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ABSTRACT: The impact of interactive ocean dynamics on internal variations of Atlantic sea surface temperature (SST)
is investigated by comparing preindustrial control simulations of a fully coupled atmosphere–ocean–ice model to the same
atmosphere–ice model with the ocean replaced by a motionless slab layer (henceforth slab ocean model). Differences in
SST variability between the two models are diagnosed by an optimization technique that finds components whose variance
differs as much as possible. This technique reveals that Atlantic SST variability differs significantly between the two mod-
els. The two components with the most extreme enhancement of SST variance in the slab ocean model resemble the tripole
SST pattern associated with the North Atlantic Oscillation (NAO) and the Atlantic multidecadal variability (AMV)
pattern. This result supports previous claims that ocean dynamics are not necessary for the AMV, although ocean dynamics
lead to slight increases in the memory of both the AMV and the NAO tripole. The component with the most extreme
enhancement of SST variance in the fully coupled model resembles the Atlantic Niño pattern, confirming the ability of our
technique to isolate physical modes known to require ocean dynamics. The second component with more variance in the
fully coupled model is a mode of subpolar SST variability. Both the reemergence of SST anomalies and changes in ocean
heat transport lead to increased SST variance and memory in the subpolar Atlantic. Despite large differences in the mean
and variability of SST, atmospheric variability is quite similar between the two models, confirming that most atmospheric
variability is generated by internal atmospheric dynamics.

KEYWORDS: Atlantic Ocean; Model comparison; North Atlantic Oscillation; Ocean dynamics; Oceanic variability;
Sea surface temperature

1. Introduction

Atlantic sea surface temperature (SST) variations on de-
cadal to multidecadal time scales have been linked to nu-
merous climate phenomena in the Northern Hemisphere,
such as changes in the frequency and intensity of Atlantic
hurricanes, droughts in the Sahel, Arctic sea ice extent, and
precipitation and temperature over adjacent landmasses
(Folland et al. 1986; Enfield et al. 2001; Goldenberg et al.
2001; Sutton and Hodson 2005; Knight et al. 2006; Delworth
et al. 2007; Ting et al. 2011; Day et al. 2012; Zhang 2015;
Ruprich-Robert et al. 2017; Zhang et al. 2019). Thus, identi-
fying the mechanisms behind decadal SST variations is cru-
cial for providing reliable predictions of decadal variations.
In this paper, we focus solely on the mechanisms of inter-
nally generated Atlantic SST variability and do not consider
those generated by external forcing, such as aerosols (e.g.,
Booth et al. 2012; Undorf et al. 2018; Murphy et al. 2017;
Bellomo et al. 2018).

A null hypothesis to explain SST variability in the mid- and high
latitudes is the simple stochastic climate model of Frankignoul and
Hasselmann (1977). In this framework, the oceanmixed layer inte-
grates stochastic atmospheric forcing, resulting in a red spectrum
of SST variability. SST anomalies are damped by air–sea heat
fluxes with a damping time scale proportional to the mixed layer
depth. The Frankignoul and Hasselmann null hypothesis has been
successfully used to model extratropical SST variations and can
serve as a benchmark to diagnose the contribution of other
processes to SST variability, such as wind/buoyancy-driven
ocean currents and ocean–atmosphere coupling (Manabe and
Stouffer 1988; Seager et al. 2000, 2001; Pierce et al. 2001; Buckley
et al. 2014, 2015).

The Frankignoul and Hasselmann (1977) model provides a
framework by which spatial patterns of atmospheric variabil-
ity can be imprinted upon the ocean. For example, tripolar
SST anomalies seen in the North Atlantic are primarily the re-
sponse to the North Atlantic Oscillation (NAO; Cayan 1992a,b),
the dominant mode of atmospheric variability in the North
Atlantic (Hurrell et al. 2003; Cook et al. 2019). A positive phase
of the NAO is associated with stronger pressure differences be-
tween the subtropical high and subpolar low and a northward
shift of the easterlies and westerlies. The wind anomalies rein-
force the mean wind in the tropics and subpolar regions, leading
to increased heat fluxes out of the ocean and negative SST anom-
alies. Wind anomalies oppose the mean wind in the subtropics,
leading to reduced air–sea heat fluxes and warm SSTs. This pat-
tern is commonly referred to as the NAO tripole pattern, and
these anomalies are consistent with the Frankignoul–Hasselmann
mechanism.
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A natural question is whether SST patterns other than the
NAO tripole can be explained by this stochastic climate
model. Kushnir (1994) describes basinwide decadal SST pat-
terns that do not appear to be forced by the overlying winds
and asserts that these patterns are related to ocean dynamics.
The basinwide nature and the decadal time scales of the SST
anomalies described by Kushnir (1994) are now known as the
Atlantic multidecadal variability (AMV; Kerr 2000; Knight
et al. 2006; Gray et al. 2004; Knudsen et al. 2011; Mann et al.
2021). The AMV index is typically defined as SST anomalies
averaged over the North Atlantic basin from 08 to 608N with
the global warming signal removed, either through linear de-
trending or regression (Enfield et al. 2001; Deser and Phillips
2021). Subsequent studies argue that multidecadal variations in
the AMV arise from internal variations in the ocean, specifically
the Atlantic meridional overturning circulation (AMOC; Zhang
and Wang 2013; O’Reilly et al. 2016; Peings and Magnusdottir
2016; Delworth et al. 2017; Zhang 2017; Nigam et al. 2018;
Oelsmann et al. 2020).

Clement et al. (2015) challenge the hypothesis that the
ocean drives the AMV by showing that the AMV is similar
between fully coupled models (FCMs) and sister slab ocean
models (SOMs) in which the atmosphere interacts with a uni-
form 50-m depth motionless ocean. These results suggest that
the Frankignoul–Hasselmann stochastic climate model, aug-
mented by imposing structure of the stochastic forcing (e.g.,
NAO tripole pattern), primarily explains the AMV.

Clement’s study set off a vigorous debate on the mecha-
nisms of the AMV. Zhang et al. (2016) and O’Reilly et al.
(2016) argue that, while the spatial pattern of the AMV in
models without a dynamical ocean may be similar to that seen
in coupled models, the mechanisms that give rise to AMV differ
between models. Specifically, correlations between SST and air–
sea heat fluxes change sign with time scale in the FCM, indicating
that the atmosphere forces the ocean on short time scales, but
ocean dynamics forces SST anomalies on decadal time scales. In
contrast, the SOM SST anomalies are forced by the anomalous
air–sea heat fluxes on all time scales (Zhang et al. 2016; O’Reilly
et al. 2016). However, Cane et al. (2017) argue that correlations
between low-pass-filtered SST and air–sea heat fluxes cannot be
used to diagnose mechanisms, as even a small contribution from
ocean dynamics can generate correlations that suggest that SST
anomalies are forced by ocean dynamics. Zhang (2017) claimed
that Cane’s conclusions are invalid because they neglect ocean
damping. Z. Liu et al. (2023) apply the Zhang (2017) model for-
mulation to climate model simulations and observational data,
finding that in both their model and in observations, the ocean
forcing of the AMV is comparable with the atmospheric forc-
ing. Furthermore, Schneider et al. (2023) suggest that the results
of Cane et al. (2017) are based on the assumption that atmo-
spheric and ocean dynamical forcings are uncorrelated, an as-
sumption which is invalid for the real ocean. Delworth et al.
(2017) used numerical experiments designed to explore the re-
sponse to surface heat flux forcing related to the NAO in FCMs
and sister SOMs (in the Geophysical Fluid Dynamics Coupled
Model), concluding that AMV-like SST is driven by ocean dy-
namics in the FCM. Thus, the role of the ocean in Atlantic

decadal SST variability remains a topic of vigorous debate, with
a majority of studies focusing on the origin of the AMV.

In this paper, we determine which (if any) modes of Atlantic
SST variability require interactive ocean dynamics. For this
purpose, we follow Clement et al. (2015) and compare Atlantic
SST between the FCM and SOM. However, instead of focusing
on a single climate index like the AMV, we optimize a set of
indices to maximally distinguish between the two models. The
method for doing this is called covariance discriminant analysis
(CDA; DelSole and Tippett 2022). Unlike studies that focus
solely on the AMV, no filtering or preconceived ideas about the
structure of the modes are imposed. Instead, CDA systemati-
cally identifies the patterns whose variance differs as much as
possible between the two models.

2. Data

The datasets which we analyze are preindustrial control
runs of Community Earth System Model version 1.2 (CESM1)
FCM (Hurrell et al. 2013) and a sister SOM. For both the
CESM1 FCM and SOM, we analyze 900 years of monthly out-
put. Here, we describe these models in detail.

We use the CESM1 FCM in the same configuration as the
Large Ensemble (LENS) project (Kay et al. 2015). The com-
ponent models consist of the Community Atmosphere Model
version 5 (CAM5, 30 vertical levels; Neale et al. 2010), the
Parallel Ocean Program version 2 (POP2, 60 vertical levels;
Smith et al. 2010; Danabasoglu et al. 2012a), the Community
Land Model version 5 (CLM5; Lawrence et al. 2019), and the
Los Alamos Sea Ice Model (CICE; Hunke 2010). All compo-
nent models have approximately 18 horizontal resolution. Im-
provements to ocean model physical processes in POP2
[documented in Danabasoglu et al. (2012a)] include a new pa-
rameterization of density-driven overflows, which improves
the penetration of North Atlantic Deep Water, as compared
to observations (Danabasoglu et al. 2010).

Variability of the ocean circulation, in particular the AMOC,
in preindustrial control simulations of CESM1 is described in
Danabasoglu et al. (2012b, 2019). While we consider the prein-
dustrial control simulations of CESM1, it is worth noting that
comparisons between historical CESM1 simulations and ob-
servations show general model fidelity in the Atlantic basin
(Danabasoglu et al. 2012b). The observed AMV spatial pat-
tern is generally captured by regressions of the model-derived
AMV index onto modeled SST, although the standard deviation
of the simulated AMV and the low-frequency (multidecadal)
power are too weak compared to observations (Kim et al. 2018).

The CESM1 SOM uses the same atmosphere and ice model
as the FCM but is coupled to a motionless slab ocean on the
atmospheric grid (Murphy et al. 2021). The slab layer depth at
each grid point is set to be the corresponding annual average
MLD from the FCM preindustrial control run (Fig. 1a). In con-
trast, the slab depth was specified to be 50 m everywhere in the
CMIP3 SOMs analyzed in Clement et al. (2015); thus, the
CMIP3 SOMs have too high a heat capacity in the tropics and
too low a heat capacity at high latitudes. The CESM1 SOM has a
mean heat capacity that is more consistent with the FCM than
that of the CMIP3 SOMs.
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To maintain a similar seasonal climatology of SST as in the
FCM, the SOM implements a Q flux, representing the sea-
sonal climatology of ocean heat transport and mixing. From
the mixed layer heat budget of the FCM,

Qflux 5 Qnet 2 rcphmix

dTmix

dt
, (1)

where Qnet is the net surface heat flux, hmix is the MLD, Tmix is
the mixed layer temperature (assumed to be equivalent to SST),
r is the density of seawater, and cp is the specific heat of seawa-
ter. The seasonal climatology ofQflux is added to the energy bal-
ance equation in the SOM to maintain a mean and an annual
cycle of SST in the SOM that is similar to the FCM. Despite this,
the SOM has surface temperature (ST, equivalent to SST over
the open ocean) biases of;18 compared to the FCM (Fig. 1b).

Before proceeding, it is important to note that the SOM is
missing both one-dimensional and three-dimensional oceanic
processes. The SOM lacks (nonseasonal) variations in three-
dimensional ocean currents and thus ocean heat transports.
Additionally, the SOM lacks important one-dimensional pro-
cesses related to seasonal and interannual MLD variations.
The heat capacity of the SOM is too low in the winter and too
high in the summer, resulting in unrealistic summertime per-
sistence of SST anomalies (G. Liu et al. 2023). Because the
SOM has a layer depth that is fixed in time, the SOM cannot
simulate seasonal entrainment of waters.

To fairly compare the SOM and FCM, we need a common
basis set. For this basis set, we chose to use empirical orthogo-
nal functions (EOFs) from observational products. The use of
observational EOFs is common for multimodel studies, espe-
cially because using any other EOF set would raise questions
about whether the identified variability reflects that present in
the ocean. For SST, we use EOFs calculated using monthly
data (1945–2018) from Extended Reconstructed Sea Surface
Temperature, version 5 (ERSSTv5). ERSSTv5 is a monthly
28 3 28 SST product that reconstructs SSTs (defined as near-
surface temperatures from 0 to 5 m) from in situ ships, buoys,
and Argo floats (Huang et al. 2017). For analysis of sea level pres-
sure (SLP), we use monthly data (1948–2020) from the National
Centers for Environmental Prediction (NCEP)–National Center
for Atmospheric Research (NCAR) Reanalysis 1 project. The

NCEP–NCAR reanalysis contains monthly atmospheric variables
at a 2.58 3 2.58 resolution from 1948 to present and reconstructs
variables using data from ships, buoys, rawinsonde, pibal, air-
crafts, and satellites, among other data in conjunction with a state-
of-the-art global data assimilation system (Kalnay et al. 1996).

3. Methodology

a. Covariance discriminant analysis

Differences in variability between the two models are diag-
nosed by finding components whose variance differs as much as
possible between the two models using a technique called CDA
(DelSole and Tippett 2022). CDA maximizes variance ratios
between two datasets; the resulting ratios are called discrimi-
nant ratios. We apply CDA to identify differences in SST and
SLP variability between the SOM and FCM. Henceforth, the
subscript s will be used to denote quantities from the SOM and
the subscript c will be used to denote quantities from the FCM.

We first reduce the dimensionality of the problem by filter-
ing the data using the leading EOFs from observations. For
all EOF calculations, the Atlantic domain is defined to be the
Atlantic Ocean between 308S and 508N; the northern bound-
ary is at 508N in order to avoid regions of sea ice. One of the
most difficult aspects of CDA is deciding how many EOFs to
retain, and details of how EOF truncations are chosen are
presented in the appendix. Here, we retain 30 EOFs for both
our SST and SLP CDA analyses.

CDA is computed between two matrices Fs and Fc obtained
by multiplying the raw data from each model (As and Ac) by
the pseudoinverse of the observational EOFs (DelSole and
Tippett 2022), henceforth referred to as EOFy:

Fs︸︷︷︸
[N, T]

5 As︸︷︷︸
[N, S]

3 EOFy︸︷︷︸
[S, T]

, (2a)

Fc︸︷︷︸
[N, T]

5 Ac︸︷︷︸
[N, S]

3 EOFy︸︷︷︸
[S, T]

, (2b)

where N is the number of time steps, T is the number of
EOFs, and S is the number of spatial elements (i.e., number
of grid points). We define a projection vector qi, which when

FIG. 1. (a) Annual mean mixed layer depth in meters for the CESM1 FCM calculated using the boundary layer
depth (HBLT variable). The SOM configuration of CESM1 uses the time-average boundary layer depth as the slab
layer depth. (b) The mean ST bias between the SOM and FCM (SOM ST2 FCM ST).
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applied to Fs and Fc, respectively, results in time series rs,i
and rc,i:

rs,i 5 Fsqi, (3a)

rc,i 5 Fcqi: (3b)

The terms rs,i and rc,i are referred to as the SOM variate time
series and FCM variate time series, respectively.

The variance of each variate time series may be written as

ŝ2(rc,i) 5 qTi ŜCqi, (4a)

ŝ2(rs,i) 5 qTi ŜSqi, (4b)

where ŜC and ŜC are the sample covariance matrices in the
coupled and slab models, defined as

ŜC 5 FT
c Fc/N, (5a)

Ŝs 5 FT
s Fs/N: (5b)

CDA finds the qi that maximizes the variance ratio:

li 5
ŝ2(rs,i)
ŝ2(rc,i)

: (6)

This maximization problem leads to the eigenvalue problem:

ŜSqi 5 liŜCqi: (7)

This eigenvalue problem yields T eigenvalues, called discriminant
ratios li, that are ordered from largest to smallest. The corre-
sponding eigenvectors solve the maximization problem in the
sense that the first maximizes the variance ratio [Eq. (6)] among
all possible vectors qi, the second maximizes the variance ratio
such that the variates are uncorrelated with the first, and so on.
The last eigenvalue lT has the smallest variance ratio (and thus
the largest variance in the FCM relative to the variance in the
SOM). The qi are defined up to a constant factor (e.g., multiply-
ing qi by a constant factor does not change li). In CDA, it is stan-
dard to choose qi to give ŝ2(rc,i)5 1, which necessarily implies
ŝ2(rs,i)5 li.

Each component has a variance ratio li and an associated spa-
tial pattern called a loading vector. The loading vector pi can be
obtained from linear regression using either Fs or Fc, as we now
show. The loading vector is the vector pi such that rc,ip

T
i best ap-

proximates Fc in a least squares sense. The solution is

pi 5 FT
c rc,i(rTc,irc,i)21 5 FT

c rc,i/N 5 FT
c Fcqi/N 5 ŜCqi, (8)

where we have used the fact that rc,i is normalized to unit vari-
ance, and therefore, rTc,irc,i/N 5 1. Precisely, the same loading
vector is obtained from Fs:

pi 5 FT
s rs,i(rTs,irs,i)21 5 FT

s rs,i/(liN) 5 FT
s Fsqi/(liN) 5 ŜSqi/li

5 ŜCqi, (9)

where we have used the fact that the variance of rs,i is li, and
therefore, rTs,irs,i/N5 li. The reader should keep in mind that
CDA results in two variate time series, one for the SOM and
one for the FCM, but only one spatial pattern.

Standard significance tests are not applicable in our prob-
lem because the model output is serially correlated. Accord-
ingly, we adopt the following method to quantify significance.
We split time series from the FCM and SOM in half and apply
CDA to two halves of the same model. [The matrices Fs and
Fc in Eqs. (2) and (3) are now two halves of the same model.]
Results from two halves of the same model will be used to es-
timate the range of discriminant ratios under the null hypoth-
esis of no change in the underlying stochastic process. If
either the first or last discriminant ratios fall outside two stan-
dard deviations from the null cases, then we conclude that
there is a significant difference in variability between the
SOM and FCM.

Optimization may lead to discriminant ratios that are biased
toward extreme values (i.e., far from 1) due to overfitting, as qi
is calculated using data contained in Fs and Fc. Because of this,
we compute an unbiased estimate of the discriminant ratio,
called liu, in which one-half of the data is used for finding qi
and the other half is used for calculating the discriminant ratio.
Specifically, the projection vector is evaluated from one-half
of the data [F(1)

s and F(1)
c ], and this projection vector [denoted

as q(1)i ] is applied to the other half of the data [F(2)
s and F(2)

c ] to
calculate unbiased estimates of the variate time series r*s,i and
r*c,i, where

r*s,i 5 F(2)
s q

(1)
i , (10a)

r*c,i 5 F(2)
c q

(1)
i , (10b)

We then compute the variance ratio as

liu 5
ŝ2(r*s,i)
ŝ2(r*c,i)

: (11)

b. Divergence and total divergence

From CDA, we can determine if the variability differs be-
tween two models, but the differences are distributed over
T discriminant components. Thus, there is a need to summa-
rize overall model differences. Here, we introduce a quan-
tity called divergence (Kullback 1997) that allows us to
1) determine the total model difference, 2) determine the por-
tion of the total model difference explained by each compo-
nent, and 3) determine the contributions of the mean state to
the total model difference. It is worth noting that divergence
explains only the total model difference which is captured by
the EOF truncation.

For each discriminant component i, the divergence can be
written as the sum of the parts due to differences in internal
variabilityDy i

and differences in meansDmi
:

Di 5 Dy i
1 Dmi

: (12)

The termDy i
is calculated from the li terms as
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Dy i
5 li 1

1
li

2 2: (13)

The term Dmi
is equivalent to projecting the mean state dif-

ferences onto the discriminant components and then taking
the sum square:

Dmi
5

1
li

1 1
( )

[qTi (Fc 2 Fs)]2, (14)

where Fs and Fc are the time mean Fs and Fc from Eq. (2).
The total model difference can be quantified using a scalar

called the total divergence D . The total divergence is the sum
of the total divergence attributed to internal variability differ-
ences D y and to differences in mean states D m between the
two models:

D 5 D y 1 D m: (15)

where

D y 5 ∑
T

i51
Dy i

, (16a)

D m 5 ∑
T

i51
Dmi

: (16b)

The fraction of the total divergence associated with each com-
ponent is given by

Pi 5
Di

D
: (17)

4. Role of ocean dynamics in differences in monthly
SST variance

a. Does the SST variability differ between the SOM
and FCM?

To begin with a familiar and simple comparison of ST vari-
ability, we show the natural logarithm of the local ST variance
ratio (the SOM ST variance divided by the FCM ST variance)
at each grid point for monthly data with the seasonal cycle re-
moved (Fig. 2). Evaluating the significance of variance ratios
poses challenges due to the serial correlation inherent in our
time series, a condition unaccounted for by the standard F
test, which presupposes white noise. A frequently adopted so-
lution is to perform the F test utilizing an adjusted degree of
freedom, one informed by the autocorrelation function. De-
termining the exact adjustment proves to be difficult, but our
time series are so long that nearly any plausible estimate indi-
cates significant variance ratios over most of the ocean. For
instance, using 900 years of data and assuming a 2-yr e-folding
decay time (which is shown to be consistent with autocorrela-
tion functions of SST in section 4b) yields a 5%–95% interval
of [0.86, 1.17]. Ratios residing within this interval are deemed
insignificant and are stippled in Fig. 2.

Over most of the extratropical ocean, the SOM contains
significantly higher ST variance than the FCM (Fig. 2). In the

subpolar North Atlantic and off the coast of North America, the
SOM has about 4.5 times the monthly variance of the FCM. In
the tropical Atlantic, the FCM has more variance than the SOM,
containing about 2 times the monthly ST variance.

The generally higher variance of the SOM compared to the
FCM is due to the lack of oceanic damping in the SOM
(Zhang 2017). A primary source of oceanic damping is the verti-
cal entrainment of subsurface waters that occurs when the mixed
layer deepens in the fall/winter, generally referred to as entrain-
ment damping (Frankignoul 1985; Goodman and Marshall 1999;
Frankignoul et al. 2002; Mignot and Frankignoul 2003). A re-
cent study, which developed a stochastic model hierarchy and
applied it to the FCM and SOM, demonstrates that entrain-
ment is a key process that explains the reduced high-frequency
SST variance in the FCM as compared to the SOM (G. Liu
et al. 2023).

To ascertain if these SST variance differences can be ex-
plained by coherent patterns of variability, we apply CDA to
monthly (deseasonalized) Atlantic SST in the FCM and
SOM. As detailed earlier, we first filter the SST data using the
leading EOFs calculated over the Atlantic Ocean between
308S and 508N. We use an EOF truncation of T 5 30; the rea-
son for and sensitivity to this EOF truncation choice is de-
tailed in appendix (Fig. A1). The first 30 EOFs explain 86%
of the Atlantic SST variance for the FCM and 91% of the SST
variance for the SOM. The discriminant ratios (Fig. 3a) demon-
strate that Atlantic SST variability in the SOM and FCM is sig-
nificantly different. Overall, there are more components where
the SOM has significantly larger variance (li . 1) than compo-
nents where the FCM has more variance (li , 1). This is in line
with the finding that the SOM generally has higher variance
than the FCM (Fig. 2).

Now, we use divergence [Eqs. (12)–(14)] to quantify the rel-
ative importance of differences in the mean state (see mean

FIG. 2. The natural logarithm of the local ST variance ratio (the
SOM ST variance divided by the FCM ST variance) at each grid
point for monthly data with the seasonal cycle removed. Stippling
indicates where the log ratios are insignificant.
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ST difference between the FCM and SOM in Fig. 1b) and dif-
ferences in internal variability. Significant differences in cli-
matological SST exist between the FCM and SOM, but for
most components, the divergence (Fig. 3b, black line) is domi-
nated by differences in internal variability (Fig. 3b, blue line)
rather than the mean state (Fig. 3b, purple line).

b. Components explaining SST differences

In this section, we discuss in detail five components that differ
significantly between the SOM and the FCM (these components

are highlighted in Fig. 3). The three components with the most
extreme enhancement of SST variance in the SOM are called
SOM-SST-1, SOM-SST-2, and SOM-SST-3, respectively. SOM-
SST-1 has 4.4 times more variance in the SOM than the FCM
and explains 14% of the total divergence [calculated via Eq. (17)].
SOM-SST-2 has 3.4 times more variance in the SOM than the
FCM and explains 12% of the total divergence. SOM-SST-3 has
3.2 times more variance in the SOM than the FCM and explains
8% of the total divergence. We remark that SOM-SST-2 and
SOM-SST-3 have similar variance ratios and their ordering has
some sensitivity to truncation choice (Fig. A1), indicating that
these eigenmodes may not be separable. While one could choose
to exclude both components due to separability concerns, we
chose to include both components.

The two components with the most extreme enhancement
of variance in the FCM are called FCM-SST-1 and FCM-SST-2,
respectively. FCM-SST-1 has 4.1 times more variance in the
FCM than in the SOM and explains 11% of the total diver-
gence. FCM-SST-2 has 2.0 times more variance in the FCM
than in the SOM and explains 3.5% of the total divergence. The
pattern of FCM-SST-2 is somewhat sensitive to the EOF trun-
cation choice (Fig. A1). The sensitivity to EOF truncation, as
well as the relatively low variance ratio and divergence, suggests
that FCM-SST-2 may not be robust. Together, these five com-
ponents describe 49% of the total divergence between the
SOM and FCM.

In the remainder of this section, we discuss each component
in detail, including its spatial and temporal structure and the
aspects of ocean dynamics that may explain the differences in
variance between the SOM and the FCM. The spatial patterns
associated with the leading SST components are given by the
regression slope between the SST variate time series (inde-
pendent variable) and atmospheric and oceanic fields of inter-
est (dependent variable) at each grid point (Figs. 4, 6–8, 10,
and 11). As discussed in section 3a, in CDA, it is standard to
choose qi to give ŝ2(rc,i)5 1 and ŝ2(rs,i)5 li. However, when
presenting regression maps, it is attractive to compute regres-
sions based on time series with unit variance, so that the
squared regression coefficient equals the variance that is ex-
plained by the time series. Accordingly, when presenting re-
gression maps, we first normalize variates to have unit
variance and then compute regression coefficients using the
normalized variates.

As discussed in section 3a, the same loading vector (spatial
pattern) is obtained from regression of rs,i onto Fs and rc,i
onto Fc. Thus, when regressing normalized variate time series
for the SOM and the FCM onto Fs and Fc, respectively, one
obtains spatial patterns that are exactly a factor of

���
li

√
larger

in the SOM. Regression patterns also may be computed from
the raw (unfiltered) SST, As and Ac, which differ from the
loading vectors by including information from EOFs that
were truncated in CDA. However, the regression patterns ob-
tained with the EOF-truncated SST data and the raw SST
data are nearly the same because the 30 EOFs explain the ma-
jority of the SST variance. For the figures presented in this pa-
per, regression patterns computed from the raw data are
shown. The pattern correlation (over the CDA domain) of re-
gressions based on the FCM raw SST data and SOM raw SST

FIG. 3. CDA results comparing monthly Atlantic SST in the
FCM and SOM. (a) Discriminant ratios as a function of the dis-
criminant order for a 30-EOF truncation. The black lines show
the leading discriminant ratios when the variance ratio of the
SOM/FCM in Eq. (6) is maximized. The gray line shows the null
hypothesis of equal variability using two halves from the same
model (thick gray line is the mean and the gray shading shows
the range of two standard deviations). (b) Divergence representa-
tive of the discriminant ratios. The black lines show the divergence
(Di), the purple lines shows the divergence due to the difference in
means (Dmi

), and the blue lines denote the divergence due to dif-
ferences in internal variability (Dy i

). The gray shading is the null
hypothesis for divergence and the green shading denotes the null
hypothesis line for the divergence due to the mean; both null cases
are calculated using two halves from the same model.
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data is greater than 0.97 for all components analyzed here, im-
plying that our EOF truncation is sufficient. Although our
variate time series are derived for SST in the Atlantic region,
the regression patterns can be evaluated globally. The regres-
sion slopes are calculated using CDA computed on the full
900-yr dataset.

COMPONENTS WITH MORE VARIANCE IN SOM

The ST pattern for the component with the most extreme
enhancement of SST variance in the SOM (SOM-SST-1, la-
beled in Fig. 3a) is tripolar in structure (Figs. 4b,c) and is re-
lated to a stronger response of SST to the NAO-like
atmospheric variability in the SOM as compared to the FCM.
Comparing regression maps of the SOM variate on SOM ST
(Fig. 4b) and the FCM variate on FCM ST (Fig. 4c) shows
that, as expected (see section 4b), the spatial structure is
the same in both models (pattern correlation of 0.99 over the
CDA domain), but the magnitude of the ST anomalies in the
SOM is about two times larger than that in the FCM since���
l1

√
5 2:1. Power spectra of the (unnormalized) SOM and

FCM variates (Fig. 5a) demonstrate that the SOM variate has
more variance than the FCM variate at all frequencies, includ-
ing low frequencies.

Regressions of the SOM variate and the FCM variate onto
SLP show a weakened meridional climatological SLP gradient
(Figs. 4d,e), which strongly resembles the negative phase of
the NAO (Hurrell 1995). For a negative phase of the NAO,
wind speeds are decreased in the equatorial and subpolar re-
gions, leading to weaker heat fluxes out of the ocean (Figs.
4f,g) and warm SSTs (Figs. 4b,c). Wind speeds are increased
in the subtropics, leading to increased heat fluxes out of the
ocean (Figs. 4f,g) and cold SSTs (Figs. 4b,c). SOM-SST-1 shows a
canonical forcing-response relationship with a box-based NAO in-
dex (Fig. S1a in the online supplemental material), although
with modest correlations, which might be expected in compar-
ing two indices derived from different physical variables (SST
for SOM-SST-1 and SLP for the NAO) and different techniques
(CDA for SOM-SST-1 and a box-based index for the NAO).

Unlike the ST regressions, the magnitudes of the SLP regres-
sion patterns are nearly identical for the SOM (Fig. 4d) and the
FCM (Fig. 4e). Additionally, the Qnet anomalies are somewhat
weaker in the SOM (Fig. 4f) than in the FCM (Fig. 4g), imply-
ing that the larger SST variance in the SOM is not due to larger
air–sea heat fluxes. These results suggest that the NAO-like at-
mospheric variability and associated air–sea heat fluxes are
nearly the same in the two models, but the SST response in the
FCM is muted relative to the response in the SOM. That is,
ocean dynamics act to damp this atmospherically forced SST
pattern. The ocean dynamical processes responsible for damp-
ing atmospherically forced SST variations in the FCM com-
pared to those in the SOM are likely entrainment damping (see
section 4a).

In addition to differences in total SST variance for SOM-
SST-1, the SOM and FCM differ in the seasonal distribution
of this variance (Fig. 5d). The (unnormalized) SOM variate
has much higher variance than the (unnormalized) FCM vari-
ate in winter (more than 8 times more variance), while the

differences in variance in fall are more modest (SOM variate
has about 2 times more variance). Atmospheric variability is
stronger in wintertime, and as a result, Qnet has larger vari-
ance in winter than in summer in both the SOM and the FCM
(Fig. S2). In the SOM, the layer depth is constant in time, so
SST variance is also larger in wintertime as compared to sum-
mertime. In the FCM, several processes damp Qnet variations,
leading to a much smaller seasonal cycle of SST variance. The
mixed layer is deeper in winter, so the atmospheric forcing is
less efficient at changing SST, compensating for the larger
wintertime variance ofQnet. Second, in the FCM, entrainment
damps SST variability in fall and winter, as the mixed layer
deepens.

The SOM and FCM also differ in their characteristic time
scales of variability, as demonstrated by the seasonal autocor-
relation function (ACF) of the FCM and SOM variate time
series (Figs. 5g,j). The ACF is simply the correlation of time
lagged data; a seasonal ACF starting at a given month is sim-
ply the ACF where lag5 0 is restricted to a given month. The
SOM has unrealistically high summer persistence (Fig. 5g)
due to weak summertime stochastic forcing distributed over
an unrealistically deep layer (since the slab depth is set to be
the annual mean MLD, which is deeper than the summertime
MLD) (G. Liu et al. 2023). In contrast, the ACF from March
of the FCM variate (Fig. 5g) initially decays rapidly, as the
mixed layer shallows in summer resulting in more efficient
damping and stochastic forcing. The seasonal ACF from
March of the FCM variate shows a peak approximately 1 year
later (Fig. 5g). This peak is likely a signature of reemergence
of SST anomalies, in which SST anomalies formed during
wintertime are isolated beneath the seasonal thermocline dur-
ing summer and reemerge the following winter when mixed
layers deepen, leading to enhanced persistence. The impor-
tance of reemergence in setting the characteristic time scale of
the NAO tripole in observations was previously described by
de Coëtlogon and Frankignoul (2003) and Sukhonos and
Alexander (2023). The ACF from September of the FCM var-
iate and the SOM variate is nearly identical (Fig. 5j), further
suggesting that seasonal aspects dominate the differences be-
tween the FCM and SOM captured in SOM-SST-1.

A mode of variability which resembles the AMV emerges as
the component with the second most extreme enhancement of
SST variance in the SOM (SOM-SST-2); more details on the rela-
tionship between CDA components and the AMV are presented
in section 4d. The spatial pattern of ST associated with the SOM
and FCM variate time series has a characteristic horseshoe pat-
tern (Figs. 6c,d; pattern correlation is 0.99 over the CDA domain);
as expected, the amplitude of the pattern is about 2 times stronger
in the SOM than in the FCM (

���
l2

√
5 1:8). The SLP anomalies

associated with the SOM and FCM variate time series are
nearly identical (Fig. S3), implying that the atmospheric varia-
tions associated with SOM-SST-2 are the same in the SOM
and the FCM, but the response of the ocean is different.

Typically, ocean dynamics are implicated in SST variability
on longer time scales. As a result, we now examine whether
SOM-SST-2 has more variance in the SOM than in the FCM at
low frequencies or if the higher variance in the SOM is re-
stricted to high frequencies. Power spectra of the unnormalized
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FIG. 4. The leading component with enhanced SST variance in the SOM (SOM-SST-1; Fig. 3a). (a) A 100-yr
sample of the leading SOM variate (blue) and FCM variate (red) time series. The regression slope between the
normalized SOM variate and (b) ST, (d) SLP, and (f) Qnet. The regression slope between the normalized FCM
variate and (c) ST, (e) SLP, and (g)Qnet. The dots in (b)–(g) show where the regression is not significant at the
95% confidence level. In (d) and (e), the mean SLP field is shown in black contours with a contour interval of
2 mb (1 mb 5 1 hPa). The solid and dashed contours indicate SLP values above and below the standard aver-
age pressure at sea level (1013.25 mb), respectively. Regressions are computed with Qnet 1 month prior to the
variate time series. PositiveQnet means ocean gains heat from atmosphere.
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FCM variate and unnormalized SOM variate for SOM-SST-2
(Fig. 5b) demonstrate that the SOM variate has more variance
than the FCM variate at all frequencies, including low frequen-
cies. The SOM variate has more variance in the spring and
less in the fall (Fig. 5e) due to the larger winter-season Qnet

variations. In contrast, the FCM variate has more variance in
summertime (Fig. 5e), as a result of Qnet variations being dis-
tributed over the shallow summertime mixed layer and the re-
duction of SST variance in the fall/winter due to entrainment
damping. Modes with horseshoe structures that have maximal
variance in the summertime have been described previously
(Cassou et al. 2004; Wen et al. 2005; Frankignoul and Kestenare
2005; Gastineau and Frankignoul 2014).

The SOM variate and the FCM variate of SOM-SST-2 dif-
fer in memory, but only during the wintertime season. The
seasonal ACFs from September of the FCM variate and the
SOM variate are nearly identical (Fig. 5k). The seasonal ACF
from March shows an initially more rapid decay in the FCM

than in the SOM (Fig. 5h). In the FCM, memory is quickly
lost in summer due to the formation of the seasonal thermo-
cline, while the SOM has unrealistically high summer persis-
tence. The ACF of the FCM variate is larger than the ACF of
the SOM variate for lags greater than 1 year, and there is no
sign of seasonal reemergence of SST anomalies. These results
suggest that three-dimensional ocean dynamics may play a
role in enhancing interannual memory in the FCM (Zhang
et al. 2016; O’Reilly et al. 2016; Delworth et al. 2017; Li et al.
2020; Oelsmann et al. 2020), although the enhanced memory
in the FCM is modest and seasonally dependent.

The component with the third most extreme enhancement
of SST variance in the SOM (SOM-SST-3) is also tripolar in
structure (Figs. 7b,c, pattern correlation of the SOM pattern
and the FCM pattern is 0.99 over the CDA domain). However,
the tripole is shifted northward compared to SOM-SST-1, with
the middle lobe of the tripole centered off the Grand Banks.
A similar SST pattern to SOM-SST-3 was previously isolated

FIG. 5. Power spectra, variance distribution with month, and seasonal ACFs of the variate time series from the three components with
higher variance in the SOM. Power spectra of the unnormalized SOM variate (blue) and FCM variate (red) for (a) SOM-SST-1,
(b) SOM-SST-2, and (c) SOM-SST-3. The thick lines are the power spectral density, and the thin lines are the 95% confidence interval of the
power spectra. The variance of the unnormalized SOM variate (red) and FCM variate (blue) as a function of month for (d) SOM-SST-1,
(e) SOM-SST-2, and (f) SOM-SST-3. Seasonal ACF from March of the SOM variate (blue) and FCM variate (red) for (g) SOM-SST-1,
(h) SOM-SST-2, and (i) SOM-SST-3. Seasonal ACF from September of the SOM variate (blue) and FCM variate (red) for (j) SOM-SST-1,
(k) SOM-SST-2, and (l) SOM-SST-3. The dash-dotted blue lines in (g)–(l) indicate the level of correlations that are significantly different from
zero at the 95% confidence level.
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as the second EOF of North Atlantic SST [Figs. 3b,d of Buck-
ley et al. (2014) and Fig. 5b of de Coëtlogon and Frankignoul
(2003)]. As expected, the amplitude of the pattern is about 2 times
stronger in the SOM than the FCM (

���
l3

√
5 1:8). Similar to SOM-

SST-1 and SOM-SST-2, SOM-SST-3 is associated with SLP anom-
alies of similar pattern and amplitude in the SOM and FCM

(Figs. 7d,e). These results again suggest that the atmospheric vari-
ability is nearly the same in the twomodels, but the SST response
in the FCM is muted relative to the response in the SOM.

Power spectra of the (unnormalized) SOM and FCM vari-
ates (Fig. 5c) demonstrate that SOM variate has more variance
than the FCM variate at all frequencies, including low

FIG. 6. The second leading component with enhanced SST variance in the SOM (SOM-SST-2; Fig. 3a). (a) A 100-yr
sample of the normalized SOM variate (blue) and the normalized SOM AMV index (black); the correlation between
these two time series is r 5 0.76. (b) A 100-yr sample of the normalized FCM variate (red) and the normalized
FCM AMV index (black); the correlation between these two time series is r 5 0.63. (c) Regression slope
between the normalized SOM variate and SOM ST. (d) Regression slope between the normalized FCM variate
and FCM ST. (e) Regression slope between the normalized SOM AMV index and SOM ST. (f) Regression
slope between the normalized FCM AMV index and FCM ST. In (c)–(f), the dots indicate where the regression
is not significant at the 95% confidence level.
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frequencies, although there is significant overlap between the
95% confidence levels of the spectra. Similar to SOM-SST-1,
the variance differences are greater in winter (when the SOM
has up to 4.5 times more variance than the FCM) than in fall
(when the SOM has about 2 times more variance than the
FCM; Fig. 5f). Differences in the seasonal ACFs of the SOM
and FCM variates are modest, with signatures of enhanced
summertime persistence in the SOM and enhanced inter-
annual persistence in the FCM (Figs. 5i,l).

c. Components with more variance in the FCM

We now shift focus and discuss components that have more
SST variance in the FCM. A mode of variability that strongly
resembles Atlantic Niño emerges as the component with the
most extreme enhancement of SST variance in the FCM
(FCM-SST-1). Regression of the FCM variate time series
onto FCM ST (Fig. 8c) and the SOM variate onto SOM ST
(Fig. 8d) results in patterns (pattern correlation is 0.97 over
the CDA domain) that resembles that of the Atlantic Niño

FIG. 7. The third component with enhanced SST variance in the SOM (SOM-SST-3; Fig. 3a). (a) A 100-yr sample
of the normalized SOM variate (blue) and FCM variate (red) time series. The regression slope between the normal-
ized SOM variate and (b) ST and (d) SLP. The regression slope between the normalized FCM variate and (c) ST and
(e) SLP. The dots in (b)–(e) show where the regression is not significant at the 95% confidence level. In (d) and
(e), the mean SLP field is shown in black contours with a contour interval of 2 mb. The solid and dashed contours
indicate SLP values above and below the standard average pressure at sea level (1013.25 mb), respectively.
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(Figs. 8e,f), but the pattern has half the amplitude in the
SOM, as

�����
l30

√
5 0:5.

The correlation between the FCM-SST-1 variate time series
and box-based Atlantic Niño indices is r 5 0.85 in the FCM
(Fig. 8a) and r 5 0.58 in the SOM (Fig. 8b). The box-based
Atlantic Niño index has 2 times more variance in the FCM

than in the SOM. Regression patterns for ST based on the
box-based Atlantic Niño index are stronger and more concen-
trated on the equator in the FCM (Fig. 8e) and more diffuse
in the SOM (Fig. 8f). Prior studies have pointed out the pres-
ence of weak ENSO-like variability in models with only ther-
modynamic coupling (Dommenget 2010; Clement et al. 2011;

FIG. 8. The leading component with enhanced SST variance in the FCM (FCM-SST-1, Fig. 3a). (a) A 100-yr sample
of the normalized FCM variate (red) and the normalized FCMAtlantic Niño index (black), defined as the SST anom-
alies in the tropical Atlantic located between 38N–38S and 208W–08 (Zebiak 1993). The FCM variate and the FCM
Atlantic Niño index have a correlation coefficient of r 5 0.85. (b) A 100-yr sample of the normalized SOM variate
(blue) and the normalized SOM Atlantic Niño index (black). The SOM variate and the SOM Atlantic Niño index
have a correlation coefficient of r 5 0.58. (c) Regression slope between the normalized FCM variate and FCM ST.
(d) Regression slope between the normalized SOM variate and SOM ST. (e) Regression slope between the normal-
ized FCM Atlantic Niño index and FCM ST. (f) Regression slope between the normalized SOM Atlantic Niño index
and SOM ST. In (c)–(f), the dots indicate where the regression is not significant at the 95% confidence level.
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Zhang et al. 2014), and these dynamics likely explain the
weak Atlantic Niño mode found in the SOM.

Power spectra of the (unnormalized) SOM and FCM vari-
ates (Fig. 9a) demonstrate that the FCM variate has more var-
iance than the SOM variate at all frequencies. The variance
difference between the SOM and FCM is concentrated in the
summer months (in July, the FCM variate has about 13 times
more variance than the SOM variate), while the variance dif-
ferences in other seasons are small (Fig. 9c). It is well known
that Atlantic Niño peaks in the summertime (Zebiak 1993;
Keenlyside and Latif 2007; Prodhomme et al. 2019). The per-
sistence of the SOM and FCM variates is limited to a few
months (Figs. 9e,g), in accord with the characteristic time
scales of Atlantic Niño (Dippe et al. 2018).

It is widely accepted that the Atlantic Niño arises from
mechanisms similar to the Pacific Niño, which includes a sig-
nificant role for downwelling oceanic Kelvin waves and a
Bjerknes feedback (see SLP signature in Fig. S4), both of
which require interactive ocean dynamics (Xie and Carton
2004; Foltz and McPhaden 2010; Lübbecke and McPhaden
2017; Dippe et al. 2018; Silva et al. 2021). Atlantic Niño arises
organically as a component containing more SST variance in
the FCM, confirming that CDA can isolate the dynamical
modes of SST variability related to ocean dynamics using only
the raw SST fields.

A mode of SST variability that is concentrated in the subpolar
North Atlantic emerges as the component with the second most

extreme enhancement of SST variance in the FCM (FCM-SST-2).
SST variance differences are concentrated in the region east of
the Grand Banks (termed the subtropical–subpolar “transition
zone”; see Buckley and Marshall 2016) with smaller magni-
tude anomalies of the opposite sign in the central subpolar
gyre (Figs. 10b,c; pattern correlation over CDA domain is
0.97). The ST anomalies are about 30% weaker in the SOM,
as

�����
l29

√
5 0:7. It is worth mentioning that the precise pattern

and significance of FCM-SST-2 depend somewhat on the EOF
truncation used (Fig. A1), but regardless of the EOF truncation,
we see that the variance differences are concentrated in the sub-
polar North Atlantic. The fact that we find modes of SST vari-
ability in the subpolar North Atlantic that have more variance in
the FCM than in the SOM is in line with previous studies that
suggest the importance of ocean dynamics in setting SST in sub-
polar regions (Buckley et al. 2014, 2015; Buckley and Marshall
2016; Piecuch et al. 2017; Delworth et al. 2017; Wills et al. 2019).

Power spectra of the (unnormalized) SOM and FCM vari-
ates (Fig. 9b) demonstrate that the FCM has more variance
than the SOM at all frequencies, although there is significant
overlap between the spectra. The variance ratio does not dif-
fer substantially with season, and both the FCM and SOM
variates have maximum variance in the summertime (Fig. 9d).
The seasonal ACF of the FCM variate starting in March
shows an initial decay followed by an increase about 1 year
later (Fig. 5f), which suggests that reemergence enhances the
persistence of the FCM-SST-2 component in the FCM. Both

FIG. 9. Power spectra, variance distribution with month, and seasonal ACFs of the variate time series for the two modes with higher var-
iance in the FCM (FCM-SST-1 and FCM-SST-2). Power spectra of the unnormalized SOM variate (blue) and FCM variate (red) for
(a) FCM-SST-1 and (b) SOM-SST-2. The thick lines are the power spectral density and the thin lines are the 95% confidence interval of the
power spectra. The variance of the unnormalized SOM variate (red) and FCM variate (blue) as a function of month for (c) FCM-SST-1 and
(d) FCM-SST-2. Seasonal ACF fromMarch of the SOM variate (blue) and FCM variate (red) for (e) FCM-SST-1 and (f) FCM-SST-2. Seasonal
ACF from September of the SOM variate (blue) and FCM variate (red) for (g) FCM-SST-1 and (h) FCM-SST-2. The dash-dotted blue lines in
(e)–(h) indicate the level of correlations that are significantly different from zero at the 95% confidence level.
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FIG. 10. The second leading component with enhanced SST variance in the FCM (FCM-SST-2;
Fig. 3a). (a) A 100-yr sample of the normalized FCM variate (red) and SOM variate (blue). Regres-
sion slope between the FCM variate time series and (b) FCM ST, (d) FCM Qnet, and (f) FCM SLP.
Regression slope between the SOM variate time series and (c) SOM ST, (e) SOM Qnet, and
(g) SOM SLP. In (b)–(g), the black dots show grid points where the regression is not significant at
the 95% confidence level. Regressions are computed with Qnet 1 month prior to the variate time
series. Positive Qnet means ocean gains heat from atmosphere. In (f) and (g), the mean SLP field is
shown in black contours with a contour interval of 2 mb. The solid and dashed contours indicate the
SLP values above and below the standard average pressure at sea level (1013.25 mb), respectively.
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the seasonal ACF of the FCM variate from March (Fig. 5f)
and September (Fig. 5h) show modest interannual persistence
that appears unrelated to reemergence, while neither of the
seasonal ACFs of the SOM variate show interannual persis-
tence (Figs. 5f,h).

To gain insight into the mechanisms associated with compo-
nent FCM-SST-2, we compute regression maps with selected
oceanic and atmospheric variables (Figs. 10d–g and 11). In
the SOM, Qnet 1 month prior forces the SST anomalies, as
must be the case since air–sea heat fluxes are the only mecha-
nism for creating SST anomalies in the SOM (Figs. 10c,e). In
contrast, in the FCM, the relationship between SST and Qnet

1 month prior is not a simple forcing or damping, but rather
Qnet patterns that are shifted relative to the SST patterns
(Figs. 10b,d). Anomalies in Qnet damp the SST anomaly at
the location of the maximum anomaly, but force SST anoma-
lies downstream.

The SLP patterns associated with FCM-SST-2 (Figs. 10f,g)
are significantly stronger in the FCM than in the SOM. Since
the SOM and FCM differ only in their oceans, these SLP vari-
ance differences must originate from the SST or sea ice vari-
ance differences, specifically the stronger SST signature of
this component in the FCM as compared to the SOM. Recent
studies indicate that the atmosphere has a robust response to
SST anomalies over western boundary current extensions
(Wills et al. 2016; Bishop et al. 2017; Small et al. 2019), such
as the Gulf Stream Extension/North Atlantic Current (where
we see maximal SST anomalies in FCM-SST-2). Our results
are also consistent with the negative NAO response resulting
from cooling in the central subpolar Atlantic and warming
along the Gulf Stream path seen by Karnauskas et al. (2021).

Differences between the SOM and FCM may be due to
either one-dimensional mixed layer processes (e.g., seasonal var-
iations in heat capacity and entrainment) or three-dimensional

ocean dynamics (e.g., the AMOC and gyre circulations). Regres-
sion slopes between the FCM variate time series and the MLD
are of small magnitude (maximum of 20 m; not shown) and ex-
plain very little of the MLD variance (maximum of less than 5%
of the variance), suggesting that the role of interannual variations
in the MLD is small. FCM-SST-2 is associated with positive sea
surface height (SSH) anomalies in the western subtropical and
subpolar gyres (Fig. 11a), consistent with a strengthened sub-
tropical gyre, a weakened subpolar gyre, and an increased pene-
tration of subtropical waters into the subpolar gyre, a mode of
SSH variability that has been described previously (Häkkinen
and Rhines 2004; Böning et al. 2006; Häkkinen and Rhines 2009;
Häkkinen et al. 2011; Holliday et al. 2008, 2015; Piecuch et al.
2017; Desbruyères et al. 2021). The maximum SSH anomalies
are located along the path of the North Atlantic Current, and in
this region, the mode of variability locally explains about 30% of
the monthly anomalies of SSH (Fig. 11a).

The Atlantic ocean heat transport (AOHT) signature asso-
ciated with FCM-SST-2 is quite weak, with maxima on the or-
der of a few hundredths of a petawatt, only a few percent of
the annual mean AOHT, which has a maximum of about
1.2 PW in CESM1 (see Fig. 2 in Larson et al. 2020). The por-
tion of the local AOHT variance that is explained by the FCM
variate has a maximum of only 7%. However, the AOHT varia-
tions which precede the FCM variate leads to the convergence
of heat between 358 and 508N, consistent with the positive SST
anomalies in the Grand Banks region. The divergence of
AOHT north of 508N is consistent with the weaker negative
SST anomalies found in the central and eastern subpolar gyre
north of 508N. A back of the envelope calculation suggests that
an AOHT convergence of 0.03 PW sustained over 2 years could
change the temperature by 0.58C if the convergence occurs in a
relatively small region (108 latitude and 208 longitude and over
the top 500 m). However, a formal heat budget would be

FIG. 11. Relationship between FCM-SST-2 (Figs. 3a and 10a,b) and ocean processes. (a) Regression of the FCM
variate with SSH. Regression slope is shown in colors, and R2 of the regression is shown in black contours, with con-
tours at levels [0.1, 0.2, 0.3]. (b) Lagged correlation of the FCM variate and the AOHT as a function of latitude and
lag. Negative (positive) lags imply that the AOHT precedes (follows) the variate time series. The regression slope is
shown in colors, and R2 is shown in the black contour; the contour is at a level of 0.05. In both panels, regressions that
are not significant at the 95% confidence level are stippled white.
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required to quantitatively determine the role of AOHT in the
SST anomalies associated with FCM-SST-2.

d. Relationship between CDA components and the AMV

The AMV index, defined as SST anomalies averaged over
the North Atlantic basin from 08 to 608N, is significantly stron-
ger in the SOM than in the FCM; the variance of the AMV in-
dex in SOM divided by variance of the AMV index in the
FCM is 2.2. The spatial patterns of the AMV in the SOM
(Fig. 6e) and in the FCM (Fig. 6f) show a characteristic horse-
shoe structure, and the amplitude of AMV-related SST anom-
alies in the subpolar North Atlantic is stronger in the SOM
than in the FCM. The fact that the AMV mode has more vari-
ance in the SOM than in the FCM confirms ocean dynamics
are not necessary for the AMV, in line with Clement et al.
(2015), and interactive ocean dynamics damps the AMV.

As mentioned earlier, the ST regression patterns associated
with SOM-SST-2 resemble the AMV. For SOM-SST-2, the cor-
relation coefficient between the SOM variate time series and the
SOM AMV index is r 5 0.76 (Fig. 6a); the correlation between
the FCM variate time series and the FCMAMV index is weaker,
with a correlation r 5 0.62 (Fig. 6b). The coherence between
SOM-SST-2 variates and the AMV index is strongest at low
frequencies for both the SOM variate and the FCM variate
(Fig. S5). The AMV index in the SOM is also correlated with
the SOM variate of SOM-SST-1 (correlation of 0.33 when SOM
variate precedes the AMV by 2 months, see Fig. S5a) and to a
lesser extent the SOM variate of SOM-SST-3 (correlation of 0.29
of when SOM variate precedes the AMV by 1 month; see Fig. S5a).
The strong coherence between the SOM-SST-1 SOM variate
and the SOM AMV at low frequencies (max r ’ 0.85 occurs at
a time scale of approximate 50 years; see Fig. S5a) suggests
that the NAO tripole strongly projects onto the AMV at low
frequencies. It is not surprising that large-scale atmospheri-
cally forced modes of variability project strongly onto a basin-
wide index such as the AMV, particularly in the SOM where
SST variability can only be due to stochastic atmospheric
forcing.

In the FCM, FCM-SST-2, the subpolar mode of SST variabil-
ity, is also correlated with the AMV (correlation of 20.31 when
the FCM variate follows the AMV by 1 month; see Fig. S5c).
The importance of subpolar SST anomalies for low-frequency
AMV variability has been noted previously (Zhang and Zhang
2015; Zhang 2017; Kim et al. 2019; Yan et al. 2019; Li et al.
2020). Some studies have suggested alternative AMV indices
that specifically isolate SST variability in the subpolar gyre (Yan
et al. 2019; Wills et al. 2019). For example, Wills et al. (2019)
calculate an AMV index based on low-frequency component
analysis and find that the SST anomalies associated with this
index are restricted to subpolar regions.

While the distribution of AMV-related SST variance among
multiple CDA components may make it more difficult to relate
our analysis to prior literature on AMVmechanisms, recent work
has shown that basinwide SST variability is set by a mix of differ-
ent processes that are important on different time scales and in
different regions (Vecchi et al. 2017; Li et al. 2020). Our analysis
confirms that basinwide SST variability is set by a mix of

processes, and the specific mix of processes differs between the
SOM and FCM. In the SOM, the AMV is set by several at-
mospherically forced modes of SST variability, including a
tripole-like mode (SOM-SST-1) and a horseshoe-like pattern
(SOM-SST-2). The AMV in the FCM is also related to a
atmospherically forced mode with canonical horseshoe struc-
ture (SOM-SST-2), but a subpolar mode with elevated vari-
ance in the FCM (FCM-SST-2) also influences the basinwide
SST. This CDA component captures the role of ocean dynamics
in enhancing AMV variance.

5. Sensitivity analysis: Role of ocean dynamics in annual
SST differences

Since CDA maximizes variance ratios, the results of CDA
may depend on the frequency of the output analyzed. In this
section, we apply CDA to annual average Atlantic SST in the
FCM and SOM and compare to our results from CDA analysis
using monthly (deseasonalized) SST. We use the same EOF
truncation for our annual CDA analysis. The discriminant ratios
(Fig. 12) demonstrate that Atlantic SST variability in the SOM
and FCM are significantly different. As for the monthly CDA
analysis, there are more components where the SOM has signifi-
cantly larger variance (li . 1) than components where the FCM
has more variance (li , 1). The variance ratios for the annual
CDA analysis (blue line in Fig. 12) are significantly larger than
those from the monthly CDA analysis (black line in Fig. 12).

Because annual averaging reduces the degrees of freedom,
overfitting is a concern. To assess overfitting, we compute

FIG. 12. A comparison of CDA analyses based on annual mean
SST and monthly (deseasonalized) SST (both cases use a 30-EOF
truncation). The discriminant ratios as a function of discriminant
order [Eq. (6)] for the monthly and the annual CDA analysis are
shown in the black and blue lines, respectively. The null hypotheses
of equal variability using two halves from the same model for the
monthly and annual CDA analysis are shown by the gray and cyan
lines, respectively (thick line is the mean and the shading shows the
range of two standard deviations). The unbiased discriminant ratios
[Eq. (11)] for the monthly and annual CDA analysis are shown by
the pink and orange lines, respectively.
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unbiased estimates of the discriminant ratios liu, in which
one-half of the data is used for finding qi and the other half is
used for calculating the discriminant ratio [see Eqs. (10) and
(11)]. For the yearly CDA analysis, the liu (orange line in
Fig. 12) are generally smaller than the li (blue line in Fig. 12),
implying that the larger variance ratios found for the annual
CDA analysis are due to overfitting. For the monthly CDA
analysis, the liu (pink line in Fig. 12) and the li (black line in
Fig. 12) are nearly identical, suggesting that overfitting does
not affect the monthly CDA analysis. Furthermore, the liu
from the yearly analysis (orange line) and the li from the
monthly analysis (black lines) are very similar, confirming
that after we account for overfitting, discriminant ratios are
not dependent on the frequency of the output analyzed.

The components isolated from our annual CDA analysis
are quite similar to those isolated from our monthly CDA
analysis. The component with the most extreme enhancement
of variance in the FCM remains a tropical mode that is highly
correlated with Atlantic Niño; the correlation of the FCM
variate with the FCM Atlantic Niño index is 0.83, and the cor-
relation of the SOM variate with the SOM Atlantic Niño
index is 0.46.

The component with the most extreme enhancement of
variance in the SOM (SOM-SST-1A) is tripolar in structure
(Figs. 13c,d), similar to the leading component with more
variance in the SOM from the monthly CDA SST analysis
(SOM-SST-1; Fig. 4). However, the subtropical anomalies for
SOM-SST-1A are somewhat weaker than for SOM-SST-1,
and thus, SOM-SST-1A projects more strongly onto the
AMV than SOM-SST-1 (although not as strongly as SOM-
SST-2). For SOM-SST-1A, the correlation of the SOM variate
with the SOM AMV index is 0.66 and the correlation of the
FCM variate with the FCM AMV index is 0.36 (Figs. 13a,b).
In the SOM, Qnet anomalies force ST anomalies associated
with SOM-SST-1A (Figs. 13c,e), as they must since there is no
other means for creating ST anomalies. In the FCM, the rela-
tionship between anomalies of ST and Qnet is more complex
(Figs. 13d,f). The regions of maximum Qnet anomalies are
somewhat displaced from the regions of maximal SST anoma-
lies, and in a few regions (e.g., the West Greenland and Lab-
rador Currents),Qnet damps the ST anomalies.

The mode with the second most extreme enhancement
of variance in the SOM resembles SOM-SST-3, and this
component does not exhibit a strong relationship with the
AMV. These results suggest that for annual and longer time
scales, the NAO tripole and the AMV are not distinguish-
able in our statistical analysis. A possible hypothesis is that
the AMV is simply the longer time-scale response to the
NAO. Tropical processes, such as wind–evaporation feed-
back, may enhance the persistence of NAO-related SST
anomalies in the tropics, while processes such as reemer-
gence may enhance NAO-related SST anomalies in the sub-
polar gyre. Enhanced persistence of SST anomalies in the
tropics and subpolar gyre, without such enhanced persis-
tence in the subtropics, may lead the NAO tripole to decay
into a horseshoe-shaped structure, which is the canonical
AMV pattern.

6. Do SST differences lead to atmospheric differences?

The SOM and FCM have exactly the same dynamics, ex-
cept that the SOM has no interactive ocean dynamics.
Therefore, the cause of any model differences, even in the
atmosphere, is due to interactive ocean dynamics. A natural
question is what is the impact of changing ocean dynamics
on the atmosphere? To answer this question, we apply CDA
to SLP in the Atlantic region to test equality of atmospheric
variability between the SOM and FCM. For this analysis, we
consider monthly (deseasonalized) SLP. The resulting discrimi-
nant ratios for SLP (Fig. 14a) are much closer to one than those
for SST, but the most extreme discriminant ratios are statisti-
cally significant (SOM-SLP-1 and FCM-SLP-1; Fig. 14a).

Analysis of divergence reveals that the leading component
with the most extreme enhancement of SLP variance in the
SOM (SOM-SLP-1) is primarily due to differences in the
mean SLP (Fig. 14b). In contrast, the leading component with
the most extreme enhancement of SLP variance in the FCM
(FCM-SLP-1) is primarily due to differences in internal SLP
variability between the SOM and FCM (Fig. 14b). SOM-SLP-1
describes 45.5% of the total divergence, and FCM-SLP-1 de-
scribes 16.5%; together, these two components describe 62% of
the total SLP divergence.

The SLP differences between the FCM and the SOM are
clearly related to SST and/or sea ice differences, but the com-
ponents isolated from the SLP analysis are a mixture of the
SST CDA components. The spatial patterns of SLP and ST
associated with FCM-SLP-1 (Figs. 15c–f) resemble those of
Atlantic-Niño/FCM-SST-1 (Figs. 8c,d and Fig. S4) in the trop-
ical Atlantic. However, the midlatitude ST and SLP structures
of FCM-SLP-1 differ substantially from those of FCM-SST-1
(cf. Figs. 15c–f to Figs. 8c,d and Fig. S4). The ST signatures
over land are more substantial, and the SLP anomalies over the
midlatitudes are much larger for FCM-SLP-1 than FCM-SST-1.
Despite a meridional dipole structure in SLP, FCM-SLP-1 is
not strongly correlated with the NAO (Fig. S1b) in either the
SOM (r 5 0.11) or the FCM (r 5 0.13).

In the North Atlantic, the spatial patterns of SLP associated
with SOM-SLP-1 are dipolar in structure (Figs. 16b,c), and the
ST patterns exhibit tripolar structures (Figs. 16d,e). The im-
portance of the differences in mean to the divergence of
SOM-SLP-1 suggests that the mean ST bias between the SOM
and the FCM is important to explain the structure of SOM-
SLP-1. Additionally, SST variance differences associated with
SOM-SST-1, SOM-SST-2, and SOM-SST-3 explain a total of
50% of the variance of SOM-SLP-1 for the SOM and 26% of
the variance of SOM-SLP-1 for the FCM.

7. Can memory differences fully explain SST differences
between the SOM and FCM?

It is possible that the difference between the SOM and
FCM can be explained simply as a difference in memory time
scale. To investigate this possibility, we regress out SST
1 month prior from each row of Fs and Fc [Eq. (2)] and per-
form CDA on the residuals. Regressing out SST information
from 1 month prior removes both memory and potentially
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active ocean dynamics, which are captured within the lagged
relationships between the principal component time series
used to comprise Fs and Fc. We find that regressing out SST
1 month prior reduces the SST variance differences between
the SOM and FCM (cf. Fig. 17a, gray and black lines). More
variance is removed from the SOM than from the FCM

(discriminant ratios shift downward), making them more
symmetrical about li 5 1.

We utilize the resulting discriminant ratios from each
analysis to calculate total divergence values (Fig. 17b); only
total divergences due to internal variability [D y , Eq. (15)]
are considered because the residuals have zero mean. If

FIG. 13. CDA analysis of annual SST data: the leading component with enhanced SST variance in the SOM (SOM-
SST-1A in Fig. 12). (a) A 100-yr sample of the normalized SOM variate (blue) and the normalized SOM AMV
(black). The correlation of the SOM variate and the SOM AMV is 0.66. (b) 100-yr sample of the normalized FCM
variate (red) and the normalized FCMAMV (black). The correlation of the FCM variate and the FCM AMV is 0.36.
The regression slope between the normalized SOM variate and (c) ST and (e) Qnet. The regression slope between the
normalized FCM variate and (d) ST and (f) Qnet. The dots in (c)–(f) show where the regression is not significant at the
95% confidence level. Regressions withQnet in (e) and (f) are computed withQnet 1 year prior to the variate time series.
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D y has a value that overlaps with the 95% confidence inter-
val from the null hypothesis (Fig. 17, gray shading), the
models are said to have indistinguishable internal variabil-
ity. We find that the original case has a divergence value of
about 8. After we regress out SST 1 month prior, D y re-
duces to about 5.5, but this value is well outside the interval
for the null hypothesis. Therefore, we conclude that differ-
ences in variability between the SOM and the FCM remain
statistically significant.

We now investigate whether regressing out SST beyond
1 month prior further reduces variance differences between
the SOM and the FCM. We sequentially regress out SST be-
tween 1 and tM months prior, where tM ranges from 2 to
84 months. Then, we calculate CDA on the residuals. This re-
sults in 84 separate CDA analyses with distinct discriminant
ratios. For lags beyond 1 month, D y is nearly independent of
tM (Fig. 17b, yellow shading), implying that regressing out
SST at lags longer than 1 month does not reduceD y . This re-
sult might be surprising because the ocean memory is longer
than 1 month, but this memory is likely captured in the lagged
relationship between the principal component time series
used to comprise Fs and Fc. Importantly, D y remains highly
significant in comparison to the null hypothesis, indicating
that SST in the CESM1 SOM and FCM are statistically differ-
ent even when we crudely account for differences in memory.
However, given the strong seasonal dependence of the differ-
ences between the SOM and the FCM, a more sophisticated
regression accounting for seasonal memory differences may
be able to explain more of the variance differences between
the SOM and the FCM.

8. Conclusions

This paper investigates the role of interactive ocean dynam-
ics in Atlantic SST variability. The approach is to compare
SST variability in a fully coupled atmosphere–ocean–ice model
(FCM) to an atmosphere–ice model coupled to a motionless slab
ocean (SOM) with a depth set to the spatially varying annual
mean climatological mixed layer depth. The FCM has more SST
variance than the SOM in the tropics (Fig. 2), where active ocean
dynamics leads to elevated SST variance. The SOM has higher
variance than the FCM in the extratropics (Fig. 2) due to the
lack of oceanic damping, primarily entrainment damping, in the
SOM (G. Liu et al. 2023).

Differences in SST variability between the two models are
diagnosed by finding components whose variance differs as
much as possible between the two models using covariance
discriminant analysis (CDA; DelSole and Tippett 2022). This
optimization technique reveals numerous differences between
the two models, indicating that interactive ocean dynamics
impacts Atlantic SST variability in a way that is statistically
distinguishable (Fig. 3a). Analysis of the divergence demon-
strates that SST differences between the SOM and FCM are
mainly due to differences in SST variance rather than the
mean SST (Fig. 3b).

The component with the most extreme enhancement of
SST variance in the SOM (SOM-SST-1) resembles the tripole
SST pattern associated with the NAO (Fig. 4). A mode of SST
variability with a horseshoe structure that resembles the AMV
emerges as a component with the second most extreme en-
hancement of SST variance in the SOM (SOM-SST-2; Fig. 6).
The component with the third most enhancement of variance
in the SOM (SOM-SST-3) is also tripolar, but the tripole is
shifted northward compared to SOM-SST-1 (Fig. 7).

Components with more variance in the SOM have several
common features. These components are excited by stochastic
atmospheric forcing, as they must be as there is no other forcing

FIG. 14. CDA analysis comparing monthly (deseasonalized)
Atlantic SLP variance in the FCM and SOM. (a) Discriminant ra-
tios as a function of the discriminant order for a 30-EOF truncation
[Eq. (6)]. The black lines show the leading discriminant ratios
when the variance ratio of the SOM/FCM is maximized. The gray
line shows the null hypothesis of equal variability using two halves
from the same model and the gray shading shows the range of two
standard deviations. (b) Divergence representative of the discrimi-
nant ratios. The black line shows the divergence (Di), the purple
line shows the divergence due to the difference in means (Dmi

),
and the blue line shows the divergence due to differences in inter-
nal variability (Dy i

). The gray shading is the null hypothesis for di-
vergence, and the green shading denotes the null hypothesis line
for the divergence due to the mean; both null cases are calculated
using two halves from the same model.
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FIG. 15. The leading component with enhanced SLP variance in the FCM (FCM-SLP-1; Fig. 14a). (a) A 100-yr sam-
ple of the normalized FCM variate (red) and the normalized FCMAtlantic Niño index (black). The FCM variate and
the FCM Atlantic Niño index have a correlation coefficient of r 5 0.55. (b) A 100-yr sample of the normalized SOM
variate (blue) and the normalized SOMAtlantic Niño index (black). The SOM variate and the SOMAtlantic Niño in-
dex have a correlation coefficient of r 5 0.46. The regression slope between the normalized FCM variate and (c) SLP
and (e) ST. The regression slope between the normalized SOM variate and (d) SLP and (f) ST. The dots in (c)–(f)
show where the regression is not significant at the 95% confidence level. In (c) and (d), the mean SLP field is shown
in black contours with a contour interval of 2 mb. The solid and dashed contours indicate SLP values above and below
the standard average pressure at sea level (1013.25 mb), respectively.
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mechanism in the SOM. The atmospheric forcing associated
with these components is the same amplitude in the SOM and
the FCM (Figs. 4d,e and 7d,e and Fig. S3), but the ocean re-
sponse to this forcing is weaker in the FCM.

The differing response of the ocean to atmospheric forcing is
primarily explained by seasonal mixed layer depth variations,
which are present in the FCM but not in the SOM. Air–sea

heat fluxes are stronger in winter than in summer in both the
SOM and the FCM (Fig. S2); in the SOM, SST variations are
also larger in wintertime. In the FCM, seasonal variations in
the mixed layer depth act to reduce SST variance in wintertime.
Air–sea heat fluxes are less efficient at changing SST when the
mixed layer is deeper. Furthermore, entrainment damps SST
anomalies in fall/winter as the mixed layer deepens, reducing

FIG. 16. The leading component with enhanced SLP variance in the SOM (SOM-SLP-1; Fig. 14a). (a) A 100-yr sam-
ple of the normalized FCM variate (red) and the normalized SOM variate (blue). The regression slope between the
normalized SOM variate and (b) SLP and (d) ST. The regression slope between the normalized FCM variate and
(c) SLP and (e) ST. The dots in (b)–(e) show where the regression is not significant at the 95% confidence level. In
(b) and (c), the mean SLP field is shown in black contours with a contour interval of 2 mb. The solid and dashed con-
tours indicate SLP values above and below the standard average pressure at sea level (1013.25 mb), respectively.
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the wintertime SST variance in the FCM. As a result, compo-
nents with more variance in the SOM (e.g., SOM-SST-1, SOM-
SST-2, and SOM-SST-3) show strongly elevated SST variance
in the SOM in wintertime and a much more muted seasonal dis-
tribution of SST variance in the FCM (Figs. 5d–f).

Seasonal variations in mixed layer depth also act to increase
the memory in wintertime. The higher heat capacity of the
mixed layer in winter leads to higher persistence in this sea-
son. Additionally, SST anomalies formed during wintertime
can be isolated beneath the seasonal thermocline in summer
and reemerge the following winter when the mixed layer

deepens. For components with higher variance in the SOM,
the SOM exhibits high summer persistence as the weak sum-
mertime stochastic atmospheric forcing is distributed over the
relatively deep slab layer (set to be the annual mean mixed
layer depth). In contrast, in the FCM, there is a rapid loss of
memory as the mixed layer shallows in summer (Figs. 5g–i).
The NAO tripole–like component (SOM-SST-1) shows en-
hanced interannual persistence related to reemergence (Fig. 5g);
a role for reemergence of the persistence of the NAO tripole was
previously described in de Coëtlogon and Frankignoul (2003).

While components with more variance in the SOM have
more variance at all frequencies, including low frequencies
(Figs. 5a–c), the interannual memory is slightly longer in the
FCM. This enhanced memory is seasonally dependent, with
enhanced memory in winter (Figs. 5g–l). For SOM-SST-1 and
SOM-SST-3, enhanced interannual memory in winter is re-
lated to the reemergence of SST anomalies (Figs. 5g,i). For
the AMV-like component (SOM-SST-2), enhanced interan-
nual memory in winter (Fig. 5h) does not appear related to re-
emergence, but rather to other oceanographic processes, such
as variations in the three-dimensional ocean circulation
(Zhang et al. 2016; O’Reilly et al. 2016; Delworth et al. 2017;
Li et al. 2020; Oelsmann et al. 2020).

The leading component that has the most extreme enhance-
ment of SST variance in the FCM (FCM-SST-1) is strongly re-
lated to Atlantic Niño (Fig. 8). The Atlantic Niño–like mode
has significantly more variance in the summertime in the
FCM, in accord with the previously described peak of Atlantic
Niño peaks in the summertime (Zebiak 1993; Keenlyside and
Latif 2007; Prodhomme et al. 2019), whereas the weak vari-
ability in the SOM has little seasonal dependence (Fig. 9c). At-
lantic Niño arises organically as a component containing more
SST variance in the FCM, confirming that CDA is a powerful
tool that can isolate dynamical modes of SST variability re-
lated to ocean dynamics with only using the raw SST fields.

Strong subpolar SST anomalies in the subtropical–subpolar
transition zone (Buckley and Marshall 2016) emerge as the
second leading component with enhanced SST variance in the
FCM (FCM-SST-2; Fig. 10). This finding supports previous stud-
ies that suggest the importance of ocean dynamics in setting
SST in the subpolar North Atlantic (Buckley et al. 2014, 2015;
Buckley and Marshall 2016; Piecuch et al. 2017; Delworth et al.
2017; Wills et al. 2019). Reemergence of SST anomalies is one
mechanism that enhances the variance and the persistence of this
component in the FCM (Fig. 9f). Three-dimensional ocean pro-
cesses also likely play a role; modest Atlantic OHT variations are
associated with this component, and these OHT variations are of
the correct sign to force or enhance the SST anomalies associated
with this mode (Fig. 11b).

The AMV in the SOM has about twice as much variance as
the AMV in the FCM, supporting previous claims that the
AMV is primarily explained by the low-frequency response to
stochastic atmospheric forcing (Clement et al. 2015; Cane et al.
2017) and oceanic damping reduces the amplitude of the
AMV (Murphy et al. 2021). The AMV is most related to a com-
ponent with a canonical horseshoe structure (SOM-SST-2) in
both the SOM and the FCM, but other components isolated
from CDA are also correlated with the AMV. In the SOM, the

FIG. 17. Results comparing SST CDA with and without regress-
ing out ocean memory. (a) Discriminant ratio for original CDA
analysis (black line) (same as Fig. 3a) and CDA computed when
SST 1 month prior is regressed out (gray line). The gray shading
shows the range of two standard deviations in the null hypothesis
of equal variability using two halves from the same model with
SST 1 month prior regressed out. (b) Total divergence of original
CDA analysis and CDA analysis when we sequentially regress out
SST between 1 and tM months prior, where tM ranges from 1 to
84 months. The gray shading denotesD y for the null hypothesis of
equal variance. The yellow shading indicates the range of the diver-
gence when SST 1 month prior is regressed out.
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AMV is also related to tripolar SST anomalies associated with
NAO-like atmospheric variability (SOM-SST-1), particularly at
low frequencies. In the FCM, a subpolar mode with more vari-
ance in the FCM (FCM-SST-2) is also related to the AMV. Our
analysis confirms that basinwide SST variability is set by a mix
of processes that are important on different time scales and dif-
ferent regions (Vecchi et al. 2017; Li et al. 2020), and the spe-
cific mix of processes differs between the SOM and FCM. Thus,
while our analysis is broadly consistent with previous claims
that the AMV is primarily explained by the low-frequency re-
sponse to stochastic atmospheric forcing (Clement et al. 2015;
Cane et al. 2017), it is also consistent with the role of ocean
dynamics in influencing SST in the subpolar North Atlantic
(Buckley et al. 2014, 2015; Buckley and Marshall 2016; Piecuch
et al. 2017; Delworth et al. 2017; Wills et al. 2019).

Despite large differences in SST between the SOM and the
FCM, the atmospheres of the SOM and the FCM are quite
similar. A CDA analysis of SLP finds that only two signifi-
cance components explain the SLP differences between the
SOM and the FCM (Fig. 14a). The component with more var-
iance in the SOM is dominated by differences in the mean
SLP, whereas the component with more variance in the FCM
is dominated by differences in SLP variance (Fig. 14b).

After identifying leading dynamical components of SST dif-
ferences between the SOM and FCM, we explore if the differ-
ence in memory can fully explain SST differences between
the SOM and FCM. We find that a significant portion of vari-
ance differences between the SOM and FCM can be explained
by regressing out SST 1 month prior. However, the models
continue to have significant variance differences (Fig. 17).
Given the strong seasonal dependence of the differences be-
tween the SOM and the FCM, a more sophisticated regression
accounting for seasonal memory differences may be able to ex-
plain more of the variance differences between the SOM and
the FCM.

Overall, we find that stochastic atmospheric forcing is able
to explain the modes of basinwide Atlantic SST variability, in-
cluding the NAO tripole SST anomalies and AMV-like SST
anomalies, and ocean dynamics damps the variance of these
stochastically generated modes. Interactive ocean dynamics
enhances SST variance in the tropical Atlantic and to a lesser
extent in the subpolar North Atlantic.

Our results suggest that some of the largest differences be-
tween the SOM and the FCM are due to the lack of one-
dimensional mixed layer dynamics in the SOM, specifically
entrainment damping and the seasonal variations in heat capac-
ity of the mixed layer. The lack of these important, seasonally
dependent one-dimensional processes in the SOM implies that
while the stronger SST variance found in the SOM is sometimes
closer to observations [as argued by Murphy et al. (2021) re-
garding low-frequency AMV variance], the elevated SST vari-
ance in the SOM is for the wrong reasons. The importance of
one-dimensional mixed layer processes in the SST variance dif-

ferences between the SOM and FCM suggests that, in order to
isolate the contributions of three-dimensional ocean dynamics,
we need a more complete model hierarchy, including an en-
training mixed layer model.

Our results focus on a single model, CESM1, which has pre-
industrial control runs of sufficient length for a FCM and a sis-
ter SOM, in which the slab layer depth has a realistic (time
mean) heat capacity. Our result might be different using a dif-
ferent FCM and sister SOM. The impact of ocean dynamics
on SST variations is likely underestimated in coarse resolu-
tion models, such as those analyzed here, as currents are too
broad and weak.
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APPENDIX

EOF Truncation

We choose 30 EOFs as our truncation for CDA because
for truncations of 30 EOFs or more, our results regarding
the significance and structure of the discriminants do not
depend on truncation choice, although the order of the
components does depend slightly on truncation (Fig. A1,
middle and right panels). This order switching is particu-
larly true for SOM-SST-2 and SOM-SST-3, which is an ex-
pected consequence of the fact that their variance ratios are
close to each other (see Fig. 3) and hence may not be sepa-
rable. Based on correlations between variates at different
truncations, SOM-SST-2 and SOM-SST-3 maintain their
identities from 40 to 30 EOFs but switch order from 40 to
20 EOFs. Also, at 20 EOFs, FCM-SST-2 is insignificant
(not shown; l 5 1.1). Nevertheless, the leading SST modes
are robust and do not vary depending on EOF truncation
choice (see row 1 for SOM-SST-1 and row 4 for FCM-SST-1
in Fig. A1).
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