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Abstract—Instances of casualties resulting from large crowds
persist, highlighting the existing limitations of current crowd
management practices in Smart Cities. One notable drawback
is the insufficient provision for disadvantaged individuals who
may require additional time to evacuate due to their slower
running speed. Moreover, the existing escape strategies may fall
short of ensuring the safety of all individuals during a crowd
surge. To address these pressing concerns, this paper proposes
two crowd management methodologies. Firstly, we advocate for
implementing a fair evacuation strategy following a surge event,
which considers the diverse needs of all individuals, ensuring
inclusivity and mitigating potential risks. Secondly, we propose
a preventative approach involving the adjustment of attraction
locations and switching between stage performances in large-
crowded events to minimize the occurrence of surges and enhance
crowd dispersion. We used high-fidelity crowd management sim-
ulators to assess the effectiveness of our proposals. Our findings
demonstrate the positive impact of the fair evacuation strategy
on safety measures and inclusivity, which increases fairness by
41.8% on average. Furthermore, adjusting attraction locations
and stage performances has shown a significant reduction in
surges by 34% on average, enhancing overall crowd safety.

I. INTRODUCTION

In the contemporary urban landscape, managing crowd dy-
namics in confined spaces has emerged as a pivotal concern for
ensuring public safety within smart cities [1]. The tragic inci-
dents at Itaewon and the Astroworld Festival underscore the ur-
gency of advancing crowd management techniques to prevent
similar catastrophes. The Itaewon disaster [2], where a dense
crowd led to 156 fatalities and 170 injuries, and the Astroworld
Festival [3], which saw 10 deaths and numerous injuries due
to a surge near the stage, highlight the critical challenges in
crowd control during mass gatherings. These events bring to
light the complexities of managing large groups, particularly
when faced with limited entry points, uneven terrains, and
unforeseen bottlenecks that exacerbate the risk of crowd-
induced accidents. In response to these challenges, the concept
of “Smart Crowd Management and Control Systems” (CMS)
within the framework Cyber-Physical Systems (CPS) for smart
cities presents a holistic approach to overseeing large crowds.
CMS is tasked with monitoring, directing, and managing large
groups of people—with an eye toward safety, efficiency, and
satisfaction. CMS requires a diverse range of knowledge,
including engineering, technology, and understanding of crowd
behavior [4]. Effective crowd management involves multiple

§This work was done when the author was at UC, Irvine.

stages: pre-event planning, event monitoring and control, post-
event feedback, and improvement. This holistic approach
ensures continuous enhancement in crowd management strate-
gies for future events. However, we believe that each of these
approaches has different effects on healthy individuals, people
with disabilities, children, pregnant women, and neurodiver-
gent communities. Therefore, while managing the crowd flow,
CMS should not only aim to maximize the efficiency, but
also ensure fairness in distributing the adverse effect of the
CMS control actions among different individuals. This vision
is attainable with the advancement in sensor technologies to
estimate the human state through wearable devices, and the
decision-making algorithms that provide trade-offs between
system performance, fairness [5], [6], [7], and privacy in multi-
human environment [8], [9]. This technological leap in human
sensing and decision-making algorithms should be exploited in
CMS to ensure inclusivity in crowd management algorithms.

In this paper, we advocate for implementing a fair evac-
uation strategy and prevention approaches that account
for the diverse needs of all individuals. By embracing
an inclusive approach, we can provide the necessary time
and assistance to disadvantaged individuals, helping them
to evacuate safely and efficiently. Through thoughtful
planning and coordination, we can mitigate potential risks
and minimize casualties. The contribution of this paper can
be summarized as follows:

• Fair evacuation strategies: Proposing evacuation routes
designed to serve diverse groups within various crowd-
gathering contexts, aiming for efficiency and fairness, es-
pecially for vulnerable populations. We introduce a metric,
“Normalized Evacuation Time Disparity,” to evaluate and
compare different crowd scenarios and evacuation strategies.

• Surge prevention: Suggesting a preventative approach that
involves alternating stage performances at specific intervals
to control crowd density and distribution effectively. This
method utilizes metrics like Panic State, Surge State, and
Crowd State to dynamically assess and manage crowd
conditions, thereby optimizing event scheduling to enhance
crowd management overall.

• Simulation and Validation: We utilize high-fidelity Crowd
Management simulators, including Vadere [10] and NetL-
ogo [11] to simulate various crowd scenarios and refining
our proposed strategies.
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II. BACKGROUND & RELATED WORK
Crowd surges pose a significant risk when a large number

of individuals attempt to enter or exit a confined area, leading
to increased pressure and potential danger. In tightly packed
crowds, people lose control of their movements and face
difficulties breathing. The lack of space for recovery makes
stumbling or falling particularly hazardous, putting individuals
at risk of suffocation and injuries from being crushed. The
probability of a surge occurring is closely related to crowd
density. When there are 4-5 people per square meter, the crowd
remains relatively safe, with enough space for individuals
to make movement decisions. However, when the number
exceeds 6 per square meter, the limited available space forces
tight packing and diminishes individual control, significantly
increasing the likelihood of a surge [12]. A single stumble
or jolt within the crowd can trigger a chain reaction, creating
voids that disrupt the crowd’s equilibrium. Subsequently, more
people stumble into these voids, setting off a domino effect and
generating additional voids. This interplay of forces can cause
abrupt collapses, intensifying pressure and chaos within the
crowd, potentially leading to injuries or fatalities if not man-
aged properly [13]. Throughout history, large-scale stampedes
have taken place worldwide, leading to severe loss of life and
property damage. On October 29, 2022, a Halloween event
occurred in Seoul, South Korea, attracting tens of thousands
of costumed attendees to the Itaewon district. This marked the
first unrestricted Halloween celebration in over two years due
to COVID-19 lockdowns. The massive crowd in the narrow
streets, coupled with limited entry and exit points, created
a dangerous situation. Videos from that night show trapped
individuals struggling to move or breathe, fueling panic that
spiraled out of control. This catastrophe led to one of South
Korea’s worst stampede disasters, with 156 deaths and 170
crush injuries [2].

These tragic incidents highlight the importance of crowd
management at mass gathering events. The sheer number of
people in a confined space can create a dangerous situation that
can quickly spiral out of control, resulting in stampedes and
crush injuries. Factors such as limited entry and exit points,
uneven terrain, and unexpected choke points can exacerbate
the risk of a stampede. Therefore, it is crucial for event
organizers and authorities to implement effective crowd man-
agement strategies to prevent such incidents. This comprises
actions such as appropriate scheduling of event timing, metic-
ulous event venue planning and design, sufficient staffing, and
unambiguous communication and signage. Effective crowd
management not only ensures the safety and well-being of
attendees but also helps to prevent damage to property and
infrastructure. In light of the recent stampede incidents, it
is clear that crowd management should be given the utmost
importance in planning and executing mass gathering events.

Crowd management is a multifaceted field that necessitates
knowledge of engineering and technology, as well as com-
prehension of crowd behavior and crowd flow management,
encompassing psychological and sociological aspects [4]. By
meticulous planning and execution, the objective of crowd

management is to prevent crowd incidents [14]. Effective
crowd management is a holistic process that includes several
stages. It begins with meticulous planning before the event,
considering all potential scenarios and preparing for them.
During the event, the crowd needs to be closely monitored
and controlled to ensure everyone’s safety. After the event, it’s
important to gather feedback to understand what worked well
and what didn’t. Finally, these insights and lessons learned
should be reported and used to improve crowd management
strategies for future events. This approach ensures continuous
improvement in managing crowds effectively [4].

In the pre-event planning stage, two primary technologies
play a crucial role: crowd modeling and simulation, and
social and web data mining. Crowd modeling and simulation
enable the creation of virtual crowd scenarios, which serve as
testing grounds for various crowd management strategies and
their effectiveness. On the other hand, social and web data
mining provides valuable insights into crowd demographics,
behaviors, and trends. These insights help inform decision-
making and enable the customization of crowd-management
strategies to suit specific audience profiles. By leveraging these
technologies in pre-event planning, crowd management can be
approached with a greater level of knowledge, strategy, and
effectiveness[4].

As for the in-event control period, the acquisition of crowd
data during monitoring, decision-making based on data anal-
ysis, and the implementation of crowd control measures are
three key steps for success[4]. The primary goal of crowd
control during the event is to detect instances of mass panic
and respond quickly to dangerous situations. Various existing
research proposed numerous methods for detecting crowd den-
sity to prevent surge incidents or to enforce social distancing.
For instance, infrared thermal video sequences have been
employed to monitor and estimate the density of crowds in
real-time during large-scale public events [12]. In addition,
given the widespread Wi-Fi availability, it has been used to
monitor crowd behavior and interaction [15], [16].

Post-event feedback is crucial for preventing future inci-
dents, and in this regard, social media data plays a pivotal
role. The system for situational awareness can be enhanced by
integrating feedback from the crowd and information related
to the crisis that comes from social media. For example, in
a system known as the HADRian, social media data was
scrutinized after the Boston Marathon bombing in April 2013
to identify any unexploded or additional bombs[17]. Another
example is Ushahidi, which is a versatile data collection,
management, and visualization tool that enables data collection
from multiple sources such as SMS, email, web, Twitter,
and RSS, and offers robust features for post management
and triaging through filters and workflows[18]. Systems built
on Ushahidi have been implemented worldwide in numerous
situations, for instance, to oversee disaster relief efforts after
the Haiti Earthquake in January 2010[19].

Moreover, the outbreak of COVID-19 needed new real-time
approaches for crowd monitoring and management systems
for social distancing. Furthermore, Virtual Reality (VR) tech-
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nology has been applied to analyze the emotional responses
and stress levels of participants helps decision-makers gain
enhanced insights into crowd management strategies for com-
parable occurrences [20].

III. FAIRNESS-AWARE CROWD EVACUATION

The importance of fairness in evacuating crowds lies in
achieving a balanced distribution of evacuees across routes,
ensuring equitable waiting times for different groups. Vulner-
able groups, such as the elderly or pregnant women, are often
overlooked in standard evacuation plans due to their physical
limitations [21]. The motivation for this section is to propose
evacuation plans that ensure similar evacuation times for all
individuals, regardless of their physical condition.

A. Fairness Strategies

Our experimental goal is to explore the design of evacua-
tion routes for different groups of people in various crowd-
gathering locations, aiming to achieve both high evacuation
efficiency and fairness towards vulnerable populations. In
real-life scenarios, the different running speeds of vulnerable
groups and normal individuals can influence evacuation times,
potentially leading to hazards like pushing or tripping. To ad-
dress this, we propose a strategy where a dedicated evacuation
exit is designated exclusively for vulnerable groups, guided by
mobile notifications or other means, while other individuals
can use the nearest exit. We hypothesize that this design
can reduce overall evacuation time, especially for vulnerable
groups, ensuring efficiency and fairness simultaneously. To
validate our hypothesis, we proposed three strategies across
multiple crowded event scenarios to assign the evacuation gate:
• Randomly gate assignment (RGA): Individuals evacuate

by randomly selecting a gate without any specific guidance.
• Vulnerable people exclusive gate assignment(VEGA):

Vulnerable individuals are directed to a designated gate
exclusively. Healthy people are assigned the closest gate.

• Closest gate assignment (CGA): All individuals are as-
signed the closest gate regardless of their physical state.

B. Fairness Metric: Normalized Evacuation Time Disparity
(NETD)

We compare these strategies by introducing a fairness
metric; Normalized Evacuation Time Disparity (NETD). The
Normalized Evacuation Time Disparity (NETD) metric can be
defined as the difference in average evacuation times between
vulnerable and healthy people, normalized by the overall
average evacuation time for the entire population. This metric
captures the relative disparity in evacuation efficiency between
the two groups, providing a standardized measure of fairness.

NETD =
|Avg. Timevul − Avg. Timeheal|

Avg. Timeall
(1)

Avg. Timevul is the average evacuation time for vulnerable
people, while Avg. Timeheal is the average evacuation time
for healthy people. Avg. Timeall is the weighted average
evacuation time for the entire population, calculated as:

Avg. Timeall =
Nvul × Avg. Timevul +Nheal × Avg. Timeheal

Nvul +Nheal
(2)

Nvul is the number of vulnerable people, while Nheal is the
number of healthy people.

This can be interpreted as an NETD of 0 indicating perfect
fairness, with identical average evacuation times for vulnerable
and healthy people, adjusted for population proportions. A
higher NETD value indicates a greater disparity in evacuation
times, signaling less fairness.

The NETD model aligns with Rawlsian principles in that it
aims to measure and address inequalities between different
groups, specifically vulnerable and healthy populations, in
evacuation scenarios [22], [23]. By focusing on the disparity
in evacuation times and aiming to minimize this disparity, the
model encapsulates a core aspect of the Rawlsian Difference
Principle: making inequalities work to benefit the least ad-
vantaged, in this case, the vulnerable population. To relate
this directly to Rawlsian philosophy, the NETD metric is a
proxy for assessing the “fairness” of an evacuation strategy
by quantifying disparities between different groups. This is
conceptually consistent with Rawls’s focus on societal struc-
tures that protect and benefit the least well-off. A Rawlsian
approach would prioritize reducing the NETD value towards
zero, symbolizing that the vulnerability does not lead to a
disadvantage in evacuation times1.

C. Modeling and Simulation
We used Vadere [10] to simulate various crowd event setups

which we call a map. Four evacuation exits were placed at the
corners of the map.

a) Crowd Statistics: On the map, there are 1363 people,
consisting of 340 vulnerable people and 1023 healthy normal
people which counts for 25% of the crowd2.

b) Human behavior: The average running speed of
healthy and young individuals (aged 20-45 years) is ≈ 5.4
miles per hour or ≈ 2.4 meters per second [25]. Hence, we set
the average speed of normal people to be 1.0−1.3 meters per
timestep. Each timestep represents 0.48 seconds. Vulnerable
people, such as the elderly, move at a slower pace as the speed
of humans decreases by 20% every decade [26]. Therefore,
we set the vulnerable people’s speed to be half that of normal
people, which is 0.5− 0.6 meters per timestep 3 .

c) Crowd behavior: We exploited the Optimal Steps
Model (OSM) in Vadere which incorporates the psychological
principle of “social distance” into its mathematical framework,
which means that crowd strive to avoid encroaching on others’
personal or intimate space and to prevent physical contact [10].

1We provide a philosophical take on Rawls’s principles in the context of
evacuation systems in the Appendix.

2Based on the National Environmental Public Health Tracking from Centers
of Disease Control and Prevention (CDC), the populations with vulnerabilities
and health status identified as a disability among adults >= 18 years of age
is around 25% in the United States in 2021 [24].

3We assume various groups of vulnerable people have similarly limited
mobility. We grouped children, the elderly, and the disabled under the singular
category of “vulnerable people” and assigned them the same movement speed.
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(a) (b) (c) (d)

Fig. 1: The four scenarios of crowd distribution in Vadere, where
blue dots represent individuals, and orange blocks represent exit loca-
tions. (a): Center crowd gathering; (b): Non-center crowd gathering;
(c): Evenly crowd dispersing; (d): Unevenly crowd dispersing

D. Evaluation
We simulated various scenarios for crowd distribution on

the map illustrated in Figure 1:
• Scenario 1: Center crowd gathering: Serving as an exem-

plar for an event with a setup focused on the center stage.
• Scenario 2: Non-center crowd gathering: Serving as an

exemplar for an event with a setup focused on a non-center
stage.

• Scenario 3: Evenly crowd dispersing: Representing car-
nival event across the entire map.

• Scenario 4: Unevenly crowd dispersing: Representing
carnival event with varying area of crowd densities: 75%
in top-left, 10% in top-right, 10% in bottom-left, and 5% in
bottom-right.
We measure the fairness using the fairness metric (NETD)

described in Equation 1. Table I in the Appendix shows the
detailed results of average evacuation time and NETD using
three different strategies. Gate Time (G1, G2, G3, G4) shows
each gate’s last human exiting time, providing insight into the
gate utility. In summary, RGA shows the worst evacuation
time for all population in all scenarios while CGA demon-
strates the best average evacuation time for all population. In
scenarios S2 and S4, VEGA achieves the lowest NETD (better
fairness) of 0.16 and 0.49, respectively, with a slower average
evacuation time for all population compared to CGA. This
result highlights that optimizing for the average evacuation
time for all population can undermine the vulnerable
populations. In contrast, VEGA achieves the highest NETD
(worst fairness) in scenario S3 with a value of 1.76.

We also evaluated the gate utility (G), indicating how long
a particular gate was used for evacuation. To compare the
gate utility, we look into which strategy can achieve a similar
utility across all gates. The insight is to ensure all gates are
used and not a particular one with a crowd surge. Hence, we
compute the Euclidean distance for each vector of the gate
times (G1, G2, G3, G4). Table II in the Appendix shows the
detailed results. In summary, since VEGA has a dedicated gate
for vulnerable people, this particular gate time (G1)is higher
in all the scenarios. However, CGA showed better similarity in
gate times except for S2 where the population is not centered
(Figure 1).

a) Takeaways: Our preliminary experiment aims to in-
vestigate whether a specific evacuation strategy for vulnerable
groups enhances fairness while maintaining overall efficiency
(gate utility). In crowd scenarios, S1 and S3, a vulnera-
ble exclusive gate may not improve fairness or efficiency

when people initially gather around the center of each exit.
Nonetheless, when many vulnerable individuals congregate
near a single exit, such as in scenarios S2 and S4, the
VEGA strategy leads to a fairness improvement of 78% on
average, compared to RGA and CGA. In scenario S2, the
VEGA strategy demonstrates a fairness increase of 76.81%
and 77.46% compared to RGA and CGA, while in scenario S4,
it shows a fairness improvement of 80.2% and 78% compared
to RGA and CGA. Hence, the average VEGA improvement
from RGA and CGA for S2 and S4 is 78.135%.

On the other hand, CGA shows a better fairness value
(NETD) for scenarios S1 and S3. In particular, when the
crowd is centered (S1) or evenly dispersed (S3), CGA can
show a slight fairness increase of 1.4% and 2.6%, respectively,
compared to RGA. However, compared to VEGA, CGA
can improve fairness for S1 and S3 by 24.5% and 57.4%
respectively. Hence, the average CGA improvement from RGA
and VEGA for S1 and S3 is 21.5%. From this preliminary
analysis, we conclude that one strategy can not fit all crowd
scenarios, and the evacuation strategy has to be adaptive based
on the current state of the crowd 4.

IV. PREVENTATIVE STRATEGY

We recognize the pivotal role of preventive measures in
mitigating harm, underscoring their significance compared to
reactive evacuation plans post-crowd surge incidents.

Our second experiment is spurred by the tragic Astroworld
Festival accident in 2021 [3]. This festival featured a main
stage for the primary performance and a secondary stage
hosting performances by other artists throughout the day.
During the concert night, following a performance at the
secondary stage, the audience gravitated towards the already
congested area near the main stage, resulting in a surge and
crush. The repercussions were dire, with multiple fatalities
and areas densely packed to the extent of providing only 1.85
square feet per person [3]. A visual illustration is shown in
Figure 4 in the Appendix.

To tackle congestion during stage performances, our pre-
vention strategy advocates for stage switching at designated
intervals. This approach aims to mitigate overcrowding and en-
hance crowd management throughout the event. To determine
optimal switching points between stages, we introduce three
metrics: the Panic State and Surge State per individual, along
with the Crowded State for each subarea. Further elaboration
on these metrics will be provided in Section IV-A.

To achieve these objectives, we have developed a simula-
tion tool using NetLogo, an agent-based modeling environ-
ment [11], [27], with customizable attributes such as position
and walking speed.
A. Modeling and Simulation

We create a simulation of a crowded environment featuring
two stages within a two-dimensional square world consisting

4In real-world scenarios, it is anticipated that some individuals may not
adhere to the recommended guidelines set by the organizers or the automated
crowd management system. Therefore, a comprehensive study of the crowd’s
social and psychological dynamics is imperative to better understand and
address such situations.
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of 51 × 51 patches. Each patch is represented by an xy-
coordinate point, with the origin located at (0, 0) in the bottom
left corner. The map is subdivided into multiple subareas
using a 5 × 5 grid, with each subarea containing 25 patches.
Individuals, depicted as triangular shapes, are situated on these
patches and utilize information from their patch as well as
neighboring patches and individuals to inform their decision-
making processes. The simulation environment includes two
stages, a bar, and a restroom, positioned at the far left and
right sides for the stages and the top and bottom sides for the
bar and restroom, respectively. A visual representation of the
map is provided in Figure 3 in the Appendix.

To model the human behavior in the simulation, we consider
four factors in our tool:
• Speed Variation: Half of the individuals are randomly

assigned a speed of 1 step per time step, while the other
half are set to 2 steps per time step using the “random”
method in NetLogo’s code.

• Comfort Zone and Preferred Distance: Acknowledging
individual preferences, we randomly assign a comfort dis-
tance between 1-10 meters to each agent in the NetLogo
code, reflecting varying levels of comfort regarding prox-
imity to the stage.

• Bar and Restroom Visits: Individuals randomly visit the
bar or restroom during the simulation. The NetLogo inter-
face allows users to set the total time spent and the frequency
of these visits. We set by default 40% of individuals visit the
bar or restroom every 50 time-steps, with each trip lasting 50
time-steps. Additionally, we provide adjustment bars in the
interface to customize the frequency and duration of these
visits if needed in the simulation.

• Hesitation Time for Stage Switching: This captures the
variability in the time individuals take to decide whether to
switch stages after a performance has concluded. We assign
a random hesitation time between 1− 20 time-steps to each
individual.

B. Prevention

Our prevention strategy focuses on determining the best
time to switch stages, considering various parameters. To
achieve this, we have developed a simulation tool to evaluate
different scenarios and parameters, allowing us to estimate the
most suitable moment for switching the performance to a new
stage. We propose using a set of metrics to determine the status
of individuals and subareas during the event:
• Panic state: Studies in crowd psychology indicate that

individuals experiencing confinement or limitations in their
mobility may develop sensations of panic or anxiety [28].
Consequently, our simulations posited that an individual
transitions into a state of panic when they encounter ob-
structions or delays en route to facilities such as restrooms
or bars, persisting for a period surpassing a predefined panic
threshold (PT).

• Surge state: A “surge state” in crowd management can be
inferred as a condition or situation where there is a sudden
and significant increase in crowd density that exceeds nor-

mal potentially leading to congestion, restricted movement.
Our simulations suggest that an individual is considered to
be in a surge state when they find themselves obstructed and
unable to proceed towards their destination, such as a stage,
for a period longer than a predetermined surge threshold
(ST).

• Crowded state: A subarea enters the crowded state when
over 70% of its patches are occupied by people, and at least
one person within the subarea is in either panic or surge
state.

• Switch index (SI):
– The switch index (SI) represents a threshold on the

duration for which a subarea remains continuously in the
crowded state before the performance is switched to the
other stage.

– When a subarea consistently stays in a crowded state,
surpassing the threshold of the switch index (SI), and
its two neighboring subareas are also in a crowded state
(though not necessarily exceeding the SI threshold), it
indicates a critical surge situation.

– At this point, the currently performing stage receives
instructions to halt, and the performance switches to
another stage.

C. Evaluation
We start our evaluation by investigating the correlation

between stage positions and the probability of surge accidents.
The tragic incident at Astroworld underscores the profound
impact of stage proximity on crowd dynamics. We simulate
three maps for stage positions scenarios. Map A features stages
directly facing each other, Map B positions one stage in the
bottom-right corner and another in the middle on the left side,
while Map C situates two stages at the top-left and bottom-
right, respectively. Figure 5 in the appendix presents a visual
representation to these three distinct scenarios.

In each map, half of the individuals move at twice the
speed of the other half. Their comfort distances are randomly
assigned between 1−10 units patch-size, and hesitation times
are randomly distributed between 1 − 20 time-steps. The
Switch Index (SI) is set at 10 time-steps. Additionally, 40%
of individuals are designated to go to the bar or restroom,
with each trip lasting for 50 time-steps. Furthermore, we have
identified four adjustable parameters: total number of people
(PN), frequency of bar/restroom visits (BRF), panic threshold
(PT), and surge threshold (ST). The default parameter settings
are as follows: PN = 500, BRF = 50, PT = 10, and ST = 30.

We employ several metrics to evaluate crowd behavior,
namely the frequency of stage switching (F) and Average
Panic/Surge (APS). The Average Panic/Surge (APS) metric
denotes the average number of individuals in Panic/Surge
Status per time-step. These metrics collectively enable us to
assess the efficacy of our strategies and response measures.
More details on these values for each Map scenario is shown
in Figure 5 in the Appendix.

On average, Map C demonstrates a reduction in F by 26%
and APS by 34%. These results underscore the effectiveness
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(a) (b) (c) (d) (e)

Fig. 2: Frequency of switching performance to another stage (F) and Average Panic/Surge value with four different Switch Index (SI) (10,
20, 30, 40) using different parameters. (a): PN500, BRF50, PT10, ST30; (b): PN750, BRF50, PT10, ST30; (c): PN500, BRF30, PT10, ST30;
(d): PN500, BRF50, PT10, ST40; (e): PN500, BRF50, PT20, ST30.

of increasing the distance between stages in mitigating the
likelihood of crowd surge incidents and reducing the frequency
of stage performance switching.

Continuing the evaluation, subsequent experiments will fo-
cus on Map C to investigate the impact of varying values of
SI on F and APS across different parameters, including:
• Total number of people (PN): Initially set at 500 in

Figure 2(a), PN increases to 750 in Figure 2(b), portraying
a denser environment.

• Frequency of bar/restroom use (BRF): Initially set at 50 in
Figure 2(a), BRF decreases to 30 in Figure 2(c), indicating
restricted access to restroom and bar facilities.

• Panic threshold (PT) and Surge threshold (ST): Dif-
ferent values of ST and PT represent diverse audience
compositions. Figure 2(a) features ST=10 and PT=10. In
Figures 2(d) and (e), ST increases to 40, and PT increases
to 20, respectively.

a) Takeaways: An increase in the total number of people
(PN) increases the likelihood of crowded states, potentially
raising both the frequency of stage switching (F) and the APS.
However, the impact on F and APS may vary depending on
the SI chosen. For example, in Figure 2(b), the denser crowd
(PN750) might require a different SI to manage the increased
density without causing panic or surge states. Decreasing the
frequency of bar/restroom use (BRF) to 30, as shown in
Figure 2(c), could indicate fewer exits and entries to these
facilities, which may reduce movement and potential blockage.
However, if access is too restricted, it might increase the
APS due to individuals being blocked for longer periods,
exceeding the PT. Various combinations of PT and ST values
indicate different crowd behaviors. For example, a higher PT
(indicating a higher tolerance for being blocked) may lead
to a lower APS, as individuals would not enter a panic state
as quickly. However, if the ST is also high, individuals may
block the way to the stage for longer, potentially increasing
the crowded state and APS, as seen in Figures 2(d) and (e).
The SI’s role is crucial in managing the balance between the
frequency of stage switches and APS. A low SI may lead
to frequent disruptions (high F) but could keep APS low by
preventing sustained crowded states. Conversely, a high SI
might lead to fewer disruptions but could allow crowded states
to persist longer, potentially increasing APS.

The conclusions that can be drawn from these figures, with
the given metrics, underscore the delicate balance needed in

crowd management. An effective SI value would minimize the
crowded state’s duration, thus reducing the average panic/surge
while also optimizing the frequency of stage switches to
maintain a smooth event flow.

b) Beyond simulation: The estimation of individual
states (panic/surge state) can be facilitated by smartphones
and wearable sensors, including accelerometers, gyroscopes,
and heart rate monitors. These sensors enable the assessment
of gait parameters, thereby providing a reliable method for
determining individuals’ states. Besides, indoor GPS and Wi-
Fi can be utilized to infer locations. The system could require
individuals to input essential personal data for identification
and support during crises. It would then use this data to gen-
erate evacuation routes through a user-friendly app interface,
alerting users of deviations from the recommended path. This
strategy is based on the belief that people are more likely to
follow evacuation suggestions if they perceive the procedures
as fair and just [29].

V. FUTURE WORK & CONCLUSION

As urbanization and population density continue to rise,
ensuring efficient and safe evacuation procedures during emer-
gencies or crowded events becomes increasingly challenging.
Our research focuses on addressing crowd management chal-
lenges by exploring both evacuation strategies and preventive
methodologies. We emphasize the importance of balancing
fairness and efficiency in evacuation plans while considering
psychological factors influencing individual social distancing
behavior during evacuations. Our preliminary results showed
that by utilizing simulation tools like Vadere, we can de-
sign evacuation strategies that consider vulnerable people.
Additionally, we developed a NetLogo-based tool to simulate
preventive strategies based on the crowd current state. In
the future, we aim to further optimize our fairness-aware
evacuation and preventive approach by integrating different
social dynamics including couples, families, and friends, who
have a tendency to select the same escape route during an
evacuation, populations who will not abide by the suggested
routes of evacuation, post-event analysis, and privacy protec-
tion measures. These steps will ensure ethical data usage and
enhance the overall effectiveness of crowd management.
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APPENDIX

Rawlsian principles in the context of evacuation systems

The NETD model in our fairness strategy is built with Rawlsian principles. At a high level, Rawlsian philosophy advocates
for a societal structure where decisions are made under a veil of ignorance. The veil of ignorance posits that individuals, when
unaware of their own position in society, would agree to fair terms that benefit all, including vulnerable populations [30]. In
the context of evacuation systems, this principle is applied through mechanisms where individuals provide basic information
without knowledge of how the vulnerability is defined or measured in that specific scenario. This uncertainty about whether one
might be classified as vulnerable effectively motivates collective protection of the vulnerable, which enhances the probability of
one’s adherence to recommended evacuation routes. In doing so, the system ensures that emergency evacuations are executed
with a heightened sense of communal responsibility and solidarity.

Fig. 3: Our proposed simulator tool interface utilizing NetLogo. The top-left and bottom-right red rectangles on the simulation
map denote two stages. Additionally, the upper yellow dot and lower blue dot symbolize the restroom and bar, respectively.
The blue area indicates patches proximal to the left stage, while the green area depicts patches adjacent to the right stage.

TABLE I: Comparison of average evacuation times for vulnerable (V ) and healthy people (H) and average across all population
(all), fairness metric NETD, and Gate Time (G1, G2, G3, G4) using 3 different strategies under 4 different scenarios
(S1, . . . , S4). Time is measured in the simulation step.

RGA VEGA CGA
(V,H, all) NETD (V,H, all) NETD (V,H, all) NETD

S1 (149.9, 80.9, 98.1) 0.70 (154.3, 72.4, 93) 0.88 (125.7, 68.3, 82.8) 0.69
S2 (153.4, 83.8, 101.1) 0.69 (97.0, 83.1, 86.76) 0.16 (132.1, 70.9, 86.4) 0.71
S3 (138.0, 70.5, 87.5) 0.77 (137.4, 33.0, 59.17) 1.76 (64.7, 33.5, 41.4) 0.75
S4 (140.7, 69.5, 87.5) 0.81 (91.2, 58.3, 66.65) 0.49 (79.0, 41.8, 51.2) 0.73

TABLE II: Comparison of Gate Time (G1, G2, G3, G4) using 3 different strategies under 4 different scenarios (S1, . . . , S4).
Euclidean distance (Euc.D) is used to measure how close the gate times across the 4 gates. Time is measured in the simulation
step.

RGA VEGA CGA
(G1, G2, G3, G4) Euc.D (G1, G2, G3, G4) Euc. D (G1, G2, G3, G4) Euc. D

S1 (201, 187, 195, 195) 19.90 (198, 99, 88, 98) 179.16 (143, 144, 146, 150) 10.72
S2 (143, 193, 250, 200) 151.64 (140, 105, 115, 103) 58.87 (90, 153, 204, 158) 156.39
S3 (263, 254, 227, 257) 55.24 (262, 61, 63, 63) 345.83 (122, 116, 129, 112) 25.66
S4 (226, 233, 258, 250) 51.25 (260, 93, 60, 90) 314.38 (132, 122, 120, 116) 23.59
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Fig. 4: The illustration of the 2021 Astroworld Festival accident.

(a) Map A: The frequency of stage switch-
ing (F) and Average Panic/Surge (APS) are
0.010 and 0.85 respectively.

(b) Map B: The frequency of stage switch-
ing (F) and Average Panic/Surge (APS) are
0.009 and 1.05 respectively.

(c) Map C: The frequency of stage switch-
ing (F) and Average Panic/Surge (APS) are
0.007 and 0.62 respectively.

Fig. 5: Three different stage setups.
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