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Abstract

A search for beyond the standard model spin-0 bosons, f, that decay into pairs of
electrons, muons, or tau leptons is presented. The search targets the associated pro-
duction of such bosons with a W or Z gauge boson, or a top quark-antiquark pair,
and uses events with three or four charged leptons, including hadronically decaying
tau leptons. The proton-proton collision data set used in the analysis was collected at
the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to
an integrated luminosity of 138 fb�1. The observations are consistent with the predic-
tions from standard model processes. Upper limits are placed on the product of cross
sections and branching fractions of such new particles over the mass range of 15 to
350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the
product of coupling parameters and branching fractions. Several model-dependent
exclusion limits are also presented. For a Higgs-boson-like f model, limits are set
on the mixing angle of the Higgs boson with the f boson. For the associated pro-
duction of a f boson with a top quark-antiquark pair, limits are set on the coupling
to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like
model with scalar couplings and a fermiophilic axion-like model with pseudoscalar
couplings.
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1 Introduction
A search for a beyond-the-standard-model spin-0 boson, f, is presented, where the f is pro-
duced in association with a W boson, a Z boson, or a top quark-antiquark pair (tt), and decays
into pairs of electrons, muons, or tau leptons. The search uses events containing three or four
charged leptons in the final state, selected from proton-proton (pp) collision data collected by
the CMS experiment at the CERN LHC at

p
s = 13 TeV from 2016–2018, and corresponding to

an integrated luminosity of 138 fb�1. The analysis includes the leptonic and hadronic decays
of tau leptons and targets events for which the two leptons from the f decay form a localized
excess in the dilepton mass spectrum.

This search targets possible new physics at the LHC that could underlie electroweak symmetry
breaking. Motivated by many extensions [1–4] of the standard model (SM) that include addi-
tional spin-0 particles beyond the single Higgs boson (H), a minimal extension of the SM is
considered that consists of a single neutral spin-0 boson, f [5, 6].

The effective Lagrangian relevant for this work is detailed in Ref. [7]. For the production of f
bosons with an SM W or Z boson, denoted Wf and Zf, respectively, two coupling structures
are considered. First, a scenario is considered in which the f mixes with the SM H (H-like),
yielding a coupling proportional to sin q, where q is the mixing angle, resulting in an interaction
of the form:

L ⇢ �2 sin q
fH
v

⇣
m2

W W+µW�
µ +

1
2

m2
Z ZµZµ

⌘
, (1)

where v ' 246 GeV is the Higgs field vacuum expectation value and fH denotes the f boson in
the H-like scenario. Currently, there is an indirect bound on sin2 q of approximately 0.1 [8].

Second, effective operators are considered that couple a scalar (S) or pseudoscalar (PS) f boson
to the SU(2)L field strength tensors Fa

µn and eFa
µn = 1

2 eµnrsFa
rs, where a denotes the SU(2)L triplet

index. The operators take the form:

L ⇢ 1
LS

fS Faµn Fa
µn +

1
LPS

fPS Faµn eFa
µn, (2)

where LS and LPS are the mass scales of the effective interactions and fS and fPS denote the
f boson under the S or PS hypotheses, respectively. The production of f bosons in association
with SM Higgs bosons or photons is not considered within the scope of this work.

For the coupling of f to fermions, flavor-conserving S or PS interactions of the following form
are considered:

L ⇢ �
gySp

2
fS yy �

gyPSp
2

fPS yig5y, (3)

where gyS and gyPS are dimensionless couplings to a given fermion field, y. These terms de-
scribe the associated production of the f with tt (ttf). Probing the ttf production mode is
particularly motivated if the couplings are proportional to the fermion masses [5, 6]. This is
the case in the H-like coupling scenario where a scalar coupling between the fH and fermions
would be gyS =

p
2 sin qmy/v.

The three production modes, Wf, Zf, and ttf, populate a large, complementary multilepton
signature space, and are collectively referred to as Xf. For all production modes, only decays
of f bosons to electron, muon, or tau lepton pairs are considered, as described by the couplings
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The three production modes, Wf, Zf, and ttf, are collectively referred to as Xf. For all pro-
duction modes, decays of f bosons only to electron, muon, or tau lepton pairs are consid-
ered, as described for the coupling to fermions by Eq. (3). The f decays are assumed to con-
serve lepton number and charge, f ! `+`�, where ` = e, µ, or t , and are taken to occur
at the production vertex. As this search targets multilepton signatures, the W and Z bosons
in Wf and Zf signal models are required to be leptonically decaying, whereas one of the
W bosons in the ttf signal model could be decaying hadronically. A complete decay chain
example is ttf ! (bW+)(b̄W�)(`+`�) ! (b`+n)(b̄qq̄)(`+`�) where b and q are the SM
bottom and light (up, down, strange, or charm) quarks, respectively, and ` (n) represents the
SM charged leptons (neutrinos). For Wf and Zf production modes only the leptonic decay
modes of W and Z bosons are considered. For the model-independent results, the branching
fractions B(f ! ``) into different flavors are considered as unconstrained parameters. In to-
tal, (3 + 3 + 2) ⇥ 3 = 24 modes are probed: three coupling structures (S, PS, and H) each for
the Wf and Zf production modes, two coupling structures (S and PS) for the ttf production
mode, and three decay modes for the f (ee, µµ, and tt). All production modes, coupling struc-
tures, and decay scenarios of the f boson are probed separately. This search targets f masses
between 15–350 GeV, excluding masses between 75–108 GeV for the f ! ee/µµ signal scenar-
ios because of high SM Z boson background contributions. The width of the f boson is taken
to be negligible compared to the experimental resolution in all signal models.

The Xf signal scenarios populate a large multilepton signature space in which at least one
lepton arises from the decay of the associated W or Z boson, or top quarks. Figure 1 illustrates
possible production and decay processes of Wf, Zf, and ttf that result in three- or four-lepton
final states. For f masses below the associated gauge boson (top quark) mass, the f boson
may also arise from a three-body decay of an on-shell gauge boson (top quark). The Wf signal
provides a signature with three leptons in the final state, primarily populating phase space
regions with low hadronic activity, significant ~pmiss

T , and no heavy-flavored jets. The Zf signal
produces a four-lepton signature, with similarly low hadronic activity and no heavy-flavored
jets, but with low ~pmiss

T . The ttf signal can yield three- or four-lepton signatures, depending
on the decay mode of the tt system, and populates the phase space with b jets, high hadronic
activity, and large ~pmiss

T arising from the decays of the top quarks.
<latexit sha1_base64="+442BQwYGTQeoaauBAxbwe/Ncpk="></latexit>
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Figure 1: Example production and decay processes of Wf, Zf, and ttf signals producing
multilepton final states, where ` stands for electron, muon or tau lepton. Only leptonic decays
of W and Z bosons are considered for Wf and Zf signals, while for ttf signal W bosons from
top quark decay can also decay hadronically.

The search results are presented in terms of model-independent exclusions along with several
model-dependent interpretations. The model-independent results are presented for each of the
24 separate production and decay modes in terms of the product of the production cross section
and B(f ! ``). The model-dependent results are obtained from a subset of the experimental
channels. First, assuming a Higgs-like f production scenario, the Wf, Zf, or ttf events are
considered to be produced through mixing between the f and SM Higgs boson. Constraints

Figure 1: Example production and decay processes of Wf, Zf, and ttf signals with multilep-
ton final states, where ` stands for electron, muon or tau lepton. Only leptonic decays of W
and Z bosons are considered for Wf and Zf signals, while for the ttf signal, W bosons from
top quark decay can also decay hadronically.

in Eq. (3). The f decays are assumed to conserve lepton number and electric charge, f ! `+`�,
where ` = e, µ, or t , and are taken to occur at the production vertex. As this search targets
multilepton signatures, the W and Z bosons in Wf and Zf signal models are required to decay
leptonically, whereas one of the W bosons in the ttf signal model may decay hadronically.
The Wf signal provides a signature with three leptons in the final state, primarily populating
phase space regions with significant momentum imbalance due to the undetected neutrino
from the W decay, low hadronic activity, and no heavy-flavored jets. The ttf signal can yield
three- or four-lepton signatures, depending on the decay mode of the tt system, and populates
the phase space with similarly large momentum imbalance, but with b jets and high hadronic
activity. The Zf signal produces a four-lepton signature with low hadronic activity and no
heavy-flavored jets, as well as no neutrinos in the final state. A complete decay chain example
is ttf ! (bW+)(bW�)(`+`�) ! (b`+n)(bqq)(`+`�), where b is the SM bottom quark, q
represents quarks of the first and second generations, and ` (n) represents the SM charged
leptons (neutrinos).

Figure 1 illustrates possible production and decay processes of Wf, Zf, and ttf that result in
three- or four-lepton final states. This search targets f masses between 15–350 GeV, excluding
masses between 75–108 GeV for the f ! ee/µµ signal scenarios because of high SM Z boson
background contributions. Decays of f to gauge boson (top quark) pairs are no longer negligi-
ble when the f boson mass is above twice that of the associated gauge bosons (top quarks) in
each of the Xf signals. To facilitate comparisons of results across the signal phase space under
consideration, an upper f mass value of 350 GeV, slightly higher than twice the top quark mass,
is chosen uniformly for all three Xf signals. For f masses below the associated gauge boson
(top quark) mass, the f boson may also arise from a three-body decay of an on-shell gauge
boson (top quark). The width of the f boson is taken to be negligible in all signal models.

The search results are presented in terms of model-independent exclusions along with several
model-dependent interpretations. For the model-independent results, (3 + 3 + 2) 3 = 24 sepa-
rate production and decay modes are probed separately in terms of the product of the produc-
tion cross section and leptonic branching fraction B(f ! ``): three coupling structures (S, PS,
and H) each for the Wf and Zf production modes, two coupling structures (S and PS) for the
ttf production mode, and three decay modes for the f (ee, µµ, and tt). The model-dependent
results are obtained from a subset of the experimental channels. First, direct bounds are set
on models in which f is a fermiophilic dilaton-like [9–12] or a fermiophilic axion-like [13–16]
state, with couplings gyS and gyPS proportional to fermion masses. Only the ttf production
mode is considered in these cases, as fermiophilic particles do not couple to vector bosons.
Next, assuming an H-like f production scenario, the Wf, Zf, or ttf events are considered to
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be produced through mixing between the f and SM Higgs boson, and constraints are set on
the product of sin2 q and B(f ! ``). Under the additional assumption that the f has the same
branching fractions as the SM Higgs boson [6, 17, 18], constraints are set on sin2 q directly. All
results presented in the paper, with accompanying material for reinterpretation, are provided
in the HEPDATA record for this analysis [19]. For the model-independent bounds, additional
representation is provided in terms of the product of the production coupling constant squared
and B(f ! ``), along with overlaid results from the ee, µµ, and tt decay channels for easier
comparison.

Spin-0 states produced in association with SM gauge bosons or top quark pairs and decaying
into SM gauge bosons or fermions have been previously searched for by the LEP, Tevatron,
and LHC experiments [20–36]. In comparison, this analysis constitutes a direct and model-
independent search at the LHC for a dilepton resonance of any flavor produced in association
with a W or a Z gauge boson, or a top quark pair. In the context of the Xf signals described
above, the CMS Collaboration has previously probed the ttf scenario with f decays into di-
electron or dimuon pairs with the combined 2016–2018 data set at

p
s = 13 TeV [37]. The

current analysis also considers a ttf ! tt signal and achieves increased sensitivity for the
ttf ! ee/µµ signal over the entire mass range using improved event selection and analysis
techniques.

This paper is organized as follows. The CMS detector is briefly described in Section 2, fol-
lowed by the summary of data and simulation samples in Section 3. Section 4 covers event
reconstruction, while Section 5 covers event selection and background estimation. Systematic
uncertainties are discussed in Section 6 and results in Section 7. The analysis is summarized in
Section 8.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (h) coverage provided by the barrel and endcap detec-
tors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke
outside the solenoid. A more detailed description of the CMS detector, together with a def-
inition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [38, 39].

Events of interest are selected using a two-tiered trigger system. The first level is composed of
custom hardware processors, and uses information from the calorimeters and muon detectors
to select events at a rate of around 100 kHz within a fixed latency of about 4 µs [40]. The second
level, known as the high-level trigger, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage [41].

3 Data samples and event simulation
This analysis probes a data set that was collected in pp collisions at

p
s = 13 TeV and corre-

sponds to an integrated luminosity of 138 fb�1, with 36.3, 41.5, and 59.8 fb�1 recorded in the
years 2016, 2017, and 2018, respectively [42–44]. The data presented here were collected us-
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ing a combination of isolated single-electron (-muon) triggers with corresponding transverse
momentum, pT, thresholds of 27 (24), 32 (27), and 32 (24) GeV in these three years.

The rates of signal and SM background processes that give rise to isolated and prompt lep-
tons are estimated from Monte Carlo (MC) simulations, which incorporate detailed detector
and pp collision properties. The Zg, WZ, ttV, and triboson (VVV) backgrounds, where V
denotes a W or Z boson, are generated using MADGRAPH5 aMC@NLO [45] at next-to-leading
order (NLO) accuracy in perturbative quantum chromodynamics (QCD). Version 2.2.2 (2.4.2) of
MADGRAPH5 aMC@NLO is used for all background samples for 2016 (2017–2018) data. The Zg
background includes all diagrams contributing to pp ! ``g, with photons from both initial-
and final-state radiation, and with a Lorentz-invariant mass requirement of m(`+`�) > 10 GeV.
The ZZ background contribution produced from quark-antiquark annihilation is generated us-
ing POWHEG 2.0 [46–48] at NLO, whereas the contribution from gluon-gluon fusion is gener-
ated at leading order (LO) using MCFM 7.0.1 [49]. The SM processes involving Higgs boson pro-
duction are generated using POWHEG 2.0, MADGRAPH5 aMC@NLO, and JHUGEN 7.0.11 [50–
53] at NLO, with a Higgs boson mass of 125 GeV. Processes with a single top quark and a Z
boson or with four top quarks are simulated using MADGRAPH5 aMC@NLO at NLO in QCD.
Other small contributions from processes involving a single top quark and an electroweak bo-
son or Higgs boson, two top quarks and two bosons, or three top quarks are simulated using
MADGRAPH5 aMC@NLO at LO in QCD. Simulated event samples for the Drell–Yan (DY) and
tt processes, which are used for systematic uncertainty studies, are generated at NLO with
MADGRAPH5 aMC@NLO and POWHEG 2.0, respectively.

The Xf signal event generation and production cross section determination are performed at
LO accuracy using MADGRAPH5 aMC@NLO 2.6.0 for ttf and 2.6.5 for Wf and Zf. The ttf
signal samples are generated with inclusive decays of the tt system, while the Wf and Zf
signal samples are generated with leptonically decaying W and Z bosons, W ! `n and Z ! ``,
respectively. The samples satisfy an invariant mass requirement of m(`+`�) > 5 GeV and
an angular separation requirement DR(`+`�) > 0.05 for the Z decay products, where DR ⌘
[(Dh)2 + (Dj)2]1/2, h is the pseudorapidity and j is the azimuthal angle [38].

The NNPDF3.0 LO or NLO parton distribution function (PDF) sets [54] are used for all back-
ground and signal samples for 2016 data, with a perturbative order matching that of the ma-
trix element calculations. The NNPDF3.1 next-to-NLO PDF set [55] is used for all 2017–2018
samples. To perform the parton showering, fragmentation, and hadronization of the matrix-
element-level events, PYTHIA [56] is used in all samples, with the event tune CUETP8M1 [57]
(CP5 [58]) in 2016 (2017–2018). PYTHIA version 8.226 (8.230) is used for all background and
signal samples for 2016 (2017–2018) data. The MLM [59] or FxFx [60] jet matching schemes are
used for MADGRAPH5 aMC@NLO samples at LO or NLO, respectively. The simulation of the
response of the CMS detector to incoming particles is performed using the GEANT4 toolkit [61].
Additional pp interactions from the same or nearby bunch crossings (pileup) are simulated
with PYTHIA and incorporated in the MC samples.

4 Event reconstruction
In each event, the primary vertex (PV) is taken to be the vertex corresponding to the hardest
scattering in the bunch crossing, evaluated using tracking information alone, as described in
Section 9.4.1 of Ref. [62]. The full event information is then used by a particle-flow (PF) algo-
rithm [63], which aims to reconstruct and identify each individual particle (photon, electron,
muon, charged hadron, neutral hadron) with an optimized combination of information from
the various elements of the CMS detector.
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Electrons are reconstructed by geometrically matching charged-particle tracks from the track-
ing system with energy clusters deposited in the ECAL [64]. The energy of electrons is de-
termined from a combination of the electron momentum at the primary interaction vertex as
determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum
of all bremsstrahlung photons spatially compatible with originating from the electron track.
The momentum resolution for electrons with pT ⇡ 45 GeV from Z ! ee decays ranges from
1.6 to 5.0%. It is generally better in the barrel region of the ECAL (|h| < 1.479) than in the end-
caps, and also depends on the bremsstrahlung energy emitted by the electron as it traverses
the material in front of the ECAL [64, 65]. To suppress undesired electrons originating from
photon conversions in detector material and from the misidentification of hadrons, the elec-
tron candidates are required to satisfy shower shape and track quality requirements, using the
medium cut-based criteria described in Ref. [64]. Electrons used in this analysis are required to
also satisfy pT > 10 GeV and |h| < 2.4.

Muons are reconstructed from compatible tracks in the inner tracker and the muon detec-
tors [66]. The energy of muons is obtained from the curvature of the corresponding track.
Additional track fit and matching quality criteria suppress the misidentification of hadronic
showers that penetrate the calorimeters and reach the muon system. The matching of muon
system tracks to those measured in the silicon tracker results in a relative pT resolution of 1%
in the barrel and 3% in the endcaps for muons with pT up to 100 GeV, and of better than 7% in
the barrel for muons with pT up to 1 TeV [66]. Muons used in this analysis must lie within the
muon system acceptance, |h| < 2.4, and are required to have pT > 10 GeV.

Hadronically decaying tau lepton (th) candidates are reconstructed from jets, using the hadrons-
plus-strips algorithm [67], which combines one or three tracks with a strip of energy deposits
in the calorimeter. The energy deposits capture photons from neutral pion decay and electrons,
and vary in size in h and j as a function of pT of the photon or electron candidate. Recon-
structed th candidates must satisfy |h| < 2.3 and pT > 20 GeV, where pT refers to the visible
momentum of the tau lepton.

Jets are clustered from PF candidates using the anti-kT algorithm [68] with a distance param-
eter of 0.4, as implemented in the FASTJET package [69]. The jet momentum is given by the
vector sum of all particle momenta in the jet. Pileup interactions can contribute extra tracks
and calorimetric energy depositions, increasing the apparent jet momentum. To mitigate this
effect, tracks identified to be originating from pileup vertices are discarded, and an offset cor-
rection is applied to correct for remaining contributions. Jet energy corrections are derived
from simulation studies so that the average measured energy of jets becomes identical to that
of particle-level jets. In situ measurements of the momentum balance in dijet, photon+jet, Z+jet,
and multijet events are used to determine any residual differences between the jet energy scale
in data and in simulation, and appropriate corrections are made [70]. Additional selection
criteria are applied to each jet to remove jets potentially dominated by instrumental effects
or reconstruction failures. The minimum pT threshold for the jets selected in this analysis is
30 GeV, and the central axis of the jet is also required to be inside the muon system acceptance,
|h| < 2.4. The selected jets must lie outside a cone defined by DR = 0.4 relative to a selected
muon, electron, or th candidate, as defined later in this section.

The missing transverse momentum ~p miss
T is defined as the negative vector pT sum of all the

PF candidates in an event, and its magnitude is denoted as pmiss
T [71]. The pileup per particle

identification algorithm [72] is applied to reduce the pileup dependence of the~p miss
T observable.

The ~p miss
T is computed using the PF candidates weighted by their probability to originate from

the PV, and is modified to account for corrections to the energy scale of the reconstructed jets
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in the event [73].

Leptons produced from the decays of H and massive vector bosons (either directly or via a
leptonically decaying tau lepton) are referred to as prompt leptons, and are often indistinguish-
able in momentum and isolation from those produced in signal events. Thus, the SM processes
giving rise to three or more isolated leptons, such as WZ, ZZ, ttV, VVV, and H boson produc-
tion, are referred to as the prompt backgrounds in this analysis. On the other hand, reducible
backgrounds are defined as those from SM processes in which the jets are misidentified as lep-
tons, or where the leptons originate from heavy-quark decays. Leptons from such sources are
referred to as misidentified leptons, and SM background processes with such leptons are col-
lectively labeled as “MisID” backgrounds. Some examples of such backgrounds are Z+jets or
tt+jets production, in which the prompt leptons are accompanied by leptons that are within or
near jets, hadrons that traverse the HCAL and reach the muon detectors, or hadronic showers
with large electromagnetic energy fractions.

The reducible backgrounds are significantly suppressed by applying stringent requirements on
the lepton isolation and displacement. For electron and muon candidates, the relative isolation
is defined as the scalar pT sum of photon and hadron PF objects within a cone of fixed DR
around the lepton, divided by the lepton pT. For electrons, the relative isolation is required to
be less than 0.0478 + 0.506 GeV/pT in the barrel section of the ECAL (|h| < 1.479) and less than
0.0658 + 0.963 GeV/pT in the endcap section (|h| > 1.479), with DR = 0.3 [64]. The relative
isolation for muons is required to be less than 0.15 with DR = 0.4 [66]. The isolation quantities
are also corrected for contributions from particles originating from pileup vertices [64, 66]. In
addition to the isolation requirement, electrons in the barrel must satisfy |dz| < 0.1 cm and
|dxy| < 0.05 cm, and in the endcap |dz| < 0.2 cm and |dxy| < 0.1 cm, where dz and dxy are the
longitudinal and transverse impact parameters of electrons with respect to the PV, respectively.
Similarly, muons must satisfy |dz| < 0.1 cm and |dxy| < 0.05 cm. For both electrons and muons,
the three-dimensional impact parameter significance (SIP3D) is defined as the absolute value
of the impact parameter divided by its uncertainty [74]. It is tuned to account for changes in
detector and pileup conditions, and must be less than 10, 12, and 9 in 2016, 2017, and 2018 data,
respectively. All selected electrons within a cone of DR < 0.05 centered on a selected muon
are discarded in order to reduce the inclusion of non-prompt electrons originating from muon
bremsstrahlung.

For th leptons, the DEEPTAU [75] algorithm is used to distinguish genuine th lepton decays
from jets originating from the hadronization of quarks or gluons, as well as from electrons or
muons. Information from all individual reconstructed particles near the th candidate axis is
combined with properties of the th candidate and of the event. The very tight working point of
the jet discriminator of the DEEPTAU algorithm is used to suppress misidentified contributions
from jets, with an identification efficiency of about 50% depending on the visible pT and h of the
th candidate. Similarly, the loose working points of the DEEPTAU electron and muon discrimi-
nators are used to suppress such misidentified contributions, with identification efficiencies of
about 95% and 99.9%, respectively. These result in misidentification probabilities of about 0.5%
for jets and electrons, and 0.05% for muons, as measured in events enriched in DY+jets and
W+jets processes. In addition to this multivariate requirement, th candidates are required to
satisfy |dz| < 0.2 cm. All selected th candidates within a cone of DR < 0.5 of a selected electron
or muon are also discarded to suppress contributions from electrons or muons misidentified as
taus.

Reconstructed jets originating from b hadrons are identified using the medium working point
of the DEEPCSV b tagging algorithm [74]. To suppress contributions due to misidentified lep-
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tons originating from heavy-flavor jet decays, a b tag veto is applied, where lepton candidates
are discarded if any b-tagged jet with a less stringent selection (pT > 10 GeV, |h| < 2.5) is found
within a cone of DR < 0.4 centered on the candidate. Selection criteria including requirements
on dxy, dz, SIP3D, and b-tag veto are collectively referred to as the lepton displacement veto.

These reconstruction and selection requirements result in typical efficiencies of 40–85% for elec-
trons, 65–90% for muons, and 30–50% for th leptons, depending on the lepton pT and h, as
evaluated for prompt leptons originating from W and Z boson decays. Similarly, the b tagging
working point achieves an identification efficiency of 60–75% for b quark jets depending on
jet pT and h, and a misidentification probability of about 10 (1)% for c quark (light-quark and
gluon) jets, respectively, as evaluated in events enriched in tt and multijet processes.

Table 1: A summary of control regions for the SM processes ZZ, Zg, WZ, and ttZ, and for
the misidentified lepton backgrounds (MisID e/µ and MisID t). The pmiss

T , MT, 3L minimum
lepton transverse momentum pT3, M` , and ST quantities are given in units of GeV. The 3L
OnZ CR is further split into 3L MisID e/µ CR, 3L WZ CR, and 3L ttZ CR. The terminology is
described in Section 5.

CR name OSSFn MOSSF Nb pmiss
T MT pT3 Other selections

4L ZZ OSSF2 Double-OnZ 0 — — — —
3L Zg OSSF1 BelowZ 0 — — — 76 < M` < 106

3L OnZ OSSF1 OnZ — <125 <150 — —
3L WZ OSSF1 OnZ 0 <125 50–150 >20 —
3L ttZ OSSF1 OnZ �1 <125 <150 >20 Nj � 3, ST > 350
3L MisID e/µ OSSF1 OnZ 0 <100 <50 — —

2L1T MisID t OSSF1 OnZ — <100 — — —

5 Event selection and background estimation
In this analysis, events with three or more leptons satisfying the selection criteria given in
Section 4 are considered. Among these leptons, events must contain at least one muon with
pT > 26 (29) GeV in 2016 and 2018 (2017) or at least one electron with pT > 30 (35) GeV in
2016 (2017–2018). The analysis thresholds are set 3 GeV (2 GeV) higher than electron (muon)
trigger thresholds.

All events are categorized in seven distinct final states (channels) based on the number of light
leptons (L = e, µ) and th (T) candidates. These seven channels are mutually exclusive, and
are defined as (i) 1L2T, with exactly one light lepton and exactly two th candidates; (ii) 1L3T,
with exactly one light lepton and three or more th candidates; (iii) 2L1T, with exactly two light
leptons and exactly one th candidates; (iv) 2L2T, with exactly two light leptons and two or
more th candidates; (v) 3L, with exactly three light leptons and no th candidates; (vi) 3L1T,
with exactly three light leptons and one or more th candidates; and (vii) 4L, with four or more
light leptons and any number of th candidates.

In the 4L channel, only the leading four light leptons in pT are used in the subsequent analy-
sis. Likewise, in the 3L1T, 2L2T, and 1L3T channels, only the leading one, two, and three th
candidates are used, respectively.

The main SM backgrounds are constrained using dedicated control regions (CRs), as described
in detail in Sections 5.1 and 5.2 and summarized in Table 1. Lepton and jet multiplicity cate-
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gorization, transverse momenta, and invariant mass variables are used to define CRs enriched
in specific SM background processes or MisID backgrounds. The CRs are then excluded from
the analysis phase space. The remaining events are grouped in different signal regions (SR) to
increase signal sensitivity across the probed dilepton mass spectra. The SRs are described in
detail in Section 5.3.

In order to suppress contributions due to low-mass quarkonium resonances, cascade decays of
heavy-flavor hadrons, and low-DR final-state radiation, events are discarded if Mmin < 12 GeV
or DRmin < 0.2, where Mmin and DRmin are defined as the minimum Lorentz-invariant mass
and minimum DR of all lepton pairs in the event, irrespective of lepton charge and flavor. This
requirement is applied to all CR and SR events. A binned representation of the CRs and SRs
illustrating the expected background composition is given in Fig. 2, where the normalizations
of the background samples in the CRs are as described in Sections 5.1 and 5.2.

The multiplicity of jets (b jets) satisfying the selection criteria stated in Section 4 is denoted as
Nj (Nb). The LT and HT variables are defined as the scalar pT sum of all charged leptons (e,
µ, th) and jets in an event, respectively. The invariant mass of all leptons in a given event is
defined as M` , and the absolute value of the charge sum of all leptons as Q` . For the LT, M` ,
and Q` calculations, only the charged leptons used to define the channel are used. The variable
ST is defined as the scalar sum of LT, HT, and pmiss

T .
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Figure 2: Binned representation of the control and signal regions for the combined multilepton
event selection and the combined 2016–2018 data set. The CR bins follow their definitions as
given in Table 1, and the SR bins correspond to the channels as defined by the lepton flavor
composition. The normalizations of the background samples in the CRs are described in Sec-
tions 5.1 and 5.2. All three (four) lepton events are required to have Q` = 1 (0), and those
satisfying any of the CR requirements are removed from the SR bins. All subsequent selections
given in Tables 2 and 3 are based on events given in the SR bins. The lower panel shows the
ratio of observed events to the total expected SM background prediction (Obs/Exp), and the
gray band represents the statistical uncertainties in the background prediction.

The number of distinct opposite-sign same-flavor lepton pairs in an event is denoted as OSSFn,
where n is the number of OSSF pairs. Some examples of the OSSF1 events are e+e�e+ in 3L,
µ+µ�t+

h in 2L1T, e+e�e+µ� in 4L. Only 4L and 2L2T events can be categorized as OSSF2,
for example e+e�µ+µ� in 4L and µ+µ�t+

h t�
h in 2L2T. OSSF0 events are all those with no
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opposite-sign same-flavor pairs, as examples e+e+µ+ or e+e+e+ in 3L.

To identify an event likely to contain a Z boson, MOSSF is defined to be the invariant mass of
the OSSF dielectron or dimuon pair that is closest to 91 GeV, and an event with 76 < MOSSF <
106 GeV is labeled as OnZ. The OSSF1 or OSSF2 events that are not OnZ are labeled as OffZ,
and if an OffZ event has MOSSF < 76 GeV, it is classified as BelowZ. The minimum lepton pT
in 3-lepton events is referred to as pT3. The transverse mass for a single lepton i is defined as
Mi

T = (2pmiss
T pi

T[1 � cos(~p miss
T ,~p i

T)])1/2, where pi
T is the pT of lepton i. In 3L OSSF1 events, the

lepton that is not used in the MOSSF pair is used in the calculation of MT. In the 3L events with
two non-distinct OSSF pairs (such as in e+e�e+ or µ+µ�µ+), the events are classified as OnZ
if either pair satisfies 76 < MOSSF < 106 GeV. Also in such events, the assignment of which
leptons form the OSSF pair and which is used in the MT calculation is made simultaneously so
that the event is OnZ, and MT is in the range 50–150 GeV. If such a choice is not kinematically
possible, building an OnZ candidate is prioritized. Similarly, in 4L OSSF2 events with four
electrons or muons, MOSSF is chosen to give the maximum number of distinct OSSF OnZ pairs,
and such events are labeled as Single- or Double-OnZ, depending on whether they have one or
two distinct OnZ OSSF pairs. The MOSSF spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and
4L event selection (excluding the Zg CR) is illustrated in Fig. 3.

5.1 Prompt-lepton backgrounds

The prompt-lepton backgrounds arise from processes in which all reconstructed leptons orig-
inate from decays of SM bosons. These backgrounds are irreducible, and their contributions
are estimated with simulated event samples, which have been normalized and validated using
data in dedicated CRs for each of the major WZ, ZZ, ttZ, and Zg processes, as summarized
in Table 1. The normalizations for these processes are typically found to be within 20% of the
NLO theoretical cross sections, and are applied together with the associated uncertainties to
the corresponding background estimates in the SRs. These uncertainties include both statisti-
cal and systematic contributions, and take into account the contributions of events from other
processes. The measurements for the diboson processes are largely independent of one another
because of the high purity of the corresponding CRs. Since these backgrounds make significant
contributions to the ttZ-enriched CR, the normalization for this process is measured after the
corresponding corrections have been obtained for the other backgrounds.

The ZZ ! 4` and WZ ! 3`n processes are the primary prompt-background processes in the
channels with four and three leptons, respectively. The qq ! ZZ and gg ! ZZ processes are
considered collectively as the ZZ background. The 4L ZZ CR require two OSSF lepton pairs
with invariant masses consistent with the Z boson mass. While the 3L WZ CR require one
OnZ lepton pair and MT consistent with the W mass. The 4L ZZ CR has a purity greater than
99%, whereas that of the 3L WZ CR is greater than 75%. In both CRs, events with b-tagged jets
are vetoed, and in the 3L WZ CR, the minimum lepton pT cut is raised to 20 GeV and pmiss

T is
required to be less than 125 GeV to suppress contributions from other background processes.
Relative uncertainties of 3–5% are observed in the normalizations across the three data-taking
periods for these processes. The ZZ and WZ simulation samples are reweighted as functions
of the jet multiplicity as well as the visible diboson pT to match the simulated distributions
to those of the data in these CRs, where the visible diboson pT is defined as the vector pT
sum of the charged leptons in the event. This reweighting accounts for missing higher-order
QCD and electroweak corrections, and yields an improved description of leptonic and hadronic
quantities of interest in this analysis.

Production of ttZ is a major prompt SM background process for all channels with Nb � 1.
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A ttZ enriched CR is created by selecting 3L events similarly to the 3L WZ CR, but with in-
verted requirement of at least one b-tagged jet, and with additional requirements of at least 3
jets and ST greater than 350 GeV. The purity of the 3L ttZ CR selection is about 60%, and rel-
ative uncertainties of 15–25% are measured in the normalizations across the three data-taking
periods.

A smaller background contribution arises from initial- or final-state radiation photons that con-
vert asymmetrically such that only one of the resultant leptons is reconstructed in the detector.
The DY process with an additional photon is the dominant source of such backgrounds, collec-
tively referred to as the conversion background. The cross section of this process is normalized
in a dedicated 3L Zg CR, where the mass of the three-lepton system is required to be within
the Z mass window, (91 ± 15) GeV, and events with b-tagged jets are vetoed. This CR targets
Z ! `` + g events, where, for example, the photon converts in the detector and the energy of
one of the four leptons is too low to satisfy the lepton selection criteria. Relative uncertainties
of about 10% are obtained in the normalizations across the three data-taking periods, where
the quoted value also includes a lepton-flavor-dependent component because the fractions of
internal and external conversions vary as a function of the electron multiplicity in the events.

Other SM processes that are not normalized in a dedicated CR in data are estimated from
simulation samples and normalized to their theoretical cross sections. These processes consist
of triboson, Higgs boson, and other rare SM contributions, and are collectively referred to as
“rare” backgrounds.
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Figure 3: The MOSSF spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection
(excluding the Zg CR) and the combined 2016–2018 data set. All three (four) lepton events are
required to have Q` = 1 (0). The lower panel shows the ratio of observed events to the total
expected SM background prediction (Obs/Exp), and the gray band represents the statistical
uncertainties in the background prediction.

5.2 Misidentified-lepton backgrounds

The misidentified-lepton backgrounds are estimated from data using three- or four-dimensional
implementations of a matrix method [76], where the dimensionality corresponds to the lepton
multiplicity in the targeted SRs. For a given SR, the matrix method involves extrapolating the
misidentified-lepton contributions from a set of sideband regions into the SR event-by-event
using lepton “misidentification” and “prompt” rates.
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The sideband regions include all the lepton selection criteria described in Section 4, with the
exception of the isolation requirements, which are relaxed. We refer to the requirements in
the SRs and sideband regions as “tight” and “loose”, respectively. Specifically, for the loose
requirement, the relative isolation must be less than 1.0 for electrons and muons, and th candi-
dates are required to pass a looser working point of the DEEPTAU algorithm jet discriminator.
Accounting for the possible combinations, for a given SR with 3 or 4 leptons, the matrix method
uses 7 or 15 nonoverlapping sideband regions, respectively. The sideband regions are mutually
exclusive to the SRs by construction.

The misidentification rates are defined as the probabilities that misidentified leptons pass the
tight selection, given that they satisfy the loose selection. Because of the isolation requirements
used in the single-lepton triggers, background contributions with up to 2 (3) simultaneously
misidentified leptons in 3 (4) lepton events can be predicted by this method. The fraction of
signal events where all lepton candidates are misidentified leptons is found to be negligible in
simulation. The DY+jets and tt+jets processes are the dominant SM contributions to the total
misidentified-lepton background in multilepton events. Misidentification rates are derived in
dedicated CRs in data and used in the matrix method in SRs. Data-based misidentification
rate measurements in DY+jets events are performed using a variant of the “tag-and-probe”
method [77] in three-lepton CR events. In the 3L MisID and 2L1T MisID CRs, the OnZ lep-
tons are taken as the tag leptons, and the additional lepton is taken as the misidentified-lepton
probe, e.g., eeµ and µµµ events are used to measure the muon misidentification rates, while
eeth and µµth events are used to measure the th misidentification rates. In all data-based
misidentification rate measurements, contributions due to prompt probe leptons are estimated
and subtracted using MC simulation. Misidentification rates in tt+jets events may differ by
up to 50% from those in DY+jets events for a given lepton flavor, because of different gluon,
light quark, and heavy quark compositions, as well as different event kinematic properties. As
it is impractical to create a high purity tt+jets enriched selection of events with well-defined
misidentified-lepton probes in data, dedicated tt+jets misidentification rates for all lepton fla-
vors are obtained in simulated samples instead, using object and event selections compatible
with the SR selections. These simulation-based rates are verified in dedicated data CRs en-
riched in tt+jets contributions with a misidentified lepton, where one lepton is required to fail
the three-dimensional impact parameter significance requirement or the b tag veto described
in Section 4.

The lepton misidentification rates are measured as functions of various kinematic features of
leptons and the hadronic properties of events that affect the lepton isolation. All misiden-
tification rates are parametrized as functions of the lepton pT and |h|. For tau leptons, the
misidentification rates are measured separately for one- and three-prong reconstructed th can-
didates. The misidentification rate for each lepton flavor is corrected as a function of the recoil
of the event, as well as the multiplicity of tracks originating from the PV and the jet multiplicity.
The recoil is defined as a projection along the lepton pT axis of the vector sum of the pT of all
other leptons, jets, and pmiss

T in the event. The associated corrections significantly improve the
modeling of misidentified-lepton backgrounds in DY+jets events, in which the misidentified
lepton often originates from a jet recoiling against the leptonically decaying Z boson system.
The final misidentification rates for all lepton flavors are obtained from a weighted average
of the DY- and tt-based measurements. The weights are evaluated according to the expected
DY-tt composition of the MisID background, as obtained from simulated samples in each SR
category and for each b-tagged jet multiplicity. Half of the difference between the rates de-
rived from DY- and tt-based measurements is assigned as a systematic uncertainty to account
for inaccurate modeling of the expected background composition. Typical electron and muon
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misidentification rates, relative to the loose selection, are in the range 5–30%, whereas those of
th objects are found to be in the range 1–15%.

Similarly, the prompt rates are defined as the probability for prompt and isolated leptons to
pass the tight criteria given that they pass the loose criteria. Within the matrix method, they
constitute a correction, and account for the contribution to the lepton sidebands from prompt
leptons that fail the tight selection criteria. In data, the prompt rates for electrons, muons, and
th leptons are measured using the tag-and-probe method in DY-enriched ee, µµ, and eth/µth
dilepton events, respectively, as functions of the lepton pT and |h|, and are found to be in
the range 50–95%. In simulation, the prompt rates are similarly measured in DY and tt MC
samples, using reconstructed leptons kinematically matched to generator-level prompt leptons
(DR < 0.2). The final prompt rates for all lepton flavors are taken from the DY-enriched data
measurements. The differences between the prompt rates derived from DY and tt MC samples
are studied to assess their dependence on hadronic activity, and the impact of such system-
atic uncertainty contributions on the misidentified-lepton background estimate is found to be
negligible.

Table 2: Low- and high-mass signal region selections for Xf ! ee/µµ signals. Events satisfy-
ing the control region requirements are vetoed throughout, and only those with a reconstructed
f candidate are retained using the specified dilepton mass variable. The ST, pT3, and M` re-
quirements are specified in units of GeV. The two entries in the labels, channels, and dilepton
mass variables are provided for the Xf ! ee and Xf ! µµ signal scenarios, as appropriate.

Label Channels Q` OSSFn MOSSF Nb ST pT3 M` Dilepton mass
Wf(ee/µµ) SR1Low 3L(eeµ/eµµ) 1 1 OffZ 0 — — <76, >106 Mee/Mµµ

Wf(ee/µµ) SR2Low 3L(eee/µµµ) 1 1 OffZ 0 — — <76, >106 Mmin
ee /Mmin

µµ

Wf(ee/µµ) SR1High 3L(eeµ/eµµ) 1 1 OffZ 0 >200 >15 >150 Mee/Mµµ

Wf(ee/µµ) SR2High 3L(eee/µµµ) 1 1 OffZ 0 >200 >15 >150 Mmax
ee /Mmax

µµ

Zf(ee/µµ) SRLow 4L+3L1T+2L2T 0 �1 Not double-OnZ 0 — — — Mmin
ee /Mmin

µµ

Zf(ee/µµ) SRHigh 4L+3L1T+2L2T 0 �1 Not double-OnZ 0 >200 — >150 Mmax
ee /Mmax

µµ

ttf(ee/µµ) SR1Low 3L(eeµ/eµµ) 1 1 OffZ �1 >350 — >100 Mee/Mµµ

ttf(ee/µµ) SR2Low 3L(eee/µµµ) 1 1 OffZ �1 >350 — >100 Mmin
ee /Mmin

µµ

ttf(ee/µµ) SR1High 3L(eeµ/eµµ) 1 1 OffZ �1 >400 >15 >100 Mee/Mµµ

ttf(ee/µµ) SR2High 3L(eee/µµµ) 1 1 OffZ �1 >400 >15 >100 Mmax
ee /Mmax

µµ

ttf(ee/µµ) SR3Low 4L+3L1T+2L2T 0 �1 OffZ — >350 — — Mmin
ee /Mmin

µµ

ttf(ee/µµ) SR3High 4L+3L1T+2L2T 0 �1 OffZ — >400 — — Mmax
ee /Mmax

µµ

5.3 Signal regions

The signals in the Xf ! ee/µµ scenarios are expected to produce narrow enhancements in re-
constructed opposite-sign dielectron and dimuon mass (Mee and Mµµ ) spectra, whereas wider
enhancements are obtained in the Xf ! tt scenarios because of undetected neutrinos orig-
inating from decays of tau leptons. A set of reconstructed dilepton invariant mass variables
with additional selection criteria discriminates the Xf signal from the SM backgrounds, where
the binning scheme and range of these variables are chosen to maximize sensitivity according
to the expected signal shapes and SM backgrounds. These are summarized in Tables 2 and 3
for the Xf ! ee/µµ narrow resonance search and the Xf ! tt wide resonance search, re-
spectively.

For the Xf ! ee/µµ signal scenarios, Mee and Mµµ are utilized. The SM-background-enriched
mass window around the Z boson mass is excluded, dividing the mass spectra into two mass
regions. The SRs containing events with a f mass below or above the Z boson mass window
are referred to as the low- or high-mass region, respectively. The low (high) dilepton mass
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range spans 12–76 (106–366) GeV. In events with more than one opposite sign ee pair, such
as e+e+e�, masses are defined for two possible pairings of e� and e+. The lower of the two
f masses is referred to as Mmin

ee and the higher one is referred to as Mmax
ee . Dimuon decay

scenarios are handled similarly, where Mmin
µµ (Mmax

µµ ) is the minimum (maximum) opposite-sign
µµ invariant mass per event. On the other hand, for the Xf ! tt signal, where tau can
subsequently decay to e or µ, a different categorization based on three new mass variables is
adopted because of the absence of a narrow resonance in DY background, where the full mass
range above 12 GeV, including the Z boson mass region, is used. These variables correspond
to the minimum invariant mass among all thth pairs (Mmin

tt ), eµ pairs (Mmin
eµ ), and eth or µth

pairs (Mmin
`t ), as well as the minimum of Mmin

tt and Mmin
`t (Mmin

`t/tt ). For all three decay modes
of f, the targeted mass ranges for reconstructed dilepton masses are taken to be wider than
the probed f mass range (15–350 GeV) to minimize loss of signal acceptance due to detector
resolution effects.

To increase signal sensitivity, further selections consisting of requirements on lepton and jet
multiplicities, total lepton charge, minimum lepton pT, and the combined invariant mass of all
leptons in the event (M` ) are used. For the Xf ! ee/µµ samples with high mass, requiring
larger ST, pT3, and M` suppresses the MisID background and increases sensitivity. For the
Xf ! tt signals, because of significant contributions from misidentified tau lepton candidates,
a minimum pT threshold of 30 GeV is applied to the th candidates in all 3-lepton channels. In
various signal regions, minimum ST requirements are applied as an approximate measure of
the effective mass of all particles produced in the targeted final state. Signal events with tt
pairs are distinguished from others based on Nb. Specifically, the Zf and Wf SRs include
only events with Nb = 0, while most ttf SRs require Nb � 1. For the ttf signal in the 4L
channel, no requirement is imposed on Nb selection because of the high-ST requirement and
the already low total background expectation. Furthermore, all SRs are required to have a total
absolute charge consistent with the probed signal scenario, i.e. Q` = 0 (1) for all 4 (3) lepton
events. In SRs with significant background contributions, events with a single f candidate
are considered separately from those with more than one candidate, to mitigate the effects of
dilepton mispairings in the resolution of the reconstructed f mass.

In order to improve the f selection efficiency in channels with multiple candidates, certain
signal-specific kinematic features are used to help correctly identify the f decay products. In
the Wf(ee/µµ) SR2 channels with ambiguity in OSSF pair construction, the lepton with MT
closest to the W boson mass in the (81 ± 30) GeV mass window is selected first, and the other
two leptons are taken to reconstruct the f mass. If no W candidate in the specified MT window
is found, or if one is found but the remaining two leptons are not of opposite charge, then the
dilepton pair with the minimum or maximum mass is used. Similarly, in the ttf(ee/µµ) SR2
channels, the lepton with minimum MT is identified first, and the remaining two leptons are
labeled as the f decay products, provided they form an opposite-sign pair. In the 4L channel
of the Zf(ee/µµ) SR with OSSF2, the Z candidate is identified using the MOSSF variable and a
mass window of (91 ± 15) GeV, and the other two leptons are taken as f decay products. These
f selection algorithms were evaluated using simulations and found to correctly identify the f
decay products in more than 70% of events with multiple f candidates.

In each Xf(ee/µµ) SR, 1 (5) GeV-wide dilepton mass bins are used to probe the targeted phase
space for low (high) f masses. These bin widths are chosen to be consistent with the narrow-
width assumption for the f boson as well as the detector resolution effects on the Mee and
Mµµ spectra over the probed mass range. The Xf ! ee/µµ signal mass hypotheses that are
closer to the dilepton mass bin boundaries than to the bin centers are probed with a modi-
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fied binning scheme, where the mass bin boundaries are shifted by half the value of the bin
widths. A smoothing procedure is separately applied to the prompt and MisID background
contributions in these SRs, using a nonparametric kernel density estimation method with a
Gaussian kernel [78]. A fixed-width kernel is used except within 10% from each edge in the
mass spectra, where the kernel size is reduced significantly to prevent artificial shaping of the
expected background distributions. The smoothing procedure mitigates the impact of statis-
tical fluctuations in the expected background spectra and ensures a stable signal sensitivity
across the probed mass bins. No additional uncertainties have been added for the smoothing
procedure since different choices of kernel widths yield differences within the existing uncer-
tainties. No smoothing procedure is applied to Xf(tt) SRs, as these mass spectra are binned
using wider bins with variable widths ranging 5–60 GeV to achieve smoothly behaving ex-
pected background distributions.

Table 3: Signal selections for Xf ! tt signals. Events satisfying the control region require-
ments are vetoed throughout, and only those with a reconstructed f candidate are retained
using the specified dilepton mass variable. The ST, pT3, and M` requirements are specified in
units of GeV.

Label Channels Q` OSSFn MOSSF Nb ST Nj pT3 M` Dilepton mass
Wf(tt) SR1 3L 1 0 — 0 >200 — >15 >150 Mmin

eµ

Wf(tt) SR2 2L1T+1L2T 1 0 — 0 >200 — >30 >150 Mmin
`t

Wf(tt) SR3 1L2T 1 1 — 0 >200 — >30 >150 Mmin
tt

Zf(tt) SR1 4L+2L2T 0 1 — 0 >200 — — — Mmin
eµ

Zf(tt) SR2 3L1T 0 1 — 0 >200 — — — Mmin
`t

Zf(tt) SR2 2L2T 0 0 — 0 >200 — — — Mmin
`t

Zf(tt) SR3 2L2T 0 2 — 0 >200 — — — Mmin
tt

ttf(tt) SR1 3L 1 0 — 0 >400 >1 >15 >100 Mmin
eµ

ttf(tt) SR2 2L1T+1L2T 1 0 — 0 >400 >1 >30 >100 Mmin
`t

ttf(tt) SR3 1L2T 1 1 — 0 >400 >1 >30 >100 Mmin
tt

ttf(tt) SR4 3L 1 1 OffZ >0 >400 >1 >15 >100 Mmin
eµ

ttf(tt) SR4 3L 1 0 — >0 >400 >1 >15 >100 Mmin
eµ

ttf(tt) SR5 2L1T+1L2T 1 0 — >0 >400 >1 >30 >100 Mmin
`t

ttf(tt) SR6 1L2T 1 1 — >0 >400 >1 >30 >100 Mmin
tt

ttf(tt) SR7 3L1T 0 1 OffZ — >400 — — — Mmin
`t/tt

ttf(tt) SR7 3L1T 0 0 — — >400 — — — Mmin
`t/tt

ttf(tt) SR7 2L2T 0 2 OffZ — >400 — — — Mmin
`t/tt

ttf(tt) SR7 2L2T 0 <2 — — >400 — — — Mmin
`t/tt

ttf(tt) SR7 1L3T 0 1 — — >400 — — — Mmin
`t/tt

To summarize all mass spectra listed above, 6 low-mass and 6 high-mass Mee and Mµµ spectra
are probed for each of the Xf ! ee/µµ signals, and 13 dilepton mass spectra are probed for
the Xf ! tt signals. This results in a total of 37 mass spectra covering all dilepton decay
modes.

6 Systematic uncertainties
All background and signal estimates have uncertainties because of the finite number of events
in simulated samples or data sidebands. These statistical uncertainties are typically less impor-
tant, but are nonetheless propagated to the results.
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Systematic uncertainties arise from the corrections applied to the background and signal sim-
ulations. These include corrections for the efficiencies of the electron and muon triggers, elec-
tron charge misidentification probability, lepton reconstruction, identification and isolation,
and lepton displacement veto selection, as well as the lepton energy scale and resolution mod-
eling, b tagging efficiency, pileup modeling, and energy scale corrections for jets and pmiss

T .

Each of the uncertainty sources is studied for the main SM backgrounds (WZ, ZZ, ttZ, and Zg)
and various signal samples covering all probed f mass hypotheses in the different production
modes. The impact of each source is evaluated by varying the corresponding correction fac-
tor up and down within one standard deviation of its associated uncertainty. The resulting
variations in the mass spectra are then used to define an envelope of the impact from each
source of systematic uncertainty. The uncertainties that only affect the overall normalization
of the expected backgrounds play a less important role in the resonant search, particularly in
the Xf ! ee/µµ signal scenarios. Such uncertainties are collectively labeled as “flat” in the
discussion below.

Uncertainties in the lepton trigger and selection efficiencies are largely mass-independent, and
are in the 1–15% range, depending on the lepton flavor, pT, and h. Uncertainties affecting the
lepton energies, which account for any mismodeling of the overall energy scale and resolution
in simulated samples, are evaluated for the background and signal processes and are taken
to be correlated. These uncertainty sources affect only the normalization of the background
distributions. However, for the signal, they are the most important uncertainties, as they af-
fect the mean and width of the reconstructed signal mass distributions. A maximum shift of
0.5 (0.1)% is observed in the mean of the reconstructed resonant f mass distribution for dielec-
tron (dimuon) decays. The width of the resonant signal changes by around 2% for low f masses
and up to 6% for the largest f mass scenarios, for both electrons and muons. The correction and
uncertainty in the electron charge misidentification rate, obtained in a dedicated DY-enriched
dielectron selection of data events, is found to have a negligible impact. Uncertainties in the
signal acceptance, as well as the acceptance and cross section of the dominant SM backgrounds,
due to the choices of factorization and renormalization scales [79] and PDFs [54, 55] are found
to be negligible.

The uncertainty in the integrated luminosity is partially correlated between data-taking years.
The integrated luminosities of the 2016, 2017, and 2018 data-taking periods have uncorrelated
uncertainties ranging from 1.2–2.5% [42–44], and a correlated uncertainty of 1.6%. The pileup
modeling correction has an associated uncertainty of 3% in the normalization of the dilepton
mass distributions, evaluated by varying the total inelastic pp cross section used in the correc-
tion procedure up and down by 5% [80, 81].

Dedicated uncertainties are considered for the modeling of primary SM backgrounds, includ-
ing WZ, ZZ, ttZ, and Zg processes, which were normalized to data in dedicated CRs. The
relative uncertainties in the normalizations for WZ, Zg, ttZ, and ZZ backgrounds are 3–5, 10,
15–25, and 4–5%, respectively, in all three years of data collection. The diboson pT correction
typically has a flat 1–5 (4–9)% effect on the WZ (ZZ) background, while the jet multiplicity
reweighting has an effect up to 10 (3–30)%. For the rare background processes, a 50% system-
atic uncertainty is assigned to the theoretical cross section estimates to cover any higher-order
effects and PDF uncertainties.

The uncertainty in the misidentified lepton background estimation, which is obtained from
data via the matrix method, is dominated by the uncertainties in the lepton misidentification
rates. The relative statistical uncertainties in the measurement of the misidentification rates are
the dominant source of uncertainty, and are typically in the 10–30% range. As the th (e and µ)
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misidentification rates are extrapolated from low pT to pT > 80 (50) GeV, these uncertainties are
doubled, and a 60% relative uncertainty for such high-pT leptons is assigned. In summary, the
lepton misidentification rates have typical relative uncertainties of 10, 30, and 60% in the low-
pT (10–20 GeV for light leptons and 10–30 GeV for th), medium-pT (20–50 GeV for light leptons
and 30–80 GeV for th), and high-pT (> 50 GeV for light leptons and > 80 GeV for th) regions,
respectively. These uncertainties in the total misidentified lepton background correspond to
the contribution of 20–50%. The uncertainties are uncorrelated across lepton flavors, the three
pT regions, and the three data-taking periods. In addition, process-dependent uncertainties
in the lepton misidentification rates are considered as a separate source of uncertainty. These
are estimated by comparing the misidentification rates observed in the DY- and tt-enriched
samples, and are typically in the range 5–25%, correlated across the data-taking periods.

The uncertainty sources, the affected processes, the resulting uncertainties in the yields of those
processes, and the correlations across the data-taking periods are summarized in Table 4. The
overall uncertainties in the total expected backgrounds are largely dominated by those affecting
the WZ, ZZ, ttZ, and MisID processes.

Table 4: Sources, magnitudes, impacts, and correlation properties of systematic uncertainties
in the signal regions. Magnitude refers to the relative change in the underlying uncertainty
source, whereas impact quantifies the resultant relative change in the signal and background
yields passing the event selection. Uncertainty sources marked as “Yes” under the Correlation
column are correlated across the 3 years of data collection, and those marked with an asterisk
in the Impact column are mass-dependent.

Uncertainty source Magnitude Type Processes Impact Correlation
Statistical 1–100% Per event All MC samples 1–100% No
Integrated luminosity 1.2–2.5% Per event Conversion/Rare/Signal 1.2–2.5% Yes
Pileup 5% Per event All MC samples <5% Yes
Trigger efficiency 1–4% Per lepton All MC samples <2% No
Electron reco., ID and iso. efficiency 1–5% Per lepton All MC samples 1–3% No
Muon reco., ID and iso. efficiency 1–5% Per lepton All MC samples 1–3% No
Tau lepton reco., ID and iso. efficiency 5–15% Per lepton All MC samples 5–25%* No
Electron energy scale and resolution <2% Per lepton All MC samples <10%* Yes
Muon energy scale and resolution 2% Per lepton All MC samples <10%* No
Tau lepton energy scale <10% Per lepton All MC samples <5%* No
Lepton displacement veto efficiency 1–2% Per lepton All MC samples 3–5% No
b tagging efficiency 1–10% Per jet All MC samples 1–5% No
Jet energy scale 1–10% Per jet All MC samples <10% No
Unclustered energy scale 1–25% Per event All MC samples <3% No
Electron charge misidentification 30% Per lepton All MC samples <1% No
WZ normalization 3–5% Per event WZ 3–5% No
ZZ normalization 4–5% Per event ZZ 4–5% No
ttZ normalization 15–25% Per event ttZ 15–25% No
Conversion normalization 10–50% Per event Zg/Conversion 10–50% No
Rare normalization 50% Per event Rare 50% No
Prompt and misidentification rates 20–60% Per lepton MisID 20–50%* No
DY-tt process dependence 5–25% Per lepton MisID 5–25% Yes
Diboson jet multiplicity modeling <30% Per event WZ/ZZ <30% No
Diboson pT modeling <30% Per event WZ/ZZ 1–10% No
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7 Results
7.1 Model-independent results

In total, 37 dilepton mass spectra are probed, corresponding to the 12 Xf ! ee, 12 Xf !
µµ, and 13 Xf ! tt SRs defined in Section 5.3; these are illustrated in Figs. 4–5, 6–7, and
8–10, respectively. To test each given Xf production, decay, and mass scenario, a subset of
these SRs is used, resulting in (3 + 3 + 2) 3 = 24 model-independent bounds on Xf signal
hypotheses, as shown in Figs. 11–14. For example, considering a Wf ! ee signal scenario
with S, PS, or H-like couplings at a f mass of 50 GeV, the Mee and Mmin

ee distributions in the
mass range of 12–76 GeV are used in the 3L(eeµ) and 3L(eee) channels, respectively. Similarly,
for a ttf ! µµ signal scenario with S or PS couplings at a f mass of 200 GeV, the Mµµ , Mmax

µµ ,
and Mmax

µµ distributions in the mass range of 106–366 GeV are used in the 3L(eµµ), 3L(eee), and
4L+3L1T+2L2T channels, respectively. In the case of a Zf ! tt signal with S, PS, or H-like
couplings of any f mass, Mmin

eµ and Mmin
tt distributions are used in 4L+2L2T and 2L2T (OSSF1)

channels, whereas Mmin
`t distributions are used in both 3L1T and 2L2T (OSSF0) channels. In

all cases involving contributions from more than one channel, all channels are considered in
combination, including correlations between systematic uncertainties, as described in Section 6.

No statistically significant deviation from the SM expectations is observed in any of the probed
mass distributions. The largest local deviation is observed in the high mass Zf ! ee search,
corresponding to the Zf(ee) SRHigh mass spectrum in Fig. 4, where an excess at a f mass of
156 GeV corresponding to 2.9 standard deviations is observed, without considering the look-
elsewhere effect (LEE) [82]. The corresponding global significance, obtained taking into ac-
count LEE in an Mee range of 106–366 GeV, is 1.4 standard deviations.

Upper limits at 95% confidence level (CL) are set on the product of the production cross sections
and branching fractions, s(Xf) B(f ! ``), using a modified frequentist approach based on the
CLs criterion [83, 84] in the asymptotic approximation [85, 86]. For each signal hypothesis, a
binned maximum-likelihood fit is performed to discriminate between the potential signal and
the SM background processes. The systematic uncertainties and their correlations, described
in Section 6, are incorporated in the likelihood as nuisance parameters with log-normal prob-
ability density functions. The statistical uncertainties in the signal and background estimates
are modeled with gamma functions. The expected and observed upper limits on the probed
signals are provided in Figs. 11-14. The Zf ! ee/µµ sensitivity is driven by the 4L channel,
while the Wf ! ee/µµ and ttf ! ee/µµ sensitivities are driven by the 3L channels with 0 b
jets and 1 or more b jets, respectively. For the Xf ! tt signals, the sensitivity at high f mass
is driven by the channels with at least two ths.

For all Xf signals, the expected upper limits are the most stringent for signals with the dimuon
decay modes, with the dielectron modes less stringent by as much as a factor of two for low
f mass hypotheses because of the lower electron reconstruction and selection efficiencies. For
high f masses, the expected constraints are comparable for all signals with any coupling sce-
nario with dielectron or dimuon coupling scenario. Similarly, constraints on the tt decay
modes are less stringent than those on the light lepton decay modes throughout, limited by the
t lepton energy resolution, the reconstruction and identification efficiencies, and the higher SM
background contributions in these final states, especially for f masses below 40 GeV.

For the Wf signal, there are three coupling scenarios, among which the pseudoscalar coupling
for a 15 GeV f ! µµ results in the most stringent limit of about 10 fb. For scalar and H-like
couplings at the same mass and decay mode, the s B values above 20 and 100 fb are excluded,
respectively. For f ! ee, the limits are about two times less stringent, and for f ! tt , the
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upper limits are in the range 150–250 fb at a f mass of 40 GeV. For a f mass of 350 GeV, the
upper limits are in the range 0.8–2.0 fb across all couplings with dielectron and dimuon decay
modes, whereas for tt decays, the limits are around 8 fb.

The observed constraints on the Zf signal are similar for the dielectron and dimuon decay
modes, where values of the s B are excluded above 20–30, 20–30, and 50–60 fb at a f mass of
15 GeV for scalar, pseudoscalar, and H-like couplings, respectively; for the Zf ! tt signal at
a mass hypothesis of 40 GeV, the upper limits for the same couplings are about 300, 200, and
800 fb. For a f mass of 350 GeV, these constraints are about 1 (10) fb for all coupling scenarios
of dielectron and dimuon (of tt) decays.

For the ttf ! µµ/ee signal, values of the s B above 4–7 and 1.5–2.5 fb are excluded for the f
mass of 15 GeV for the scalar and pseudoscalar coupling scenarios, respectively. For a 350 GeV
f boson, these constraints for both decay modes and coupling scenarios are about 0.6 fb. For
the ttf ! tt signal and the scalar (pseudoscalar) coupling scenario, the upper limit on the s B
varies from 200 (80) fb for a f mass of 40 GeV to 5 fb for a mass of 350 GeV.

For all Xf signal scenarios, the differences in the low-mass exclusion limits of scalar, pseu-
doscalar, and H-like signals result from different Lorentz structures of the interactions, which
affect the signal acceptance.

The exclusions are also reinterpreted as upper limits on the coupling parameters, and are pro-
vided in digital format in the HEPDATA record [19]. For the Wf and Zf signal scenarios with
scalar and pseudoscalar couplings, limits on the product of the inverse square mass scale and
branching fraction to leptons, (1/LS)

2 B(f ! ``) and (1/LPS)
2 B(f ! ``), are derived. For

the associated production of f bosons with top quark pairs, the limits on the product of the cou-
pling to top quarks and the branching fraction to leptons, g2

tS B(f ! ``) and g2
tPS B(f ! ``),

are derived for a scalar and pseudoscalar f, respectively.

Table 5: A summary of model-dependent scenarios, and the corresponding subsets of SRs com-
bined in the interpretations.

Signal Parameter SRs used in combination
Fermiophilic dilaton-like f production and decay

g2
tS

For f masses less than 30 GeV:
ttf( ! µµ, ! tt) combination ttf(µµ) SR1-2 and ttf(tt) SR1-3, 5-7

For f masses more than or equal to 30 GeV:
ttf(tt) all SRs

Fermiophilic axion-like f production and decay
g2

tPS
For f masses less than 30 GeV:

ttf( ! µµ, ! tt) combination ttf(µµ) SR1-2 and ttf(tt) SR1-3, 5-7
For f masses more than or equal to 30 GeV:
ttf(tt) all SRs

H-like production Xf( ! ee) combination sin2 q B(f ! ee) Wf(ee)/Zf(ee) all SRs, and ttf(ee) SR1-2

H-like production Xf( ! µµ) combination sin2 q B(f ! µµ) Wf(µµ)/Zf(µµ) all SRs, and ttf(µµ) SR1-2

H-like f production and decay
sin2 q

For f masses less than 30 GeV:
Xf( ! µµ, ! tt) combination Xf( ! µµ) combination and ttf(tt) SR2-3

For f masses more than or equal to 30 GeV:
ttf(tt) all SRs

7.2 Model-dependent results

Several model-dependent exclusions are also presented. These are obtained from a weighted
combination of nonoverlapping SRs, as summarized in Table 5, that target multiple decay
modes, production modes, or both, relevant for the signal model under consideration.
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Firstly, the ttf mode is interpreted in the context of fermiophilic dilaton-like scalar boson and
fermiophilic axion-like pseudoscalar boson signal models. These f couplings are proportional
to the fermion mass in both production and decay, so the µµ and tt channels are combined to
probe the coupling to top quarks for each of these scenarios. The combined 95% CL exclusions
are shown in Fig. 15.

For the H-like production scenario, the constraints from the Wf, Zf, and ttf production modes
are combined and labelled as the Xf combination. Upper limits at 95% CL are derived on the
product of the mixing angle, sin2 q, and the branching fractions to lepton pairs. For f bosons
decaying to electrons or muons, the most stringent expected limit is obtained by combining all
Wf and Zf signal regions with ttf signal regions SR1 and SR2, which cover 3L events with
one or more b jets and are independent of the Wf and Zf signal regions. The combined Xf
signal model limits on the product of the mixing angle and the branching fractions are shown
in Fig. 16. For a f mass of 125 GeV, the Xf combination excludes sin2 q B(f ! ee) above
2.7 ⇥ 10�3 and sin2 q B(f ! µµ) above 1.5 ⇥ 10�3. No combination is performed under the H-
like production scenario for f bosons decaying to tau leptons, as the most stringent expected
limits over most of the mass range result from the ttf signal regions alone, and therefore are
proportional to the upper limits obtained for the scalar ttf ! tt signal scenario. These are
also provided in digital format in the HEPDATA record [19].

Assuming further that the f branching fractions, particularly B(f ! µµ) and B(f ! tt),
are equal to those of the SM Higgs boson as a function of mass, the independent µµ and tt
channels are combined to derive a combined exclusion on sin2 q for an H-like f model, as
illustrated in Fig. 17. The B(f ! µµ) and B(f ! tt) values as functions of mass are obtained
using the HDECAY program v.6.61 [87, 88]. This combination is dominated by the µµ mode
for f masses below 30 GeV, and by the tt mode for higher f masses. Values of sin2 q  1 are
excluded in the f mass range 15–102 GeV. Although values of sin2 q > 1 are unphysical in this
scenario, limits on sin2 q treated as a free unconstrained parameter can be considered in more
general interpretations, as presented in Fig. 17.

In all model-dependent signal scenarios where f is allowed to decay into pairs of leptons of all
three flavors, the Xf ! tt signal contributions in which both tau leptons decay leptonically
into nonresonant ee and µµ pairs are not considered in the Mee and Mµµ spectra. Such con-
tributions are found to be negligible across the three model dependent interpretations carried
out in this analysis.
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Figure 4: Dilepton mass spectra for the Wf(ee) SR1 (upper), SR2 (middle), and for the Zf(ee)
SR (lower) event selections for the combined 2016–2018 data set. The low (high) mass spectra
are shown on the left (right). The lower panel shows the ratio of observed events to the total
expected SM background prediction (Obs/Exp), and the gray band represents the sum of sta-
tistical and systematic uncertainties in the background prediction. The expected background
distributions and the uncertainties are shown after the data is fit under the background-only
hypothesis. For illustration, two example signal hypotheses for the production and decay of a
scalar and a pseudoscalar f boson are shown, and their masses (in units of GeV) are indicated
in the legend. The signals are normalized to the product of the cross section and branching
fraction of 10 fb.
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Figure 5: Dilepton mass spectra for the ttf(ee) SR1 (upper), SR2 (middle), and SR3 (lower)
event selections for the combined 2016–2018 data set. The low (high) mass spectra are shown
on the left (right). The lower panel shows the ratio of observed events to the total expected
SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and
systematic uncertainties in the background prediction. The expected background distributions
and the uncertainties are shown after the data is fit under the background-only hypothesis.
For illustration, two example signal hypotheses for the production and decay of a scalar and a
pseudoscalar f boson are shown, and their masses (in units of GeV) are indicated in the legend.
The signals are normalized to the product of the cross section and branching fraction of 10 fb.
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Figure 6: Dilepton mass spectra for the Wf(µµ) SR1 (upper), SR2 (middle), and Zf(µµ) SR
(lower) event selections for the combined 2016–2018 data set. The low (high) mass spectra
are shown on the left (right). The lower panel shows the ratio of observed events to the total
expected SM background prediction (Obs/Exp), and the gray band represents the sum of sta-
tistical and systematic uncertainties in the background prediction. The expected background
distributions and the uncertainties are shown after the data is fit under the background-only
hypothesis. For illustration, two example signal hypotheses for the production and decay of a
scalar and a pseudoscalar f boson are shown, and their masses (in units of GeV) are indicated
in the legend. The signals are normalized to the product of the cross section and branching
fraction of 10 fb.
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Figure 7: Dilepton mass spectra for the ttf(µµ) SR1 (upper), SR2 (middle), and SR3 (lower)
event selections for the combined 2016–2018 data set. The low (high) mass spectra are shown
on the left (right). The lower panel shows the ratio of observed events to the total expected
SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and
systematic uncertainties in the background prediction. The expected background distributions
and the uncertainties are shown after the data is fit under the background-only hypothesis.
For illustration, two example signal hypotheses for the production and decay of a scalar and a
pseudoscalar f boson are shown, and their masses (in units of GeV) are indicated in the legend.
The signals are normalized to the product of the cross section and branching fraction of 10 fb.
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Figure 8: Dilepton mass spectra for the Wf(tt) SR (left) and Zf(tt) SR (right) event selec-
tions for the combined 2016–2018 data set. The lower panel shows the ratio of observed events
to the total expected SM background prediction (Obs/Exp), and the gray band represents the
sum of statistical and systematic uncertainties in the background prediction. The rightmost
bins contain the overflow events in each distribution. The expected background distributions
and the uncertainties are shown after the data is fit under the background-only hypothesis.
For illustration, two example signal hypotheses for the production and decay of a scalar and a
pseudoscalar f boson are shown, and their masses (in units of GeV) are indicated in the legend.
The signals are normalized to the product of the cross section and branching fraction of 10 fb.
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Figure 9: Dilepton mass spectra for the ttf(tt) SR1-6 event selections for the combined 2016–
2018 data set. The lower panel shows the ratio of observed events to the total expected SM
background prediction (Obs/Exp), and the gray band represents the sum of statistical and sys-
tematic uncertainties in the background prediction. The rightmost bins contain the overflow
events in each distribution. The expected background distributions and the uncertainties are
shown after the data is fit under the background-only hypothesis. For illustration, two exam-
ple signal hypotheses for the production and decay of a scalar and a pseudoscalar f boson are
shown, and their masses (in units of GeV) are indicated in the legend. The signals are normal-
ized to the product of the cross section and branching fraction of 10 fb.
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Figure 10: Dilepton mass spectra for the ttf(tt) SR7 event selection for the combined 2016–
2018 data set. The lower panel shows the ratio of observed events to the total expected SM
background prediction (Obs/Exp), and the gray band represents the sum of statistical and sys-
tematic uncertainties in the background prediction. The rightmost bins contain the overflow
events in each distribution. The expected background distributions and the uncertainties are
shown after the data is fit under the background-only hypothesis. For illustration, two exam-
ple signal hypotheses for the production and decay of a scalar and a pseudoscalar f boson are
shown, and their masses (in units of GeV) are indicated in the legend. The signals are normal-
ized to the product of the cross section and branching fraction of 10 fb.
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Figure 11: The 95% confidence level upper limits on the product of the production cross section
and branching fraction of the Wf signal in the ee (upper), µµ (middle), and tt (lower) decay
scenarios. The results for the scalar coupling are shown on the left and pseudoscalar on the
right. The vertical gray band indicates the mass region not considered in the analysis. The red
line is the theoretical prediction for the product of the production cross section and branching
fraction of the Wf signal.
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Figure 12: The 95% confidence level upper limits on the product of the production cross section
and branching fraction of the Zf signal in the ee (upper), µµ (middle) and tt (lower) decay
scenarios. The results for the scalar coupling are shown on the left and pseudoscalar on the
right. The vertical gray band indicates the mass region not considered in the analysis. The red
line is the theoretical prediction for the product of the production cross section and branching
fraction of the Zf signal.
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Figure 13: The 95% confidence level upper limits on the product of the production cross section
and branching fraction of the Wf signal on the left and the Zf signal on the right with H-like
couplings in the ee (upper), µµ (middle) and tt (lower) decay scenarios. The vertical gray
band indicates the mass region not considered in the analysis. The red line is the theoretical
prediction for the product of the production cross section and branching fraction of the Wf
and Zf signals.
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Figure 14: The 95% confidence level upper limits on the product of the production cross section
and branching fraction of the ttf signal in the ee (upper), µµ (middle) and tt (lower) decay
scenarios. The results for the scalar coupling are shown on the left and pseudoscalar on the
right. The vertical gray band indicates the mass region not considered in the analysis. The red
line is the theoretical prediction for the product of the production cross section and branching
fraction of the ttf signal.
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Figure 15: The 95% confidence level upper limits on g2
tS and g2

tPS for the dilaton- and axion-
like ttf signal model (left and right). Masses of the f boson above 300 GeV are not probed for
the dilaton- and axion-like signal models as the f branching fraction into top quark-antiquark
pairs becomes nonnegligible.
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Figure 16: The 95% confidence level upper limits on the product of sin2 q and branching frac-
tion for the H-like production of Xf ! ee and Xf ! µµ (left and right). The vertical gray
band indicates the mass region not considered in the analysis.
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Figure 17: The 95% confidence level upper limits on sin2 q for the H-like production and decay
of Xf signal model, where the f boson has the same branching fractions to µµ and tt as an
SM Higgs boson with the same mass.

8 Summary
A search for beyond-the-standard-model phenomena producing resonant dilepton signatures
of any flavor in multilepton events has been performed using pp collision data collected with
the CMS detector at

p
s = 13 TeV, corresponding to an integrated luminosity of 138 fb�1. The

results provide direct and model independent constraints on the allowed parameter space for
new spin-0 particles, f, with scalar, pseudoscalar, or H-like couplings. The f bosons are as-
sumed to be produced in association with a W or Z boson or a top quark-antiquark (tt) pair,
and decay into ee, µµ, or tt pairs. Constraints are calculated at 95% confidence level on the
product of the production cross section and leptonic branching fraction of such bosons with
masses in the range 15–350 GeV. No statistically significant excess is observed over the stan-
dard model background in the probed mass spectra. Over this mass range, the product of the
cross section and branching fraction for the tt (ee and µµ) final states is excluded above 0.004–
35, 0.004–80, and 0.008–250 pb (0.5–50, 0.5–30, and 1–200 fb) as a function of f mass for scalar,
pseudoscalar, and H-like bosons, respectively.

Several model-dependent interpretations have also been considered. The ttf mode provides
the first direct bounds on the coupling of the f boson to top quarks in the context of fermiophilic
models. For a fermiophilic dilaton-like model with scalar couplings, the most stringent limit on
the coupling is 0.63–0.66, obtained in the f mass range 40–60 GeV. For a fermiophilic axion-like
model with pseudoscalar couplings, the most stringent limit on the coupling is 1.59, obtained
for a f mass of 70 GeV. To constrain the Higgs-f mixing angle, sin2 q, in the case where the f is
H-like, the independent Wf, Zf, and ttf signal regions are combined. The observed (expected)
upper limit on sin2 q is 1.2 (1.9) for a f mass of 125 GeV; the most stringent observed exclusion
is obtained for a f mass of 30 GeV, corresponding to an upper limit on sin2 q of 0.59 (0.64).
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C. Dziwok , G. Flügge , W. Haj Ahmad21 , O. Hlushchenko, T. Kress , A. Nowack ,
O. Pooth , A. Stahl , T. Ziemons , A. Zotz

Deutsches Elektronen-Synchrotron, Hamburg, Germany
H. Aarup Petersen , M. Aldaya Martin , J. Alimena , Y. An , P. Asmuss, S. Baxter ,
M. Bayatmakou , H. Becerril Gonzalez , O. Behnke , S. Bhattacharya , F. Blekman22 ,
K. Borras23 , D. Brunner , A. Campbell , A. Cardini , C. Cheng, F. Colombina , S. Con-
suegra Rodrı́guez , G. Correia Silva , M. De Silva , G. Eckerlin, D. Eckstein , L.I. Es-
tevez Banos , O. Filatov , E. Gallo22 , A. Geiser , A. Giraldi , G. Greau, A. Grohsjean ,
V. Guglielmi , M. Guthoff , A. Jafari24 , N.Z. Jomhari , B. Kaech , M. Kasemann ,
H. Kaveh , C. Kleinwort , R. Kogler , M. Komm , D. Krücker , W. Lange,
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hei , B. Kilminster , S. Leontsinis , S.P. Liechti , A. Macchiolo , P. Meiring ,
V.M. Mikuni , U. Molinatti , I. Neutelings , A. Reimers , P. Robmann, S. Sanchez Cruz ,
K. Schweiger , M. Senger , Y. Takahashi

National Central University, Chung-Li, Taiwan
C. Adloff70, C.M. Kuo, W. Lin, P.K. Rout , P.C. Tiwari39 , S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, Y. Chao , K.F. Chen , P.s. Chen, H. Cheng , W.-S. Hou , R. Khurana, G. Kole ,
Y.y. Li , R.-S. Lu , E. Paganis , A. Psallidas, A. Steen , H.y. Wu, E. Yazgan

High Energy Physics Research Unit, Department of Physics, Faculty of Science,

https://orcid.org/0000-0002-7577-310X
https://orcid.org/0000-0003-2424-1303
https://orcid.org/0000-0001-7862-2537
https://orcid.org/0000-0002-6941-8478
https://orcid.org/0000-0002-6366-837X
https://orcid.org/0000-0002-3792-7665
https://orcid.org/0000-0002-4747-9106
https://orcid.org/0000-0001-7760-3537
https://orcid.org/0000-0001-9416-1742
https://orcid.org/0000-0001-8540-1097
https://orcid.org/0000-0001-7077-8262
https://orcid.org/0000-0002-4927-4921
https://orcid.org/0000-0001-8822-4727
https://orcid.org/0000-0002-8336-3282
https://orcid.org/0000-0003-1439-7128
https://orcid.org/0000-0002-2988-9830
https://orcid.org/0000-0002-6515-5666
https://orcid.org/0000-0001-5420-586X
https://orcid.org/0000-0002-5642-3040
https://orcid.org/0000-0001-5066-1876
https://orcid.org/0000-0002-2897-5753
https://orcid.org/0000-0002-2264-2229
https://orcid.org/0000-0002-1643-1388
https://orcid.org/0000-0002-0151-4439
https://orcid.org/0000-0002-5754-4303
https://orcid.org/0000-0003-2570-9676
https://orcid.org/0000-0001-5854-7699
https://orcid.org/0000-0002-9228-5271
https://orcid.org/0000-0001-9573-3714
https://orcid.org/0000-0001-5085-7270
https://orcid.org/0009-0007-5021-3230
https://orcid.org/0000-0002-8502-2297
https://orcid.org/0000-0001-6544-3679
https://orcid.org/0000-0002-3302-336X
https://orcid.org/0000-0001-9179-4253
https://orcid.org/0000-0003-0422-6739
https://orcid.org/0000-0001-6717-0803
https://orcid.org/0009-0001-9331-5145
https://orcid.org/0000-0002-4526-2149
https://orcid.org/0000-0002-9547-7471
https://orcid.org/0000-0003-1920-6618
https://orcid.org/0000-0002-9376-9235
https://orcid.org/0000-0002-2938-2263
https://orcid.org/0000-0003-3209-2088
https://orcid.org/0000-0002-3727-0202
https://orcid.org/0000-0001-7339-4272
https://orcid.org/0000-0001-5639-2267
https://orcid.org/0000-0003-1644-7678
https://orcid.org/0000-0001-5297-1878
https://orcid.org/0000-0001-7507-8636
https://orcid.org/0000-0002-3198-0115
https://orcid.org/0000-0003-4838-3306
https://orcid.org/0000-0003-0885-6711
https://orcid.org/0000-0001-5270-7540
https://orcid.org/0000-0002-0113-7389
https://orcid.org/0000-0003-3748-8946
https://orcid.org/0000-0003-2351-0487
https://orcid.org/0000-0002-6530-3657
https://orcid.org/0000-0003-2155-6692
https://orcid.org/0000-0003-4502-6151
https://orcid.org/0000-0001-7199-0046
https://orcid.org/0000-0001-7432-6634
https://orcid.org/0000-0003-3266-4357
https://orcid.org/0000-0002-0416-696X
https://orcid.org/0000-0003-0887-1882
https://orcid.org/0000-0003-0889-4726
https://orcid.org/0000-0001-5328-448X
https://orcid.org/0000-0003-1939-4268
https://orcid.org/0009-0006-6958-3111
https://orcid.org/0000-0003-2461-5985
https://orcid.org/0000-0002-0250-8655
https://orcid.org/0000-0001-9239-0605
https://orcid.org/0000-0001-8048-1622
https://orcid.org/0000-0003-2181-7258
https://orcid.org/0000-0003-3879-5622
https://orcid.org/0009-0006-8689-3576
https://orcid.org/0000-0002-5144-9655
https://orcid.org/0000-0002-9860-1650
https://orcid.org/0000-0002-5725-041X
https://orcid.org/0000-0002-5456-5977
https://orcid.org/0000-0002-5397-252X
https://orcid.org/0000-0003-4244-2061
https://orcid.org/0000-0002-6448-0168
https://orcid.org/0009-0005-5952-9843
https://orcid.org/0000-0003-1899-2266
https://orcid.org/0000-0001-8584-9705
https://orcid.org/0000-0002-8562-1863
https://orcid.org/0000-0002-4395-1581
https://orcid.org/0000-0001-9791-2353
https://orcid.org/0000-0001-5677-6033
https://orcid.org/0000-0003-4472-867X
https://orcid.org/0000-0001-9964-249X
https://orcid.org/0000-0002-5594-1321
https://orcid.org/0000-0002-9576-055X
https://orcid.org/0000-0003-1979-7331
https://orcid.org/0000-0001-5333-4918
https://orcid.org/0000-0002-3632-3157
https://orcid.org/0000-0002-1780-1344
https://orcid.org/0000-0001-6125-7203
https://orcid.org/0009-0005-6188-7754
https://orcid.org/0000-0002-7671-243X
https://orcid.org/0000-0003-2694-6542
https://orcid.org/0000-0002-5888-2304
https://orcid.org/0000-0001-7774-0099
https://orcid.org/0000-0002-6674-0015
https://orcid.org/0000-0003-2533-2856
https://orcid.org/0000-0002-4549-2569
https://orcid.org/0000-0001-9830-0412
https://orcid.org/0009-0002-0638-3447
https://orcid.org/0000-0002-9408-4756
https://orcid.org/0009-0006-0914-7684
https://orcid.org/0000-0001-5309-1960
https://orcid.org/0000-0002-9443-7769
https://orcid.org/0000-0002-6182-3380
https://orcid.org/0000-0002-3135-6427
https://orcid.org/0000-0003-4970-2217
https://orcid.org/0009-0004-1393-6577
https://orcid.org/0000-0002-7584-5038
https://orcid.org/0000-0001-6627-8716
https://orcid.org/0000-0003-1581-6152
https://orcid.org/0000-0001-6362-5356
https://orcid.org/0000-0002-4721-7966
https://orcid.org/0000-0002-9514-0799
https://orcid.org/0000-0002-3752-4639
https://orcid.org/0009-0002-8559-0531
https://orcid.org/0000-0002-8046-4344
https://orcid.org/0000-0003-1777-7855
https://orcid.org/0000-0002-6220-5496
https://orcid.org/0000-0001-7080-1119
https://orcid.org/0000-0002-2249-0835
https://orcid.org/0000-0002-8610-1130
https://orcid.org/0000-0002-1466-9077
https://orcid.org/0000-0002-6610-4019
https://orcid.org/0000-0002-3533-6191
https://orcid.org/0000-0003-4420-5510
https://orcid.org/0000-0001-8587-8266
https://orcid.org/0000-0001-8038-1613
https://orcid.org/0000-0002-7695-501X
https://orcid.org/0000-0002-8842-6027
https://orcid.org/0000-0002-8072-795X
https://orcid.org/0000-0001-6361-2117
https://orcid.org/0000-0001-7873-3579
https://orcid.org/0000-0002-5291-1661
https://orcid.org/0000-0002-0538-1469
https://orcid.org/0000-0002-9806-5907
https://orcid.org/0009-0009-8976-7702
https://orcid.org/0000-0002-8992-5426
https://orcid.org/0000-0002-6657-0407
https://orcid.org/0000-0002-7561-6091
https://orcid.org/0000-0002-1192-1628
https://orcid.org/0000-0003-0199-6957
https://orcid.org/0009-0001-9480-4039
https://orcid.org/0000-0002-1579-2421
https://orcid.org/0000-0002-9235-3406
https://orcid.org/0009-0002-6473-1403
https://orcid.org/0000-0002-9438-2059
https://orcid.org/0000-0002-9991-195X
https://orcid.org/0000-0002-5846-3919
https://orcid.org/0000-0002-1992-5711
https://orcid.org/0000-0001-5184-2265
https://orcid.org/0000-0001-8149-6180
https://orcid.org/0000-0002-3667-3843
https://orcid.org/0000-0002-6011-8516
https://orcid.org/0000-0002-5976-318X
https://orcid.org/0000-0003-1304-3782
https://orcid.org/0000-0001-6456-7178
https://orcid.org/0000-0002-4260-5118
https://orcid.org/0000-0002-3285-1497
https://orcid.org/0000-0003-3598-556X
https://orcid.org/0000-0001-6828-1695
https://orcid.org/0000-0002-1950-8993
https://orcid.org/0009-0006-4366-3463
https://orcid.org/0000-0001-5732-7950


51

Chulalongkorn University, Bangkok, Thailand
C. Asawatangtrakuldee , N. Srimanobhas , V. Wachirapusitanand
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