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space, it introduces significant logistical challenges. However,
these challenges can be surmounted via a combination of mass
collaboration, automation (a use case is already present in the
aforementioned emotion perception example where Srinivasan
& Martinez, 2018, use a computer vision algorithm to annotate
action units in the internet images; Benitez-Quiroz et al., 2016;
Yitzhak et al., 2017), citizen science (Awad et al., 2018, 2020;
Hilton & Mehr, 2021), and gamification (Long, Simson,
Buxo-Lugo, Watson, & Mehr, 2023). In fact, Almaatouq et al.
already propose that these aforementioned solutions could be
deployed in the later stages of the integrative experiment design

Nonetheless, the application of these solutions for executing
high-throughput natural description should not be ignored, as
they amplify concerns about the up-front costs and inclusivity
of the integrative approach. Few research groups may have the
resources to implement an integrative experiment design, and
fewer groups still may be able to solve its unknown unknowns
problem during the research cartography stage. While we are
enthusiastic about the ideas in the target article, we believe it is
necessary to be explicit and constructive about the requirements
of an integrative experiment design approach.
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Abstract

This commentary argues against the indictment of current exper-
imental practices such as piecemeal testing, and the proposed inte-
grated experiment design (IED) approach, which we see as yet
another attempt at automating scientific thinking. We identify a
number of undesirable features of IED that lead us to believe
that its broad application will hinder scientific progress.

After so many years observing the prosecution of p-values and
everyday laboratory life, we are pleased to see a growing number
of researchers turning their attention to critical matters such as
theory development and experimentation (e.g., Proulx & Morey,
2021). But as we transition into these important new debates, it
is crucial to avoid past intellectual excesses. In particular, we
note a tendency to embrace passive technological solutions to
problems of scientific inference and discovery that make little
room for the kind of active theory building and critical thinking
that in fact result in meaningful scientific advances (see Singmann
et al., 2023). In this vein, we wish to express serious reservations
regarding Almaatouq et al.’s critique.

The observation of puzzling, incongruent, and incommensu-
rate results across studies is a common affair in the experimental
sciences (see Chang, 2004; Galison, 1987; Hacking, 1983). Indeed,
one of the central roles of experimentation is to “create, produce,
refine and stabilize phenomena” (Hacking, 1983, p. 229), which is
achieved through an iterative process that includes the ongoing
improvement of experimental apparati (see Chang, 2004;
Trendler, 2009) and relevant variables (Jantzen, 2021). This pro-
cess was discussed long ago by Maxwell (1890/1965), who
described it as removing the influence of “disturbing agents”
from a “field of investigation.”
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Looking back at the history of modern memory research, we
can identify this process in the development of experimental
tasks (e.g., recognition, cued recall) with clear procedures
(study/test phases) and stimuli (e.g., high-frequency words).
This process is also manifest in the resolution of empirical puz-
zles, such as the innumerous exceptions, incongruencies, and
boundary conditions encountered by researchers in the search
for the “laws of memory” (for a review, see Roediger, 2008).
Far from insurmountable, these empirical puzzles have been
continuously resolved through the interplay of tailored experi-
ments and theories (e.g, Cox &  Shiffrin, 2017;
Hotaling, Donkin, Jarvstad & Newell, 2022; Humphreys, Bain,
& Pike, 1989; Roediger & Blaxton, 1987; Seamon et al., 1995;
Turner, 2019; Vergauwe & Cowan, 2015). More specifically, can-
didate theories are constructed to explain existing results by pos-
tulating constructs (e.g., “trace strength”) and specifying how
those constructs are related to observables (e.g., “more study
time leads to more trace strength which leads to faster response
times”). These theories also specify what should not be relevant,
thereby identifying potential confounding variables that future
experiments should control. For an exemplary case, consider
the domain of short-term memory, where we can find a large
body of empirical phenomena (e.g., Oberauer et al., 2018) along-
side explanatory accounts that can accommodate them
(e.g., interference-based theories; see Lewandowsky, Oberauer,
& Brown, 2009).

Against this backdrop, it is difficult to find Almaatouq et al.’s
critique convincing. On the one hand, they fail to explain the suc-
cess of existing experimental practices (e.g., piecemeal testing) in
domains such as human memory. On the other, their treatment
case studies such as “group synergy,” which has amassed a wealth
of conflicting findings, do not include any indication that the pro-
cess described above has failed. This omission opens a number of
possible explanations. For example, incongruent results may
reflect experimental artifacts or hidden ceteris paribus clauses
and other preconditions (Meehl, 1990, p. 109) - can we really
say that these procedures have been thoroughly pursued?
Alternatively, incongruent results could be a sign that those
results should not be treated as part of the same “space” in the
first place, that is, that they do not define a cohesive body of
results that can be explained by a common theory.

Moving on to the actual proposal of integrated experiment
design (IED), we find its potential contribution to be largely
negative. Referring back to Maxwell’s (1890/1964) description,
what IED proposes is to allow “disturbing agents” back into the
“field of investigation” as long as they are appropriately tagged
and recorded. It is difficult to imagine how Newton’s laws of
motion could ever emerge from large-scale experiments evaluat-
ing different shapes of objects, velocities, viscosities, surface
textures, and so on. Our main concerns with IED are summarized
below:

(1) By placing a premium on commensurability, IED decreases
the chances of new and unexpected findings (Shiffrin,
Borner, & Stigler, 2018).

(2) By shifting researchers’ resources toward the joint observation
of a large number of factors, IED disrupts the piecemeal
efforts in experimentation and theorization that illuminate
the processes underlying human data generation. For
instance, it makes it difficult to tell an important result
from one caused by a confound (for discussions, see
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Garcia-Marques & Ferreira, 2011; Kellen, 2019; Shiffrin &
Nobel, 1997).

(3) IED turns existential-abductive reasoning on its head:
Instead of developing explanatory constructs (e.g., model
development) in response to existing covariational informa-
tion, a construct would be assumed a priori in the form of an
empty vessel, to be later infused by the results of an exper-
iment manipulating factors presumably related to it. For
instance, the construct “attention” would be identified
with the experimental manipulations thought to be relevant
to “attention.” This concern is materialized by the treatment
of the so-called Moral Machine, a statistical model summa-
rizing the observed relationships between moral judgments
and a host of variables, as a bona fide theory of moral
reasoning.

(4) By introducing a large number of factors, IED can easily
degrade researchers’ ability to identify which theoretical com-
ponents are doing the leg work and which ones are failing,
especially when compared to piecemeal testing (e.g.,
Birnbaum, 2008; Dunn & Rao, 2019; Kellen, Steiner,
Davis-Stober, & Pappas, 2020). The recent application of
IED to risky-choice modeling (Peterson, Bourgin, Agrawal,
Reichman, & Griffiths, 2021) illustrates this concern, as it is
unclear which specific circumstances are leading one choice
model to outperform another (e.g., is context dependency
driven by feedback?).

It is our judgment that there is no one best way to do science, and
that attempts to tell scientists how to do their job, including IED,
will slow and hinder progress. IED is solving a problem that does
not exist and introduces a problem that science should do
without.
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Abstract

Integrative experiment design is a needed improvement over ad
hoc experiments, but the specific proposed method has limita-
tions. We urge a further break with tradition through the use
of an enormous untapped resource: Decades of causal discovery
artificial intelligence (AI) literature on optimizing the design of
systematic experimentation.

Almaatouq et al. propose a break from tradition to accelerate sci-
entific progress, and we applaud them for it. However, we urge an
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even further shift to incorporate theory and methods from causal
discovery, a subfield of machine learning with decades of research
on artificial intelligence (AI)-guided causal learning and experi-
ment design. Causal discovery has not been well leveraged in
the experimental sciences perhaps because it also breaks from tra-
dition - statistical tradition.

Causal discovery contains a growing collection of methods for
learning multivariate structural causal models (Pearl, 2000; Spirtes
et al., 2000). Design spaces can be represented as a substructure of
a larger structural causal model (illustrated in Fig. 1), making
causal discovery closely aligned with research cartography. It is
not surprising then that some of the challenges faced by integra-
tive experiment design might be overcome with causal discovery.
We focus on three such challenges: Practical application and scal-
ability, confined inferential scope, and unknown causal factors.

Regarding the practical application of design spaces, causal dis-
covery can learn entire causal models from nonexperimental data
alone, but the direction of causal relationships can be difficult to
identify (Hoyer, Janzing, Mooij, Peters, & Schélkopf, 2008; Peters,
Janzing, & Scholkopf, 2011; Peters et al., 2014; Shimizu, Hoyer,
Hyvidrinen, & Kerminen, 2006; Shimizu et al., 2011; Spirtes
et al., 2000). Causal discovery can be applied to experimental
data to resolve this limitation. Multiple methods are capable of
combining datasets with: Both experimental and observational
samples, samples with nonidentical variables, and samples from
different contexts and populations (Bareinboim & Pearl, 2016;
Huang et al., 2020; Mooij, Magliacane, & Claassen, 2020; Peters,
Bithlmann, & Meinshausen, 2016). Incorporating these methods
could enable increased flexibility when dealing with practical
study design challenges.

Scalability is another practical issue: The size of these spaces
makes complete search infeasible. Causal discovery methods can
scale to large numbers of variables, however. Even a million var-
iables is possible (Ramsey, Glymour, Sanchez-Romero, &
Glymour, 2017), but this applies to sparse models. In sparse mod-
els, each variable is directly related to only a small number of
other variables. When variables have large numbers of interacting
causes, causal discovery also suffers scalability problems (Spirtes
et al., 2000). However, such situations may not be common in
reality. Like how linear and Gaussian modeling are surprisingly
effective, sparse models often capture the important elements of
a causal system. As alternatives, the active learning methods
Almaatoug et al. point to could be used, and active learning causal
discovery methods also exist (Ghassami, Salehkaleybar, Kiyavash,
& Bareinboim, 2018; Hyttinen, Eberhardt, & Hoyer, 2013a;
Lindgren, Kocaoglu, Dimakis, & Vishwanath, 2018).

Confined inferential scope limits the kinds of information that
can be learned. For example, let X, Y, and Z be variables. Some
study designs allow researchers to learn that X causes Z and Y
causes Z, but prevent researchers from learning whether X mediates
the effect of Y on Z. In a pair of papers, Mayo-Wilson (2011, 2014)
proved: (1) certain causal facts cannot be learned from a system of
experiments that each only investigate a single exposure-outcome
pair, (2) the proportion of unlearnable facts approaches 100% as
the complexity of the system increases, and (3) overcoming this
requires that each experiment measures more variables than an
exposure-outcome pair. By focusing on a single experiment under
different conditions, Almaatouq et al. are at risk of being confined
to a space of causal facts not much greater than the ad hoc exper-
imentation they are trying to break away from.

Researchers ought to simultaneously measure as many relevant
variables as possible. This happens naturally when planning to



