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ABSTRACT
The primary objective of adaptive bitrate (ABR) streaming is to
enhance users’ quality of experience (QoE) by dynamically adjust-
ing the video bitrate in response to changing network conditions.
However, users often �nd frequent bitrate switching frustrating
due to the resulting inconsistency in visual quality over time, es-
pecially during live streaming when bu�er lengths are short. In
this paper, we propose a practical smoothness optimized dynamic
adaptive (SODA) controller that speci�cally addresses this problem
while remaining deployable. SODA is backed by theoretical guaran-
tees and has shown superior performance in empirical evaluations.
Speci�cally, our numerical simulations show a 9.55% to 27.8% QoE
improvement and our prototype evaluation shows a 30.4% QoE im-
provement compared to the state-of-the-art baselines. In order to be
widely deployable, SODA performs bitrate horizon planning in poly-
nomial time compared to brute force approaches that su�er from
exponential complexity. To demonstrate its real-world practicality,
we deployed SODA on a wide range of devices within the production
network of Amazon Prime Video. Production experiments show
that SODA reduced bitrate switching by up to 88.8% and increased
average stream viewing duration by up to 5.91% compared to a
�ne-tuned production baseline.

CCS CONCEPTS
• Information systems!Multimedia streaming; • Theory of
computation! Online algorithms; Theory and algorithms
for application domains.
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1 INTRODUCTION
With the growth of online video streaming, users nowadays stream
videos from a highly diverse set of devices, including laptops, mobile
devices, smart TVs, set-top boxes, game consoles, etc. These devices
span a wide spectrum of hardware capabilities and connect to the
Internet in a multitude of ways, e.g., wireless, cellular, cable, etc. To
ensure a high quality of experience (QoE) across all devices, video
providers utilize adaptive bitrate (ABR) streaming that tailors video
delivery to speci�c devices and network conditions.

The goal of ABR streaming is to deliver a video at the highest sus-
tainable quality over time-varying network conditions. To achieve
this, a video source is encoded at di�erent bitrates corresponding
to di�erent resolutions, e.g., 720p, 1080p, 1440p, etc. Each encod-
ing is in turn temporally partitioned into a sequence of segments,
e.g., 2 seconds of video content. An ABR controller inside a user’s
video player then selects a suitable bitrate for each segment. Finally,
downloaded segments are stored in a bu�er, till they are rendered.

Past studies have shown that a user’s QoE is maximized by de-
livering the video at the highest possible quality with minimal
rebu�ering and bitrate switching. It has been shown that a 1% in-
crease in rebu�ering time is correlated with a 3-minute reduction in
the viewing duration [7] and frequent bitrate switching is strongly
correlated with a user abandoning the session [21]. Going beyond
correlational studies, the signi�cant causal impact of rebu�ering
and other QoE performance metrics on key measures of user behav-
ior was �rst established in [9]. However, jointly optimizing all three
key components of QoE, i.e., video quality, rebu�ering and bitrate
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Figure 1: Video stream duration is negatively correlated with
bitrate switching rate. Users watch < 10% of the stream when
bitrate switching rate is > 20%.

switching, is non-trivial as they are locked in a three-way trade-o�.
An ideal ABR controller seeks to push the trade-o� boundary and
optimize all three QoE components simultaneously.

Between on-demand and live streaming, the latter is more chal-
lenging as the player bu�er is restricted to 10 - 20 seconds (to remain
close to actual live action), which is in contrast to 60 - 180 seconds
of bu�er in on-demand streaming. Consequently, live streaming
has higher susceptibility to rebu�ering and bitrate switching. To
understand the impact of bitrate switching, Figure 1 shows the re-
lationship between the viewing percentage of a stream and bitrate
switching rate for a sports event on a large-scale video streaming
provider. To minimize potential confounders such as rebu�ering
and low quality, the plot is focused on short-lived sessions (< 25%
of stream viewed) with at least HD quality and no rebu�ering. The
line of best �t shows that users watch < 10% of the stream when
bitrate switching rate is > 20%. While our proposed ABR controller
works for both on-demand and live streaming, our evaluations use
live streams that represents a more challenging use case.

Our Contributions.We propose a novel smoothness optimized
dynamic adaptive (SODA) controller that provides theoretical QoE
guarantees while exhibiting superior empirical performance in
simulation, prototype, and production experiments. We make the
following speci�c contributions:

1) Theoretical Foundations of ABR Controller Design. SODA
is the �rst ABR controller to provably optimize all three key
components of QoE, namely, video quality, rebu�ering and bi-
trate switching. Unlike prior work such as BOLA [36, 44] that use
Lyapunov methods to optimize the �rst two components, we
use a new framework based on recent advances in smoothed
online convex optimization (SOCO) [13, 25, 26, 33–35, 43] to
simultaneously optimize all three QoE components. To enable
the application of SOCO, we model the rebu�ering minimiza-
tion requirement in a novel fashion using the notion of bu�er
stability. We prove that SODA is near-optimal and achieves QoE
within a small factor of the o�ine optimal QoE (Theorem 4.1).

2) Better QoE Across Empirical Evaluations. We evaluated
SODA in three settings: numerical simulations, prototype evalua-
tion, and production deployment within Amazon Prime Video
serving actual users. Our numerical simulations show a 9.55% to

Figure 2: BOLA’s [44] decision boundaries are spaced out for
on-demand streaming, but tiny �uctuations in bu�er level
can cause bitrate switching for live streaming.

27.8% QoE improvement and our prototype evaluation shows a
30.4% QoE improvement compared to the state-of-the-art base-
lines. Production live streaming experiments in Amazon Prime
Video show that SODA reduced bitrate switching by a signi�cant
up to 88.8% and increased average stream viewing duration by
up to 5.91% (> 5 minutes longer sessions) compared to a �ne-
tuned production baseline. See Table 1 for a summary of our key
�ndings about SODA as compared to baseline ABR controllers.

3) Robustness Against Throughput Prediction Errors. Most
ABR controllers rely on and are sensitive to predictions of the
future network throughput. Our SOCO framework allows us to
design robust ABR controllers that are provably robust against
prediction errors. Speci�cally, we show that SODA has the ex-
ponentially decaying perturbation property [49, 55, 56], i.e., the
future impact of prediction errors decay rapidly over time. A
key to our proof methodology is that we shifted from the con-
ventional segment-based ABR formulation and adopted a novel
time-based perspective.

4) E�cient Implementation for ProductionDeployment. ABR
controllers deployed in the �eld need to work on a wide range
of client devices, including low-end ones with limited computa-
tional resources. Many ABR controllers proposed in the research
literature do not meet the e�ciency bar for a production de-
ployment and are never implemented in practice. We maximized
SODA’s runtime and deployment practicality by devising a com-
putationally e�cient method to search for near-optimal bitrate
decisions, which reduced the runtime complexity from exponen-
tial to polynomial, e.g., about 200 iterations max in practice. In
addition, we made SODA robust against throughput prediction
errors by design, thus eliminating the need for sophisticated
computationally-intensive throughput predictors.
This work does not raise any ethical issues.

2 DESIGN GAPS, OPPORTUNITIES, AND
REQUIREMENTS

Design Gaps. Live streaming poses the additional constraint of
near real-time delivery which makes bitrate adaptation more chal-
lenging than that in on-demand streaming. Figure 2 shows the
bitrate selection function of BOLA [36, 40, 44], an ABR controller
that is widely deployed by video providers and is part of the refer-
ence MPEG-DASH video player [64]. Notice that for on-demand
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Table 1: A qualitative summary of our key evaluation �ndings about SODA as compared to baseline ABR controllers.

Controller Theorya Video Quality Rebu�ering Time Switching Rate Deployability

SODA Q + R + S high short ultra low high
HYB [24] none high medium high high
BOLA [44] Q + R high short high high
Dynamic [36] Q + R high short medium high
MPC [17] none high long low low
Fugu [46] none high medium low low
CausalSimRL [60] none high short high low

aQ, R, S stand for theoretical guarantees for quality, rebu�ering, and switching respectively.

Figure 3: A RobustMPC session where the controller intention-
ally rebu�ers instead of lowering the bitrate.

streaming, a longer bu�er of 120 seconds ensures that bitrate jumps
are spaced well apart (up to 20 seconds), however, for live streaming
with a bu�er of 20 seconds, bitrates �uctuate with small deviations
of 1 - 3 seconds in the bu�er size. This can cause bitrates to switch
frequently. While controllers such as MPC [17] and Pensieve [22]
o�er respite by explicitly penalizing bitrate switching, these con-
trollers su�er from shortcomings of their own:

• Model predictive controllers are hard to deploy at scale because
they need to solve a non-linear integer programming problem
over a prediction horizon of  segments, e.g.,  = 5, which is so
computationally expensive that it is quicker to download a video
segment than to obtain a bitrate decision [17, 19]. Workarounds
such as pre-computed lookup tables [17] are impractical for live
streaming where the video is not available a priori. In a simi-
lar vein, learning-based controllers such as Pensieve [22] work
optimally when trained speci�cally for a given set of bitrates,
segment duration, network conditions, etc. Given in-the-wild
diversity and its evolving nature, ensuring this speci�city im-
poses a signi�cant operational overhead. Furthermore, even if
speci�cally trained, achieving performance guarantees with these
learning-based controllers is shown to be challenging [24].

• Existing ABR controllers naively reduce bitrate switching at the
expense of low video quality or more rebu�ering. To demonstrate
this, Figure 3 shows a RobustMPC session with the exact setup

used by [17, 22]. Notice that beyond 70 seconds, RobustMPC re-
peatedly rebu�ers but continues to download the highest bitrate
(Figure 3 bottom plot), resulting in 29 rebu�ering events over 200
seconds. Strikingly, this behavior is in fact the optimal behavior
under RobustMPC’s objective functionwhich tolerates rebu�ering
to prevent bitrate switches. On the surface, this suggests higher
rebu�ering penalty in the objective function, however, higher
penalties only reduce the duration of these tolerable rebu�ers but
do not eliminate them. Indeed, past work has empirically shown
that even a 20⇥ bu�ering penalty has marginal impact [24].

• Variance in network conditions or throughput prediction errors
are not well tolerated by existing controllers. Past works have
shown that RobustMPC incurs 26%more rebu�ering events unless
paired with a sophisticated throughput predictor [46, 50]. Simi-
larly, learning-based controllers like Pensieve tend to degrade
in performance when trained for realistic network conditions
encountered in the wild [24]. In practice, accurate throughput
predictions are hard because of several factors, including (i) de-
vice and OS level ine�ciencies [18], (ii) stop-start nature of video
requests which do not interact well with TCP [8, 18], and (iii)
volatile network conditions typical in production networks [1, 5,
45]. To make matters worse, sophisticated throughput predictors
are themselves not necessarily accurate [16] and are challenging
to deploy due to device level bottlenecks [58]. Therefore, in-the-
wild performance of these controllers remains questionable.

Opportunities. Outside of the video streaming literature, the
interaction of learning and control has blossomed in recent years,
leading to new and exciting approaches to controller designs [39,
47, 49, 52, 54]. However, these new approaches have not yet been
applied and evaluated in the context of video streaming where
classical model predictive and proportional–integral–derivative
control have remained the focus, e.g., [17, 23]. In particular, the
area of smoothed online convex optimization (SOCO) has seen
multiple breakthroughs in recent years [13, 25, 33, 35], including
the development of connections to model predictive controllers [26,
47, 49, 52, 56]. SOCO provides a systematic framework to balance
an objective function with action switching. It thus lends itself well
to video streaming, which needs to jointly optimize video quality,
sustained playback, and bitrate smoothness.

Requirements. Driven by the above design gaps and oppor-
tunities, we identify three requirements that SODA should deliver.
In particular, SODA should (i) achieve bitrate smoothness without
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sacri�cing video quality or sustained playback, (ii) be robust against
volatile network conditions, and (iii) be easy to deploy in practice.
Before delving into the details in the remainder of the paper, we
provide a brief overview of how SODA satis�es these requirements:
• SODA leverages SOCO to balance the trade-o� between video qual-
ity, sustained playback without rebu�ers, and bitrate smoothness
without frequent switches. Importantly, SODA focuses on steer-
ing the bu�er level towards a target rather than weighing video
quality against rebu�ering duration (see Section 3.1).

• To achieve robustness against throughput variability, SODA is de-
signed to satisfy the exponentially decaying perturbation property,
which guarantees that SODA never operates too far away from the
optimal trajectory in the face of prediction errors (see Section 4.2).

• To remain computationally e�cient, SODA leverages an e�cient
approximate solver (see Section A.5 for proof and Algorithm 1
for implementation), that only requires evaluation of monotonic
bitrate sequences (Section 4.3), which reduces the computational
cost by two orders of magnitude over a brute-force solver.

3 SODA OVERVIEW
Given the design gaps, opportunities, and requirements, we set out
to design a theoretically sound adaptive bitrate streaming (ABR)
controller that minimizes bitrate switching without compromis-
ing video quality or increasing rebu�ering time, thus providing a
smooth viewing experience. To accomplish this, we deviate from
the conventional segment-based ABR formulation and derive theo-
retical insights from a time-based ABR formulation. This enables us
to incorporate throughput predictions into the controller in a prin-
cipled way. Taking advantage of recent advancements in smoothed
online convex optimization (SOCO), we can theoretically prove
that SODA o�ers a near-optimal quality of experience (QoE) and is
robust against throughput prediction errors.

3.1 A Time-Based ABR Formulation
Our time-based ABR formulation treats a video stream as a contin-
uous �ow rather than a discrete sequence of segments. Consider a
streaming session that consists of # time intervals with �xed dura-
tion �C in terms of clock time (not video time). The controller’s task
is to select a bitrate for each time interval from a set of available
bitrates R ⇢ [Amin, Amax] to optimize for a combination of high
quality, short rebu�ering, and infrequent bitrate switching.

Let l= denote the average throughput during the =th time inter-
val, A= the selected bitrate for that time interval, and G= the bu�er
level immediately after that time interval. Our objective is to min-
imize the overall cost given as a linear combination of the three
QoE components:

#’
==1

✓
E (A=) ·

l=�C

A=
+ V · 1 (G=) + W · 2 (A=, A=�1)

◆
, (1)

where
• E (A=) is the distortion cost, which should be a positive, strictly
decreasing, and convex function that models the encoding distor-
tion, e.g., E (A=) = 1/A= . It is then weighted by the amount of video
downloaded during that time interval, i.e., l=�C/A= because the
controller downloads a variable amount of video during each
�xed time interval.

Figure 4: A sample throughput function used to illustrate
why our time-based formulation is better for analysis.

• 1 (G=) is the bu�er cost, which aims to stabilize the bu�er level
around a target level Ḡ , i.e.,

1 (G=) =

(
(Ḡ � G=)2 G=  Ḡ

n (G= � Ḡ)2 G= > Ḡ
,

where n < 1 is a small constant. Note that we purposely do not
model the rebu�ering time explicitly to avoid the pitfalls encoun-
tered by RobustMPC (Section 2) and as we show later, this helps
SODA achieve theoretical performance guarantees (Section 4.2).

• 2 (A=, A=�1) is the switching cost from the previous bitrate to the
current bitrate, e.g., 2 (A=, A=�1) = (E (A=) � E (A=�1))2.

Coe�cients V and W are positive weights for the bu�er and the
switching cost respectively based on user preferences. The choices
for the distortion and switching cost functions are �exible.

The time-based bu�er dynamics are introduced into the opti-
mization problem through the following constraint:

G= = G=�1 +
l=�C

A=
� �C 2 [0, Gmax],

where l=�C/A= accounts for the variable amount of video down-
loaded during a time interval and �C accounts for the �xed amount
of bu�er drained during the same time interval. Note that we do not
allow the controller to violate the bu�er range constraint during
the optimization phase when determining the bitrate. Of course, due
to throughput prediction errors, this may sometimes be inevitable
during the execution phase when applying the bitrate decision.

Why a Time-Based Formulation? The time-based formulation
allows a cleaner theoretical analysis over a given throughput se-
quence (l1, . . . ,l# ). For example, consider the throughput function
shown in Figure 4. In the time-based formulation, we naturally have
l1 = 4, l2 = 1, and l3 = l4 = 2Mb/s given �C = 1 s. By contrast,
in the segment-based formulation, the throughput sequence be-
comes dependent on the bitrate sequence. Assuming the segment
duration is also ! = 1 s, if the controller chooses A1 = 2Mb/s and
A2 = 2.5Mb/s, then it takes 0.5 and 1 s to download the �rst and sec-
ond segments respectively, resulting in l1 = 4 and l2 = 2.5Mb/s.
As such, the segment based formulation gets causally biased due
to bitrate selection A1, ..., A# , which in turn makes it di�cult to
theoretically analyze the design [61].

Why Not Model Rebu�ering Directly? Rebu�ering is important to
minimize from a user’s perspective [7, 9]. However, in our optimiza-
tion problem formulation, we did not explicitly model rebu�ering
like prior works [17, 46, 50]. Instead, we focus on stabilizing the
bu�er level around a target level with a smooth roll-o� on both
sides for the following reasons:
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• Minimizing rebu�ering directly is not theoretically tractable be-
cause it requires a binary penalty function that yields a non-zero
penalty exactly when the bu�er is empty. Instead, we employ
a smoother penalty function that increases in magnitude when
the bu�er level falls below a desired target level. When there
is a network issue, we start to penalize early when the bu�er
level decreases below the safe target level and we provide the
largest penalty when the bu�er level is empty. Using a smooth
penalty function enables us to guarantee that SODA’s optimiza-
tion is strongly convex, which is key to our theoretical work. Our
approach is analogous to the use of control barrier functions to
ensure safety properties in control systems [30].

• Modeling rebu�ering time directly makes the controller vulnera-
ble to throughput prediction errors. Under a direct rebu�ering
objective, as long as the bu�er level is above zero, there will be no
penalty for the controller, even if the bu�er level is dangerously
close to 0. As a result, even small throughput prediction errors
can lead to unexpected rebu�ering.

3.2 Incorporating Throughput Predictions
In addition to facilitating theoretical analysis, our time-based formu-
lation is crucial to ensuring the validity of throughput predictions
over the prediction horizon. An important observation is that bi-
trate decisions have no causal impact on how long the throughput
predictions are valid for. However, segment-based controllers such
as MPC [17] and Fugu [46] intertwine throughput predictions and bi-
trate decisions in non-causal ways. In these designs, the throughput
prediction horizon spans shorter periods of clock time when low
bitrate is selected compared to when high bitrate is selected. In fact,
their underlying assumption about the validity of the throughput
prediction horizon can vary by Amax/Amin.

By contrast, the way we incorporate throughput predictions into
SODA does not su�er from this issue. Speci�cally, just before each
time interval, the controller is given access to a (not necessarily
accurate) throughput prediction for the next  time intervals from
a black-box throughput predictor. It is always assumed that the
validity of the throughput prediction is  �C , a �xed value. In gen-
eral, a throughput predictor may output a di�erent value for each
of the next  time intervals, i.e., l̂= |=�1, l̂=+1 |=�1, . . . , l̂=+ �1 |=�1,
where l̂< |=�1 (< � =) is the throughput prediction for the <th

time interval given previous download information up until the
(= � 1)th time interval. In other words, a throughput predictor can
output a piecewise constant throughput function for the next  �C
time. In practice, though, a typical throughput predictor outputs a
single value that corresponds to a constant throughput function.

3.3 Control Mechanism
Inspired by the model predictive control framework, SODA selects a
bitrate for each time interval by optimizing over the next  time
intervals and then committing to the bitrate decision for the imme-
diate next time interval, i.e., minimizing

=+ �1’
<==

✓
E (A<) ·

l̂< |=�1�C

A<
+ V · 1 (G<) + W · 2 (A<, A<�1)

◆
(2a)

Figure 5: SODA’s bitrate decision as a function of bu�er level
and predicted throughput. Dark blue to light orange repre-
sent low to high bitrate decisions. Notice that SODA becomes
more aggressive in selecting higher bitrates as the bu�er
grows. The rightmost region is blank since SODA makes no
downloads to prevent a bu�er over�ow.

subject to G< = G<�1 +
l̂< |=�1�C

A<
� �C, (2b)

G< 2 [0, Gmax], A< 2 R, (2c)

with respect to variables A=, . . . , A=+ �1 and then committing to
only the �rst bitrate decision A= . The behavior of SODA is visualized
as a bitrate decision diagram in Figure 5 to provide readers with
intuition about how SODA selects bitrates in practice.

As discussed in Section 2, solving this optimization problem is
computationally expensive, furthermore, it is unclear what predic-
tion horizon should be used and how accurate throughput predic-
tions must be in order for SODA to perform well. We �rst analyze
these questions theoretically (Section 4) and then present a practical
implementation of SODA that answers these concerns (Section 5).

4 THEORETICAL DESIGN INSIGHTS
Our design of SODA is motivated by recent theoretical advances at
the interface of learning and control [28, 38, 49, 54] and smoothed
online convex optimization [25, 33, 55]. In particular, we design
SODA to satisfy an exponentially decaying perturbation property that
has been shown to ensure e�cient and robust use of predictions in
model predictive control policies [49, 56]. Intuitively, this property
describes the behavior of the solution to the optimization problem
de�ning SODA (Equation 2) as a function of problem parameters,
including bandwidth predictions {l̂< |=�1}=<<=+ and the previ-
ous bu�er level/action pair (G=�1,D=�1). Here, we de�ne the actions
as the inverse of the bitrates (i.e., Dg = 1/Ag for all time step g) and
do a change of the variables to make the dynamics linear for the
theoretical analysis. Under this property, when {l̂< |=�1}=<<=+ 
are �xed, the optimal trajectory of (Equation 2) under the initial
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(G=�1,D=�1) (G=,D=) (G=+1,D=+1)

(G 0=�1,D
0
=�1)

(G 0=,D
0
=) (G 0=+1,D

0
=+1)

Figure 6: Illustration of the exponentially decaying perturba-
tion property: When {l̂< |=�1}=<<=+ are �xed, the optimal
trajectories of Equation 2 under di�erent initial bu�er/action
pairs converge exponentially toward each other.

bu�er/action pair (G 0=�1,D
0
=�1) converges exponentially toward the

optimal trajectory under the pair (G=�1,D=�1) (see Figure 6 for
an illustration). On the other hand, when the initial bu�er/action
pair is �xed, the impact of perturbing a prediction l̂< |=�1 on the
�rst action D= decays exponentially with respect to their temporal
distance (< � =). The formal de�nition of exponentially decaying
perturbation generalizes the intuition above to consider the impact
of perturbing any parameters on the entire optimal trajectory (see
De�nition A.1 in Appendix A).

Two metrics that we use to measure SODA’s performance theoret-
ically are dynamic regret and competitive ratio, which are standard
in the literature of online optimization [25, 28, 33, 49, 54]. Specif-
ically, let cost(ALG) denote the total cost incurred by an online
algorithm ALG and cost(OPT) denote the o�ine optimal cost (Equa-
tion 1) an agent can incur if it has exact knowledge of all future
bandwidth at the beginning. We say ALG achieves a dynamic regret
of ' if cost(ALG) � cost(OPT)  ' always holds, and ALG achieves a
competitive ratio of ⇠ if cost(ALG)  ⇠ · cost(OPT) always holds.

The key idea underlying our theoretical analysis is to leverage the
exponential decay property to bound (i) the error that SODA incurs
at every intermediate time step = due to its limited prediction power
(l̂< |=�1 < l< , ⌧ # ), and (ii) the aggregation of such errors over
the whole horizon # . Speci�cally, we de�ne the notion of per-step
error at a time step = as the distance between SODA’s bu�er/action
pair and the optimal bu�er/action pair that one could reach with
exact predictions of all future bandwidths l=,l=+1, . . . ,l# given
the previous bu�er/action pair (G=�1,D=�1) (De�nition A.2). Using
the principle of optimality, we reformulate the optimal bu�er/action
pair as an entry of the optimal trajectory from time = to (= + � 1)
so that we can directly compare it with SODA’s bu�er/action pair
under the exponentially decaying perturbation. Thus, we establish a
bound on the per-step error that depends on the errors of predicting
future bandwidths and the prediction horizon  (Lemma A.4). On
the other hand, we also show that the aggregation of per-step
errors does not grow linearly in time because the exponentially
decaying perturbation guarantees that the impact of each previous
per-step error vanishes exponentially over time (Lemma A.5). We
present a proof outline and the detailed proofs in Appendix A.
To prove the exponentially decaying perturbation, we require a
technical assumption that guarantees the controller can “reach”
any desired bu�er level by choosing the largest/smallest bitrate
(see Assumption A.1 in Appendix A for the formal statement). This
assumption is used to eliminate extreme boundary cases in the

analysis, but we �nd SODA empirically performs very well even
when this assumption is not strictly satis�ed.

In this section, we set �C = 1, R = [Amin, Amax], and E (A ) =
1/A . Our results can apply to other distortion cost functions, e.g.,
E (A ) = log(Amax/A ), as long as certain regularity conditions hold;
see Appendix B for a discussion.

4.1 Exact Predictions
When the bandwidth predictions are accurate, a small prediction
horizon is su�cient for SODA to achieve near-optimal performance.
In practice, it is desirable to use a relatively small prediction hori-
zon for a predictive controller like SODA because prediction errors
grow dramatically as we predict further into the future. Fortunately,
the exponential decay property that ensures good performance
with only a few predictions. More formally, we present a theorem
showing that a small prediction horizon is su�cient for SODA to
achieve near-optimal performance when the predictions within this
window are accurate (i.e., l̂< |=�1 = l< for< = =, . . . ,= +  � 1).

T������ 4.1. [Informal]When the predictions of the bandwidth in
future  steps are exact (i.e., l̂< |=�1 = l< for< = =, . . . ,= + � 1)
and the prediction horizon  � $ (1), SODA achieves a dynamic
regret of$ (d # ) and a competitive ratio of 1 +$ (d ), where d < 1
is the decay factor of the exponentially decaying perturbation property.

The formal statement of Theorem 4.1 is given in Theorem A.3
in Appendix A. This result implies that SODA’s performance ap-
proaches that of the optimal sequence of decisions exponentially
fast in the prediction horizon size  ; thus, only a small prediction
horizon length is necessary to obtain good performance.

4.2 Inexact Predictions
We now relax the exact prediction assumption to prove SODA’s
robustness to a certain level of prediction errors thanks to its expo-
nentially decaying perturbation property.

T������ 4.2. [Informal] Suppose the prediction error at each
step is bounded above. The bu�er level of SODA will never hit the
constraint boundary, i.e., 0 < G= < Gmax. Further, de�ne E = d2 # +Õ 
^=1 d

^⇢^ , where ⇢^ is the total squared error for predicting ^ steps
into the future. SODA achieves a dynamic regret of $ (

p
E# + E).

The formal statement of Theorem 4.2 is given in Theorem A.8 in
Appendix A. Theorem 4.2 shows that, if the bu�er costs are “steep”
and the prediction errors on the bandwidth are relatively small,
SODA can achieve a sequence of bu�er levels that stay safely away
from the boundaries of bu�er constraint [0, Gmax]. The dynamic
regret of SODA depends on the magnitude of the prediction errors
and the regret improves when the errors become smaller. SODA
acquires this guarantee thanks to its maintenance of the bu�er
near a target level Ḡ . In contrast, RobustMPC [17] doesn’t o�er the
same performance guarantee, thus even small bandwidth prediction
errors can cause the video to rebu�er if the bu�er level is near zero.

4.3 Computational E�ciency
Solving the predictive optimization problem to determine the exact
optimal solution can be unrealistic in the application of adaptive
bitrate streaming, where each decision needs to be made in the
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minimum possible time. A critical observation underlying the im-
plementation of SODA is that it is su�cient to search only for bitrate
sequences that are increasing or decreasing monotonically. We
provide a theoretical justi�cation in the following theorem.

T������ 4.3. [Informal] Suppose SODA is given the predictions
that satisfy l̂= |=�1 = · · · = l̂=+ �1 |=�1 at an intermediate time step
=. Then, the bitrate trajectory solved by SODA can be approximated
by a feasible monotonic bitrate trajectory with an error of $

�
 /
p
W
�
.

The formal statement of Theorem 4.3 is given in Theorem A.9
in Appendix A. Theorem 4.3 shows that the true optimal solution
becomes closer to monotonic as the weight W of switching costs
increases. While the theoretical bound can be conservative, we �nd
that even with moderate W , the (discrete) decision made under the
monotonic heuristic is usually identical to the true optimal solution
on a real trajectory (see Figure 8).

5 IMPLEMENTATION DETAILS
Given the theoretical design insights, we now discuss the practical
implementation of the high-level design described in Section 3.
There are three practical concerns that require discussion: (i) how
to translate the time-based design to the segment-based schema;
(ii) how to incorporate throughput predictions robustly; and (iii)
how to solve the predictive optimization problem e�ciently.

5.1 Segment-Based Schema
SODA is intrinsically a time-based controller, but in practice, a video
must be downloaded segment by segment according to the MPEG-
DASH standard. To reconcile with this requirement, we keep the
optimization phase as is in the time-based format and empirically
set �C to be equal to the segment length. This choice is justi�ed
by the fact that in the steady state, the download time of a video
segment is expected to be close to the segment length or much less
than that [29]. To further minimize the likelihood of committing
to a bitrate for signi�cantly longer than �C , we introduce another
heuristic that the controller must select a bitrate no higher than
min{A 2 R : A � l̂}.

5.2 Incorporating Predictions Robustly
According to Section 4.2, SODA is robust against prediction errors
by design as long as there is no systematic bias in prediction er-
rors. Given the diverse network conditions in the wild, we prefer
simple throughput predictors which makes SODA highly deployable
since there is no dependence on complex throughput predictors.
In practice, we observe that prediction accuracy degrades as the
prediction horizon increases (see Figure 7). Therefore, we limit the
prediction horizon length to at most 10 s. This is also supported by
our �nding in Section 4.1 that a longer prediction horizon yields
diminishing returns.

5.3 E�cient Approximate Solver
At SODA’s core is the predictive optimization problem described
in Section 3.3. Unfortunately, solving this problem on the �y is
computationally challenging. One may propose enumerating all
combinations of discretized throughputs, bu�er levels, and previous
bitrates in the form of an o�ine computed lookup table, as is the

Figure 7: We pro�led the performance of the two throughput
predictors shipped with dash.js [64], i.e., moving average
predictor and exponential moving average predictor. Both
predictors have a high mean correlation (around 50%) in the
immediate future but a very low mean correlation (around
15%) in the far future.

Algorithm 1: SODA’s e�cient approximate optimization
solver. SearchDown is omitted for brevity due to symmetry.
The current bu�er level and the previous bitrate are denoted
by G0 and A0 respectively.
function S�����(l̂, G0, A0, )

(A⇤up, obj⇤up)  S�����U�(l̂, G0, A0, )
(A⇤down, obj

⇤

down)  S�����D���(l̂, G0, A0, )
return A⇤up < null ^ obj⇤up < obj⇤down ? A

⇤
up : A⇤down

function S�����U�(l̂, G0, A0, )
A⇤1  null, obj⇤  1
foreach A1 2 {A 2 R : A > A0}

G1  G0 + l̂�C/A1 � �C
if G1 < 0 then continue
obj E (A1) · l̂�C/A1 + V · 1 (G1) + W · 2 (A1, A0)
if  > 1 then

(A⇤2 ,�obj
⇤
)  S�����U�(l̂, G1, A1, � 1)

if A⇤2 = null then continue
obj obj + �obj⇤

if obj < obj⇤ then A⇤1  A1, obj⇤  obj
return (A⇤1 , obj

⇤
)

case in FastMPC [17], however, this is neither �exible nor scalable
in practice. A lookup table is speci�c to a particular set of bitrates,
maximum player bu�er, segment durations and byte sizes etc. thus
needs to be recomputed when any of these quantities change. Fur-
thermore, computing this lookup in live streaming is undesirable
due to the additional computational and latency overhead it incurs.
Instead, we opt for an e�cient approximate solver.

SODA’s approximate solver is designed to take advantage of the
structure of the optimal solution presented in Section 4.3. Instead of
searching through all possible bitrate sequences in the prediction
horizon, the approximate solver only considers monotonic bitrate
sequences, i.e., it imposes an additional constraint that A=�1  A= 
. . .  A=+ �1 or A=�1 � A= � . . . � A=+ �1. The pseudocode for a
recursive implementation is shown in Algorithm 1.

619



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Figure 8: The probability that the bitrate decision produced
by the approximate solver is di�erent from that produced
by the brute-force solver quickly converges to 0 as switching
cost weight increases.

The approximate solver reduces the time complexity fromO(|R|
 
)

(exponential in  ) in the case of a brute-force search over all possi-
ble bitrate sequences in the prediction horizon down to O

⇣ � | R |+ 
 

� ⌘
(polynomial in  ) and has a space complexity of O( ) only. The
time complexity can be further reduced by limiting extreme bitrate
switches. In practice, SODA searches through at most around 200
bitrate sequences. According to our production deployment expe-
rience, the approximate solver did not impose a runtime burden
even on low-end devices such as set-top boxes, which shows that
SODA is highly practical.

Empirical results are shown in Figure 8 to validate the near-
optimality of bitrate decisions produced by the approximate solver.
For each algorithm con�guration, we uniformly sample a million
situations with di�erent throughputs, bu�er levels, and previous
bitrates. Then, we count the probability that the bitrate decision
produced by the approximate solver is di�erent from that produced
by the brute-force solver. The di�erence is negligible for a reason-
able switching cost weight, e.g., below 5% for  = 4 and a relative
switching cost weight of 2. Throughout the evaluation sections, we
use this e�cient implementation of SODA.

6 EVALUATION
To thoroughly evaluate SODA’s performance, we conducted three
levels of empirical evaluation: (i) large-scale numerical simulations,
(ii) prototype evaluation in Pu�er [46], and (iii) production deploy-
ment in Amazon Prime Video. This funnel approach allowed us to
�rst systematically evaluate SODA against a variety of baselines in
a wide range of controlled environments. Later, we narrowed the
comparison target to a deployed and �ne-tuned ABR controller in
production using A/B tests on real user sessions.

Performance Metrics. To maintain consistency in terms of perfor-
mance metrics with prior works such as [17, 22, 24, 46], a similar
de�nition of QoE is adopted that consists of mean utility, rebu�er-
ing ratio, and switching rate. These correspond to the three main
desired properties of adaptive bitrate streaming, i.e., high video
quality, shorter rebu�ering time, and less bitrate switching. All
three QoE components are normalized between 0 and 1 for ease of
interpretation. The precise de�nitions are as follows:

• Mean Utility: Unless otherwise noted, we use the commonly-
used logarithmic utility function:

Ē =
1
#

#’
8=1

log(A8/Amin)

log(Amax/Amin)
.

• Rebu�ering Ratio: The ratio of the total rebu�ering time to the
session duration, i.e., drebuf = )rebuf/) .

• Switching Rate: Bitrate switch count divided by segment count
minus one, i.e., ?switch = #switch/(# � 1).

The QoE score is simply a linear combination of the three QoE
components, i.e., QoE = Ē � V · drebuf � W · ?switch. In this work,
we chose V = 10 and W = 1 to re�ect the high importance of
minimizing rebu�ering time. To establish fair comparisons, we
report the individual QoE components along with the QoE score.

6.1 Numerical Simulations
To perform large-scale numerical simulations, we implemented a
highly optimized ABR simulator in C++ derived from Sabre [36].
The simulation accuracy of Sabre has been empirically validated
against dash.js [64], the reference player for MPEG-DASH. We
con�gured the simulator to allow a maximum bu�er length of 20
seconds to replicate the typical live streaming conditions.

6.1.1 Experimental Setup. Our network dataset consists of about
38,000 hours of throughput traces compiled from the following
three public sources:
• Pu�er Dataset [46]: We downloaded and parsed all throughput
traces from the Pu�er platform during the time period of January
2023 to June 2023.

• 5G Dataset [41]: A 5G network dataset from a major Irish mobile
operator under both static and moving scenarios while down-
loading online content.

• 4G Dataset [27]: A 4G network dataset from two major Irish
mobile operators under both static and moving scenarios while
downloading online content.

For all three datasets, we �ltered out sessions shorter than 10 min-
utes and divided long sessions into consecutive 10-minute sessions,
resulting in 230,322 sessions from the Pu�er dataset, 88 sessions
from the 5G dataset, and 187 sessions from the 4G dataset. Fig-
ure 9 illustrates the wide range of network conditions covered by
these datasets. In general, the Pu�er dataset represents better net-
work conditions than the 5G and 4G datasets. The latter have much
lower mean throughput and higher variance, thus posing a bigger
challenge for ABR controllers.

To fully exercise our datasets, we considered a high-frame-rate
4K video encoded according to the YouTube recommended settings
(1.5, 4, 7.5, 12, 24, and 60 Mb/s) [65] with a segment length of 2
seconds. For the 5G and 4G datasets, we considered the same video
with the two highest bitrates removed. Finally, for throughput
prediction, we opted for the exponential moving average (EMA)
predictor, the default throughput predictor in dash.js.

6.1.2 Baseline ABR Controllers. We compared SODA against the
following ABR controllers representative of each of the common
ABR controller categories, i.e., throughput-based, bu�er-based, and
hybrid. They were tuned to our best e�orts for our network datasets.
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Figure 9: The mean throughput of the Pu�er, 5G, and 4G datasets are 57.1, 31.3, and 13.0 Mb/s. The mean relative standard
deviations of throughput of the Pu�er, 5G, and 4G dataset are 47.2%, 133%, and 80.6%.

• HYB [24]: A heuristic throughput-based ABR controller that se-
lects the highest bitrate without rebu�ering.

• BOLA [36]: A bu�er-based ABR controller derived from Lyapunov
optimization. It provides theoretical guarantees about utility and
rebu�ering time only.

• Dynamic [44]: A production version of BOLA that dynamically
switches between bu�er mode and throughput mode in response
to changes in network conditions. Additionally, it has low-bu�er
safety heuristic to reduce rebu�ering and a switching avoidance
heuristic to mitigate bitrate switching. It is the default ABR con-
troller in dash.js.

• MPC [17]: One application of model predictive control to adap-
tive streaming that models utility, rebu�ering time, and bitrate
switching, without theoretical guarantees.

6.1.3 QoE Performance. The aggregate statistics for QoE scores
and individual QoE components under each network dataset are
shown in Figure 10. To better understand how the performance of
di�erent ABR controllers react to the intrinsic volatility of network
conditions, we split the Pu�er dataset into four quarters according
to the relative standard deviation of throughput (Q1 represents
the most stable network conditions, while Q4 represents the most
volatile network conditions). In general, the more volatile network
conditions are, the more the QoE performance of any ABR con-
troller degrades, as evidenced by the trend in Figure 10 from left
to right. Nonetheless, SODA consistently outperforms baseline ABR
controllers under all network conditions. The improvement in terms
of mean QoE scores compared to the best baseline across di�erent
network datasets ranges from 9.55% to 27.8%, which mainly stems
from improvement in terms of smoothness (shorter rebu�ering
time and less bitrate switching). We discuss the improvement of
SODA over each baseline ABR controller below:

• SODA vs HYB. HYB is not as robust as SODA under volatile network
conditions. In addition, it switches up to 215% more since it does
not consider bitrate switching.

• SODA vs BOLA & Dynamic. As mainly bu�er-based ABR con-
trollers, BOLA and Dynamic are fairly robust against volatile net-
work conditions. Dynamic’s performance is what one would ex-
pect in a typical production environment. Nonetheless, SODA is
able to achieve similar mean utilities without sacri�cing mean
rebu�ering ratios, proving its outstanding robustness as a hybrid

ABR controller. Where SODA really shines though is its signi�-
cantly lower mean switching rates. Despite Dynamic’s switch-
ing avoidance heuristic, SODA cuts down mean switching rates
by as much as 70.4%, which demonstrates the superiority of
theoretically-sound design.

• SODA vs MPC. MPC has high mean utilities and low mean switching
rates under stable network conditions (see Pu�er (Q1 variance)
in Figure 10). However, the performance of MPC is tightly coupled
with the intrinsic volatility of network conditions. Speci�cally,
MPC su�ers a lot in terms of mean rebu�ering ratios especially
under mobile network conditions. By contrast, SODA does not
have this issue since it is robust against prediction errors by
design, making it much more suitable for production deployment.

6.1.4 Intrinsic Sensitivity to Prediction Accuracy. In an e�ort to im-
prove throughput prediction accuracy, several prior works have fo-
cused on designing more sophisticated throughput predictors such
as C2SP [20], Fugu [46], and Xatu [50]. While these throughput pre-
dictors may o�er higher prediction accuracy, they are complex and
di�cult to deploy, especially on compute or memory constrained
devices [58]. In Section 4.2, we have showed that SODA is robust
against prediction errors by design and does not require a sophisti-
cated throughput predictor. We now demonstrate this empirically.

First, we replaced the throughput predictor used in simulations
with a perfect short-term throughput predictor. Next, we gradually
introduced more and more white noise to the perfect throughput
predictions and observed how di�erent ABR controllers behave
accordingly. This experiment was conducted on a random subset
of our network datasets with a size of 10,000 sessions. Note that
throughput prediction discounts were turned o� for all ABR con-
trollers to reveal their intrinsic robustness.1

The results are shown in Figure 11, from which we observe
that all hybrid ABR controllers that take throughput predictions
into account will inevitably be a�ected by prediction errors to
some extent (BOLA is not a�ected since it is purely bu�er-based).
Nonetheless, SODA still consistently outperforms all baseline ABR
controllers up to a noise level of 50%. For reference, EMA predictor
has an empirical noise level of about 30% on the same sessions. More
importantly, the QoE degradation of SODA is minimal up to the
reference point of EMA predictor, i.e., about 10%, which reinforces

1The ranking between di�erent ABR controllers in this section may be di�erent from
that in Figure 10, which reveals that the robustness of certain ABR controllers should
be attribute to throughput prediction discounts instead of intrinsic designs.
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Figure 10: The mean QoE scores, utilities, rebu�ering ratios and switching rates of SODA and baseline ABR controllers under
each network dataset. The Pu�er dataset is split into four quarters according the throughput variance (Q1 being lowest while
Q4 being highest). SODA has consistently higher mean QoE scores and lower switching rates than all baseline ABR controllers
under all network conditions. (Error bars represent 95% con�dence intervals.)

Figure 11: The mean QoE scores for SODA and baseline ABR
controllers under variable amounts of white noise. (The error
bars represent 95% con�dence intervals.)

the idea that a practical deployment of SODA does not require a
sophisticated throughput predictor.2

2In practice, we observe that EMA predictor is actually much better than a perfect
short-term predictor with 30% white noise because the noise patterns are di�erent,
which means that real gap is less than 10%.

6.2 Prototype Evaluation
We next present emulation results from our local client-server
deploymentwherewe implemented SODA in the Pu�er platform [46].
Thanks to Chrome DevTools’ new capability to throttle WebSocket
requests [59], we could replay our network datasets directly in
Chrome usingWebDriver [63]. The results are intended to highlight
the robustness of di�erent ABR controllers under actual browser-
based playback. For these experiments, we allowed a maximum
bu�er length of 15 seconds, as set by Pu�er.

6.2.1 Experimental Setup. The video source was a news clip en-
coded in �ve di�erent resolutions (426 ⇥ 240, 640 ⇥ 360, 854 ⇥ 480,
1280 ⇥ 720, and 1920 ⇥ 1080) with a constant rate factor of 26 and
a segment length of 2 seconds. To be fair to those learning-based
ABR controllers trained speci�cally for the Pu�er platform, we only
considered the Pu�er dataset. Since the average bitrate of the high-
est resolution is only about 2 Mb/s, we take a random subset of the
Pu�er dataset with a size of 1,000 sessions whose mean throughput
is below 2 Mb/s to create challenging scenarios.
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6.2.2 Baseline ABR Controllers. In response to the growing interest
in learning-based throughput predictors and ABR controllers in
the research community, we included two representative learning-
based ABR controllers for local deployment on top of the major
baseline ABR controllers from numerical simulations:

• Fugu [46]: Developed as part of the Pu�er project, it features a
learning-based stochastic throughput predictor, while its under-
lying control algorithm is similar to MPC.

• CausalSimRL [60]: A modern implementation of a reinforcement
learning (RL)-based ABR controller Pensieve [22]. It is trained
using CausalSim for the Pu�er platform.

6.2.3 QoE Performance. Pu�er employs structure similarity index
measures (SSIM) [4] to quantify utility, thus to compare fairly us-
ing Pu�er, we adapt mean utility to normalized mean SSIM, i.e.,
Ē = SSIM/SSIMmax. The de�nitions of rebu�ering ratio, switching
rate, and QoE score remain the same. The aggregate statistics or
QoE scores and individual QoE components across all sessions are
shown in Figure 12. SODA outperforms the best baseline (Fugu) by
30.4% in terms of mean QoE score. More importantly, SODA is the
only ABR controller that achieves low mean rebu�ering ratio and
switching rate simultaneously, which translates to superior smooth-
ness of adaptive streaming. We highlight comparisons with the new
baseline ABR controllers below:

• SODA vs MPC & Fugu. MPC and Fugu are grouped together since,
apart from the more sophisticated stochastic throughput pre-
dictor, Fugu shares a similar underlying control algorithm with
MPC. While they both achieve slightly higher mean utilities than
SODA and reasonably low mean switching rates, these bene�ts
are overshadowed by worse mean rebu�ering ratios (230% and
104% worse respectively). Although Fugu partially mitigates the
rebu�ering issue due to its stochastic throughput predictor, it is
still not robust enough for challenging network conditions.

• SODA vs CausalSimRL. CausalSimRL achieves slightly higher
mean utility than SODA and a reasonably low mean rebu�ering
ratio. However, it switches bitrates 86.3% more often than SODA.
Due to the black-box nature of RL-based ABR controllers, it is
hard to reason why this is the case. In addition, there exists no
straightforward way to tune an RL-based controller in favor of
one particular QoE component without a complete retraining. In
a production environment, it is highly desirable that the trade-o�
between di�erent QoE components is tunable.

6.3 Production Deployment
We now describe the results from deploying SODA for live streams
delivered on Amazon Prime Video. The bitrate ladder for these
video streams had the following bitrate rungs {0.2, 0.45, 0.8, 1.2, 1.8,
2, 4, 5, 6.5, 8.0} Mb/s. This range of available bitrates fully exercised
SODA’s bitrate adaptation capability as well as tested its runtime
feasibility on actual devices. The experiment was run on three de-
vice families, including (i) desktops/laptops (HTML5 browsers), (ii)
smart TVs, and (iii) set-top boxes. On all three platforms, SODA used
a simple sliding window-based throughput predictor. All devices
were 20 seconds behind live action, so they could accumulate at
most 20 seconds of bu�er. To compare performance with a pro-
duction tuned baseline, we conducted large-scale A/B experiments

where customers were randomly assigned SODA or the production
baseline controller. The experiment ran for more than 1 week with
live streams delivered to more than 10 countries. In total, SODA
sessions logged more than 50,000 streaming hours.

Figure 13 shows SODA’s performance relative to the production
deployed and tuned controller. First, notice that SODA consistently
improves all the metrics across all device families, reducing the
frequency of bitrate switching on set-top boxes by 88.8%. SODA really
shines on HTML5 browsers where it reduced the mean rebu�ering
ratio by up to 53.0% in addition to 81.8% reduction in switching.
This is because HTML5 browsers experience more volatility in
network conditions compared to smart TVs and set-top boxes and
thus present greater opportunity for improvement. Finally, notice
that on all three platforms, the average duration of session increased,
with 5.91% improvement on set-top boxes. Live streaming sessions
for sports events routinely span multiple hours (e.g., 2-hour soccer
broadcast, 3.5-hour cricket broadcast), so a 5.91% increase translates
to more than 5 minutes duration.

Takeaways from Production Deployment. The production
deployment shows that SODA is practical and can bewidely deployed
across di�erent device types and network connections. Furthermore,
to achieve its signi�cant performance gains, it is su�cient for SODA
to use simple sliding window-based throughput predictors.

7 RELATEDWORK
7.1 Adaptive Bitrate Streaming
Bitrate adaptation has received signi�cant attention from the mul-
timedia research community. Bu�er-based controllers like BBA [15]
and BOLA [36, 44] make bitrate decisions based on bu�er occu-
pancy, while hybrid controllers like HYB [24], MPC [17] and DYNAMIC
[44] combine throughput predictions with bu�er occupancy to
make decisions. SODA belongs to the latter category. There are also
learning-based controllers such as Pensive [22] that utilize rein-
forcement learning to learn a bitrate selection strategy. Another
relevant stream of work focuses on improving the accuracy of
throughput predictions, including CS2P [20], Fugu [46], and Xatu
[50]. Our work makes no assumption on the quality of throughput
predictions and does not require a sophisticated throughput pre-
dictor. Past works have also considered upgrading the downloaded
segments through replacement [36] which we do not consider in
this paper.

7.2 Video Quality of Experience
The advent of video content delivery networks [2, 6] in the late
1990’s led to e�orts in industry to de�ne and measure quality met-
rics for video delivery. Since then the quality of video delivery is
a well studied topic with early work on the Akamai Stream Ana-
lyzer system which de�ned metrics such as startup time, rebu�er
ratio, bitrate and failures etc and measured these metrics using data
derived from video players deployed around the world [3, 66]. Sub-
sequently, [7] showed that a 1% increase in rebu�ering correlated
with a 3-minute reduction in the amount of time users streamed
live content. A study on YouTube [21] found that bitrate �uctua-
tions strongly correlate with a user abandoning the session. Beyond
correlations, the �rst study [9] to establish a causal relationship
between video quality and user behavior used quasi-experimental
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Figure 12: The mean QoE scores, utilities, rebu�ering ratios, and switching rates from local deployment. SODA again has the
highest mean QoE score and unlike all other baselines, simultaneously achieves ultra low mean rebu�ering ratio and switching
rate. (Error bars represent 95% con�dence intervals.)

Figure 13: The change in mean viewing durations (higher is
better), bitrates (higher is better), rebu�ering ratios (lower is
better), and switching rates (lower is better) of SODA compared
to the production baseline.

designs (QEDs) to quantify the causal (adverse) impact of startup
delay, rebu�ering, and failures on user engagement, abandonment,
and repeat viewership. A related work [11] built predictive models
for user engagement based on QoE metrics. Our work leverages
insights from these works in our ABR controller design.

7.3 Smoothed Online Convex Optimization
Our algorithm builds on recent developments in smoothed online
convex optimization (SOCO), a variant of online optimization that
penalizes switching between consecutive decisions via a “switch-
ing cost.” [25, 33, 34]. In recent years, the design and analysis of
algorithms for SOCO has received considerable attention, e.g., [14,
25, 31, 32, 34, 37], with optimal online algorithms emerging in vari-
ous settings [33, 42, 48, 62] and a variety of applications receiving
attention [10, 12, 26, 43, 53, 55, 57]. SOCO’s switching cost model
inspires our design of SODA for video streaming.

Our mathematical formulation of adaptive video streaming can
be viewed as a speci�c example of online (optimal) control [54].
Similar to online optimization, online control seeks to design a
controller to minimize the total cost incurred over a �nite horizon.
The theoretical bounds in this paper are most related to works that
study how future predictions can improve online controller perfor-
mance [39, 47, 49, 52]. Our proofs follow an analytic framework for

studying MPC-based algorithms via exponentially decaying pertur-
bation bounds [49, 55, 56]. Our work shows that this decay property
holds under our model of adaptive video streaming, allowing us to
establish performance guarantees for SODA.

8 LIMITATIONS AND FUTUREWORK
An emerging genre (but, still a small fraction) of live streaming is
ultra-low latency live streams where the delay between the capture
of an event and its display to the user is required to be of the order
of a few seconds, as opposed to 10 to 20 seconds for the traditional
live streams used in our current work. In future work, we would
like to study if our SOCO-based strategy can be adapted for ultra-
low latency live streams with bu�er lengths in the order of a few
seconds. The main challenge with ultra-small bu�er sizes is that it
is harder to prevent rebu�ering and bitrate switching in this regime
as the ABR controller needs to react to network �uctuations in a
signi�cantly shorter amount of time.

9 CONCLUSION
In this work, we propose a smoothness-optimized dynamic adaptive
(SODA) controller that addresses this issue in a theoretically sound
way. Thanks to SODA’s robustness against prediction errors and
low runtime complexity, it is readily deployable in a wide range
of production environments. Through numerical simulations and
prototype evaluation, we show that SODA consistently outperforms
the state-of-the-art baselines. More importantly, we deployed SODA
in a major video streaming provider where SODA signi�cantly re-
duced bitrate switching by up to 88.8% compared to a �ne-tuned
production baseline. SODA’s novel time-based ABR formulation and
theoretical insights shed new light on how to achieve consistent
high-quality video streaming.
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Appendices are supporting material that has not been peer-reviewed.

A PROOF OUTLINE
In this section, we present an outline of our theoretical analysis for SODA. As we discussed in Section 4, our proof is based on an exponentially
decaying perturbation bound that relates the behavior of the solution to the optimization problem de�ning SODA as a function of problem
parameters. This section is organized as follows: We �rst introduce the modeling of SODA that we use to establish theoretical results in
Section A.1. Then, we introduce the exponentially decaying perturbation bound, its implications, and the proof idea in Section A.2. Next, we
present the outlines for proving SODA’s performance guarantees with the help of exponentially decaying perturbation bounds in Sections A.3
and A.4. Finally, we will discuss some su�cient conditions under which the optimal bitrate sequence can be approximated by a monotonic
sequence in Section A.5.

A.1 Theoretical Problem Setting
We �rst introduce the notation used to de�ne the performance metrics and the variant of SODA studied in our theoretical analysis. To make
the formulation of the video streaming problem closer to a classic control problem, we de�ne the “control action” DC as the inverse of the
bitrate (i.e., DC = 1

AC
). Recall that we set E (A ) = 1

A in our theoretical analysis. Thus, we can write down a general form of the optimization
problem solved by SODA and usekC+?C

�
(fC�1,aC�1); l̂C :C+? ; �

�
to denote its optimal solution:

argmin
GC :C+? ,DC+1:C+?

C+?’
g=C

l̂gD
2
g + V

C+?’
g=C

1 (Gg ) + W
C+?+1’
g=C

|Dg � Dg�1 |
2
+ � (GC+? ,DC+?+1) (3a)

s.t. Gg = Gg�1 + l̂gDg � 1, for g = C, . . . , C + ?, (3b)

0  Gg  Gmax,
1

Amax
 Dg 

1
Amin

, for g = C, . . . , C + ?, (3c)

GC�1 = fC�1,DC�1 = aC�1 . (3d)

Here,kC+?C
�
(fC�1,aC�1); l̂C :C+? ; �

�
is de�ned to be a vector that contains the states GC :C+? and control actions DC+1:C+? in the optimal solution.

The initial condition (fC�1,aC�1), bandwidth sequence l̂C :C+? , and terminal cost function � are the parameters of the optimization problem.
For the terminal costs, we consider two types of functions: (1) The zero function � = 0, i.e., � (G,D) = 0 for all G,D; (2) The indicator function
� = If,a , which is de�ned as

� (G,D) = If,a (G,D) =

(
0 if G = f,D = a,
+1 otherwise.

The �rst type of terminal cost will be used to de�ne the performance metrics (competitive ratio and dynamic regret), and the sec-
ond type will be used in the algorithm design. Since we will use the indicator terminal cost frequently, we introduce the shorthand
k̃C+?C

�
(fC�1,aC�1); l̂C :C+? ; (fC+? ,aC+?+1)

�
, which denotes k̃C+?C

⇣
(fC�1,aC�1); l̂C :C+? ; IfC+? ,aC+?+1

⌘
. We use ]C+?C

�
(fC�1,aC�1); l̂C :C+? ; �

�
to de-

note the optimal objective value of the optimization problem (3).
The model of SODA that we consider in the theoretical analysis is summarized in Algorithm 2. The major di�erence from the SODA

algorithm discussed in Section 3.3 is that we include the indicator terminal cost (in line 5) so that the last two states in the predictive
trajectory are equal to the target bu�er level. This terminal constraint is important for our competitive ratio result in Theorem 4.1, for which
we need to bound the squared distance between the trajectories of SODA and the o�ine optimal controller by a part of the o�ine optimal cost.

Algorithm 2: SODA (for theoretical analysis)

Require: Prediction horizon  .
1: for C = 1, 2, . . . ,# do
2: Set C 0 = min{C +  � 1,# }.
3: Receive predictions l̂C+1:C 0 |C .
4: if C 0 < # then
5: Set terminal cost �C 0 = IG⇤,1/l̂C 0 |C .
6: else
7: Set terminal cost �C 0 = 0.
8: end if
9: Commit DC = kC

0
�1

C

⇣
(GC�1,DC�1); l̂C :C 0 |C ; �C 0

⌘
.

10: end for
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Using the notations above, we can formally de�ne the performance metrics we employ: Let cost(OPT) denote the o�ine optimal cost one
can achieve when exact predictions of all future bandwidth are available at the start of the problem, i.e., cost(OPT) = ]#1

⇣
(G0,D0);l⇤1:# ; 0

⌘
.

Then,
• Dynamic regret is an upper bound on the di�erence cost(SODA) � cost(OPT);
• Competitive ratio is an upper bound on the ratio cost(SODA)/cost(OPT).

A.2 Exponentially Decaying Perturbations
Exponentially decaying perturbations is a critical property of the �nite-time optimal control problem that our analysis builds upon. We
de�ne this property formally in De�nition A.1.

De�nition A.1 (Exponentially Decaying Perturbation Bound). We say the exponentially decaying perturbation bound holds if there exists
uniform constants ⇠ > 0, d 2 (0, 1) such that the following inequalities hold:����kC+?C

�
(fC�1,aC�1); l̂C :C+? ; 0

�
Gg
�kC+?C

⇣
(f0C�1,a

0
C�1); l̂

0
C :C+? ; 0

⌘
Gg

����
 ⇠dg�C+1

���fC�1 � f0C�1�� + ��aC�1 � a 0C�1��� +⇠
C+?’
9=C

d |g� 9 |
���l̂ 9 � l̂ 09

��� , (4)

����k̃C+?C
�
(fC�1,aC�1); l̂C :C+? ; (fC+? ,aC+?+1)

�
Gg
�kC+?C

⇣
(f0C�1,a

0
C�1); l̂

0
C :C+? ; (f

0
C+? ,a

0
C+?+1)

⌘
Gg

����
 ⇠dg�C+1

���fC�1 � f0C�1�� + ��aC�1 � a 0C�1��� +⇠
C+?’
9=C

d |g� 9 |
���l̂ 9 � l̂ 09

��� +⇠dC+?�g ⇣���fC+? � f0C+?
��� + ���aC+?+1 � a 0C+?+1

���⌘ . (5)

Intuitively, the exponential decay property (De�nition A.1) holds if the impact of a perturbation on the initial condition (fC�1,aC�1),
prediction l̂ 9 , or terminal constraint (fC+? ,aC+?+1) on the component Gg in the optimal trajectory decays exponentially with respect to the
absolute di�erence between their corresponding time indices.

Due to its importance for the theoretical analysis of MPC-based algorithms, many previous works have established exponentially decaying
perturbation bounds for various cases of online optimization with switching costs [49], optimal control with unconstrained dynamics [49,
56], and online optimization in networked systems [55]. In contrast to previous work, however, the video streaming problem (3) that we
consider is a constrained optimal control problem. To this point, there has been limited success in establishing exponentially decaying
perturbation bounds for general constrained optimal control problems, and existing results that provide su�cient conditions for their validity
are di�cult to verify [51, 56].

In this work, we leverage the special structure of the video streaming problem to show the exponentially decaying perturbation bound
holds in this setting. We require the following assumption about the bu�er constraints, bandwidth, and the bitrate range.

Assumption A.1. There exists uniform constants lmax > lmin > 0 such that for any time step C , we have that lmin  lC  lmax holds. We
also assume that lmin/Amin � Gmax, and lmax/Amax � 1  �X holds for a �xed constant X > 0.

Intuitively, Assumption A.1 guarantees that the controller can always �ll up the bu�er at the cost of choosing the smallest bitrate or
decrease the bu�er level by choosing the largest bitrate. As we discussed in Section 4, this assumption is used to eliminate extreme boundary
cases in the analysis, but SODA empirically performs well even when Assumption A.1 is not strictly satis�ed. Using this assumption, we show
the exponentially decaying perturbation property holds for the video streaming problem in Theorem A.1.

T������ A.1. Under Assumption A.1, the exponentially decaying perturbation bound holds with constants

d =
©≠≠≠≠
´
1 �

2

1 +
r
1 + max{6lmin (lmin+3),4Gmax (lmin+8W ) }

l3
minnV

™ÆÆÆÆ
¨

1
3(3+dGmax/Xe)

and

⇠ =
(1 + lmax)

⇣
3Vl3

min +max{6lmin (lmin + 3), 4Gmax (lmin + 8W)}
⌘

l3
mind

3+dGmax/X e
.

While the exponentially decaying property (De�nition A.1) bounds the impact of parameter perturbations on the states, we extend the
de�nition to the control actions and show that this variant holds as a corollary of Theorem A.1.
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Figure 14: Illustration of the aggregations of per-step errors. In the �gure, {(G⇤C ,D
⇤
C )}C=1,2,... denotes the o�line optimal states

and control actions, and {(GC ,DC )}C=1,2,... denotes the bu�er level achieved by SODA. The dashed trajectory from (GC ,DC ) denotes
the clairvoyant optimal trajectory from (GC ,DC ). At time C , the per-step error 4C leads to the deviation of the actual trajectory of
SODA with the clairvoyant optimal trajectory. The impact of the per-step error 41 at a future time step C is the height of blue
area, which decays exponentially fast with respect to C when exponentially decaying perturbation holds. Therefore, although a
per-step error occurs at every time step, the distance between (GC ,DC ) and (G⇤C ,D

⇤
C ) is still uniformly bounded.

Corollary A.2. Under Assumption A.1, for the control action D, we also have that����kC+?C
�
(fC�1,aC�1); l̂C :C+? ; 0

�
Dg
�kC+?C

⇣
(f0C�1,a

0
C�1); l̂

0
C :C+? ; 0

⌘
Dg

����
 ⇠0dg�C+1

���fC�1 � f0C�1�� + ��aC�1 � a 0C�1��� +⇠0
C+?’
9=C

d |g� 9 |
���l̂ 9 � l̂ 09

��� ,
����k̃C+?C

�
(fC�1,aC�1); l̂C :C+? ; (fC+? ,aC+?+1)

�
Dg
�kC+?C

⇣
(f0C�1,a

0
C�1); l̂

0
C :C+? ; (f

0
C+? ,a

0
C+?+1)

⌘
Dg

����
 ⇠0dg�C+1

���fC�1 � f0C�1�� + ��aC�1 � a 0C�1��� +⇠0
C+?’
9=C

d |g� 9 |
���l̂ 9 � l̂ 09

��� +⇠0dC+?�g ⇣���fC+? � f0C+?
��� + ���aC+?+1 � a 0C+?+1

���⌘ ,
where the decay factor d is the same as Theorem A.1, and the constant ⇠0 is given by

⇠0 =
⇠ (1 + d)Amin + d

lminAmind
.

Here, ⇠ is the same as Theorem A.1.

To establish the exponentially decaying perturbation property, we �rst reduce the video streaming problem to a more general online
optimization problem with memory and inequality constraints. Then, we consider each possible combination of active inequality constraints
separately and show that the exponentially decaying perturbation property holds in each case. This only requires considering optimization
problems with equality constraints with second-order di�erentiable objectives. Lastly, we show that the exponential decay properties for
these separate cases can be combined to establish the exponential decay property for the original video streaming problem.

A.3 Proof Outline for Exact Predictions
We provide the formal version of Theorem 4.1 that gives the dynamic regret and competitive ratio for SODA with speci�c coe�cients in
Theorem A.3.

T������ A.3. Under Assumption A.1, consider SODA with the terminal constraints GC+ �1 = Ḡ, AC+ �1 = l̂C+ �1 |C�1. De�ne the weight ⇠
and the decay factor d to be the same as Theorem A.1, and the coe�cient ⇠0 is given by Corollary A.2. Suppose all predictions are exact (i.e.,
l̂< |=�1 = l< for< = =, . . . ,= +  � 1) and the prediction horizon  satis�es

 �
1
4
ln

✓
16

1 � d
·

✓
1 +

(⇠ +⇠0)2

1 � d

◆
·

⇣
⇠2

+ (⇠0)2
⌘2◆

/ln
✓
1
d

◆
= $ (1) .

Here, the coe�cients ⇠,⇠0 and the decay factor d are given by Theorem A.1 and Corollary A.2. Then, SODA achieves a dynamic regret of
⇠1d �1cost(OPT) = $ (d # ) and a competitive ratio of 1 +⇠1d �1 = 1 +$ (d ). Here, the coe�cient ⇠1 is given by

⇠1 = 8

 
2(4W + V + lmax) ·

1
1 � d

·

✓
1 +

(⇠ +⇠0)2

1 � d

◆ ⇣
⇠2

+ (⇠0)2
⌘
·
4 + l2

min
nVl2

min

!1/2
.

and the notation $ (·) hides polynomial dependence on system parameters n, V,W and 3 .
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The proof outline of Theorem A.3 contains two parts: (1) Bounding the per-step error of SODA at each time step when compared against
the hindsight optimal policy; (2) Showing that the past per-step does not accumulate to be unbounded over time.
Bounding the Per-step error. We introduce the concept of per-step error to characterize the decision error of SODA at each time step due
to its limited prediction power. While the prediction power of SODA is limited because it only has exact predictions of future bandwidths
within a �nite horizon  , the idea of per-step error also extends to inexact predictions (Section A.4). We provide the formal de�nition of the
per-step error in De�nition A.2.

De�nition A.2. The per-step error of SODA at time step C (denoted as 4C ) is de�ned as the sum of the di�erence between the actual state/action
pair of SODA (GC ,DC ) and the clairvoyant optimal next state from (GC�1,DC�1), i.e.,

4C B
���GC �k#C ((GC�1,DC�1);lC :# ; 0)GC

��� + ���DC �k#C ((GC�1,DC�1);lC :# ; 0)DC
���

Intuitively, starting from the state/action pair (GC�1,DC�1), we compare the actual next state/action pair (GC ,DC ) of SODAwith the clairvoyant
optimal next state/action a controller would take if it had the exact predictions of all future bandwidths after time step C . We de�ne the
magnitude of this di�erence as the per-step error of SODA.

When the predictions of future bandwidths are exact, we leverage the exponentially decaying perturbation property to bound the per-step
error of SODA in Lemma A.4. We defer the proof of Lemma A.4 to Section C.1.

Lemma A.4. When the predictions for the future bandwidth are exact, the per-step error of SODA satis�es

42C  16d4 �2
⇣
⇠2

+ (⇠0)2
⌘2 ⇣��GC�1 � G⇤C�1��2 + ��DC�1 � D⇤C�1��2

⌘
+ 8d2 �2

⇣
⇠2

+ (⇠0)2
⌘ (2 + l2

min)1 (G
⇤

C+ �1) + 21 (G⇤C+ �2)

nl2
min

.

The exponentially decaying coe�cients d4 �2 and d2 �2 suggest that the per-step error improves exponentially fast as the prediction
horizon  grows. Although one can simplify the expression by bounding the terms

��GC�1 � G⇤C�1��2, ��DC�1 � D⇤C�1��2, 1 (G⇤C+ �1), and 1 (G⇤C+ �2)
with some uniform constants, we keep these terms because the careful treatment is required to show the competitive ratio result.
Bounding the accumulation of past errors. Besides bounding the per-step errors, another important consequence of the exponentially
decaying perturbation bounds is that it guarantees the impact of a previous per-step error decays quickly over time. Therefore, when we
bound the total di�erence between SODA’s trajectory {(GC ,DC )}#C=1 and the o�ine optimal trajectory {(G⇤C ,D

⇤
C )}

#
C=1, the aggregated contribution

of any per-step error term 4g is up to a constant factor that depends on the decay factor rather than growing linearly with respect to the
total horizon length # (see Figure 14 for an illustration). We state this result formally in Lemma A.5 and defer its proof to Section C.2.

Lemma A.5. The trajectory of SODA {(GC ,DC )}#C=1 satis�es that
#’
C=1

⇣��GC � G⇤C ��2 + ��DC � D⇤C ��2
⌘


1
1 � d

·

✓
1 +

(⇠ +⇠0)2

1 � d

◆ #’
C=1

42C ,

where {(G⇤C ,D
⇤
C )}

#
C=1 denotes the o�ine optimal trajectory.

By combining Lemma A.4 and Lemma A.5, we bound the total squared distance between SODA’s trajectory and the o�ine optimal
trajectory by a part of the o�ine optimal cost times a coe�cient of the order $ (d2 ). Since the cost functions for adaptive video streaming
are well-conditioned, we can convert the bound on the total squared distance between the two trajectories into the competitive ratio bound
and the dynamic regret bound to �nish the proof of Theorem A.3.

A.4 Proof Outline for Inexact Predictions
Compared with the case when all predictions are exact, a major challenge when the predictions are inexact is that one of SODA’s decisions
may cause the next state to violate the state constraint. In this section, we show in two steps that SODA’s decision trajectory will not violate
the state constraints. First, by increasing the coe�cient V of the bu�er cost, one can guarantee that the o�ine optimal trajectory stays
arbitrarily close to the o�ine optimal trajectory (see Lemma A.6). Then, we show a bound on the per-step error (De�nition A.2) which
depends on the prediction error (see Lemma A.7). Recall that the exponentially decaying perturbation bounds allow us to bound the distance
between the SODA and the o�ine optimal trajectories. Therefore, we can combine these results to show that under some mild assumptions
on the coe�cient V and the prediction errors, SODA will not violate any constraints, and moreover, it also satis�es a dynamic regret bound
(see Theorem A.8).

We �rst show that for any Z > 0, one can select the coe�cient V to be su�ciently large so that the o�ine optimal trajectory stays within
a margin of Z around the target bu�er level Ḡ . We state this result formally in Lemma A.6 and defer its proof to Section D.1.

Lemma A.6. Suppose Z  min{Ḡ, Gmax � Ḡ} is positive number and G0  Ḡ + Z , if the coe�cient V for the bu�er cost is su�ciently large such
that

V �
1
nZ

·

✓
1 +

4W
lmin

◆
·

✓
1

Amin
�

1
Amax

◆
.

Then, the o�ine optimal trajectory satis�es G⇤C 2 [Ḡ � Z , Ḡ + Z ] holds for all time step C .
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Intuitively, Lemma A.6 holds because increasing V makes staying close to the target bu�er level more important. In the extreme case that
V tends to +1, the o�ine optimal will ignore the distortion/switching cost and select actions so that the bu�er level always equal to Ḡ .

Recall that the per-step error of SODA is de�ned in De�nition A.2. We bound the per-step error in Lemma A.7 and defer its proof to
Section D.2.

Lemma A.7. When the predictions for the future bandwidth are inexact, the per-step error of SODA satis�es

4C  (⇠ +⇠0)d 
✓
Gmax +

1
Amin

�
1

Amax

◆
+ (⇠ +⇠0) · ⇢ (C � 1, ) +

��lC � l̂C |C�1��
Amin

,

where ⇢ (C � 1, ) B
ÕC+ �1
g=C dg�C

��l̂g |C�1 � lg ��.
Similar to the proof outline for the exact prediction case in Section A.3, we can apply Lemma A.5 to bound the accumulation of past errors.
With the help of Lemma A.6 and Lemma A.7, we show our main result for SODA when the predictions of the future bandwidths are inexact

in Theorem A.8. We defer the proof of Theorem A.8 to Section D.3.

T������A.8. Under Assumption A.1, consider SODAwith the terminal constraints GC+ �1 = Ḡ, AC+ �1 = l̂C+ �1 |C�1. Let⇡ B min{Ḡ, Gmax�
Ḡ}. Suppose the weight V , the prediction horizon  , and the prediction errors satisfy that

V �
3
n⇡

·

✓
1 +

4W
lmin

◆
·

✓
1

Amin
�

1
Amax

◆
, and

⇢ (C, ) + d 
(1 � d)⇡

3⇠ (1 +⇠ +⇠0)
⇣
1 + Gmax +

1
Amin
�

1
Amax

⌘ ,
where, recall, ⇢ (C, ) =

ÕC+ 
g=C+1 d

g�C�1 ��l̂g |C � lg �� . Then, the bu�er levels in the SODA’s decision trajectory never hits the constraint boundary,
i.e., 0 < GC < Gmax for C = 1, . . . ,# . Further, SODA achieves a dynamic regret of

2
⇣
1 + 1

Amin
+⇠ +⇠0

⌘2 ⇣
1 + Gmax +

1
Amin
�

1
Amax

⌘
(1 � d)3/2

·

p
4W + V + lmax ·

p
E · cost(OPT)+

⇣
1 + 1

Amin
+⇠ +⇠0

⌘4 ⇣
1 + Gmax +

1
Amin
�

1
Amax

⌘2
(4W + V + lmax)

(1 � d)3
· E,

where E = d2 # +
Õ 
^=1 d

^⇢^ . Here ⇢^ B
Õ#
C=1

��l̂C+^ |C � lC+^ ��2.
Note that the dynamic regret bound shown in Theorem A.8 is in the order of $ (

p
E# + E), since cost(OPT) = $ (# ). Intuitively, from the

form of ⇢C ( ), we see that predicting the future bandwidth lg accurately at time step C becomes less important as (g � C) increases.

A.5 Proof Outline for E�cient Structure
In this section, we show that optimal solution of the �nite-time optimal control problem solved by SODA can be approximated well by a
monotonic sequence of bitrates when the coe�cient W of the switching cost is su�ciently large (see Theorem A.9). Although this result is
shown for the continuous variable case, it also provides some insight as to why the e�cient approximate solver in Algorithm 1 can provide
identical decisions to the brute-force solver with relatively high probabilities, as shown in Figure 8.

T������ A.9. Let l̂⇥ denote the sequence {l̂, . . . , l̂} with length  . For any _ > 0, when the coe�cient W is su�ciently large such that

W �
 2

_2

 
l̂

 
1

A2min
�

1
A2max

!
+ V max{Ḡ2, n (Gmax � Ḡ)

2
}

!
,

we have that the following inequality holds for all g 2 {C, C + 1, . . . , C +  � 1}:���k̂C+ �1C ((fC�1,aC�1); l̂⇥ ; 0)Dg � q̂
C+ �1
C ((fC�1,aC�1); l̂ ; 0)Dg

���  _.
Note that q̂C+ �1C ((fC�1,aC�1); l̂ ; 0)Dg is monotonic by Lemma A.10.

We defer the formal proof of Theorem A.9 to Section E.2. The theoretical insight provided by Theorem A.9 aligns with our empirical result
in Figure 8. Speci�cally, if we increase the coe�cient W while keeping the prediction horizon  �xed, the decision made by the e�cient
monotonic approximation approach (Algorithm 1) is more likely to be identical with the brute-force solver. On the other hand, if we increase
 and �x W , it is more challenging for Algorithm 1 to match the decision of the brute-force solver.

To show Theorem A.9, we �rst consider a setting where the objective function only contains the switching cost terms (i.e., the distortion
cost and the bu�er cost are removed.) This can be viewed as the extreme case when W tends to +1 so that both U and V are negligible. In this
scenario, we show the optimal sequence of the inverse bitrates is monotonic. We state this result formally in Lemma A.10 and defer its proof
to Section E.1.
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Lemma A.10. Under the same assumption as Theorem A.9, consider the optimal solution to the optimization problem

q̂C+ �1C ((fC�1,aC�1); l̂ ; 0) B argmin
DC :C+ �1

C+ �1’
g=C

W · (DC � DC�1)
2

s.t. Gg = Gg�1 + l̂Dg � 1, for g = C, . . . , C +  � 1,

Gg 2 [0, Gmax],Dg 2


1

Amax
,

1
Amin

�
, for g = C, . . . , C +  � 1,

GC�1 = fC�1,DC�1 = aC�1 . (6)

The solution satis�es that: If aC�1 > 1/l̂ , then the sequence aC�1, q̂C+ �1C ((fC�1,aC�1); l̂ ; 0) is monotonically decreasing; If aC�1 < 1/l̂ , then
the sequence aC�1, q̂C+ �1C ((fC�1,aC�1); l̂ ; 0) is monotonically increasing; If aC�1 = 1/l̂ , the optimal solution is DC = DC+1 = · · · = DC+ �1 =
aC�1 = 1/l̂ .

The key observation that allows us to generalize Lemma A.10 to the case where the distortion/bu�er costs are non-negligible is the
following: If we change the variable of (6) to 0C = DC � DC�1, which denotes the increments of the control actions, the objective of (6) is a
W-strongly convex function of (0C , . . . ,0C+ �1). Any deviation from the optimal solution of (6) will cause a loss on the total switching costs
that grows with W . When W is su�ciently large, a feasible solution cannot use its gain on the distortion/bu�er costs to cancel the loss on the
total switching cost if it deviates too much from the optimal solution of (6).

B PROOFS OF THE EXPONENTIALLY DECAYING PERTURBATION BOUNDS
In this section, we establish the critical exponentially decaying perturbation bounds (De�nition A.1). Instead of just focusing on the video
streaming application itself, we establish the perturbation bound for a more general SOCO with memory framework.

Speci�cally, we consider the following �nite-time optimal control problem with memory � .

k (~, I; `,F , X) = argmin
G��+1:?+��1

?’
C=0

5C (GC ; `C ) +
?+��1’
C=0

2C (GC :C��+1;FC ) (7a)

s.t. GC 2 [0, Gmax] ✓ R,80  C  ?, (7b)
GC � GC�1 � �XC ,80  C  ? + 1, (7c)
G��+1:�1 = ~, G?+1:?+��1 = I, (7d)

where ~, I 2 [0, Gmax]��1, ` 2 [0, Gmax]?+1,F 2 W
?+� , X 2 �?+2. Here, the objective function (7a) contains the hitting costs 5C (GC ; `C )

(parameterized by `C ) and the switching costs 2C (GC :C��+1;FC ) (parameterized by FC ). For the constraints, (7b) imposes a box constraint
on each decision variable GC ; (7c) imposes a constraint on how much GC can decrease at each time step; and (7d) speci�es the boundary
conditions of the optimization problem.

In the special case of video streaming, the decision is on the bu�er level GC . Given the bu�er levels, the inverse of the bitrate DC B 1/AC is
uniquely decided by the equation

DC = (GC � GC�1 + 1)/lC ,
where lC denotes the bandwidth. The memory length � = 3. For the hitting cost, we have `C ⌘ Ḡ , and

5C (G ; `C ) = V1 (G) =

(
V (G � Ḡ)2, if G  Ḡ,
nV (G � Ḡ)2, otherwise.

For the switching cost, we haveFC = (lC ,lC�1) and

2C (GC :C�2;FC ) = lCD2C + W (DC � DC�1)
2

=
(GC � GC�1 + 1)2

lC
+ W

(lC�1GC + lCGC�2 � (lC + lC�1)GC�1 + (lC�1 � lC ))
2

l2
Cl

2
C�1

.

The �rst constraint GC 2 [0, Gmax] of (7) matches the bu�er constraint of the video streaming problem exactly.
The second constraint GC � GC�1 � �XC corresponds to the constraint that DC � 1

Amax
in (3). Thus, when applying (7) to video streaming,

we have XC = 1 � lC
Amax

. By Assumption A.1, we have XC � X > 0.
Given the relationship between SOCO with memory problem and adaptive video streaming problem, we only need to establish the

exponentially decaying perturbation bound for the more general SOCO with memory problem. To show this perturbation bound, we need
the following assumption about the objective function and constraints:

Assumption B.1. We need the following assumption on the optimization problem (7) for the exponentially decaying perturbation property to
hold:
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1) 5C (·; `C ) : R! R is strongly convex for all C and `C 2 [0, Gmax]. We further assume there exists two<5 -strongly convex and ✓5 -smooth functions

5 (0)C (·; `C ), 5
(1)
C (·; `C ) : R! R in C

2 such that 5C (GC ; `C ) = 5 (0)C (GC ; `C ) for GC 2 [0, `C ] and 5C (GC ) = 5 (1)C (GC ; `C ) for GC 2 [`C , Gmax]. We
also assume that for 9 = 1, 2, 5 ( 9 )C satis�es that for all GC , `C 2 [0, Gmax],���rGC 5 ( 9 )C (GC ; `C )

��� + ���r`C 5 ( 9 )C (GC ; `C )
���  !5 , and

���r`CrGC 5 ( 9 )C (GC ; `C )
���  ✓` .

2) 2C (·;FC ) : R� ! R is convex and ✓2 -smooth for all C and FC 2 W ⇢ R@ . 2C (·;FC ) is in C
2 on [0, Gmax]� . We also assume that for all

FC 2W and feasible GC :C��+1, we have��rGC :C��+12C (GC :C��+1;FC )
�� + ��rFC 2C (GC :C��+1;FC )

��  !2 , and��rFCrGC :C��+12C (GC :C��+1;FC )
��  ✓F .

3) We have XC 2 � holds for all C , where � is a closed interval on R and is bounded below by some positive constant X . Denote 3 B dGmax/Xe.

In the special case of the video streaming problem, Assumption B.1 is satis�ed with the parameters<5 = nV , ✓5 = ✓` = V , ✓2 = 2(lmin+3)
l2
min

,

✓F = 4Gmax (lmin+8W )
l3
min

. In addition, both !5 and !2 are bounded.
We state the exponentially decaying perturbation bound for the SOCO with memory problem formally in Theorem B.1 and defer its proof

to Appendix B.1.

T������ B.1. Under Assumption B.1, if ? � 3 , the inequality��k (~, I; `,F , X)C �k (~0, I0; `0,F 0, X 0)C ��
 ⇠

�
dC

��~ � ~0�� + d?�C ��I � I0��� +⇠ ©≠
´
?’
g=0

d |C�g |
��`g � `0g �� +

?+��1’
g=0

d |C�g |
��Fg �F 0g �� +

?+1’
g=0

d |C�g |
��Xg � X 0g ��™Æ¨

(8)

holds for all C 2 [0, ?] and ~, I 2 [G, G]��1. Here,

d =
©≠≠
´
1 �

2

1 +
q
1 + (✓/<5 )

™ÆÆ
¨

1
� (�+3 )

,⇠ =
2✓

<5 d (��2) (�+3 )
,

where ✓ B max{�✓2 , ✓F} and ✓̄ B max{�✓5 , ✓` , ✓}.

In the special case of the video streaming, we see that

✓ = max{3✓2 , ✓F} =
max{6lmin (lmin + 3), 4Gmax (lmin + 8W)}

l3
min

.

Therefore, we have

d =
©≠≠≠≠
´
1 �

2

1 +
r
1 + max{6lmin (lmin+3),4Gmax (lmin+8W ) }

l3
minnV

™ÆÆÆÆ
¨

1
3(3+dGmax/Xe)

.

The coe�cient ⇠ is bounded by

⇠ 
3Vl3

min +max{6lmin (lmin + 3), 4Gmax (lmin + 8W)}

l3
mind

3+dGmax/X e
.

Discussion about di�erent distortion costs. Note that Assumption B.1 still holds if we replace the distortion cost function E (A ) = 1
A by

E (A ) = log(Amax/A ). This is because the new switching cost

20C (GC :C�2;FC ) = lCDC log(AmaxDC ) + W (DC � DC�1)
2

= (GC � GC�1 + 1) log
✓
Amax (GC � GC�1 + 1)

lC

◆

+ W
(lC�1GC + lCGC�2 � (lC + lC�1)GC�1 + (lC�1 � lC ))

2

l2
Cl

2
C�1

also satis�es Assumption B.1 for anyFC = (lC ,lC�1) 2 [lmin,lmax]2 and feasible GC :C�2.
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B.1 Proof of Theorem B.1
To show Theorem B.1, we �rst need to de�ne indicators of active constraints, denoted as b 2 {0, 1}4?+5. Speci�cally, given the unique optimal
solution G0:? = k (~, I; `,F , X) under a tuple of parameters (~, I; `,F , X), we consider whether the following equality conditions hold:

b1,C = 1{GC = 0},80  C  ?;
b2,C = 1{GC = Gmax},80  C  ?;
b3,C = 1{GC = `C },80  C  ?;
b4,C = 1{GC � GC�1 = �XC },80  C  ? + 1.

And we de�ne indicators of the sides (denoted as f 2 {0, 1}?+1) as the following:

fC = 1{GC 2 [`C , Gmax]},80  C  ? .

To simplify the notation, we let \ B (`,F , X) 2 ⇥ B [0, Gmax]?+1 ⇥W?+�
⇥ �?+2. Whilek (~, I;\ ) can decide a unique pair of (b,f), we

can also de�ne a new equality-constrained optimization problem using (~, I;\ ) and (b,f):

De�nition B.1. We de�ne the equality-constrained optimization problem k̂ (~, I;\ ; b,f) as

k̂ (~, I;\ ; b,f) = argmin
G��+1:?+��1

?’
C=0

5 (fC )C (GC ; `C ) +
?+��1’
C=0

2C (GC :C��+1;FC ) (9a)

s.t. GC =

8>>><
>>>:

0, if b1,C = 1
Gmax, if b2,C = 1
`C , if b3,C = 1

,80  C  ?, (9b)

GC � GC�1 = �XC , if b4,C = 1,80  C  ? + 1, (9c)
G��+1:�1 = ~, G?+1:?+��1 = I . (9d)

Note that it is possible that the optimization problem k̂ (~, I;\ ; b,f) for some parameters and constraint con�gurations. We use ]̂ (~, I;\ ; b,f)
to denote the optimal value of this optimization problem. The following lemma states that the optimal solution of (7) will not change if we
remove all inactive inequality constraints and leave active constraints as equality constraints.

Lemma B.2. Suppose Assumption B.1 holds and ? � 3 . For ~, I 2 [0, Gmax]��1 and \ 2 ⇥, let b,f be the corresponding indicators of active
constraints/sides. Then, we have

k (~, I;\ ) = k̂ (~, I;\ ; b,f) and ] (~, I;\ ) = ]̂ (~, I;\ ; b,f) .

P���� �� L���� B.2. Note that
] (~, I;\ ) � ]̂ (~, I;\ ; b,f)

because the optimization problem on the RHS has less constraints. If the inequality holds with equality, wemust havek (~, I;\ ) = k̂ (~, I;\ ; b,f)
since the optimal solution for the LHS is feasible for the RHS by the assumption on active constraints, and the optimization problem on the
RHS has a unique solution. Otherwise, we must have

k (~, I;\ ) < k̂ (~, I;\ ; b,f) , and ] (~, I;\ ) > ]̂ (~, I;\ ; b,f) .

Consider the convex combination Z ([) for [ 2 [0, 1] de�ned as

Z ([) = (1 � [)k (~, I;\ ) + [k̂ (~, I;\ ; b,f) .

Note that Z ([) satis�es all the active constraints and sides as speci�ed by (b,f) because they are active for all [ 2 [0, 1]. Since the constraints
of (7) that are not in (b,f) are inactive at [ = 0, there must exist [ > 0 such that Z ([) is also feasible for (7). Z ([) achieves a strictly smaller
objective than Z (0) = k (~, I;\ ), which leads to a contradiction. ⇤

Lemma B.2 establishes that given any feasible tuple of (~, I;\ ), one can �nd at least one pair of (b,f) such thatk (~, I;\ ) = k̂ (~, I;\ ; b,f),
while there can be other (b 0,f0) that satis�esk (~, I;\ ) = k̂ (~, I;\ ; b 0,f0).

Lemma B.3. Suppose Assumption B.1 holds and ? � 3 . If both k̂ (~, I;\ ; b,f) and k̂ (~0, I0;\ 0; b,f) exist for ~, I,~0, I0 2 [0, Gmax]��1 and
(b,f), then we have���k̂ (~, I;\ ; b,f)C � k̂ (~0, I0;\ 0; b,f)C

���
 ⇠

�
dC

��~ � ~0�� + d?�C ��I � I0��� +⇠ ©≠
´
?’
g=0

d |C�g |
��`g � `0g �� +

?+��1’
g=0

d |C�g |
��Fg �F 0g �� +

?+1’
g=0

d |C�g |
��Xg � X 0g ��™Æ¨

, (10)
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where

d =
©≠≠
´
1 �

2

1 +
q
1 + (✓/<5 )

™ÆÆ
¨

1
� (�+3 )

,⇠ =
2✓̄

<5 d (��2) (�+3 )
.

Here, ✓ B max{�✓2 , ✓F} and ✓̄ B max{�✓5 , ✓` , ✓}.

P���� �� L���� B.3. We do a variable change to eliminate all constraints in the equality-constrained optimization problem. After the
elimination, we get an unconstrained optimization problem with the free variables GC0 , GC1 , . . . , GC@ where the indices satisfy 0  C0 < C1 <
. . . < C@  ? . To simplify the notation, we let C�1 = �1 and C@+1 = ? + 1. For g that satis�es C8 < g < C8+1, we have either Gg = GC8 �

Õg
W=C8+1 XW

or Gg is some constant. Without loss of generality, we can assume C8+1  C8 + 3 + � , because otherwise we can �nd g 2 (C8 , C8+1 � � ] such
that Gg :g+��1 are constants, which means the free variables after GC8+1 will not change, regardless of how we perturb ~, and the free variables
before GC8 will not change, regardless of how we perturb I. Thus, we can decompose the perturbation to the left side and the right side and
derive them separately.

After the change of variable, the objective becomes a function ⌘̂ of GC0 , GC1 , . . . , GC@ . To simplify the notation, we let Ĝg B GCg , where
g = 0, . . . ,@. We can decompose ⌘̂ as

⌘̂(Ĝ0:@ ; Z ) = ⌘̂0 (Ĝ0:@ ; `) + ⌘̂1 (Ĝ0:@ ; Z ),

where Z = (~, I, \ ), ⌘̂0 is the sum of the original hitting costs minus <5
2

��Ĝ0:@��2, and ⌘̂1 is the sum of the original switching costs plus
<5
2

��Ĝ0:@��2. By Assumption B.1, we see that

r
2
Ĝ0:@

⌘̂0 (Ĝ0:@ ; `) ⌫ 0, (<5 + �✓2 )� ⌫ r
2
Ĝ0:@

⌘̂1 (Ĝ0:@ ; Z ) ⌫ <5 � . (11)

We also note that r2Ĝ0:@ ⌘̂0 (Ĝ0:@ ; `) is a diagonal matrix and r2Ĝ0:@ ⌘̂1 (Ĝ0:@ ; Z ) is a 2� -banded matrix.
We can follow a similar procedure as Theorem 3.1 in [49] to show

���k̂ (~, I;\ ; b,f)Cg � k̂ (~0, I0;\ 0; b,f)Cg
���

 ⇠0
⇣
dg0

��~ � ~0�� + d@�g0
��I � I0��⌘ +⇠0 ©≠

´
?’
8=0

d
|q (8 )�g |
0

��`8 � `08 �� +
?+��1’
8=0

d
|q (8 )�g |
0

��F8 �F 08 �� +
?+1’
8=0

d
|q (8 )�g |
0

��X8 � X 08 ��™Æ¨
, (12)

where q (8) denotes the integer 9 that satis�es C 9  8 < C 9+1 and

d0 =
©≠≠
´
1 �

2q
1 + (✓/<5 )

™ÆÆ
¨

1
�

,⇠0 =
2✓̄

<5 d
��2
0

.

Here, ✓ B max{�✓2 , ✓F} and ✓̄ B max{�✓5 , ✓` , ✓}. For completeness, we give the detailed proof below: Let 4 be a vector such that both Z and
Z + 4 are in Y ⇥Z ⇥ ⇥. Consider the function

k (Z + [4) B k̂ (Z + [4; b,f)C0:@ ,

which is implicitly determined by the equation

rĜ0:@ ⌘̂(k (Z + [4), Z + [4) = 0.

By the implicit function theorem we know that the functionk is di�erentiable. Taking the derivative with respect to \ gives that

r
2
Ĝ0:@

⌘̂(k (Z + [4), Z + [4)
3

3[
k (Z + [4) = � r~rĜ0:@ ⌘̂(k (Z + [4), Z + [4)4~ � rIrĜ0:@ ⌘̂(k (Z + [4), Z + [4)4I

�

?’
C=0
r`CrĜ0:@ ⌘̂(k (Z + [4), Z + [4)4`C �

?+��1’
C=0

rFCrĜ0:@ ⌘̂(k (Z + [4), Z + [4)4FC

�

?’
C=0
rXCrĜ0:@ ⌘̂(k (Z + [4), Z + [4)4XC .
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To simplify the notation, we de�ne

" B r2Ĝ0:@ ⌘̂(k (Z + [4), Z + [4),which is a (@ + 1) ⇥ (@ + 1) matrix,

' (~) B �r~rĜ0:@ ⌘̂(k (Z + [4), Z + [4),which is a (@ + 1) ⇥ (� � 1) matrix,

' (I ) B �rIrĜ0:@ ⌘̂(k (Z + [4), Z + [4),which is a (@ + 1) ⇥ (� � 1) matrix,

' (`C ) B �r`CrĜ0:@ ⌘̂(k (Z + [4), Z + [4),which is a (@ + 1) ⇥ 1 matrix,

' (FC ) B �rFCrĜ0:@ ⌘̂(k (Z + [4), Z + [4),which is a (@ + 1) ⇥ 3 matrix,

' (XC ) B �rXCrĜ0:@ ⌘̂(k (Z + [4), Z + [4),which is a (@ + 1) ⇥ 1 matrix.

Hence we can write
3

3\
k (Z + [4) = "�1 ©≠

´
' (~)4~ + '

(I )4I +
?’
C=0

' (`C )4`C +
?+��1’
C=0

' (FC )4FC +
?’
C=0

' (XC )4XC
™Æ
¨
.

Recall that ' (~) ,' (I ) are (@ + 1) ⇥ (� � 1) matrices. For ' (~) , only the �rst � � 1 rows are non-zero. For ' (I ) , only the last � � 1 rows are
non-zero. Hence we see that

3

3[
k (Z + [4)g = ("�1)g,0:��2'

(~)
0:��2,:4~ + ("�1)g,@��+2:@'

(I )
@��+2:@,:4I

+

@’
9=0

C 9+1�1’
8=C 9

("�1)g, 9'
(`8 )
9,: 4`8 +

@+1’
9=0

C 9+1�1’
8=C 9

("�1)g, 9��+1:9+��1'
(F8 )
9��+1:9+��1,:4F8

+

@’
9=0

C 9+1�1’
8=C 9

("�1)g, 9'
(X8 )
9,: 4X8 . (13)

Recall that ✓̄ B max{�✓2 ,�✓5 , ✓` , ✓F}. We know that the norms of

' (~)0:��2,:,'
(I )
@��+2:@,:,'

(`8 )
9,: ,' (F8 )9��+1:9+��1,:, and '

(X8 )
9,:

are all upper bounded by ✓̄ . Taking norm on both sides of (13) gives���� 33\k (Z + [4)g
����  ✓̄ ��("�1)g,0:��2�� ��4~�� + ✓̄ ��("�1)g,@��+2:@

�� k4I k

+ ✓̄
@’
9=0

C 9+1�1’
8=C 9

��("�1)g, 9 �� ��4`8 �� + ✓̄
@+1’
9=0

C 9+1�1’
8=C 9

��("�1)g, 9��+1:9+��1
�� ��4F8 ��

+ ✓̄
@’
9=0

C 9+1�1’
8=C 9

��("�1)g, 9 �� ��4X8 �� . (14)

Note that" can be decomposed as" = "0 +"1 , where

"0 := r2Ĝ0:@ ⌘̂0 (k (Z + [4), Z + [4),

"1 := r2Ĝ0:@ ⌘̂1 (k (Z + [4), Z + [4) .

Since"0 is a diagonal (@ + 1) ⇥ (@ + 1) matrix and satis�es"0 ⌫ 0, and"1 is 2� -banded and satis�es (<5 + ✓)� ⌫ "1 ⌫ <5 � , we obtain
the following with Lemma B.1 in [49]:��("�1)g,0:��2��  2

<5
dg� (��2)0 ,

��("�1)g,@��+2:@
��  2

<5
d@�g� (��2)0

��("�1)g, 9 ��  2
<5

d |g� 9 |0 ,
��("�1)g, 9��+1:9+��1

��  2
<5

d |g� 9 |� (��1)0 ,

where d0 := (
p
2>=3 ("1 ) � 1)/(

p
2>=3 ("1 ) + 1) = 1 � 2 ·

⇣p
1 + (✓/`) + 1

⌘�1
.

Substituting this into (14), we see that
���� 33\ k (Z + \4)g

����  ⇠0 ©≠
´
dg0

��4~�� + d@�g0 k4I k +
?’
8=0

d
|q (8 )�g |
0

��4`8 �� +
?+��1’
8=0

d
|q (8 )�g |
0

��4F8 �� +
?’
8=0

d
|q (8 )�g |
0

��4X8 ��™Æ¨
.
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Hence we obtain���k (Z )g �k (Z + 4)g
��� =

����
π 1

0

3

3[
k (Z + [4)g3[

����


π 1

0

���� 33[k (Z + [4)g
����3[

 ⇠0
©≠
´
dg0

��4~�� + d@�g0 k4I k +
?’
8=0

d
|q (8 )�g |
0

��4`8 �� +
?+��1’
8=0

d
|q (8 )�g |
0

��4F8 �� +
?’
8=0

d
|q (8 )�g |
0

��4X8 ��™Æ¨
.

This �nishes the proof of (12). Recall that we have C8 < C8+1  C8 + 3 + � . Therefore, (12) implies (10). ⇤

In the next lemma, we show a continuity property of the “equality-constrained labeling” method.

Lemma B.4. Suppose Assumption B.1 holds and ? � 3 . For a pair of (b,f), if any tuple in the sequence {(~@, I@ ;\@)}1@=1 satis�esk (~@, I@ ;\@) =
k̂ (~@, I@ ;\@ ; b,f) and lim@!1 (~@, I@, \@) = (~, I, \ ), then we have

k (~, I;\ ) = k̂ (~, I;\ ; b,f).

P���� �� L���� B.4. Note that the perturbation bound in Lemma B.3 also establishes the continuity of the function k̂ (·, ·; ·; b,f).
Therefore, we see that

lim
@!1

k (~@, I@ ;\@) = lim
@!1

k̂ (~@, I@ ;\@ ; b,f) = k̂ (~, I;\ ; b,f).

Since the constraint set of (7) is closed, we know k̂ (~, I;\ ; b,f) is a feasible solution of (7).
For the sake of contradiction, we assumek (~, I;\ ) < k̂ (~, I;\ ; b,f). In this case, since k̂ (~, I;\ ; b,f) is feasible for (7), we must have

] (~, I;\ ) < ]̂ (~, I;\ ; b,f) .

De�ne the optimality gap as ⇤ B ]̂ (~, I;\ ; b,f) � ] (~, I;\ ).
Since lim@!1 (~@, I@ ;\@) = (~, I;\ ), for an arbitrary small positive real number n , we can �nd a positive integer @ such that��~@ � ~�� + ��I@ � I�� + 38BC (\ , \@) < n,

where 38BC (\ , \ 0) =
Õ?
8=0

��`8 � `08 �� +Õ?+��1
8=0

��F8 �F 08 �� +Õ?+1
8=0

��X8 � X 08 �� . Based on G��+1:?+��1 B k (~, I;\ ), we construct a feasible solution
G 0
��+1:?+��1 C G 0 for the optimization problem (7) with parameters (~@, I@ ;\@) as following: Let G 00:? = G0:? , G��+1:�1 = ~, G?+1:?+��1 = I.

For C = 0, 1, . . ., if G 0C �G
0
C�1 < �X (@)C , we increase G 0C such that G 0C = G

0
C�1 �X

(@)
C . Then, for C = ?, ? � 1, . . ., if G 0C+1 �G

0
C < �X

(@)
C+1 , we decrease G

0
C

such that G 0C = G
0
C+1 + X

(@)
C+1 . Note that this procedure can guarantee that G 0 is a feasible solution for (7), and their distance are upper bounded

by ��k (~, I;\ ) � G 0��  (23 + 1)n . (15)
Since the objective function of (7) is Lipschitz in (G,~, I, \ ), by (15), we know there exists some positive constant 20 such that

] (~@, I@ ;\@) � ] (~, I;\ )  20
���G 0 �k (~, I;\ )�� + n �  (23 + 2)20n . (16)

On the other hand, by Lemma B.3, we see that���k̂ (~@, I@ ;\@ ; b,f) � k̂ (~, I;\ ; b,f)
��� 

✓
⇠

1 � d
+ 1

◆
n . (17)

Since the objective function of (7) is smooth in (G,~, I, \ ), by (17), we see that
��]̂ (~@, I@ ;\@ ; b,f) � ]̂ (~, I;\ ; b,f)��  20

✓
⇠

1 � d
+ 2

◆
n . (18)

Therefore, we see that

]̂ (~@, I@ ;\@ ; b,f) � ] (~@, I@ ;\@) � �
��]̂ (~@, I@ ;\@ ; b,f) � ]̂ (~, I;\ ; b,f)�� + (]̂ (~, I;\ ; b,f) � ] (~, I;\ )) + (] (~, I;\ ) � ] (~@, I@ ;\@))

� � 20

✓
⇠

1 � d
+ 2

◆
n + ⇤ � 20 (23 + 2)n (19a)

= ⇤ � 20

✓
⇠

1 � d
+ 23 + 4

◆
n,

where we used (16) and (18) in (19a). Let n B 1
2⇤2
�1
0

⇣
⇠
1�d + 23 + 4

⌘�1
leads to a contradiction with the assumption that ]̂ (~@, I@ ;\@ ; b,f) =

] (~@, I@ ;\@). Therefore, we have shown thatk (~, I;\ ) = k̂ (~, I;\ ; b,f). ⇤

With the above technical lemmas, we are ready to �nish the proof of Theorem B.1.
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P���� �� T������ B.1. Consider the segment ((1 � [)~ + [~0, (1 � [)I + [I0; (1 � [)\ + [\ 0) ,[ 2 [0, 1]. Note that since (1�[)k (~, I;\ )+
[k (~0, I0;\ 0) is a feasible solution for the optimization problem (7) parameterized by�

(1 � [)~ + [~0, (1 � [)I + [I0; (1 � [)\ + [\ 0
�
,

we know that the corresponding optimization problem is feasible. With some slight abuse of notation, we use (b,f) ([) ✓ ⌅ ⇥ ⌃ to denote
the set of indicators of active constraints and sides such that

k
�
(1 � [)~ + [~0, (1 � [)I + [I0; (1 � [)\ + [\ 0

�
= k̂

�
(1 � [)~ + [~0, (1 � [)I + [I0; (1 � [)\ + [\ 0; b,f

�
,8(b,f) 2 (b,f) ([) .

By Lemma B.2, we know this set is not empty for any [ 2 [0, 1].
We can divide the interval [0, 1] into 0 = [0 < [1 < . . . < [@ = 1 for some positive integer @  25?+6 such that there exists a sequence of

di�erent indicators of active constraints and sides (b,f)0:@�1 which satis�es

k
�
(1 � [8 ) (~, I;\ ) + [8 (~0, I0;\ 0)

�
= k̂

�
(1 � [8 ) (~, I;\ ) + [8 (~0, I0;\ 0); (b,f)8

�
,

k
�
(1 � [8+1) (~, I;\ ) + [8+1 (~0, I0;\ 0)

�
= k̂

�
(1 � [8+1) (~, I;\ ) + [8+1 (~0, I0;\ 0); (b,f)8

�
for all 0  8  @ � 1. Note that this requires (b,f) ([8 ) to contain both (b,f)8�1 and (b,f)8 for 8 = 1, . . . ,@ � 1. To construct the sequence [0:@
and (b,f)0:@�1, we �rst have [0 = 0 and let (b,f)0 be any pair (b,f) 2 (b,f) ([0) such that

sup{[ 2 [0, 1] | k
�
(1 � [) (~, I;\ ) + [ (~0, I0;\ 0)

�
= k̂

�
(1 � [) (~, I;\ ) + [ (~0, I0;\ 0); b,f

�
} > 0,

and let [1 be the supremum value above. Since 0 = inf (0, 1] and (b,f) ([) ✓ ⌅ ⇥ ⌃ is nonempty for every [ 2 (0, 1], we know such (b,f)0
exists by Lemma B.4. Suppose we have already constructed [0:8 , (b,f)0:8�1, and [8 < 1. Then we select (b,f)8 to be any pair (b,f) such that

sup{[ 2 [0, 1] | k
�
(1 � [) (~, I;\ ) + [ (~0, I0;\ 0)

�
= k̂

�
(1 � [) (~, I;\ ) + [ (~0, I0;\ 0); b,f

�
} > [8 ,

and let [8+1 be the supremum value above. We can repeat this construction and stop when [8+1 = 1. By the construction, we know all pairs
in the sequence (b,f)0:8�1 are distinct, thus the construction will terminate in �nite time. Hence, we have a �nite index @ such that [@ = 1.

By Lemma B.3, we know that��k �
(1 � [8 ) (~, I;\ ) + [8 (~0, I0;\ 0)

�
C �k

�
(1 � [8+1) (~, I;\ ) + [8+1 (~0, I0;\ 0)

�
C

��
 ([8+1 � [8 )⇠

�
dC

��~ � ~0�� + d?�C ��I � I0��� + ([8+1 � [8 )⇠
©≠
´
?’
g=0

d |C�g |
��`g � `0g �� +

?+��1’
g=0

d |C�g |
��Fg �F 0g �� +

?+1’
g=0

d |C�g |
��Xg � X 0g ��™Æ¨

. (20)

Summing (20) over 8 = 0, 1, . . . ,@ � 1 �nishes the proof. ⇤

C PROOFS FOR EXACT PREDICTIONS
C.1 Proof of Lemma A.4
To simplify the notation, we introduce the shorthand

G⇤g |C = k
#
C ((GC�1,DC�1);lC :# ; 0)Gg ,D

⇤

g |C = k
#
C ((GC�1,DC�1);lC :# ; 0)Dg ,8g � C .

And we use {(G⇤C ,D
⇤
C )}

#
C=1 to denote the o�ine optimal trajectory.

For time step C < # �  + 1, we see that
���GC �k#C ((GC�1,DC�1);lC :# ; 0)GC

���2



✓
⇠d 

���G⇤C+ |C � Ḡ
��� +⇠d �1

����D⇤C+ �1 |C � 1
lC+ �1

����
◆2

(21a)



✓
⇠d 

⇣���G⇤C+ |C � G
⇤

C+ 

��� + ��G⇤C+ � Ḡ ��
⌘
+⇠d �1

✓���D⇤C+ �1 |C � D⇤C+ �1
��� +

����D⇤C+ �1 � 1
lC+ �1

����
◆◆2

(21b)

 4⇠2d2 
���G⇤C+ |C � G

⇤

C+ 

���2 + 4⇠2d2 �2
���D⇤C+ �1 |C � D⇤C+ �1

���2 + 4⇠2d2 
��G⇤C+ �1 � Ḡ ��2 +

+ 4⇠2d2 �2
����D⇤C+ �1 � 1

lC+ �1

����
2
. (21c)
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where in (21a), we use

GC = kC+ �1C

✓
(GC�1,DC�1);lC :C+ �1; (Ḡ,

1
lC+ �1

)

◆
GC

,

k#C ((GC�1,DC�1);lC :# ; 0)GC = k
C+ �1
C

⇣
(GC�1,DC�1);lC :C+ �1; (G⇤C+ |C ,D

⇤

C+ �1 |C )
⌘
GC
,

and the exponentially decaying perturbation bound. We use the triangle inequality in (21b) and rearrange the terms in (21c).
We note that for the �rst term in (21), we have���G⇤C+ |C � G

⇤

C+ 

���  ⇠d +1 ���GC�1 � G⇤C�1�� + ��DC�1 � D⇤C�1��� . (22)

For the second term, we have ���D⇤C+ �1 |C � D⇤C+ �1
���  ⇠0d ���GC�1 � G⇤C�1�� + ��DC�1 � D⇤C�1��� . (23)

For the third term, we have
��G⇤C+ � Ḡ ��2  1

nV
1 (G⇤C+ ). (24)

For the last term, we see that����D⇤C+ �1 � 1
lC+ �1

����
2


(G⇤C+ �1 � G
⇤

C+ �2)
2

l2
C+ �1


2(G⇤C+ �1 � Ḡ)

2
+ 2(Ḡ � G⇤C+ �2)

2

l2
C+ �1


21 (G⇤C+ �1) + 21 (G⇤C+ �2)

nVl2
min

. (25)

Substituting (22), (23), (24), (25) into (21) gives that���GC �k#C ((GC�1,DC�1);lC :# ; 0)GC
���2  8⇠4d4 +2

⇣��GC�1 � G⇤C�1��2 + ��DC�1 � D⇤C�1��2
⌘
+ 8(⇠0)2⇠2d4 �2

⇣��GC�1 � G⇤C�1��2 + ��DC�1 � D⇤C�1��2
⌘

+ 4⇠2d2 �2
(2 + l2

min)1 (G
⇤

C+ �1) + 21 (G⇤C+ �2)

nVl2
min

(26)

Similarly, we can obtain that���DC �k#C ((GC�1,DC�1);lC :# ; 0)DC
���2  8(⇠0)2⇠2d4 +2

⇣��GC�1 � G⇤C�1��2 + ��DC�1 � D⇤C�1��2
⌘
+ 8(⇠0)4d4 �2

⇣��GC�1 � G⇤C�1��2 + ��DC�1 � D⇤C�1��2
⌘

+ 4(⇠0)2d2 �2
(2 + l2

min)1 (G
⇤

C+ �1) + 21 (G⇤C+ �2)

nVl2
min

(27)

Therefore, combining (26) and (27) gives that

42C  2
���GC �k#C ((GC�1,DC�1);lC :# ; 0)GC

���2 + 2
���DC �k#C ((GC�1,DC�1);lC :# ; 0)DC

���2

 16d4 �2
⇣
⇠2

+ (⇠0)2
⌘2 ⇣��GC�1 � G⇤C�1��2 + ��DC�1 � D⇤C�1��2

⌘
+ 8d2 �2

⇣
⇠2

+ (⇠0)2
⌘ (2 + l2

min)1 (G
⇤

C+ �1) + 21 (G⇤C+ �2)

nl2
min

.

C.2 Proof of Lemma A.5
We see the distance between the trajectories of SODA and the o�ine optimal at an intermediate time step can be bounded by

��GC � G⇤C �� + ��DC � D⇤C �� =
���GC �k#1 ((G0,D0);l1:# ; 0)GC

��� + ���DC �k#1 ((G0,D0);l1:# ; 0)DC
���



���GC �k#C ((GC�1,DC�1);lC :# ; 0)GC
��� + ���DC �k#C ((GC�1,DC�1);lC :# ; 0)DC

���
+

C�1’
g=1

���k#g ((Gg�1,Dg�1);lg :# ; 0)GC �k
#
g+1 ((Gg ,Dg );lg+1:# ; 0)GC

���

+

C�1’
g=1

���k#g ((Gg�1,Dg�1);lg :# ; 0)DC �k
#
g+1 ((Gg ,Dg );lg+1:# ; 0)DC

��� (28a)

 4C + (⇠ +⇠0)
C�1’
g=1

dC�g4g . (28b)
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Weuse the triangle inequality in (28a). In (28b), we note thatk#g ((Gg�1,Dg�1);lg :# ; 0)GC can bewritten ask
#
g+1

⇣
(G⇤g |g�1,D

⇤

g |g�1);lg+1:# ; 0
⌘
GC
,

where
G⇤g |g�1 = k

#
g ((Gg�1,Dg�1);lg :# ; 0)Gg , and D

⇤

g |g�1 = k
#
g ((Gg�1,Dg�1);lg :# ; 0)Dg .

Thus, we can apply the exponentially decaying perturbation bound and Lemma A.4 to obtain���k#g ((Gg�1,Dg�1);lg :# ; 0)GC �k
#
g+1 ((Gg ,Dg );lg+1:# ; 0)GC

���  ⇠dC�g4g .
Similarly, we obtain that ���k#g ((Gg�1,Dg�1);lg :# ; 0)DC �k

#
g+1 ((Gg ,Dg );lg+1:# ; 0)DC

���  ⇠0dC�g4g .
Therefore, we see that

��GC � G⇤C ��2 + ��DC � D⇤C ��2 
✓
1 +

(⇠ +⇠0)2

1 � d

◆ C’
g=1

dC�g42g .

Summing the above inequality over C = 1, 2, . . . ,) gives that

#’
C=1

⇣��GC � G⇤C ��2 + ��DC � D⇤C ��2
⌘


1
1 � d

·

✓
1 +

(⇠ +⇠0)2

1 � d

◆ #’
C=1

42C .

C.3 Proof of Theorem A.3
Combining Lemmas A.4 and A.5, we see that

#’
C=1

⇣��GC � G⇤C ��2 + ��DC � D⇤C ��2
⌘


1
1 � d

·

✓
1 +

(⇠ +⇠0)2

1 � d

◆
· 16d4 �2

⇣
⇠2

+ (⇠0)2
⌘2 #’
C=1

⇣��GC�1 � G⇤C�1��2 + ��DC�1 � D⇤C�1��2
⌘

+
1

1 � d
·

✓
1 +

(⇠ +⇠0)2

1 � d

◆
· 8d2 �2

⇣
⇠2

+ (⇠0)2
⌘ (4 + l2

min)
Õ#
C=1 1 (G

⇤
C )

nVl2
min

. (29)

Since the prediction horizon  satis�es

 �
1
4
ln

✓
16

1 � d
·

✓
1 +

(⇠ +⇠0)2

1 � d

◆
·

⇣
⇠2

+ (⇠0)2
⌘2◆

/ln
✓
1
d

◆
,

we see that
#’
C=1

⇣��GC � G⇤C ��2 + ��DC � D⇤C ��2
⌘


16d2 �2

1 � d
·

✓
1 +

(⇠ +⇠0)2

1 � d

◆ ⇣
⇠2

+ (⇠0)2
⌘ (4 + l2

min)
Õ#
C=1 1 (G

⇤
C )

nl2
min

. (30)

On the other hand, we also see that for any [ > 0, we have

cost(SODA) =
#’
C=1

lCD
2
C + 1 (GC ) + W (DC � DC�1)

2

=
#’
C=1

lC (D
⇤
C + (DC � D

⇤
C ))

2
+

#’
C=1

1 (G⇤C + (GC � G
⇤
C ))

+

#’
C=1

W (D⇤C � D
⇤
C�1 + (DC � D

⇤
C ) � (DC�1 � D

⇤
C�1))

2

 (1 + [)
#’
C=1

⇣
lC (D

⇤
C )

2
+ 1 (G⇤C ) + W (D

⇤
C � D

⇤
C�1)

2
⌘

+

✓
1 +

1
[

◆ #’
C=1

⇣
lC (D

⇤
C � DC )

2
+ V (G⇤C � GC )

2
+ 2W (D⇤C � DC )

2
+ 2W (D⇤C�1 � DC�1)

2
⌘

(31a)

 (1 + [)cost(OPT) +
✓
1 +

1
[

◆
(4W + V + lmax)

#’
C=1

⇣��GC � G⇤C ��2 + ��DC � D⇤C ��2
⌘
, (31b)

where we use the quadratic form of the cost functions and the AM-GM inequality in (31a); we use (30) in (31b).
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Substituting (30) into (31) gives that

cost(SODA) � cost(OPT) 

 
[ +

✓
1 +

1
[

◆
(4W + V + lmax) ·

16d2 �2

1 � d
·

✓
1 +

(⇠ +⇠0)2

1 � d

◆ ⇣
⇠2

+ (⇠0)2
⌘
·
4 + l2

min
nVl2

min

!
cost(OPT) .

Letting [ = 4
✓
2(4W + V + lmax) ·

1
1�d ·

⇣
1 + (⇠+⇠0 )2

1�d

⌘ �
⇠2

+ (⇠0)2
�
·
4+l2

min
nVl2

min

◆1/2
�nishes the proof.

D PROOFS FOR INEXACT PREDICTIONS
D.1 Proof of Lemma A.6
Suppose {GC }1C# is a feasible trajectory of the bu�er levels and {GC }C1CC2 is a sub-trajectory such that GC1�1 � Ḡ � Z , GC < Ḡ � Z ,8C =
C1, . . . , C2, and GC2+1 � Ḡ � Z where 1  C1 < C2 < # .

For _ � 0, consider the trajectory {G 0C (_)}1C# constructed by

G 0C (_) =

(
GC , if C < C1 or C > C2
GC + _, otherwise.

Note that under this construction, {G 0C (0)}1C# is identical with the original trajectory {GC }1C# . Let ⌥(_) denote the total cost of this
trajectory. For su�ciently small _ � 0, we see that

⌥(_) � ⌥(0) = V
C2’
C=C1

⇣
(GC + _ � Ḡ)

2
� (GC � Ḡ)

2
⌘
+ lC1

⇣
D0C1 (_)

2
� D2C1

⌘
+ lC2+1

⇣
D0C2+1 (_)

2
� D2C2+1

⌘

+ W
⇣
(D0C1 (_) � DC1�1)

2
� (DC1 � DC1�1)

2
⌘
+ W

⇣
(DC1+1 � D

0
C1 (_))

2
� (DC1+1 � DC1 )

2
⌘

+ W
⇣
(D0C2+1 (_) � DC2 )

2
� (DC2+1 � DC2 )

2
⌘
+ W

⇣
(DC2+2 � D

0
C2+1 (_))

2
� (DC2+2 � DC2+1)

2
⌘
,

where D0C1 (_) = DC1 +
_
lC1

and D0C2+1 (_) = DC2+1 �
_

lC2+1
.

Therefore, we see that

3

3_
⌥(_)

����
_=0+

=
3

3_
(⌥(_) � ⌥(0))

����
_=0+

= 2V
C2’
C=C1

(GC � Ḡ) + 2DC1 � 2DC2+1 +
2W
lC1

(2DC1 � DC1�1 � DC1+1) +
2W
lC2+1

(�2DC2+1 + DC2 + DC2+2)

< � 2VZ +
✓
2 +

8W
lmin

◆ ✓
1

Amin
�

1
Amax

◆
 0.

Thus, we know that there exists _ > 0 such that {G 0C (_)}1C# is feasible and ⌥(_) is less than the total cost of {GC }1C# . Therefore, the
o�ine optimal trajectory cannot contain a sub-trajectory such that GC1�1 � Ḡ � Z , GC < Ḡ � Z ,8C = C1, . . . , C2, and GC2+1 � Ḡ � Z where
1  C1 < C2 < # . Using similar techniques, we can extend this claim to include C2 = # and/or C1 = C2. Thus, the bu�er levels in the o�ine
optimal trajectory do not go below Ḡ � Z . By symmetry, we can show that the o�ine optimal trajectory also does not exceed Ḡ + Z .

D.2 Proof of Lemma A.7
To simplify the notation, we introduce the shorthand

G⇤g |C = k
#
C ((GC�1,DC�1);lC :# ; 0)Gg ,D

⇤

g |C = k
#
C ((GC�1,DC�1);lC :# ; 0)Dg ,8g � C .

And we use {(G⇤C ,D
⇤
C )} to denote the o�ine optimal trajectory.

For time step C < # �  + 1, we see that

���GC �k#C ((GC�1,DC�1);lC :# ; 0)GC
���  ⇠d ���G⇤C+ |C � Ḡ

��� +⇠d �1
����D⇤C+ �1 |C � 1

lC+ �1

���� +⇠
C+ �1’
g=C

dg�C
��l̂g |C�1 � lg �� +

��lC � l̂C |C�1��
Amin

(32a)

 ⇠d 
✓
Gmax +

1
Amin

�
1

Amax

◆
+⇠ · ⇢ (C � 1, ) +

��lC � l̂C |C�1��
Amin

, (32b)
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where in (32a), we use the facts that

GC = kC+ �1C

✓
(GC�1,DC�1); l̂C :C+ �1 |C�1; (Ḡ,

1
lC+ �1

)

◆
GC

+ (lC � l̂C |C�1)DC ,

k#C ((GC�1,DC�1);lC :# ; 0)GC = k
#
C

⇣
(GC�1,DC�1);lC :C+ �1; (G⇤C+ |C ,D

⇤

C+ �1 |C )
⌘
GC
,

and apply the exponentially decaying perturbation bound. In (32b), we apply the worst-case bound for the �rst two terms and use the
de�nition of ⇢C�1 ( ).

Note that we can show (32) also holds for C � # �  + 1 with the same approach.
Similarly, we can show that

���DC �k#C ((GC�1,DC�1);lC :# ; 0)DC
���  ⇠0d 

✓
Gmax +

1
Amin

�
1

Amax

◆
+⇠0 · ⇢ (C � 1, ). (33)

Combining (32) and (33) �nishes the proof of Lemma A.7.

D.3 Proof of Theorem A.8
We �rst use induction to show that SODA’s entire trajectory satis�es the bu�er level constraints strictly. To see this, note that for C = 1, we
have

��G1 � G⇤1 ��  41  ⇠d 
✓
Gmax +

1
Amin

�
1

Amax

◆
+⇠ · ⇢ (C � 1, ) +

��lC � l̂C |C�1��
Amin


⇡

3
.

By Lemma A.6, we know that
��G⇤1 � Ḡ ��  ⇡

3 . Thus, we have

|G1 � Ḡ | 
��G1 � G⇤1 �� + ��G⇤1 � Ḡ ��  2⇡

3
.

Therefore, we see that 0 < G1 < Gmax. Supposing that 0 < Gg < Gmax holds for g = 1, . . . , C � 1, we see that

��GC � G⇤C �� + ��DC � D⇤C ��  4C + (⇠ +⇠0)
C�1’
g=1

dC�g4g (34a)


(1 +⇠ +⇠0)2

1 � d

✓
Gmax +

1
Amin

�
1

Amax

◆
· d +

✓
1 +

1
Amin

+⇠ +⇠0
◆2 C’
g=1

dC�g⇢ (g � 1, ), (34b)

In (34a), we use (28) in the proof of Lemma A.5. We use Lemma A.7 in (34b).
Thus, we obtain that

��G⇤C � GC ��  ⇡
3 . By Lemma A.6, we see that

|GC � Ḡ | 
��GC � G⇤C �� + ��G⇤C � Ḡ ��  2⇡

3
.

Therefore, we have shown that 0 < GC < Gmax holds for all time steps C by induction.
By (34), we see that

��GC � G⇤C ��2 + ��DC � D⇤C ��2 
⇣
1 + 1

Amin
+⇠ +⇠0

⌘4
1 � d

✓
1 + Gmax +

1
Amin

�
1

Amax

◆
·

 
1

1 � d

✓
Gmax +

1
Amin

�
1

Amax

◆
· d2 +

C’
g=1

dC�g⇢ (g � 1, )2
!
. (35)

Therefore, by summing (35) over C , we obtain that

#’
C=1

⇣��GC � G⇤C ��2 + ��DC � D⇤C ��2
⌘


⇣
1 + 1

Amin
+⇠ +⇠0

⌘4
(1 � d)2

✓
1 + Gmax +

1
Amin

�
1

Amax

◆
·

 ✓
Gmax +

1
Amin

�
1

Amax

◆
· #d2 +

#�1’
C=0

⇢ (C, )2
!
. (36)
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By (31), we see that for any [ > 0, we have

cost(SODA)  (1 + [)cost(OPT) +
✓
1 +

1
[

◆
(4W + V + lmax)

#’
C=1

⇣��GC � G⇤C ��2 + ��DC � D⇤C ��2
⌘

 (1 + [)cost(OPT) +
✓
1 +

1
[

◆
(4W + V + lmax)·

⇣
1 + 1

Amin
+⇠ +⇠0

⌘4
(1 � d)2

✓
1 + Gmax +

1
Amin

�
1

Amax

◆
·

 ✓
Gmax +

1
Amin

�
1

Amax

◆
· #d2 +

#�1’
C=0

⇢ (C, )2
!
.

Note that #d2 +
Õ#�1
C=0 ⇢ (C, )2  1

1�d E. Setting

[ =

⇣
1 + 1

Amin
+⇠ +⇠0

⌘2 ⇣
1 + Gmax +

1
Amin
�

1
Amax

⌘
(1 � d)3/2

·

p
4W + V + lmax ·

s
E

cost(OPT)

�nishes the proof.

E PROOFS FOR EFFICIENT STRUCTURES
E.1 Proof of Lemma A.10
We �rst consider the case when aC�1 > 1/l̂ . To simplify the notation, we use ĎC :C+ �1 to denote the sequence of control actions in
q̂C+ �1C ((fC�1,aC�1); l̂ ; 0).

We �rst show that Ďg � 1/l̂ for all g 2 {C, . . . , C +  � 1}. For the sake of contradiction, let ĎC1 be the �rst action such that DC1�1 � 1/l̂
and ĎC1 < 1/l̂ . Note that resetting the sequence ĎC1:C+ �1 to DC1 = DC1+1 = · · · = DC+ �1 = 1/l̂ will strictly decrease the total cost and the
whole sequence remains feasible. This contradicts with the optimality of ĎC :C+ �1. Thus, we have Ďg � 1/l̂ for all g 2 {C, . . . , C +  � 1}.

We next show that Ďg  aC�1 for all g 2 {C, . . . , C +  � 1}. To see this, for all Dg such that Dg > aC�1, we can reset them to Dg = aC�1 to
decrease the total switching cost strictly without violating any feasibility constraints.

Since Ďg 2 [1/l̂, aC�1] for all g 2 {C, . . . , C + � 1}, we know that the bu�er level sequence is monotonically increasing. Thus, if ĎC :C+ �1 is
not monotonically decreasing, we can permute it to make it monotonically decreasing. This change will strictly decrease the total switching
cost without violating any feasibility constraints. Therefore, we have shown Theorem A.10 holds for the case aC�1 > 1/l̂ .

Using similar techniques, we can show Lemma A.10 also holds for the case aC�1 < 1/l̂ and aC�1 = 1/l̂ .

E.2 Proof of Theorem A.9
We can rewrite the optimization problem (6) as

min
0C :C+ �1

C+ �1’
g=C

W · 02C

s.t. Gg = Gg�1 + l̂Dg � 1, for g = C, . . . , C +  � 1,
Dg = Dg�1 + 0g , for g = C, . . . , C +  � 1,

Gg 2 [0, Gmax],Dg 2


1

Amax
,

1
Amin

�
, for g = C, . . . , C +  � 1,

GC�1 = fC�1,DC�1 = aC�1 . (37)

We use {(0̌g , Ďg , Ǧg )}g=C,...,C+ �1 to denote the optimal solution of (37).
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Similarly, we can rewrite the optimization problem k̂C+ �1C ((fC�1,aC�1); l̂ ; 0) as

min
0C :C+ �1

C+ �1’
g=C

W · 02C + l̂D
2
C + V1 (GC )

s.t. Gg = Gg�1 + l̂Dg � 1, for g = C, . . . , C +  � 1,
Dg = Dg�1 + 0g , for g = C, . . . , C +  � 1,

Gg 2 [0, Gmax],Dg 2


1

Amax
,

1
Amin

�
, for g = C, . . . , C +  � 1,

GC�1 = fC�1,DC�1 = aC�1 . (38)

We use {(0̂g , D̂g , Ĝg )}g=C,...,C+ �1 to denote the optimal solution of (38).
For the sake of contradiction, we assume there exists g 2 {C, C + 1, . . . , C +  � 1} such that���k̂C+ �1C ((fC�1,aC�1); l̂ ; 0)Dg � q̂

C+ �1
C ((fC�1,aC�1); l̂ ; 0)Dg

��� > _.
By the strongly convexity of the constrained optimization problem (37), we see that

C+ �1’
g=C

W0̂2C �
C+ �1’
g=C

W0̌2C � W
C+ �1’
g=C

(0̂C � 0̌C )
2 >

W_2

 
. (39)

On the other hand, we have that
C+ �1’
g=C

⇣
l̂D̂2C + V1 (ĜC )

⌘
�

C+ �1’
g=C

⇣
l̂Ď2C + V1 (ǦC )

⌘
�  

 
l̂

 
1

A2max
�

1
A2min

!
� V max{Ḡ2, n (Gmax � Ḡ)

2
}

!

By the optimality of {(0̂g , D̂g , Ĝg )}g=C ,...,C+ �1 in (38), we see that

0 �
C+ �1’
g=C

⇣
l̂D̂2C + V1 (ĜC ) + W0̂

2
C

⌘
�

C+ �1’
g=C

⇣
l̂Ď2C + V1 (ǦC ) + W0̌

2
C

⌘

>
W_2

 
+  

 
l̂

 
1

A2max
�

1
A2min

!
� V max{Ḡ2, n (Gmax � Ḡ)

2
}

!
,

which contradicts our assumption that

W �
 2

_2

 
l̂

 
1

A2min
�

1
A2max

!
+ V max{Ḡ2, n (Gmax � Ḡ)

2
}

!
.
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