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A B S T R A C T

Nowadays, the Global Positioning System (GPS) plays an critical role in providing navigational
services for transportation and a variety of other location-dependent applications. However, the
emergent threat of GPS spoofing attacks compromises the safety and reliability of these systems.
In response, this study introduces a cutting-edge computer vision-based methodology, the
SEquential dashcam-based vEhicle localization frameworK Plus (SEEK+), designed to counteract
GPS spoofing. By analyzing dashcam footage to ascertain a vehicle’s actual location, SEEK+
scrutinizes the authenticity of reported GPS data, effectively identifying spoofing incidents. The
application of dashcam imagery for localization, however, presents inherent obstacles, such as
adverse lighting and weather conditions, seasonal and temporal image variations, obstructions
within the camera’s field of view, and fluctuating vehicle velocities. To overcome these issues,
SEEK+ integrates innovative strategies within its framework, demonstrating superior efficacy
over existing approaches with a notable detection accuracy rate of up to 94%.

. Introduction

The Global Positioning System (GPS) has become an indispensable tool across a multitude of sectors, ranging from personal
lectronics like smartphones and wearables to critical transportation systems, including autonomous vehicles. The widespread
ntegration of GPS has revolutionized location-based services, enabling advanced functionalities such as navigation, vehicle tracking,
mergency location sharing, and aid in rescue operations. However, the reliability of GPS technology is undermined by its
ulnerability to spoofing attacks, which pose significant risks to safety and security. Such attacks can be readily executed using
nexpensive software-defined radios, like HackRF [1], to disrupt the normal operation of GPS devices embedded in various
ystems [2–10]. When a spoofed GPS signal, more potent than the legitimate signals from satellites, is broadcasted, nearby GPS
eceivers are deceived, accepting the fraudulent signal. Consequently, this vulnerability allows attackers to misdirect vehicles or
ndividuals to unintended, potentially hazardous destinations. Notably, an attacker could manipulate the GPS system of a commercial
r ride-sharing vehicle, fabricating its location or route. This scenario presents a critical security concern, as it could lead to dire
utcomes for affected individuals or assets.
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Fig. 1. An illustration of the GPS spoofing attack with an escaping driver. A ride-hailing vehicle is driving on the path from R1 to R4 (red line). Meanwhile,
the malicious/escape driver spoofs the GPS signal to deceive the monitoring center that the vehicle is driving on the spoofed route (blue line).

Existing solutions, ranging from classical signal authentication methods to innovative approaches harnessing deep learning
techniques and vehicle onboard sensors like motion detectors, have been explored to fortify the resilience of GPS systems. Classical
defenses often rely on detecting anomalies in signal strength, noise patterns, or encrypting signals. Such methods usually require the
adoption of expensive signal-analyzing software or the upgrade of infrastructure. Deep learning methods that leverage the onboard
sensors can assist in the reconstruction of the vehicle’s authentic moving trajectories and can also help against the GPS spoofing
attack. However, these countermeasures often fall short of state-of-the-art spoofing techniques that meticulously craft GPS signals
to mimic authentic paths closely, making detection particularly difficult [3]. The attackers’ ability to generate signals that closely
replicate legitimate GPS data undermines the effectiveness of many current defenses, leaving vehicles vulnerable to misdirection
and its potentially grave consequences. In this paper, we propose a computer vision-based framework to detect GPS spoofing by
capitalizing on the ubiquitous presence of dashcams within most vehicles. Using a dashcam as an onboard sensor to detect the
GPS spoofing attack can quickly detect the spoofing attack that focuses on mimicking authentic paths. To be specific, the proposed
framework extracts dashcam images while the vehicle is driving and uses them to match the reference images at the reported
(untrusted) GPS location. Therefore, if the vehicle’s GPS is spoofed, the reference image collected at the reported location will
contradict the dashcam image collected on the road. This can be achieved by using cross-view image matching (CVM), which matches
images at the same location with different view angles, such as satellite/aerial image and a 360-degree ground view image [11–16]
(see Fig. 1).

While the existing CVM studies have demonstrated effective performance in ideally datasets, applying these methods to dashcam
image localization within our GPS spoofing detection framework is challenging in a real-world driving scenario. Modern vehicles are
typically equipped with only one or two safety cameras, insufficient for creating the comprehensive ground-level panoramas required
for high-accuracy CVM implementations. Additionally, dashcam footage is usually captured from lower vantage points, resulting in
significant visual obstructions from other vehicles, contrasting the less obstructed images from higher-mounted 360-degree cameras
used in CVM studies. Furthermore, the variable and often poor lighting conditions experienced during real-world driving – unlike
the consistently favorable conditions under which CVM datasets are captured – can severely impact image-matching accuracy. Also,
CVM’s reliance on broad satellite imagery fails to provide the precise localization necessary for effective GPS spoofing detection.
Lastly, the infrequent updates of geo-tagged reference images, such as those from Google Street View, introduce discrepancies due
to environmental changes over time, further complicating the task of accurate dashcam-based localization.

In this paper, we introduce innovative methodologies to address the inherent challenges in localizing dashcam images for real-
world driving scenarios and establish a robust framework for GPS spoofing detection, termed SEquential dashcam based vEhicle
localization frameworK Plus (SEEK+). To counter the limited perspective offered by a single dashcam, we devise a trip-level sequential
image matching scheme, aggregating a series of dashcam images from a journey into a unified localization dataset. This method
not only utilizes the spatial continuity inherent in sequential images but also adapts to the dynamic nature of driving behaviors. To
overcome the issue of visual obstructions in dashcam footage, we introduce an object removal technique to clarify these images,
2
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enhancing their informative value for precise localization. Addressing the challenge of varied lighting conditions, our framework
includes adaptive image processing techniques to maintain localization accuracy across diverse environmental settings. For the
critical task of precise localization necessary for GPS spoofing detection, we leverage the Google Street View database for its high-
resolution, geo-tagged imagery, ensuring localization precision within 30 ft. Lastly, to mitigate the discrepancies caused by temporal
changes between reference and dashcam images, we employ autoencoders to harmonize the visual themes of both image sets,
ensuring consistent and reliable localization.

The rest of the paper is organized as follows. Section 2 discusses the related works about GPS spoofing attack and countermea-
ures, as well as the state-of-the-art works in cross-view image geo-localization. Section 3 describes the threat model. Section 4
resents our proposed techniques for dashcam image localization in real-world driving. Section 5 put all techniques together to
uild the SEEK+ framework. Section 6 shows the experimental results. Finally, Section 7 concludes the paper.

. Related works

.1. GPS spoofing attacks

Existing investigations have highlighted the susceptibility of localization sensors, particularly GPS, to a spectrum of malicious
ctivities. Among these, GPS is notably vulnerable to several forms of interference and manipulation, including jamming, replaying,
nd spoofing attacks [17,18]. Jamming attacks [19] disrupt the reception of GPS signals by overwhelming the authentic, relatively
eeble GPS signals with more potent, interfering radio waves. Replay attacks [20] introduce confusion by capturing and subsequently
ransmitting previously recorded or irrelevant GPS signals, potentially misleading the system’s perception of its temporal and spatial
ontext [x26]. Among the various threats, GPS spoofing is particularly dangerous, capable of subtly altering a vehicle’s perceived
rajectory by introducing forged signals into the communication stream [4,5,7,10]. Recent examples include the stealthy GPS
poofing techniques that gradually shift a vehicle’s reported position to cause significant navigational errors over time without
mmediate detection. [21] can fail production-grade autonomous driving systems with an over 90% success rate. [3] allows an
ttacker to reach destinations that are as far as 30 km away from the actual destination without being detected. Such advanced
ttacks designed to undermine multi-sensor fusion systems in autonomous vehicles, demonstrate the evolving complexity and
tealthiness of GPS spoofing methods, posing a significant challenge to detection and mitigation efforts.

.2. GPS spoofing detection

Given the potentially catastrophic consequences of GPS spoofing attacks, various endeavors have been undertaken to devise
ffective countermeasures. Classical GPS spoofing detection methods [22,23] adopted cryptographic techniques as potential solutions
y encrypting satellite signals using a confidential key to encrypt the communication channels between GPS receivers and
ransceivers. Other researchers, [24–26] have explored strategies for detecting GPS spoofing by analyzing the characteristics of
ireless GPS signals. [24] detected malicious spoofing signals by leveraging the reported positions of several GPS receivers deployed
n a fixed constellation. [26] computed and compared feature vectors based on the singular values of wavelet transformation
oefficients from both spoofing and genuine signals. [25] utilized features such as pseudo-range, Doppler shift, and signal-to-noise
atio (SNR) for classifying GPS signals with a supervised machine learning method. [27–29] examined received GPS signals via
nomaly detection applied to signal waveforms or employing calculations related to the signal angle of arrival. Nonetheless, these
pproaches typically necessitate a significant number of GPS receivers or an upgrade to the existing GPS infrastructure, thereby
resenting challenges for practical implementation in self-driving vehicles.
As the installation of various sensors in vehicles and other mobile platforms increases, efforts to enhance GPS navigation through

ross-validation with additional sensors have gained momentum to counter potential spoofing attacks. Integrating motion sensors
ith GPS navigation, as investigated in studies such as [30–32], represents a proactive approach to augment navigation reliability
nd security. [30] proposed sensor fusion techniques, combining data from multiple onboard sensors (such as GNSS receivers,
ccelerometers, gyroscopes, and cameras). By analyzing the fused sensor data, the method detects anomalies indicative of spoofing
ttempts. [31] leverages accelerometers to detect GPS spoofing signals by comparing accelerometer outputs with acceleration
stimates from GPS data. [32] pursued advancements in this field by developing a deep learning-based detection method that aims
o accurately reconstruct vehicle trajectories using inertial sensors, such as accelerometers and gyroscopes. The IMU reconstructed
rajectory is then compared with the reported GPS trajectory on an offline road map to achieve a higher accuracy. Nevertheless, the
ccuracy limitations inherent in commercially available accelerometers and gyroscopes present significant challenges in identifying
ophisticated spoofing attacks, which are crafted to emulate legitimate vehicle movements [3].

.3. Cross-view image matching for geo-localization

While motion sensors have been investigated to counter GPS spoofing attacks, research on leveraging computer vision to mitigate
he GPS spoofing attack remains comparatively sparse. Recent researches focus on image-based geo-localization, indicating potential
athways for integrating computer vision techniques in addressing GPS spoofing in a real-world scenario.
Before the advent of deep learning, cross-view image geo-localization relied heavily on manually crafted features, such as self-

imilarity measures and histograms [33–36]. These traditional methods often faced challenges in achieving high matching accuracy
3

ue to the limitations of the features used. However, with the wide adoption of deep learning across various computer vision
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applications, a wave of deep learning-based geo-localization techniques emerged. These methods utilize finely-tuned Convolutional
Neural Networks (CNNs) to extract more sophisticated features, significantly enhancing cross-view geo-localization accuracy. [12]
introduced an end-to-end learning model that aggregates features using a NetVLAD layer, marking a notable performance
improvement. [37] developed a feature transformation module designed to align features from aerial and street view images. [38]
focused on integrating orientation information into their model, further boosting its performance. [39] to propose a GAN-based
approach that employs a feature fusion training strategy for cross-view image geo-localization. [11] introduced the VIGOR approach,
which uniquely does not necessitate a one-to-one match between ground and aerial images. Some other models, such as [14],
manipulate the satellite views to bridge the domain gap between reference and query images by applying polar transformation with
prior geometric knowledge. [14] significantly improved results on CVUSA [40] and CVACT [38] datasets through this technique.
However, such methods still focused on the ideal scenarios where stationary panoramic ground view images are provided to match
a satellite image covering the same location. To validate these methods in real-world driving scenarios, [15] configured 12 fish-eye
near-infrared (NIR) cameras on top of a vehicle to capture a comprehensive panorama of the terrestrial scene. Apparently, there are
plenty of limitations to applying the existing cross-view matching methods to provide accurate vehicle location to solve the GPS
spoofing dilemma.

3. Threat model

We consider two types of GPS spoofing attacks against the GPS-based navigation of transportation systems in real-world driving,
1) random GPS attack (RGA), and (2) sequential GPS attack (SGA). RGA broadcasts a series of random (incorrect) GPS coordinates
to the target vehicle with the purpose of confusing the GPS reception in a short period of time. RSA can be launched easily at a
road intersection or in the middle of a road to cause a denial-of-service to the navigation system, which may result in catastrophic
consequences to the victim vehicles, such as driving on the opposite lane or taking wrong turns, etc.

SGA broadcasts a series of GPS coordinates that form a fake trajectory with the goal of either hijacking the vehicle to an unsafe
location or escaping the tracking of the monitoring center of the vehicle, such as the ride-hailing or commercial trucking company
monitoring center. To launch the GPS spoofing attack for vehicle hijacking, an external attacker can tailgate a target vehicle and fool
its GPS navigation to a route toward an unsafe location. Meanwhile, a GPS spoofer can also be an ‘‘escape’’ driver of a ride-hailing
vehicle or a commercial truck, who broadcasts a set of GPS coordinates forming a fake route to the GPS tracker on the vehicle, with
the purpose of hiding the real trajectory of the driver from the monitoring center [3]. Compared to RGA, SGA is a more advanced
and complicated attack that can craft a continuous spoofing trajectory to mislead the navigation system of a vehicle. But it requires
prior planning of a fake trip, such as start and end points and a route following the city road networks, to cheat the monitoring
center, or an existing IMU-based GPS spoofing detection scheme.

4. Proposed techniques for dashcam image localization in real world driving

As discussed in Section 1, SEEK+ utilizes dashcam images to identify the location of a vehicle to detect GPS spoofing. We have
also introduced CVM and the challenges of applying CVM directly on dashcam images for geo-localization. In this section, we first
conduct some experiments of applying CVM on dashcam images and illustrate the challenges for dashcam image localization. We
then present our proposed schemes to address each challenge, to significantly improve dashcam image localization. In the next
section, we put those techniques altogether to build the SEEK+ framework.

The dashcam images in our experiments are from a vehicle driving dataset called BDDG4k, with details described in Section 6.1.1.
BDDG4K provides a geo-tagged GSV reference image for each dashcam image captured from four thousand driving trajectories. As
introduced in Section 1, in CVM, image localization or image matching is through image retrieval. Specifically, given a query image,
in order to identify the location of this image, CVM scans the entire reference image database where all images are geo-tagged and
returns the top-matched reference image. The location of the returned top image is then used to be the location of the query image.

Due to its dependence on image retrieval, the widely used performance metric to evaluate CVM is the recall accuracy, R@k,
which treats it as a success if, among the 𝑘 nearest reference images returned, one is from the original image pair of the query
mage. For instance, in our scenario, the dataset BDDG4k pairs each dashcam image with a (geo-tagged) GSV image. For a query
ashcam image, CVM scans all GSV images in the BDDG4k dataset. If the returned top image is originally paired with the query
ashcam image, then it is treated as a success.
Table 1 shows the results of applying state-of-the-art CVMmethods on a widely used CVM dataset, CVUSA, and the vehicle driving

ataset BDDG4k. Note that CVM methods usually apply the polar transformation on the satellite images in CVUSA, which is not
easible for the BDDG4k dataset. We observe that two recent CVM methods, TransGeo [16] and L2LTR [13], achieve very impressive
@1 accuracy, 94.08%, and 91.99%, respectively, on the CVUSA dataset. However, their R@1 performance drops significantly to
6.4% and 52.43% on the BDDG4k dataset.
As briefly described in Section 1, there are several factors that cause the performance degradation of CVM on the BDDG4k

dataset, including lack of panorama views, blockage in dashcam images, complicated lighting conditions, and seasonal/theme gap.
4

Next, we discuss each of them in detail and present our proposed schemes to address them.
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Table 1
CVM performance on CVUSA and BDDG4k datasets by state-of-the-art CVM methods.

Method CVUSA BDDG4k

R@1 R@5 R@1 R@5

CVM-NET [12] 22.47 49.98 10.52 21.45
SAFA [14] 81.15 94.23 35.15 38.42
L2LTR [13] 91.99 98.27 46.4 66.1
TransGeo [16] 94.08 98.36 52.43 65.06

Table 2
The accuracy of image matching on BDDG4k dataset by the distance to the query image.

Method BDDG4k

M = 10 m M = 20 m M = 50 m

CVM-NET 30.4 45.31 48.3
SAFA 44.2 50.42 56.92
L2LTR 51.3 66.1 72.71
TransGeo 68.83 75.2 80.1

Table 3
Trips distribution under various lighting/weather conditions.

Sunny Cloudy Rainy Night Total

Train set 1409 247 68 1276 3000
Val set 475 120 22 383 1000

Total 1884 367 80 1659 4000

4.1. Trip level matching to address lack of panorama view and impact of slow driving

In Section 1, we have discussed the issue of the lack of a panorama view in dashcam images, which is critical to achieving good
erformance in traditional CVM. Moreover, there is another unique issue raised in real-world driving — there can be multiple similar
images collected from a set of nearby locations when the vehicle drives at a low speed or at a complete stop. In this case, a nearby
GSV reference image with a different location ID may be returned by CVM when it is applied to BDDG4k. When such a result is
returned, it is considered a failure in the R@1 performance metric, as it represents a different GPS location, although it is very close
to the true location of the query image.

To illustrate how the slow driving behavior impacts CVM performance, we consider a top-M (Meter) metric, which treats it a
success if the returned image is within M meters of the query image, instead of requiring the GPS location IDs be the same for the
two images as in Table 1. Table 2 illustrates the top-M matching accuracy when M is set to 10 m, 20 m, and 50 m, respectively.
We notice the accuracy of the best-performing method, TransGeo, improves from 52.43% to 68.83% from R@1 to top-10 m. This
verifies our speculation since, with the top-M metric, a returned image from a nearby location may also count as a success without
requiring the image at the exact location of the query image.

To address the above challenge, as well as the lack of panorama views, we propose to conduct dashcam image matching at the trip
level, which includes a sequence of contiguous images along a vehicle’s trajectory. This will mitigate the impact of slow driving on
image matching to eliminate the interference introduced by the repeated or nearby images during vehicle stopping or slow driving.
It also helps to compensate for the lack of multiple panorama images at a given location. To process an image sequence from a
vehicle’s trajectory, we utilize the recurrent neural network (RNN) to exploit the spatial and temporal dependencies in a sequence.
The Long Short-Term Memory (LSTM) [41] and Gated Recurrent Unit (GRU) [42] are two popular variations of RNN. However, we
adopt GRU because it requires less GPU memory while achieving comparable performance to LSTM.

4.2. Image normalization to address lighting/weather conditions

4.2.1. Impact of lighting condition on image matching
We have found that complicated lighting/weather condition is one of the main factors that affect the performance of CVM on

driving datasets. To illustrate its impact, we sort the trips in BDDG4k into four groups, Sunny, Cloudy, Rainy, and Dark/Night, based
n lighting and weather conditions (see Table 3).
To examine the impact of lighting conditions on the images, we first randomly select ten trips under the Sunny condition and

en trips under the dark lighting condition. Then we use the feature extractor of a recent CVM method, TransGeo [16], to obtain the
eature description for both dashcam images and GSV reference images corresponding to the trips. The t-SNE visualization of the
eature vectors of those images is plotted in Fig. 2. We can see that the dashcam images and GSV images have quite different
lustering behaviors under different lighting/weather conditions. Note that GSV images are always captured in good lighting
onditions. In contrast, dashcam images are captured in diverse lighting conditions depending on the trips. When the lighting is
ark (Fig. 2(b)), dashcam images are clustered together and far away from the GSV reference images. When the lighting is good
5
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Fig. 2. Impact of lighting condition on the images illustrated in the feature space, (a) images randomly sampled from the daylight condition, and (b) images
randomly sampled from the dark/night condition.

Table 4
Mean and Std of dashcam and GSV images under different lighting conditions.
Lighting condition View source Mean Std

Mixed daylight Dash [0.3383, 0.3688, 0.3790] [0.2493, 0.2600, 0.2694]
GSV [0.5228, 0.5431, 0.5502] [0.2204, 0.2261, 0.2554]

Night Dash [0.1380, 0.1113, 0.0944] [0.1579, 0.1420, 0.1335]
GSV [0.5293, 0.5488, 0.5538] [0.2163, 0.2213, 0.2554]

(Fig. 2(a)), we notice the distance between the GSV images cluster and the dashcam images cluster is smaller. Due to the shorter
distance, the matching between dashcam images and GSV images of the daylight trips is more likely to succeed than for the trips
in the dark/night condition.

4.2.2. Normalization for low-light images
We propose to use the image normalization technique to address the impact of lighting/weather conditions and improve the

performance of image matching. Image normalization is a technique in computer vision that changes the range of pixel intensity
values to a certain range, e.g., 0 to 1. In the literature, most studies adopt the mean and standard deviation (std) of ImageNet for
normalization, i.e., mean = [0.485, 0.456, 0.406] in the three channels (RGB), and std = [0.229, 0.224, 0.225].

However, due to the unique features of the images caused by the diverse lighting/weather conditions in real-world driving, the
images from the vehicle driving dataset have a quite different mean and std from ImageNet. Table 4 illustrates the mean and std
of the images in a widely known driving dataset, BDD100K [43], under daylight (mixed weather) and night condition, which are
significantly different from the mean and std of ImageNet. In addition, GSV images have similar mean and std in both daylight and
night trips as they are actually independent of the trips and all taken at good lighting conditions (and different times) at the GPS
coordinates of the trips. Dashcam images have a significantly lower mean/std in corresponding lighting conditions. The BDD100K
driving dataset is a highly diverse driving dataset. We expect their mean and std are typical for vehicle driving datasets. Hence we
will adopt this mean and std for normalizing the images in our driving dataset.

Fig. 3 illustrates an example of image normalization for a dashcam image from BDDG4k, using the mean and std of ImageNet
and the ones of BDD100K. We can see that the normalized image in Fig. 3(b) has a much higher contrast; the buildings/landmarks
and the crosswalk pattern on the road are highlighted, which are crucial to improving performance. In contrast, the original image
captured in the low lighting condition loses the detailed texture and information of buildings and landmarks. At last, the normalized
image with ImageNet mean/std exhibits poor performance due to the significant difference in the capturing context of the images.

4.3. Season alignment of reference images

Due to the fact that GSV reference images are slowly updated, typically after several years, the GSV image at the same location
of a dashcam image is often taken at a different time/season, i.e., they have quite different themes. To bridge the gap in the seasonal
change on these two views, we propose a season alignment technique to transform the GSV images. We use two autoencoders to
6
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Fig. 3. Normalization of an image in BDDG4k, (a) the raw image that was captured at a low lighting condition, (b) the normalized image with the mean and
std from Table 4, and (c) the normalized image with mean/std of ImagetNet.

Fig. 4. Season alignment for GSV reference images.

import the latent view from the dashcam image into the GSV reference image to mimic the theme/season of the dashcam image
while still producing a realistic transformed image. This improves the matching performance between the two views under various
season changes.

Fig. 4 illustrates the process of transferring season features between two views. Two CNN-based autoencoders are trained to
learn the hidden style features from dashcam and GSV images, respectively. The latent view is the encoded feature vector that can
be used to reconstruct the same image. For the dashcam view, we use the dashcam decoder to decode the latent view to reconstruct
its own image in a smaller size without the loss of critical information. In decoding the GSV reference view, we replace the latent
view from the GSV image with the one from the dashcam image to reconstruct the GSV reference image. The output of the reference
decoder has a smaller size and, most importantly, combines the styles from both views and essentially aligns the GSV image to the
same season as the dashcam image.

4.4. Dashcam image blockage removal

In a real-world driving scenario, the dashcam view can be easily blocked by the front vehicle, objects on the windshield, or the
reflection of items on the dashboard. Therefore, compared to the GSV images, which are sanitized after capturing, dashcam images
usually have a much higher blockage ratio.

We define the blockage ratio of an image as follows:

𝐵𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝑅𝑎𝑡𝑖𝑜 =
# of pixels classified as ‘‘obstacles’’

. (1)
7

Total # of pixels
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Fig. 5. Blockage removal: (a) original dashcam image showing segmentation, (b) dashcam image after blockage removal, (c) GSV reference image at the same
location.

Fig. 6. Blockage ratio: (a) CDF of blockage ratio before blockage removal, (b) blockage ratio histogram of dashcam images before and after removing blocking
objects.

To summarize the composition of the images captured while driving, we apply the image segmentation technique [44] to
annotate each pixel in both the dashcam image and the corresponding GSV reference image. Fig. 5 shows a dashcam image and
the corresponding GSV image taken at the intersection where the target vehicle is waiting behind a silver SUV. The blue overlay
covers the pixels classified as ‘‘obstacles’’. With the assistance of image segmentation, we calculate the blockage ratios for both the
dashcam image and GSV reference image at the same location using (1). As a result, the dashcam view in Fig. 5 has a blockage
ratio of 22%, whereas the blockage ratio of the GSV reference image at the same location is only about 2%. Fig. 5(a) shows the CDF
of the blockage ratio of dashcam images and GSV reference images after analyzing the whole dataset, which indicates that more
than 90% of GSV images have less than 10% blockage ratio. On the other hand, only 40% of dashcam images have less than 10%
blockage ratio.

To address the challenge of large blockage areas in dashcam images, for each dashcam image, we use a tool called automated
object remover [45] that combines Semantic segmentation and EdgeConnect architectures to remove specified objects in images. By
filtering out the objects that are considered ‘‘obstacles’’ such as vehicles, vans, and trucks, we can provide a cleaner image with
less blocking area. Fig. 6(b) illustrates the histogram of blockage ratio in the dashcam images before and after blockage removal.
Clearly, the blockage in dashcam images can be significantly removed. For instance, in Fig. 5(b), we can see that the silver SUV
that blocks the center of the image has been removed, which restored the yellow building at the corner and is expected to improve
the dashcam-GSV matching performance.

5. System architecture of SEEK+

After introducing the proposed techniques for dashcam image localization, in this section, we put them all together to describe
the proposed GPS spoofing detection framework SEEK+, which is built upon the proposed schemes in the preceding section.
8
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Fig. 7. The architecture of the SEEK+ framework.

5.1. System overview

Fig. 7 illustrates the SEEK+ framework, which is composed of two Siamese-type pipelines. Each pipeline comprises the four
component schemes we developed in the preceding section: Image Normalization, Blockage Removal, Season Alignment, and Trip
Level matching. The fundamental idea of SEEK+ is to compare the vehicle’s real-time dashcam image sequence with the GSV
reference image sequence queried at the GPS locations reported by the vehicle GPS receiver. The two pipeline designs can effectively
project the spatial features learned from each pipeline into a shared space. SEEK+ can be deployed on different platforms to detect
possible GPS spoofing attacks. For example, it can be implemented on the vehicle or the remote monitoring center of ride-hailing
apps, such as Uber or Lyft. It is carried out by the following steps: (1) a driving vehicle records its GPS location from the GPS
receiver, and its dashcam takes video, which is essentially a sequence of images, (2) the GPS locations and the dashcam images are
synchronized by the time, (3) the vehicle either sends the GPS locations and dashcam images/video to a local or remote spoofing
detector, (4) the spoofing detector queries the GSV reference images by the reported GPS locations using Google API, (5) the spoofing
detector feeds both dashcam image sequence and GSV reference image sequence to SEEK+ and obtains the detection result; if the
binary classifier outputs Yes, i.e., dashcam images match the GSV images, then there is no spoofing, and otherwise, there is spoofing.

5.2. Image transformation

As discussed in the previous section, images need to be properly processed/transformed to address the challenges of complicated
lighting conditions, large blockage areas, and season/theme gaps between dashcam and GSV images. Therefore, the three image
transformation techniques proposed in the preceding section are applied to the dashcam and GSV images coming into the two
pipelines. Specifically, we first normalize the images by using the mean and std extracted from the driving dataset. Then we
apply image segmentation [44] to decompose the image and identity the objects in the image that needs to be removed. After the
unwanted objects have been removed, we further feed the dashcam image into an autoencoder (‘‘Dashcam Encoder’’) to compress
the image into the feature space (encoding), from which it can be reconstructed to the original image (decoding) but has a smaller
dimension. The GSV images follow a similar procedure, but it takes the latent space of the dashcam view into the ‘‘Reference
Decoder’’ to reconstruct an image with the seasonal theme of the dashcam view as well as a smaller size. After the images are
properly transformed by those techniques, they are ready to be fed to the sequential layers for trip level matching.

5.3. Sequential trip level image matching

The proposed trip level image matching can effectively utilize the spatial and temporal dependencies among an image sequence
of vehicle driving and compensate for the lack of the panorama view. We first feed the transformed images to a feature extractor
that learns the spatial feature of each individual image in a sequence. Let 𝐱𝑑𝑛 and 𝐱𝑔𝑛 (𝐱𝑑𝑛 , 𝐱

𝑔
𝑛 ∈ R|𝐋𝑛|×𝐷) denote the output of the

feature extractor for a given transformed dashcam image sequence and GSV image sequence, where 𝐷 is the embedding size which
is 1024 in this paper. They represent the stack of feature vectors from the two image sequences, respectively. In this paper, we test
three candidates for the feature extractor: VGG-16 [46], and two feature extractors from L2LTR [13] and TransGeo [16]. Note that
CVM models are usually structured in a Siamese-like network.

SEEK+ uses a recurrent neural network (RNN) to keep track of the feature representation learned in a sequential manner while
the vehicle is in motion. As discussed in the preceding section, SEEK+ adopts a popular variant of RNN, GRU, due to its more efficient
design. SEEK+ uses a stacked GRU structure with two layers, and the hidden unit is chosen to be 512. The dropout layer [47] and
batch normalization [48] are adopted to reduce the internal covariate shift among time steps.
9
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5.4. Binary classification layer

The outputs of the two pipelines of SEEK+, 𝑟𝑑 = (𝐱𝑑𝑛 ) and 𝑟𝑔 = (𝐱𝑔𝑛 ), are the fixed-length vectors that represent the features
learned from each sequence. The final objective is to identify if the series of reference images obtained from the reported GPS
locations match the same series of real-time vehicle dashcam images from the same trip. Hence, the last layer of SEEK+ is a binary
classification layer. We adopt the BCELoss defined below as the loss function.

𝐋𝐵𝐶𝐸 = −[𝑦𝑛 ⋅ log(𝛥𝑖) + (1 − 𝑦𝑛) ⋅ log(1 − 𝛥𝑖)], (2)

where 𝑖 ∈ {1, 2,… , }, and 𝛥𝑖 = |𝑟𝑑𝑖 − 𝑟𝑔𝑖 | represents the difference between two feature vectors 𝑟𝑑𝑖 and 𝑟𝑔𝑖 , and 𝑦𝑛 is the label of
the input sequence pair. BCELoss creates a criterion that measures the Binary Cross Entropy between the target and the output. We
also add a sigmoid layer in the network to limit the output to a range between 0 and 1. The classification output 𝑦𝑛 = 1 indicates
the dashcam image sequence and the GSV image sequence are from the same trip. Otherwise, if 𝑦𝑛 = 0, the two sequences are not
from the same trip, i.e., there is a GPS spoofing attack.

. Performance evaluation

In this section, we carry out experiments to evaluate the performance of the proposed SEEK+ framework on GPS spoofing
etection. We first introduce the dataset we use for the experiments, then discuss the experiment settings, and at last present the
esults.

.1. Dataset

.1.1. Vehicle driving dataset
In the literature, a widely used vehicle driving dataset is the Berkley diverse driving video database, BDD100K [43], which

onsists of 100,000 vehicle driving videos from diverse locations under different weather conditions and different times of the day.
ach video records a driving trajectory of about 40 s long, 720p, and 30 fps. The videos also include GPS/IMU information to show
pproximate vehicle driving trajectories.
As can be seen from the SEEK+ architecture, unlike CVM, SEEK+ does not utilize image retrieval from the reference image

atabase to locate the query image. Instead, SEEK+ compares the query image (sequence) and the reference image (sequence), and
inds if they match each other to detect GPS spoofing attacks. Hence, in addition to the dashcam images in BDD100K, we also need
he corresponding GSV reference images at the reported GPS locations of the dashcam images. To this end, we expand the BDD100K
ataset by adding the GSV reference images.
Specifically, for the dashcam images, we sample the driving video clips in BDD100K [43] at the sampling rate of 1 Hz, which
atches the sampling rate of the GPS information in BDD100K. Then we use the Google Street-View (GSV) Static API [49] to obtain
he geo-tagged GSV reference image roughly aligned with the GPS location of each dashcam image in the same heading direction.
ote that both the alignment of a dashcam image with the GPS location recorded by cell phones and the alignment of a GSV image to
his GPS location is approximate. Usually, the closest GSV images are a few meters or a few tens of meters away from the referenced
PS location. We have sampled 4 thousand video clips from the BDD100k dataset, i.e., 4000 trips. Each trip lasted about 40 s, as
escribed earlier. In total, from those trips, we obtain 152,667 image pairs with various weather and lighting conditions. We call
he resulting dataset as BDDG4k.

.1.2. Spoofing data generation
The BDD100K dataset does not have GPS spoofing samples. We also have not found other practical public driving datasets with

PS spoofing samples. To bridge this gap, we manually generate GPS spoofing data samples for BDDG4k. Given different GPS
poofing attack models, the generated GPS spoofing samples need to accurately represent the attack behaviors based on the existing
equences in BBDG4k. We introduce a parameter 𝛼 ∈ [0, 1] to describe the strength of the GPS spoofing attack or the percentage
f spoofed GPS coordinates in a trip. When 𝛼 = 0, there is no spoofing attack at all. If 𝛼 = 1, then all GPS coordinates in a trip
rajectory are spoofed by the attacker.
In our driving dataset, a trip includes both dashcam images and the recorded GPS locations. Given a trip 𝑗, we use different

pproaches to generate a GPS spoofed trip that simulates RSA and GSA, respectively. To begin with, let the number of GPS
oordinates to be spoofed be 𝑁𝑠𝑝 = ⌈𝛼 × 𝑗⌉, where 𝛼 is described above, and 𝑗 denotes the length of trajectory 𝑗. Then we
enerate faked GPS locations to replace the 𝑁𝑠𝑝 GPS locations of trip 𝑗 and, accordingly, update the GSV images for those spoofed
GPS locations. In RSA, 𝑁𝑠𝑝 GPS locations are randomly selected from trip 𝑗 and are replaced with random GPS points, i.e., there is
no relationship between the spoofed GPS locations. However, in SGA, we replace the last 𝑁𝑠𝑝 GPS points in trip 𝑗 using a segment
of continuous GPS points from a random trip (that trip needs to be longer than 𝑁𝑠𝑝). With both approaches, we generate a spoofing
trip 𝑗′. The GSV and dashcam image sequences of trip 𝑗′ form a negative pair. Note that the dashcam images of trip 𝑗′ are the same as
the original trip 𝑗. To eliminate any bias introduced by the imbalanced data in the training process, we generate the same number
of negative samples as positive samples. Here a positive sample is a pair of dashcam and GSV image sequences of a trip without spoofing.
To guarantee the generality of the model working in various lighting conditions, we balance the positive and negative pairs with the
same number of samples from various lighting conditions. We generate 10k positive pairs and 10k negative pairs for each experiment
10

setting.



Pervasive and Mobile Computing 100 (2024) 101916P. Jiang et al.

r
G
f
o
f

6

c
b
a
s

6

6

a
e
0
e
o
l
O
S
r

6

t
S
T
T
t
a
a

l
p

i
f
b
a

l
r
t
c

Table 5
Performance of SEEK+ compared with DeepPOSE in different lighting conditions.

Method Attack Sunny Cloudy Rainy Dark

Acc Precision Recall F1 Acc Precision Recall F1 Acc Precision Recall F1 Acc Precision Recall F1

SEEK+ RGA 0.940 0.923 0.960 0.941 0.915 0.895 0.940 0.917 0.827 0.816 0.844 0.830 0.852 0.798 0.942 0.864
SGA 0.920 0.894 0.953 0.923 0.890 0.860 0.931 0.894 0.808 0.803 0.816 0.809 0.825 0.780 0.906 0.838

DeepPOSE RGA 0.828 0.775 0.923 0.843 0.828 0.780 0.913 0.841 0.827 0.780 0.910 0.840 0.827 0.775 0.920 0.841
SGA 0.785 0.743 0.869 0.801 0.780 0.750 0.839 0.792 0.800 0.754 0.888 0.816 0.780 0.742 0.856 0.795

6.2. Experimental settings

6.2.1. Implementation details
SEEK+ is implemented in PyTorch [50]. Both dashcam and reference GSV images have the original size of 256 × 256 and are

esized to 128 × 128 after performing season alignment. The model is trained and evaluated on NVIDIA A6000 GPU with 64 GB
PU memory. A two-step training process is adopted. We first train the feature extractor on BDDG4k dataset. Then, we fix the
eature extractor and train the entire system of SEEK+. The batch size is 32, and the Adam optimizer is used with a learning rate
f 0.0001 based on the cosine scheduling. The whole training process takes 150 epochs, in which 50 epochs are used to train the
eature extractor first, and the rest 100 epochs are used to train the entire SEEK+ system for GPS spoofing detection.

.2.2. Evaluation metrics
We use the widely used standard performance metrics for classification, accuracy, precision, recall, and F1 score. As a

omparative study, we compare SEEK+ with DeepPOSE [32], which is the only other machine learning based approach that can
e applied to the BDD100K dataset. Other previous GPS spoofing detection studies [27,51] use totally different approaches that
re not comparable and rely on different assumptions, such as requiring multiple GPS receivers per system and/or ground-based
ensors/infrastructure, which are not applicable in the scenario of the BDD100K vehicle driving database we adopt.

.3. Performance of GPS spoofing detection

.3.1. Performance under different lighting conditions
Table 5 illustrates the classification results of the proposed GPS spoofing detector, SEEK+, including accuracy, precision, recall,

nd F1 score under different lighting/weather conditions, with the attack strength 𝛼 = 1, trip length  = 20 s, and the feature
xtractor from TransGeo. The classification accuracies of SEEK+ for RGA and SGA are 94% (F1 score: 0.941) and 92% (F1 score:
.923), respectively, under the sunny lighting/weather condition. The performance decreases if the lighting condition degrades. For
xample, under the dark lighting condition, the detection accuracy drops to 85% for RGA and 82% for SGA. Nevertheless, SEEK+
utperforms DeepPOSE under all lighting/weather conditions. It is also noted that the performance of DeepPOSE is similar under all
ighting conditions. This is because DeepPOSE utilizes the data from motion sensors that are not affected by the weather/lighting.
ne can also observe that the performance of SEEK+ for SGA is only slightly lower than the one for RGA. This demonstrates that
EEK+ is robust enough to detect smart GPS spoofing attacks such as SGA, which carefully crafts a spoofing trajectory that follows
eal road networks, speed limits, etc., and minimizes the difference as a legitimate trajectory.

.3.2. Performance impact of individual components of SEEK+
As discussed in Section 4, to overcome the challenges encountered in real-world driving scenarios, we have proposed four schemes

o transform the images, Trip Level matching (TL) of dashcam images, Image Normalization (NR), Blockage Removal (BR), and
eason Alignment (SA). We present how each of these proposed schemes improves the performance of GPS spoofing detection.
able 6 shows the results of applying those schemes. In the table, the scheme ‘‘TL only’’ means we only use the trip level matching.
hat is, we treat a sequence of images on a trip in the last  = 20 s as a basic unit for classification. As discussed in Section 4,
he image matching accuracy using a single image is around 52%, which would be closely relevant to the GPS spoofing detection
ccuracy. On the other hand, Table 6 indicates that using the TL scheme significantly increases the performance, with accuracy
bove 70% in the sunny weather/lighting condition and about 60% even in the dark lighting condition.
Adding the NR (image normalization) technique to the TL scheme further improves the performance. For instance, in the low-

ighting (dark) condition, the accuracy improves 12.2% for RGA and 10.7% for SGA. The table also indicates that NR brings higher
erformance lift for detection in the dark lighting condition than in the better lighting condition.
In contrast to the NR technique, the BR (blockage removal) technique brings a better improvement for the GPS spoofing detection

n good lighting conditions. For instance, it improves the accuracy by 7.9% and 6.1% (TL+BR vs. TL only) in low-lighting conditions
or RGA and SGA, respectively, whereas the accuracy improvement is 9.2% and 8.4%, respectively, in the sunny weather. This is
ecause, in the latter case, the objects in an image are easier to be identified. Therefore, the quality of the image is critical before
pplying block removal. Thus this observation guides the design of SEEK+, i.e., applies BR after NR in SEEK+ as shown in Fig. 7.
Table 6 also shows that the SA (season alignment) technique also effectively improves the performance of SEEK+ in both low

ighting and good lighting conditions. In the former case, the accuracy of SEEK+ is improved by 10.9% and 10.7% for RGA and SGA,
espectively, while in the latter case, the accuracy is improved by 7.9% and 5.7%, respectively. At last, as a result of applying all four
echniques, TL, NR, BR, and SA, the generalization ability of SEEK+ is significantly improved to address various lighting/weather
onditions, seasonal changes, and blockage to dashcam images.
11
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Table 6
Performance impact of different image processing techniques/schemes.

Schemes Attack Sunny Dark

Acc Precision Recall F1 Acc Precision Recall F1

TL only RGA 0.723 0.719 0.733 0.726 0.601 0.599 0.612 0.605
SGA 0.711 0.708 0.717 0.713 0.596 0.595 0.602 0.598

TL + NR RGA 0.803 0.783 0.840 0.810 0.723 0.712 0.750 0.730
SGA 0.770 0.772 0.767 0.769 0.702 0.687 0.742 0.713

TL + BR RGA 0.815 0.784 0.870 0.825 0.680 0.661 0.738 0.697
SGA 0.795 0.767 0.847 0.805 0.658 0.641 0.715 0.676

TL + SA RGA 0.802 0.782 0.836 0.808 0.710 0.693 0.755 0.722
SGA 0.768 0.751 0.803 0.776 0.703 0.685 0.753 0.717

All together RGA 0.940 0.923 0.960 0.941 0.852 0.798 0.942 0.864
SGA 0.920 0.894 0.953 0.923 0.825 0.780 0.906 0.838

Fig. 8. Accuracy of SEEK+ with regard to sequence length  when 𝛼 = 1: (a) for RGA, and (b) for SGA.

6.3.3. Impact of feature extractor
Fig. 8 shows the performance of SEEK+ in terms of the sequence length () under the good lighting condition. It also depicts

the performance of SEEK+ using different feature extractors, VGG16, L2LTR [13], and TransGeo [16], respectively. L2LTR and
TransGeo deviate from the conventional paradigm of feature extraction by their distinct module compositions. These modules have
been carefully crafted to capture similar attributes from distinct visual domains. Among these designs, L2LTR adopts vanilla ViT on
top of ResNet, yielding a composite amalgam of CNN and transformer components. This fusion creates a hybrid mix of convolutional
neural networks (CNN) and transformer components. Notably, L2LTR situates CNN in the first layer, constraining the utilization of
self-attention and positional embeddings to higher-level CNN features. However, this design choice comes at a trade-off. The global
modeling capabilities and positional insights that are integral to singular matches are not fully harnessed in L2LTR as effectively as
they are in TransGeo. Nonetheless, L2LTR makes up for this through its distinctive feature extraction approach at the level of trips,
yielding performance that can hold its own against TransGeo. Still, TransGeo gains a slight edge due to its efficiency in GPU memory
usage and its sleeker architectural configuration. At last, one can observe that in all scenarios, SEEK+ outperforms DeepPOSE. Note
that the sequence length, or trip length, also affects DeepPOSE, which utilizes the motion sensor data over a period of time to detect
GPS spoofing.

In terms of sequence length, as depicted in Fig. 8, it becomes evident that longer sequences contribute to enhanced performance.
Notably, the accuracy of SEEK+ exhibits a trend toward its peak as the sequence length extends to 20 s. Extending the sequence
to 30 s yields a marginal performance uptick, albeit at the cost of greater neural network complexity. This added intricacy results
in prolonged model training durations and increased inference time for the neural network’s outcomes. Further insights from the
outcomes presented in Fig. 9 illustrate that SEEK+ w.L2LTR demands 66% more time for inferring a pair of dashcam and GSV
sequences lasting 30 s compared to those lasting 20 s. Similarly, while SEEK+ w.TransGeo demonstrates quicker response times,
but the escalation in sequence length introduces a notable delay during the inference stage.

6.3.4. Performance with unknown vehicle dashcam orientation
In the dataset, BDDG4k, where dashcam sequences are aligned with Google Street View (GSV) images based on vehicle driving

orientation, an investigation was conducted to explore scenarios in which a number of GSV images might not be perfectly aligned
due to potential GPS drifting in urban environments. To replicate this situation, a simulation was devised wherein a certain number
of well-aligned GSV images within a sequence were randomly replaced with GSV images sampled from the same location but with
12
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Fig. 9. Average time consumption at inference stage on NVIDIA RTX 3080 GPU.

Table 7
Matching error when dashcam sequences are not perfectly aligned with GSV. SEEK+ w.TransGeo is selected, and
the sequence length is 20 s.
MAR New York City San Francisco

Sunny Dark Sunny Dark

10% 2.12 3.31 2.56 3.89
20% 5.43 7.12 7.94 9.12
30% 10.29 13.11 14.21 17.98
40% 14.32 16.01 17.43 19.62
50% 18.43 20.11 23.31 26.21

andomized heading directions. This ratio of substituted GSV images to the total GPS points was termed the Misalignment Ratio
MAR).
Interestingly, an elevated MAR did not adversely impact the detection of GPS spoofing attacks, namely RSA and SGA. However,

t did lead to an increase in false alarms, where legitimate trips were misclassified as spoofing instances due to the incongruity
etween the GSV images. Table 7 details the errors introduced in the matching process for benign trips within the BDDG4k dataset,
ith half originating from New York City and the other half sampled from San Francisco. In this analysis, SEEK+ with TransGeo was
mployed, and the sequence length was fixed at 20 s. As the MAR surpassed the 20% threshold, a notable surge in false alarm rates
ccurred due to the absence of accurate reference images during the matching phase. However, when contrasting the performance
etween New York City and San Francisco, it was observed that heading misalignment had a lesser impact on trajectory fidelity in
ew York City compared to San Francisco. This discrepancy can be attributed to the discrepancy in average trip distances; New York
ity has an average trip distance of 189 m, whereas San Francisco’s average distance is 250 m. The shorter average trip distance
n New York City increases the chances of capturing the missing view from misaligned GSV images in other GPS points, owing to
higher likelihood of overlapping reference images from the same vicinity.

.3.5. Resistance to stealthy GPS attacker
Next, we test the performance of SEEK+ with the presence of stealthy attackers who do not spoof the GPS signal until the vehicle

rives on a route that is similar enough to the spoofing route. To simulate the stealthy GPS spoofing attack, we control the attack
trength 𝛼 and change it from 0.2 to 1, which indicates the fraction of the number of GPS locations in a vehicle trajectory to be
poofed. Fig. 10 shows the accuracy of SEEK+ with different values of 𝛼, assuming the sequence length  = 20 s. From the figure,
hen the attack strength is higher, the detection accuracy of SEEK+ is also higher. When the attack strength is lower, i.e., the target
ehicle is lightly attacked, the detection accuracy decreases. Nevertheless, a low attack strength would also likely not succeed in
chieving the objective of the attackers, such as hijacking a target vehicle. We also compare SEEK+ with DeepPOSE in Fig. 10. It is
lear SEEK+ outperforms DeepPOSE, especially when the attack strength is lower.

. Conclusion

In this study, we introduced SEEK+, an innovative computer vision-based framework designed to identify GPS spoofing attacks
y leveraging dashcam images for accurate vehicle geo-localization. Recognizing the complexities inherent in real-world driving
nvironments – such as restricted fields of view, variable lighting conditions, obstructions in dashcam footage, and seasonal
ariations – we developed several advanced techniques to refine the image processing. These include trip level image-matching (TL),
13
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Fig. 10. Accuracy of SEEK+ compared with DeepPOSE v.s. the attack strength 𝛼, with  = 20, TransGeo feature extractor.

image normalization (NR), obstruction removal (BR), and seasonal adjustment (SA). Furthermore, we rigorously assessed SEEK+’s
effectiveness in real-world scenarios to validate its robustness and practical applicability. Our comparative analysis of SEEK+ against
the contemporary GPS spoofing detection method DeepPOSE across diverse conditions demonstrates SEEK+’s superior capability in
identifying spoofing incidents. Notably, SEEK+ achieves an impressive detection accuracy rate of up to 94% under favorable lighting
conditions. This evaluation underscores SEEK+’s potential as a robust and reliable solution for GPS spoofing detection in various
real-world applications.
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