomes crucial in
HITL systems. Hence, a shift from fairness defined in
terms of equality to fairness based on equity is essential.

Motivated by these observations, this paper revisits fairness

literature and emphasizes the importance of fairness in

sequential decision making from an equity perspective for

HITL systems. The main objective is to operationalize equity

in the context of sequential decision making to develop

improved adaptation algorithms tailored to HITL applications.

This paper introduces FAIRO, a novel fairness-aware
adaptation framework for sequential decision making designed
for HITL systems. The framework specifically tackles the
issue of fairness in situations where multiple humans share
the same application space and are collectively impacted by
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adaptation decisions. While usually, these decisions aim to
optimize overall system performance, they may inadvertently
lead to undesired consequences as humans interact with the
system or as the system’s physical dynamics evolve.

II. RELATED WORK
A. Fairness in decision-making systems

At the heart of HITL systems is achieving the objective
of designing scalable, real-time decision-making mechanisms
that are aware of the social context, such as the perceived
notion of fairness, social welfare, ethics, and social norms [7].
A vast work in the game theory literature studies various
notions of fairness between communities by defining incentive
markets between competitors to achieve fairness [8]. Fairness-
enhancing interventions have been introduced to machine
learning to ensure non-discriminatory decisions by the trained
models [9], [10]. In particular, the question of fairness in
decision-making systems where the agent prefers one action
over another [11], [12] becomes more significant in multi-
agent systems [13]. However, imposing fairness constraints
as a static, singular decision (as standard supervised learning
methods do) while ignoring subsequent dynamic feedback
or its long-term effect, especially in sequential decision
making systems, can harm sub-populations [5]. Recent work
investigates the long-term effects of Reinforcement Learning
(RL). It shows that modeling the instantaneous effect of
control decisions for single-step bias prevention does not
guarantee fairness in later downstream decision actions [14].
Unfortunately, all of this work focused on fairness from the
lens of equality—where the target is to ensure no favoritism
or bias is present in the system—with very little work
that focused on fairness from the lens of equity (mostly
in singular/static decision making as opposed to sequential
decision making) [6]. Indeed, achieving fairness in sequential
decision making systems becomes more complex since
policies deemed fair at one point may become discriminatory
over time due to variations in human preferences resulting
from inter- and intra-human factors [12]. This paper focuses
on answering this question, especially for HITL systems.

B. Different notions of group fairness

The notion of “group fairness” is used in the literature
to address the fairness problem when multiple humans are
affected by the same adaptation model. While there are
several definitions and approaches to defining group fairness,
it’s important to note that these approaches may have nuanced
variations and can be interpreted differently depending on the
context and specific application domain. We only summarize
two widely used notions of group fairness: (1) equalized odds,
which focuses on achieving similar prediction accuracy across
different groups while considering binary classification tasks.
It ensures that the true positive rate (sensitivity) and true
negative rate (specificity) of a predictive model are comparable
across different groups [15], and (2) equal opportunity: aims to
ensure that the predictive model provides an equal chance of
benefiting from positive outcomes for all groups. In particular,
equal opportunity requires that the true positive rate for each
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group should be approximately equal [15]. While these two
definitions primarily focus on binary classification tasks, this
paper will exploit some of their ideas towards sequential
decision-making and not specifically for classification tasks.
C. Multi-agent RL and hierarchical RL

Reinforcement Learning (RL) is a widely used approach for
monitoring and adapting to human intentions and responses
in various contexts [16]. To account for individual variability
and response times, approaches like multisample RL has
been proposed [17]. Hierarchical reinforcement learning
(HRL) decomposes complex learning tasks into manageable
components by using a hierarchical structure. The high-
level policy selects optimal sub-tasks, considered high-level
actions, while the lower-level policy focuses on solving
these sub-tasks using reinforcement learning techniques.
This decomposition strategy transforms long timescale
tasks into multiple shorter timescale sub-tasks, potentially
simplifying individual sub-task solving. For instance, the
Option-critic Framework introduces an architecture capable of
learning higher and lower-level policies without needing prior
knowledge of sub-goals [18]. HRL has demonstrated superior
performance in various domains, including long-horizon
games, continuous control problems [19] and fairness in
human-in-the-loop IoT [12]. In this paper, we will decompose
the fairness problem into sub-tasks over smaller time horizons
and exploit the options framework to solve these sub-tasks.

D. Paper contribution

This paper’s contributions can be summarized as follows:
o Fairness from the lens of equity: We tackle the fairness

problem in sequential decision-making systems within

HITL environments by addressing the notion of equity.

o FAIRO: We propose FAIRO, a novel algorithm designed
for fairness-aware sequential-decision making in HITL
adaptation. Our approach leverages the Options RL
framework to effectively incorporate fairness.

« Generalization to different HITL application setups: We
extend FAIRO to cater to three types of HITL application
setups. These setups involve multiple humans sharing
the application space and being impacted by: (1) global
numerical adaptation decisions, (2) shared global resources,
and (3) shared global categorical adaptation decisions.

« Evaluation on multiple HITL applications: We conduct
comprehensive evaluations of FAIRO on three different
HITL applications to demonstrate its generalizability and
compare with previous work in the literature.

The paper is structured as follows: Section III summarizes
the Options framework, which serves as the foundation for
our proposed approach. Section IV details how to incorporate
fairness considerations into the decision-making process. The
subsequent sections of the paper focus on evaluating our pro-
posed approach, FAIRO, in three distinct application domains.

III. OPTIONS FRAMEWORK FOR TEMPORAL ABSTRACTION
Markov Decision Process (MDP) is widely employed

for modeling sequential decision making. Various methods
are utilized to solve MDPs and obtain the optimal Markov
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Fig. 1: The state trajectory of an MDP with small discrete-time
transitions. Options enable overlaid larger abstracted discrete events.

decision chain, including dynamic programming and
reinforcement learning (RL). RL is particularly used when
the transition probabilities within the MDP are unknown.
Within the discrete-time finite MDP setting, the standard RL
framework can be applied. In particular, an agent engages
with an environment that is modeled as an MDP at discrete
time steps, denoted as t = 0,1,2,.... At each time step ¢,
the agent observes the current state of the environment,
denoted as s; €S, and selects an action a; € A based on this
observation. This action leads to a transition to the next state,
S¢+1, and yields a reward value, 7, <R, associated with this
transition. By engaging in this interaction, the agent learns
a policy 7(s,a) that guides its decision-making, aiming to
select the best action a for each state s to maximize the
expected total reward over sequential decision actions.

The options framework was first introduced by Sutton et
al. [20] to generalize primitive actions to include temporally
extended courses of lower-level action. In particular, the term
options represents a temporal abstraction of the lower-level
actions in the MDP. A pictorial figure of options over MDP is
shown in Figure 1. An MDP’s state trajectory comprises small,
discrete-time transitions, whereas the options enable an MDP
to be abstracted and analyzed in larger temporal transitions.

Option o within the option set O consists of three main
components: a policy m(als,o0) for selecting actions within
option o, an initiation set Z C S, a termination condition (.
An option o0:(Z,,[3) is available to be selected by the agent in
state s, if and only if s, € Z. If the option is selected, actions
are selected according to the option policy 7 until the option
terminates according to the termination condition 3. When the
option terminates, the agent can select another option. This
definition of options makes them act as much like actions
while adding the possibility that they are temporally extended!.

In this paper, the rationale behind employing the options
framework to achieve fairness in a multihuman setting stems
from the inherent limitations imposed by an option’s initiation
set Z and termination condition . These constraints confine
the applicability of an option’s policy, 7, to a subset defined
by Z rather than encompassing the entire state space S.
Consequently, options can be viewed as a means of achieving
fairness subgoals, wherein each option’s policy is adapted to
enhance the attainment of its specific subgoal, thereby con-
tributing to the overall fairness of the decision-making agent.
The dynamic nature of the multihuman environment necessi-
tates diverse fairness policies at different temporal instances.

'Options framework can be extended to include policies over options. When
multiple options are available to the agent at s;, the agent can learn which
option to select using the policy over options. We consider the policy over op-
tions to be a fixed policy, and the initiation sets of all options are disjoint sets.
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IV. FAIRO: FAIRNESS USING OPTIONS FRAMEWORK

We exploit options framework to design FAIRO to achieve
fairness in sequential decision-making agents in multihuman
environment [20]. As seen in Figure 2, the agent interacts in
sequential discrete-time steps with an environment that has N
humans (hq,ha,....,~hn) through observing their preferences or
their desired adaptation actions (dy,ds,...,dx) and the current
fairness state of the environment s;. Guided by the current
fairness state s;, the agent selects an appropriate option o
from the set of N available options O. The chosen option
o, then determines a lower-level action based on its specific
option policy 7, resulting in a global action a,, that is applied
to the shared environment. This global action subsequently
modifies the current fairness state, and the agent receives
a reward r,;. This reward is utilized to refine the option
policy. In the following subsections, we provide a detailed
description of each module within the FAIRO framework.

A. Fairness state space S

Our approach to viewing fairness from the lens of equity
is by using a fairness state that encompasses the history of
the positive and negative effects of the global decision action.

1) Satisfaction history records c; : Fairness state s; is
inferred from the history of the satisfaction of each human.
To model the satisfaction of the human h;, we keep a history
record for each human:

c;i = (u;,v;),where 1€ {1,2,...,N}. (1)
The value u; € R represents a record of the number of times
the human h; was unsatisfied by the applied global action a,.
In contrast, v; €R represents a record for the number of times
the human h; was satisfied by the applied global action a.

At time step t, every human h; has a desired adaptation
action d;,. For example, a human may prefer a particular
temperature setpoint to HVAC system (Heating, ventilation,
and air conditioning) in their room for thermal comfort that
matches their physical activities, such as sleeping, domestic
work, or sitting. Based on the difference in the values of
d;, and ag,, the record c; is updated to capture whether
the human was satisfied or unsatisfied. For example, if this
difference is within a threshold 7 then we consider the human
h; is satisfied and increment v; by a value 4.

_ (ui7vi+5) ”dit —Qgy ” <.
' (ui+5vvi) ”dit_agt” >T.

After all the records C = (c;,i = 1,2,...,N) are updated,
they are normalized to a unit vector. Choosing the value 7 is
application dependent; however, the value ¢ needs to be less
than 1 and small enough to ensure that the unit vector direction
C does not change drastically. Hence, we choose 4 to be 0.01.

Ideally, these records c; should be (0,1) indicating that
the global adaptation action a, meets the preferences of
the human over time. However, as we mentioned earlier,
these preferences may conflict with humans sharing the same
environment. Hence, the same a4, may be perceived by one
human as meeting their preference (increasing v) and by
another human as not meeting theirs (increasing w).

(@)
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Fig. 2: FAIRO for fairness-aware framework in Human-in-the-Loop systems using options framework. FAIRO is designed for three types
of applications: Type I: one global action based on numerical demands affecting multiple humans, Type II: one shared resource distributed
over multiple humans, and Type III: one global action based on categorical preferences.
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Fig. 3: Satisfaction history record C is represented as 2D unit
vector, where the two components v and v represent history of
“unsatisfied” and “satisfied” respectively.

A pictorial visualization of C is shown in Figure 3. Each
c; can be represented as a 2D vector within a unit circle. We
show two examples for c¢; for three humans where hs has
cs closer to the v axis compared to the other two humans
(Figure 3-left) versus the case when hg has cg closer to the u
compared to the other two humans (Figure 3-right). Figure 3
shows an example of a relatively unfair situation, where hs
is either treated most of the time favorably (Figure 3-left) or
unfavorably (Figure 3-right).

It is worth mentioning here that C captures the history of
the effect of the trajectory of sequential adaptation action on
the shared environment. Hence, the intuition is to tune the
global action in the next time step ag, ., to either decrease the
focus on considering the preferences of hs (Figure 3-left)
or vice versa (Figure 3-right). However, as mentioned in
Section I, the same action affects all the humans sharing the
same environment.

2) Fairness state s,: We use the geometric intuition
in Figure 3 to design our fairness state s; to compare the
directions of all N records in C. Ideally, we would like to
have all c¢; as close as possible to each other. Hence, we
define s, to capture how close each c; is to the other N\i
records. Hence, we define (s;) as follows:

1 C;'C;

Li=— 7 L£;€]0,1]]cR  (3)
N 2 Tel el 10,1
JEN\i

s¢=(L1,L2,..,LN), s:€8=10,1]" (@)

In particular, £; represents the closeness of record c; to the
rest of the records using the average of the cosine of the angle
between pair of vectors. Hence, if the cosine value between
two vectors is 1, they coincide. Since the values of c; can only
be positive and are normalized to a unit vector, the minimum
cosine value between these vectors is 0, indicating that they are
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far from each other (at 90°)?. Equation 4 represents s, which
holds all the values of £;. Ideally, from our fairness point of
view, the goal state s; should be (1,1,...1), which indicates that
all C;, have the same direction, meaning that the history of
the satisfaction and unsatisfaction for all the humans are close.
B. Initiation set I and fairness subgoals

While the ultimate goal is to learn a policy that can
achieve the goal state s, =(1,1,...1), this is challenging since
it is a huge state space. Accordingly, the intuition behind
exploiting the options framework is to divide this goal into
smaller subgoals where we learn over a subset of states or the
initiation set (Z CS) as explained in Section III. We divide S
into N initiation sets Z; where i € {1,2,...,N}, such that Z;
contains all the states with £; as the minimum value.

Zi={st={L1,....LnN} €S|L;=min(s¢)} ®)

Specifically, this means that each initiation set Z; considers
only the states where h; has received unfair adaptation either
favorably or unfavorably. For example, both cases in Figure 3
are considered unfair state where L3 is less than £; and Ls.
C. Termination State [3

Each option o; terminates when the current state s; reaches
a terminal state for this option. Hence, in FAIRO, the set of
terminal states for o; is when £; is no longer the minimum
value in s;.

Biz{stzﬁl,...,ﬁz\r}68|£i7émin(st)} (6)

Intuitively, this means that each option o; will run to
improve the value of £; until it is no longer the minimum
value which is the fairness subgoal for this option. This will
trigger a new initiation set / and this option terminates and a
new option starts to achieve another subgoal: improving L.
D. Global action of different HITL applications

As shown in Figure 2, every human (h;) has a desired
preference (d;). However, only one action a, is chosen to
be applied to the shared environment. In FAIRO, we identify
three types of applications:

o (Type I) Shared numerical global action: The desired
preferences d; have numerical values and the global action
ag is a numerical value. We design each option to take

2¢; €R,L; is unlikely to reach 0 but can decrease to a very small value e.
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a weighted sum of these N preferences. These weights
represent the contribution of each human preference d;
in the applied global action a,,. Hence, a4, = Zf;lwidi,
where w; €[0,1]. We will show an instant of this type in a
simulated smart home application in Section V.

o (Type II) Shared global resource: The desired preferences
d; have numerical values. There is one shared time-varying
resource Z and it has to be distributed. The global action ag,
is the weighted share of this resource R, dictated by their
desired preferences. Hence, ag, = [w1 2, w2 24y, wN 2],
where w; €[0,1]. We will show an instant of this type in a
simulated water distribution application in Section VI.

o (Type III) Shared categorical global action: The desired
preferences d; have categorical values, with the global
action a, selecting one of these categorical values, which
represents the maximum weighted effect of applying d;
on all other NV — ¢ humans, where the effect k; can be
estimated from the context-aware engine, resulting in
ag, = argmaxy, (wiky, woks,...,wyky], where w; € [0,1].
We will show an instant of this type in a smart education
application in Section VII.

E. Learning the option policy (m;)

Each option policy 7, learns the appropriate
w = (wq,ws,...,wy) for the global action a, for every
state s; € Z; to reach the termination condition (3; such that
Zf\ilwi =1. These weights are continuous values and learning
them for every s; € Z; is challenging. Hence, we opt for a
simpler design of using Deep Q-Network (DQN) to reduce
the search space for the appropriate weights as detailed below.

1) Deep Q-Network (DQN): DQN is a reinforcement
learning algorithm that utilizes deep neural networks in
combination with Q-learning within Markov Decision
Processes (MDP), estimates the action-value function Q(s,a),
representing expected rewards for actions in states. This
function is typically represented by a neural network with
state inputs and estimated action values as outputs, and at
each time step £, the DQN agent uses e-greedy policy to
select action, updating the Q-function based on observed
states, rewards, and the next state using an update rule:

Q(50,0¢) = Q(50,0¢) +(re1 +ymaxQ(se+1,0) = Q(se,a0)), (1)

where « is the learning rate, v is the discount factor, and
max,(Q(s¢+1,a) is the estimated maximum action-value in the
next state s;41. DQN aims to learn a policy that maximizes
the cumulative reward over time in a given environment. It
combines Q-learning with deep learning, allowing the agent to
handle high-dimensional observations and non-linear function
approximations. Figure 4 shows a pictorial illustration for the
design of the DQN in every option o; in FAIRO.

2) Input to Option DQN (s}): Every option o; runs a
DQN where the input is the s,. However, to differentiate
between the two cases shown in Figure 3 where both L3
is the minimum value in s;, we append to s, the relative
location of c3 with respect to the c¢; and cao.
= 1, v;i=max,(s:).

O?

sy =(s1,l), where s; €Z;,

®)

otherwise.
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Fig. 4: DQN for option o;. The input is the state s;. The output is the
g_value for the possible three actions of weight adjustment Jw.

This means that if £; is the minimum in s;, option o; will
run since s; € Z;. The input to the DQN in option o; will
indicate whether £; has the minimum value (unfair situation)
because h; received favorable treatment relative to all Ay,
(i.e., c; has a high v; component) and in this case [ =1 in
Equation 8, or [=0 otherwise.

3) Output from Option DON (6w;): To reduce the action
space of the DQN since we need to learn /N weights with
continuous values [0,1], we designed the output from the DQN
in option o; to focus only on adjusting w; instead of all the N
weights w. In particular, as shown in Figure 4, the output from
the DQN are the Q-values (Q(s,a)) which decides to select
between three actions to (aq) increase the weight w; T, (a2)
decrease the weight w; |, or (a3) keep the same weight w; O.
Hence, the output from DQN (which is the selected action of
the DQN as explained in Section IV-E1) is the weight adjust-
ment for w; by dw; = (+9,—0,0) where the value ¢ determines
how fast the DQN for option o; changes the weight w,.

N
i=1

Since all the weights w have to be normalized to 1, all the
weights will be adjusted accordingly. Using this design, we
choose between 3 possible adjustments for weight w; instead
of the whole space [0,1] and instead of all the N weights.

4) Option DON reward (R;): Each option DQN learns
the appropriate policy m;(s},dw;), which is the right weight
adjustment dw; at state s¢. The DQN learns this policy through
a notion of a feedback reward as explained in Section IV-E1.
As each option o; aims at increasing the fairness subgoal
of enhancing £; while improving the performance of the
application, the reward function R; can be expressed with
two terms; a fairness term JF, and a performance term P
using a trade-off parameter ¢ € [0,1].

Ri=CFi+(1-)P;,e[-1,1]CR
JFi=absolute fairness—+option improvement

=(2%Ly, =)+ f(Ls,_1,L3,)€[-1L1CR
‘P; =application dependent,€[—1,1]CR

(10)

The fairness F; considers the current value of £;, which
we call the “absolute fairness”, and the “improvement in the
fairness” value of £; from last time step for this particular
option. It is a function (f) of the current value of £;, and
the value from last time step £;, , as shown in Equation 10.
The overall FAIRO algorithm is listed in Algorithm 1.
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V. APPLICATION TYPE I: SMART HOME HVAC

Recent literature focuses on enhancing human satisfaction
in smart heating, ventilation, and air conditioning (HVAC)
systems by employing reinforcement learning (RL) techniques
to adjust the set-point based on human activity and
preferences [12]. These HITL systems consider the current
state and individual preferences, such as body temperature
changes during sleep or physical activity. To evaluate FAIRO
in Type I applications, we consider a setup where multiple
humans share a house with a single HVAC system, and their
activities determine individual desired setpoint.

A. House-Human Physical Model

We used a thermodynamic model of a house incorporating
the house’s shape and insulation type. To regulate indoor
temperature, a heater and a cooler with specific flow
temperatures (50°c and 10°c) were employed. A thermostat
maintained the indoor temperature within 2.5°¢ around the
desired set point. An external controller controls the setpoint.
The human was modeled as a heat source, with heat flow
dependent on the average exhale breath temperature (E'BT)
and the respiratory minute volume (RM V). These parameters
depend on human activity [21]. We simulated three humans
with four activities: sleeping, relaxing, medium domestic
work, and working from home. The different activity schedules
depicted in Figure 8-Left in the Appendix. The humans were
simulated in separate rooms, each exhibiting unique behavioral
patterns: (1) hy followed an organized and repetitive weekly
routine, (2) hs had a more random and unpredictable life
pattern, and (3) ho displayed intermediate randomness,
alternating between sleeping, being away from home,
domestic activities, and relaxation. The Mathworks thermal
house model was extended to include a cooling system, a
human model, and an external controller running FAIRO?.

B. Context-aware engine

A context-aware engine estimates the desired action d; per
human h; in a smart home. The desired action d; can be
obtained through fixed policy configuration or learned policy.
To focus on our main contribution and not on designing a
new context-aware engine, we leverage existing RL-based
approaches for estimating the desired HVAC setpoint d; based
on activity and thermal comfort [22]. The desired setpoints for
the considered activities are domestic activity (72°F), relaxed
activity (77°F), sleeping (62°F), and work from home (67°F).
These setpoints aim to enhance thermal comfort. Thermal
comfort is assessed using Prediction Mean Vote (PMV) on a
scale from very cold (—3) to very hot (43). Optimal indoor
thermal comfort falls within the recommended range of
[—0.5,0.5], as per the ISO standard ASHRAE 55 [23].

C. Evaluation
We compare 5 different approaches including one of the
state-of-the-art approaches FaiRIoT [12]:

3While more complex simulators like EnergyPlus exist, we opted for a
simpler model to assess FAIRO.
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Algorithm 1 FAIRO algorithm

Require:
Humans H = (h1,....hn)
Satisfaction records C=(c1,...,cn),¢; = (u,v) € R?
States s € S=]0,1]N cRY
Initiation sets Z; € Z={s€ S}
Options O =(01,...,0n),0; = (Z;,7i,5:)
Application type T'={Typel,Type2,Type3}
procedure RUN-FAIRO
while True do
d: < context-aware-engine (H)
if T'=="Type2 then
R+ < get-current-available-resource()
if T'==Type3 then
k; < get-current-effects(d;)
: s¢ <— get-fairness-state(C)
9: s} < append-state(s;)

1:
2
3
4:
5:
6
7
8

10: o < choose-option (s;) >0, €0
11: dw <— run-option(o;) > option policy 7, (s¢,0w)
12: w <— update-normalize-weights(dw)

13: ag, < calculate-global-action(d, w¢,R¢, k¢ )

14: > Apply global action a4, on the shared environment
15: R+ receive-reward ()

16: To(s¢,0w) < Update-option-policy (R;)

17: C + Update satisfaction records (d;,ag,)

o FAIRO: The global applied action is a, = Z?Zl w;d;.
The reward per option ¢ is as explained in Equation 10.
We set ¢ = 0.5. As for the performance term P; in the
reward, we assign a high reward when the PMV falls in the
acceptable range [—0.5,0.5]. Further, we used the values
of the satisfaction counters c; = (u;,v;) as an indication of
the performance P; since their values are correlated to the
desired temperature d; which maps to the best PMV. The
value P; is then normalized to be [—1,1]:

f([’iz—l ’ﬁit) :Sign(ﬁit—1 _‘Cit) xZ
0 |Li,—Li|€)0,0.001]

0.25 |Li,_, —Li,| €]0.001,0.005]
2=205 |Li,_,—Li,]€]0.005,0.01] (n
0.75 |Li, , —Li,| €]0.01,0.015]
1 |Li,_,—L:|>0.015
Pi=0.2 i +0.8f(PMV),€[~1,1]CR
Us (3

o Average approach: The setpoint is the mean value of
desired setpoints of all rooms. Hence, a,, = %Z?Zldi.

« Equality using round robin (RR): The setpoint is selected
from one of the desired setpoints of all rooms in a rotation.
The intuition of this approach is to compare with the case
where we give every room the same opportunity to use
its desired setpoint across time (equality). Hence, for 3
humans, a4, =d1,a4, =d2,a4, =d3z,ay, =dy,..., etc.

o No subgoals using 1 DQN: The setpoint is calculated using
a single model of 1 DQN structured as Figure 4. The inputs
are the three values of the fairness state (s, =(L1,L£2,L£3)).
The intuition of this approach is to evaluate whether we
can achieve the overall fairness goal without the need for
subgoals that FAIRO provides. The reward for the single
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Fig. 5: Fairness state and satisfaction across all approaches in application 1 showing the probabilities of equal opportunity and equalized odds.

DQN is the average reward value across all rooms:
R=0.5F+0.5P, where N=3¢c[-1,1]CR

F=l NLN LS Lt Nz:.
—N; i +f(NZ lt—17ﬁ§ lt)a

1 al Vi
=0.2— :
P=0 N;uri-m

12)

1 N
_+0.8N;f(PMV)
o FaiRIoT [12]: The closest to our approach is FaiRIoT
which uses hierarchical RL.

We investigated multiple evaluation metrics to evaluate the
fairness across these three rooms; 1) the values of the fairness
state (s; = (L1,L£2,L3), 2) a satisfaction metric, 3) PMV, and
4) the covariance cv of the learnt weights.

1) Fairness state and group fairness definition: As
explained in Section IV-A2, the best fairness state should
be sy = (L£1,L2,L3) = (1,1,1). To measure s;, we need to
use the satisfaction history counters by updating them per
to Equation 2. In this application, we set the threshold 7 to
be 2.5. Figure 5 shows the fairness states results with 15k
samples equivalent to 62.5 simulated days.

To better get insights on how the different methods compare
with respect to the values of s;, in every time sample, we report
the maximum value of £ in s; (Figure 5-first row) and the
minimum value of £ in s; (Figure 5-second row). We plot the
values £ for Room 1(red), £5 for Room 2(blue), and L3 for
Room 3(green). The results for using only 1 DQN are unstable,
and have fluctuations in the fairness state values. This result
is expected for 1 DQN since the fairness goal was not divided
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into sub-goals, unlike what the options framework provided.

The commonly used metrics for group fairness are equal op-
portunity and equalized odds. Although these metrics are typi-
cally applied to binary classification tasks, we adopt their orig-
inal definitions to compare FAIRO with the other approaches.

e Equal opportunity aims to ensure that individuals
from different groups have an equal chance or probability
of experiencing positive outcomes or receiving beneficial
treatment or resources. To assess the performance of FAIRO,
we analyze the results presented in Figure 5 by examining
the reported max, s; values. Specifically, we compare the
probabilities of different rooms M, having the highest
max, s; values. For equal opportunity, these probabilities
need to be close, as denoted in Equation 13.

p(M; == find(mﬂax s¢))=p(My\; ::find(mgx s¢))  (13)

As observed in Figure 5-first row, these probabilities
are 34%, 29.4%, and 36.6% for Room My, M,, and Mjy
respectively, which are closer in values compared with
the other approaches. In particular, using FAIRO, the
average absolute difference between the probabilities of
equal opportunity across the 3 rooms is reduced by 57.0%,
54.8%, and 35.8% from Average Approach, RR, and 1 DQN
respectively. Across all the approaches, FAIRO improves
the equal opportunity fairness by 49.2% on average.

e Equalized odds focuses on the balance between positive
and negative outcomes across different groups. Hence, for
the negative outcomes, we can examine the probabilities of
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different rooms having the min,s; values and assess whether
they are approximately equal.

p(M; == find(mﬁin st))Rp(My\; == find(mﬂin se))  (14)

As observed in Figure 5-second row, these probabilities
are 34.5%,34.9%, and 30.7% for Room M, My, and M3y
respectively, which are closer in values compared with the
other approaches. In particular, using FAIRO the average
absolute difference between the probabilities of equalized
odds across the 3 rooms is reduced by 47.8%, 35.8%, and
41.3% from Average Approach, RR, and 1 DQN respectively.
Across all the approaches, FAIRO improves the equalized
odds fairness by 41.63% on average.

2) Satisfaction performance: Figure 5-third row shows the
satisfaction values (viu) for all methods. FAIRO achieves
close satisfaction values across the three rooms over time. Av-
erage and RR approaches have stable but different satisfaction
values across rooms while 1 DQN shows more fluctuations
per room. We focused on samples after FAIRO converges
(12k to 15k) and examined the satisfaction value histograms.
We report the Jensen-Shannon Divergence (JSD) of these
histograms*. FAIRO has the lowest average JSD (0.013), indi-
cating closer satisfaction values across rooms. Across all the
approaches, FAIRO reduces JSD by 92.06% on average.
More details are shown in Figure 8-right in Appendix.

To gain further insights into human satisfaction, we plot
the covariance of temperature differences between the applied
setpoint a, and the desired temperature d; for the three
humans, and Figure 6 shows that FAIRO exhibits the lowest
cv of 0.04, indicating better fairness.

3) PMYV results: FAIRO achieves the second lowest aver-
age JSD and a comparable variance on PMV results, which in-
dicates FAIRO can improve fairness without hurting the PMV
performance. RR achieves the lowest PMV JSD average since
every time step one of the rooms can get exactly its desired
temperature. Hence, the 3 rooms can get almost identical PMV
performance in the long term. Across all the approaches,
FAIRO’s PMV JSD is reduced by 13.7% on average. More
details are shown in Figure 8-Right in the Appendix.

4) Comparison with the State-of-the-Art FaiRIoT [12]:
FaiRIoT uses a notion of utility uj, = %Z;:o %w;L_j which
is the average weight assigned by a layer called “Mediator
RL” for a particular human h over a time horizon [0 : t],
where the factor % is used to give more value to the recent
weights learnt by the Mediator RL over the ones in the
past. FaiRIoT measures the fairness of the Mediator RL
using the coefficient of variation (cv) of the human utilities:

\/ﬁZZﬂ (“hﬂ_zﬂ)z, where « is the average utility of
all humans. The Mediator RL is said to be more fair if and
only if the cv is smaller. Accordingly, we compare the cv in
FaiRIoT and FAIRO in Figure 7. FAIRO achieves cv around
0.15, while FaiRIoT cv is larger than 0.6. Hence, FAIRO

improves the fairness where cv is reduced by 75%.

CU =

“The Jensen—Shannon divergence (JSD) is a symmetric measure of
similarity between two probability distributions, always non-negative, with 0
denoting identical distributions and any value above 0 indicating differences.
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Fig. 6: Coeff. of variation (cv)
of the temperature differences.

Fig. 7: Coeff. of variation (cv)
of the utility u; over w.
VI. APPLICATION TYPE II: WATER SUPPLY APPLICATION
In the context of global climate change and rapid
population growth, Water Demand Models (WDMs)
are crucial for gaining insights into water consumption
behavior and forecasting demand, aiding decision-making
in water distribution system (WDS) operation policies
and infrastructure planning. However, managing limited
water resources while ensuring equitable distribution among
households remains a challenge, with various pricing and
non-pricing policies explored in the literature [24]. For
evaluating FAIRO in application Type II, it is assumed that
WDM estimates desired water demand for three households
from a time-varying, insufficient shared water resource.

A. Household-Water Demand Physical Model

We utilized a WDM to model water demand based on
residents’ activity patterns, matching the activity patterns
presented in Section V-A to water demand behavior [25]. The
water demand patterns for three households are illustrated in
Figure 11-Left in the Appendix. Each household has a water
reservoir 7 and aims to meet its specific water demand d;, with
the shared water resource (Z;) being variable and insufficient
to satisfy all demands. Assuming the availability of the WDM,
we set Z; to 1.5 times the maximum demand among the three
profiles, with the water demand profiles being independent
due to distinct human activities. We expanded the Mathworks
water supply physical model to accommodate these household
water demand profiles and multiple houses [26].

B. Context-aware engine
Our main contribution is not designing a new water con-
sumption behavior or forecasting demand models, hence, the
context-aware engine provides the desired action for every
household h;, which is the current water demand d; based on
the water demand pattern. This demand is supposed to be sat-
isfied via the water supply s; from the shared limited resource
Z,; and the current reserved water in the household water
reservoir 7;. Hence, we define the application performance
as the percentage of balancing the demand and the supply.
supply s; +reserve T;
demand d;

Balance Rate (BR)= (15)

C. Evaluation
We compare the same methods as in the first application.

o FAIRO: The supply s; for each household h; is calculated
by FAIRO. In particular, s; receives w;2Z; as explained in
Section IV-D where the global action a4, is the weighted dis-
tribution of this resource Z;. The reward is the same as ex-
plained in the first application (Equation 11), where perfor-
mance P; is based on the BR (P;=0.2—-—+0.8 f(BR)).

Ui +V;
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o Average approach: Each household h; has the same
amount of supply. Hence, s; = % Z;. We further augment the
average approach in this application by using a Weighted
Average approach. In particular, each household supply is
proportional to its demand. Hence, s; = didZ

« Round Robin (RR): Each time step, one of the households
in a rotation will be guaranteed sufficient supply to cover
its demand. Leftovers from the resource will be shared
equally with all households. For example, at time ¢ = 1,
s1 = dy while s = s3 = Zi=d1 We further augmented
the RR to consider a Weighted RR. In this case, supplies
are calculated similarly to RR, but the leftover water will
be distributed proportionally to their demands as in the
weighted average approach.

« No subgoals using 1 DQN : Supply for each household is
calculated by 1 DQN structure as explained in Section V-C.
We investigated multiple evaluation metrics as follows:

1) Fairness state and group fairness definition: We
simulated 62.5 simulated days equivalent to 15k samples. To
measure s;, we need to use the satisfaction history counters
by updating them per Equation 2. In this application, we set
the ||d; — (s; +t;)|| < 7 with 7 equals 20% of the demand
d; which means BR is 80%. Similar to the analysis we
did in application 1, FAIRO achieves equal opportunity
probabilities 31.9%, 35.4%, and 32.7% for household #1,
#2, and #3 respectively, which are closer in values than other
methods. Across all the approaches, FAIRO improves the
equal opportunity fairness by 26.38% on average. As for
equalized odds probabilities, FAIRO reports 34.4%, 30.1%,
and 35.5% for households #1, #2, and #3 respectively,
which are also closer in values compared to the other
approaches. Across all the approaches, FAIRO improves
the equalized odds fairness by 32.1% on average. More
numerical details are shown in Figure 9 in the Appendix.

2) Satisfaction performance: We use 3k samples after
FAIRO converge (12k to 15k) to examine the satisfaction
value histograms. We report the Jensen-Shannon Divergence
(JSD) of these histograms. FAIRO has the lowest average JSD
(0.017), indicating closer satisfaction values across rooms.
Across all the approaches, FAIRO JSD is reduced by
91.06% on average. More numerical details are shown in
Figure 11-Right in the Appendix.

3) Balance rate (BR) results: We report the average
number of samples that have >80% BR across all households
and average it over 3k samples. Samples have > 80%
BR correspond to satisfactory samples. Across all the
approaches, FAIRO’s average >80% BR is improved by
46.66% on average. More numerical details are shown in
Figure 11-Right in the Appendix.

VII. APPLICATION TYPE III: SMART LEARNING SYSTEM

Monitoring human learning state and performance is crucial
for assessing progress and personalizing instruction [27].
Immersive technologies like virtual reality (VR) in education
and workforce training show promise for improving learning
experiences. However, over extended online or VR education
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periods, human performance can decline due to distractions,
drowsiness, and fatigue [27]. This application examines
multiple users sharing the same educational environment,
with a HITL learning system that adapts this environment
by enabling an immersive VR experience to improve the
learning experience.

A. Human-Learning VR Model

We used a real human dataset from recent literature
studying VR’s impact on learning [22]. The dataset describes
human learning experience through three features: alertness,
fatigue, and vertigo, resulting in 8 states with binary values
(e.g., Alert: 1, Not Alert: 0). A HITL learning environment
adapts based on these states using actions like (1) a; giving
a break, (2) as enabling VR, or (3) ag disabling VR.

We analyzed this dataset to categorize 15 participants
into three groups based on VR tolerance: the most tolerant,
those with some cybersickness, and those with the least VR
tolerance. We model these groups’ behavior using MDP
models (see Figure 10 in Appendix), with state 8 representing
the best human state and state 1 the worst. Three humans,
one from each profile, were instantiated for a daily class
schedule, with their states initialized to state 3 or state 1
randomly at the beginning of each day.

B. Context-aware engine

Unlike the previous two applications, this application has a
non-numerical action space, as mentioned in Section VII-A.
Hence, to use FAIRO we need to quantify this categorical
action in terms of its effect as explained in Section IV-D.
We exploit the MDP model in Figure 10 in the Appendix
to quantify these actions. In particular, as Sg and Sy encode
the best and the worst state, respectively, we assign a value
to each state linearly with Sg as the highest value. Hence,
the desired action d; that can make a transition to a better
state in the MDP has a high numerical value. However, every
human may be in a different state. Hence, for every desired
action d;, we calculate the effect denoted as k; of applying d;
on the other humans. Using the MDP models, if the desired
action d; from human h; were to be applied in the shared
environment, we check the state transition it will cause on all
the other humans hy\;. The difference in the values of the
two states in the transition is used to measure its effect. After
applying an adaptation action, the human learning experience
can be measured as the improvement in the human state
values and the current human state value.

Learn Exp. (LE)=state improvement+state value €[—1,1] (16)

C. Evaluation

o FAIRO: The global action a4, = d; is the desired action
of the human; with the maximum weighted effect as
explained in Section IV-D. The reward is the same as
explained in the first application (Equation 11), where
performance P; is based on the learning experience (LE)
(Pi=0.2%-+0.8f(LE)).

o Average approach The global action a4, =d; is the desired
action of the human; with the median weighted effect.
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« Round Robin (RR): The global action a,, is selected from
one of the desired actions of all humans in a rotation.
e No subgoals using 1 DQN: The weighted effects are

determined by using 1 DQN structure (Section V-C).

We investigated multiple evaluation metrics as follows:

1) Fairness state results and group fairness definition: To
measure s;, we need to use the satisfaction history counters
by updating them per Equation 2. If the learning experience
(LE) of the human is >0 as measured in Equation 16, it will
be considered satisfied. Across all the approaches, FAIRO
improves the equal opportunity fairness by 36.35% and
equalized odds fairness by 30.55% on average. More
details are shown in Figure 12 in the Appendix.

2) Satisfaction performance: We use 3k samples after
FAIRO convergence(12k to 15k) to examine the satisfaction
value (viu) histograms. FAIRO has the lowest average JSD
(0.021), indicating closer satisfaction values across rooms.
Across all the approaches, FAIRO satisfaction JSD is
reduced by 83.53% on average. More numerical details are
shown in Table I in the Appendix.

3) Learning experience (LE) results: We count the
number of samples with positive LE and average over 3k
samples. FAIRO achieves comparable LE results. FAIRO LE
is improved by 11.4% from Average Approach, reduced by
3.4% from RR, and reduced by 3.2% from 1 DQN 3 inputs.

VIII. DISCUSSION, LIMITATION, AND CONCLUSION
This paper addresses the challenge of ensuring fairness
in Human-in-the-Loop (HITL) systems by breaking it down
into manageable subgoals that span a timeline for fairness-
aware sequential decision-making. We introduce the FAIRO
framework, which is tailored to account for the dynamic nature
of human variability and preferences as they evolve over
time. Our approach centers on a novel fairness state dedicated
to achieving satisfaction equity, grounded in meeting human
preferences. This concept of fairness is designed to enhance
CPS that involve human interactions by ensuring equitable
satisfaction levels. Nevertheless, our current model of fairness
presents a limitation as it does not fully consider how inter-
personal interactions may influence individuals’ perceptions

of satisfaction, indicating an area for future enhancement.
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APPENDIX

[ Histogram | Rooms [ FAIRO [ Average [ RR [ 1TDQN ]
z Satisfaction Room 1 0.642, 0.047 0.452, 0.030 0.748, 0.021 0.657, 0.142
Gaussian Room 2 0.649, 0.050 0.506, 0.027 0.785, 0.023 0.641, 0.084
fitting ju,02 Room 3 0.641, 0.047 0.487, 0.030 0.698, 0.024 0.680, 0.152
3 Satisfaction Room 1&2 | 0.022 bits 0.399 bits 0.269 bits 0.115 bits
3 s Room 1&3 | 0.002 bits 0.175 bits 0.443 bits 0.020 bits
Room 2&3 | 0.014 bits 0.080 bits 0.835 bits 0.121 bits
'.g avg. 1SD 0.013 bits 0.218 bits 0516 bits 0.085 bits
g : Room 1 0346, 0.490 0.369, 0.430 0367, 0.590 0336, 0.502
H ;f:: Ga‘::;‘a“ Room 2 -0.014, 0.612 0.021, 0.498 0.021, 0.701 -0.030, 0.642
g M Room 3 -0.099, 0.673 -0.065, 0.564 -0.052, 0.732 -0.120, 0.723
- Room 1&2 | 0.088 bits 0.112 bits 0.071 bits 0.089 bits
§ PMV ISD Room 1&3 | 0.119 bits 0.152 bits 0.099 bits 0.119 bits
5 Room 2&3 | 0.012 bits 0.023 bits 0.014 bits 0.014 bits
avg. JSD 0.073 bits 0.096 bits 0.063 bits 0.074 bits

Time (day)
Fig. 8: Left: Human activities, Right: Comparison of the satisfaction values —— and the PMV across all the approaches in application 1.
Compared with all methods, the JSD of FAIRO satisfaction is reduced by 94.0% from Average Approach, reduced by 97.5% from RR, and
reduced by 84.7% from 1 DQN. Similarly, FAIRO’s PMV JSD is reduced by 24.0% from Average Approach, increased by 15.9% from
RR, and reduced by 1.4% from 1 DQN.
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Fig. 9: Fairness state and satisfaction across all approaches for application 2. First and second rows show the maximum and minimum
value of s;. The fairness states results with 15k samples equivalent to 62.5 simulated days. Using FAIRO, the average absolute difference
between the probabilities of equalized odds across the 3 households is reduced by 31.9%, 31.0%, 37.1%, 27.6%, and 32.9% from Weighted
Average, Weighted RR, Average, RR,and 1 DQN 3 inputs respectively with an average of 32.1. Third row reports the satisfaction values
across the three households. Satisfaction values in FAIRO are closer compared with other approaches with satisfaction values around 0.55.
RR satisfaction values are from 0.6 to 0.4 with different between households. The Weighted Average Approach satisfaction values are
close, but values stay below 0.3. 1 DQN-3 inputs has unstable fluctuations across 3 households.

Profilel Profile 2 Profile 3
Fig. 10: MDP for three human profiles in VR learning environment.
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caniors Fﬂsmgnm ] Rooms l FAIRO ‘ Weighted ’ Weighted Average ‘ RR ’ 1 DQN ’

. Househod 3 Average RR
N Satisfaction | Room 1 0.540, 0.037 | 0.267, 0.021 | 0.459, 0.014 | 0.214, 0.100 | 0.496, 0.061 | 0.342, 0.280
3 Gaussian Room 2 0.540, 0.029 | 0.249, 0.022 | 0.445, 0.014 | 0.205, 0.085 | 0.462, 0.050 | 0.315, 0.257
=y fitting p1,02 | Room 3 0.535, 0.048 | 0.244, 0.020 | 0.429, 0.013 | 0.495, 0.105 | 0.596, 0.052 | 0.636, 0.241
g Satisfaction | Room 1&2 [ 0016 bits | 0.091 bits | 0.079 bits | 0.088 bits | 0.094 bits | 0.048 bits
g 1SD Room 1&3 | 0.011 bits 0.150 bits 0.427 bits 0.654 bits 0.390 bits 0.237 bits
g Room 2&3 | 0.024 bits 0.010 bits 0.165 bits 0.756 bits 0.644 bits 0.288 bits
ES JS Average | 0.017 bits 0.084 bits 0.224 bits 0.499 bits 0.376 bits 0.191 bits

100 Balance avg.>80%BR| 0.535(1606) | 0.254(763) | 0.446(1336) | 0.305(915) | 0.517(1552) | 0.432(1296)

i A Rate (BR) (# samples
0 - - > 80%BR)
o 200 400 600 800 1000

Time (ts = 6min)
Fig. 11: Left: Water demand profile for three households during three days, Right: Comparison of the satisfaction values —— and the
balance rate (BR) across all the approaches in application 1. In particular, for satisfaction, compared with other methods, FAﬂ(O JSD is
reduced by 79.8%, 92.4%, 96.5%, 95.5%, and 91.1% from Weighted Average Approach, Weighted RR, Average Approach, RR, and 1
DQN 3 inputs methods respectively with an average of 91.06%. In terms of BR, FAIRO has the highest average >80% BR value (0.535).
Compared with other methods, FAIRO’s average > 80% BR is improved by 110.6%, 20.0%, 75.4%, 3.5%, and 23.8% from Weighted

Average Approach, Weighted RR, Average Approach, RR, and 1 DQN 3 inputs methods respectively with an average of 46.66%.
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Fig. 12: Fairness state and satisfaction metric across all different approaches for application 3. First and second rows show the maximum
and minimum value of s;. FAIRO achieves equal opportunity probabilities 42.1%, 24.0%, and 33.9% for human #1, #2, and #3
respectively. As for equalized odds probabilities, FAIRO reports 24.3%, 49.4%, and 26.3% for humans #1,#2, and #3 respectively.
While the difference in these values across the three humans is not as small as we had in the other two applications, we observe that this
difference in FAIRO is better than the other approaches.

[ Histogram [ Rooms [ FAIRO [ Average [ RR [ 1DQN [
Satisfaction Room 1 0.639, 0.017 0.761, 0.033 0.594, 0.015 0.692, 0.062
Gaussian Room 2 0.647, 0.020 0.821, 0.020 0.671, 0.018 0.787, 0.050
fitting 1,02 Room 3 0.638, 0.018 0.554, 0.020 0.583, 0.012 0.604, 0.094
Satisfaction Room 1&2 0.022 b?ts 0.528 bits 0.801 bits 0.396 bl:lS
JSD Room 1&3 0.000 bits 1 bits 0.060 bits 0.229 bits

Room 2&3 0.021 bits 1 bits 0.884 bits 0.657 bits
JS Average 0.094 bits 0.843 bits 0.582 bits 0.427 bits
Learning Overlap
Experience (LE) Samples % 0.488 0.438 0.507 0.497
TABLE I: Comparison of the satisfaction values = and the learning experience (LE) in application 3. FAIRO satisfaction JSD is reduced

by 88.8%, 83.8%, and 78.0% from Average Approach, RR, and 1 DQN respectively.
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