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Federated Gradient Matching Pursuit
Halyun Jeong , Deanna Needell , Member, IEEE, and Jing Qin , Member, IEEE

Abstract— Traditional machine learning techniques require
centralizing all training data on one server or data hub. However,
with the development of communication technologies and a huge
amount of decentralized data on many clients, collaborative
machine learning has become the main interest while providing
privacy-preserving frameworks. Federated learning (FL) pro-
vides such a solution to learn a shared model while keeping
training data at local clients. On the other hand, in a wide
range of machine learning and signal processing applications,
the desired solution naturally has a certain structure that can be
framed as sparsity with respect to a certain dictionary. This prob-
lem can be formulated as an optimization problem with sparsity
constraints and solving it efficiently has been one of the primary
research topics in the traditional centralized setting. In this paper,
we propose a novel algorithmic framework, federated gradient
matching pursuit (FedGradMP), to solve the sparsity constrained
minimization problem in the FL setting. We also generalize our
algorithms to accommodate various practical FL scenarios when
only a subset of clients participate per round, when the local
model estimation at clients could be inexact, or when the model
parameters are sparse with respect to general dictionaries. Our
theoretical analysis shows the linear convergence of the proposed
algorithms. A variety of numerical experiments are conducted
to demonstrate the great potential of the proposed framework –
fast convergence both in communication rounds and computation
time for many important scenarios without intricate parameter
tuning.

Index Terms— Federated learning, sparse recovery, gradient
matching pursuit, random algorithm.

I. INTRODUCTION

AS TECHNOLOGY and science have advanced, machine
learning for big data processing has become an emerging

field with a wide variety of applications. In general, there
are several major considerations in dealing with a large
amount of data - data storage and privacy, computation, and
communication [1]. To address the limitation of efficiency
and scalability of traditional machine learning algorithms for
large-scale data, distributed centralized learning allows data
and/or model parallelism, where all local data are typically
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uploaded to a central server but model training is distributed
to various clients [2]. Different from the traditional centralized
learning, federated learning (FL) [3] is a collaborative learning
framework in which many clients work together to solve an
optimization problem without sharing local data. In order to
preserve privacy, and reduce the communication cost between
clients and the server, datasets are only stored at the clients
locally and can not be transferred to other clients or the server
in FL. In other words, it aims to learn a central model using
decentralized datasets. The heterogeneous data distributions
among the clients pose an additional challenge in federated
learning.

As one of the most popular FL algorithms, Federated Aver-
aging (FedAvg) [4] considers an unconstrained optimization
problem where the desired solution has no additional char-
acteristics. FedAvg alternates gradient descent and averaging
of distributed solutions from local clients in an iterative way.
However, in a lot of applications, the solution of interest has
some special structures, such as sparsity and low-rankness by
itself or in some transformed domain. This structure, serving as
prior information, can be utilized to address the ill-posedness
of the problem and improve performance. Thus, recent interest
in FL optimization with additional solution structures has
grown, which has been shown to be especially effective when
only a few data samples are available at each client but the
underlying signal dimension is relatively large [5], [6].

In such cases when the solution to an optimization problem
from FL applications possesses a certain structure, for exam-
ple, sparsity and low-rankness, one can use a regularizer to
enforce the desired structure [5]. Federated Dual Averaging
(FedDualAvg) by Yuan et al. [5], different from FedAvg, uses
potentially nonsmooth and convex regularizers to promote the
structure of the solution.

When we have more prior information about the solution
structure, e.g., the sparsity level, then hard-thresholding based
approaches could be often more efficient than the regular-
ization based methods [7], [8]. The hard-thresholding based
methods aim to solve nonconvex formulations of the problem,
which have been successfully applied to many data processing
problems lately, offering enhanced performance [9], [10], [11],
[12], [13].

Following this line of research, Tong et al. proposed Feder-
ated Hard Thresholding (FedHT) and Federated Iterative Hard
Thresholding (FedIterHT) [6], employing hard-thresholding at
the aggregation step at the server with potentially additional
hard-thresholding after each stochastic gradient step at clients.
With a proper choice of step sizes for the stochastic gradients
at the clients, these methods guarantee linear convergence up
to a neighborhood of the solution to the problem. Despite the
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fact that these approaches partially inherit the advantages of
thresholding based methods over those based on regularization,
they necessitate fine-tuning of learning rates at clients, which
often have practical limitations and they are not applicable
for sparse signals with respect to general dictionaries. Their
convergence analysis also requires the mini-batch sizes at the
clients to grow exponentially in the number of communication
rounds, which further limits the usage in most applications.

Another popular thresholding based method is the gradi-
ent matching pursuit (GradMP) [14], an extension of the
compressive sampling matching pursuit (CoSaMP) [9]. These
methods are known to be more efficient than the others such as
regularizer based methods, particularly when the sparsity level
of a signal is much smaller than its dimension [13], [15].

A. Contributions

We summarize our contributions below.
• We propose the Federated Gradient Matching Pursuit

algorithm, abbreviated as FedGradMP, to overcome the
aforementioned drawbacks. More precisely, we show that
the proposed FedGradMP enjoys the linear convergence
up to a small neighborhood of the solution, without the
restrictions for FedHT/FedIterHT to work. Furthermore,
our analysis indicates that FedGradMP converges linearly
up to a statistical bias term for the recovery of sparse
signals under mild conditions.

• The majority of FL algorithm analyses have been carried
out either under uniformly bounded gradient or bounded
dissimilarity assumptions, which could be problematic
in certain scenarios [16]. Only a few recent works for
FL in unconstrained setup provide theoretical guarantees
without this type of assumptions but instead under the
bounded dissimilarity only at optima – a condition that
is considered to be the most general type of hetero-
geneity assumption [17], [18]. Our convergence analysis
of FedGradMP has been carried out under this general
dissimilarity condition.

• Thanks to the mechanism of GradMP, FedGradMP does
not require intensive tuning of learning rates at the clients
for the sparse linear regression problem, which could be
often still challenging because of data heterogeneity in the
FL setting. Approaches based on the local stochastic gra-
dient at clients including FedHT/FedIterHT, as described
in the literature [6], [16], [19] and demonstrated in
our numerical studies, need tweaking the learning rates
(step sizes); otherwise, they diverge or converge slowly,
especially when the data at distinct clients are more het-
erogeneous. In contrast, FedGradMP is based on solving
low-dimensional sub-optimization problems at clients that
can be often solved efficiently without the need for fine
tuning of learning rates.

• Many signals of practical interest are not sparse in the
standard basis but rather in a certain dictionary. This
observation has led to the development of several sparse
recovery methods with general dictionaries in the cen-
tralized setting [14], [20], [21]. FedGradMP is a versatile
method under a general dictionary framework. One poten-

tial problem with using dictionaries in FL methods is
the privacy concern if they are correlated with the client
datasets. By utilizing dictionaries that are statistically
independent with client datasets, such as the random
Gaussian dictionary, we demonstrate the effectiveness of
FedGradMP as an FL method without such concerns.

B. Further Related Works

There have been numerous extensions and analyses of
FedAvg [4], [16], [17], [18], [22], a standard algorithm to train
a machine learning model in FL. FedAvg can be considered
as a variant of Local SGD, which essentially runs stochastic
gradient iterations at each client, and their locally computed
model parameters are averaged at a server.

In addition to the considerations of Local SGD [4], [23]
for efficient communication in distributed learning, FedAvg
aims to handle challenges in the FL settings such as hetero-
geneous client datasets and partial client participation [16],
[17]. Thanks to the recent endeavors of researchers [17], [18],
[24], we now have a better understanding of the convergence
behavior of FedAvg, especially when the objective function is
(strongly) convex. As for the nonconvex case, several works
provide the convergence of FedAvg to the stationary points and
global convergence under extra assumptions such as Polyak-
Lojasiewicz (PL) condition [19], which is a generalization of
the strong convexity condition. However, it is worth noting
that these assumptions do not imply our main assumptions,
the restricted strong convexity/smoothness.

An important research direction in FL algorithm analysis is
characterizing the trade-off between convergence speed and
accuracy that stems from client data heterogeneity. As the
clients run more local iterations, the estimates of the local
solution become more accurate at each client (improving
the convergence rate) while they tend to drift away from
the global solution (making the actual residual error larger),
especially in a highly heterogeneous environment [17], [25],
[26], [27], [28]. Our analysis and numerical experiments on
the convergence behavior of FedGradMP also reflect this
phenomenon, which becomes more noticeable when the client
datasets are highly heterogeneous.

To further reduce the communication cost between the
server and clients, techniques such as sparsifying and reducing
the dimensionality of the gradients have been proposed in [29],
[30], [31], [32], and [33]. In FedGradMP, the hard-thresholding
operation is applied whenever the computed models are sent
from a server or clients, so the models are already sparsified
with the effective dimension same as the desired sparsity level.
This makes FedGradMP more attractive in terms of saving
communication resources.

Another active area in FL research is client sampling or par-
tial participation. Because of the limited connection bandwidth
or a large population of clients, it is often not possible for every
client to participate at each round in FL. Many methods incor-
porate this by modeling each client to participate randomly per
round according to some distribution [16], [34], [35]. There
have been recent attempts to employ more elaborate sampling
strategies such as importance sampling [36], but this requires
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TABLE I
COMPARISON OF OUR WORK WITH RELATED REFERENCES

extra care since it could leak private information of client data.
We analyze FedGradMP under the more common assumption,
i.e., the random client participation model, and show the more
client participate at each round, the faster the convergence rate
is. This observation is consistent with recent findings [34], [37]
on the FL algorithms for the unconstrained problem.

C. Organization

The rest of the paper is structured as follows. In Section II,
we introduce the sparse federated learning problem and make
important assumptions that will be used for convergence analy-
sis. In Section III, we propose the federated gradient matching
pursuit algorithm and discuss the convergence guarantees in
detail. Section IV generalizes FedGradMP and its convergence
analysis to several practical scenarios such as the partial
client participation environment and inexact estimation at the
client side. In addition, we provide theoretical justifications
of using a shared random Gaussian dictionary at clients to
improve the performance of FedGradMP. Section V provides
a variety of numerical experiments for sparse signal recovery
which demonstrate the effectiveness of the proposed approach.
We draw conclusions in Section VI.

D. Notation

We say that a vector is s-sparse if it has at most s nonzero
entries. We write ∥ · ∥2 to denote the ℓ2 norm for a vector.
We use ∥ · ∥F and ∥ · ∥ to denote the Frobenius norm and
operator norm of a matrix, respectively. For a given positive
integer m, [m] denotes the set of integers {1,2, . . . ,m}. The
transpose of matrix A is denoted by A⊤. For positive semidef-
inite matrices A and B, A ⪯ B means that B−A is positive
semidefinite. For a finite set S, |S| denotes its cardinality.

II. SPARSE FEDERATED LEARNING

Federated learning is a framework for collaboratively
solving machine learning problems across multiple clients,
potentially coordinated by a server.

While this provides enhanced privacy, it also poses inter-
esting challenges since clients still require to exchange local
parameters to other clients or a server in a communication-
efficient way. Moreover, in many heterogeneous learning envi-
ronments, the local data of each client can be non-identically
distributed and/or statistically dependent.

To formally describe FL, we begin with introducing the
setup. Assume that the number of the clients is N, and the
local objective function at the i-th client is denoted by fi(x) =
Ez∼Di [ℓi(x;z)] where Di is the dataset at the i-th client and
ℓi(x;z) is the loss function about x that depends on the data z.

The optimization problem of interest in FL typically takes
the form

min
x∈Rn

f (x) :=
N

∑
i=1

pi fi(x)

where x ∈ Rn and pi ∈ [0,1] is the weight for the i-th client
satisfying ∑

N
i=1 pi = 1. This formulation is sufficiently general

to cover the most machine learning settings including, the
empirical risk minimization (ERM) by taking the expecta-
tion uniformly over the dataset Di and pi = |Di|/∑

N
i=1 |Di|

[16], [38].
On the other hand, due to communication efficiency or

the nature of many applications, it is natural to assume that
the solution we are looking for is sparse with respect to a
certain dictionary or an atom set. In order to discuss this
general notion of sparsity, we consider a finite set of atoms
A = {a1,a2, . . . ,ad} where ai ∈ Rn, as defined in [14] and
[39]. For example, we recover the standard basis when A =
{e1, · · · ,en}, where eis are the standard basis vectors for Rn.
We say a vector x is τ-sparse with respect to A if x can be
represented as

x =
d

∑
i=1

αiai

where at most τ number of the coefficients αi’s are nonzero.
Then, the support of x with respect to A is defined in a natural
way, suppA (x) = {i ∈ [d] : αi ̸= 0}.

We define the ℓ0-norm of x with respect to A as

∥x∥0,A = min
α

{
|Ω| : x = ∑

i∈Ω

αiai,Ω ⊆ [d]

}
,

where α = (α1,α2, . . . ,αd)⊤.
With a sparsity constraint, sparse FL aims to solve the

followingconstrained problem

min
x∈Rn

f (x) =
N

∑
i=1

pi fi(x) subject to ∥x∥0,A ≤ τ, (1)

where τ is a preassigned sparsity level. We denote the optimal
solution to this problem by x∗. We also assume further that
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each local objective function fi can be expressed by the
average of the functions gi, j : Rn→ R, i.e.,

fi(x) =
1
M

M

∑
j=1

gi, j(x), (2)

for some integer M. One can interpret gi, j as a loss function
associated with the i-th client restricted to the j-th mini-batch,
where the index set of all possible mini-batches is [M].

The objective function of (1) usually depends on the data
distribution at clients. For example, the least squares problem
in FL typically sets

fi(x) =
1

2|Di|
∥ADix− yDi∥

2
2,

where ADi is the client i data matrix whose rows consist of the
training input data points for client i and yDi are corresponding
observations. Let b be the size of each mini-batch and M be
the total number of mini-batches. Then, M =

(|Di|
b

)
and gi, j is

given by

gi, j(x) =
1
2b ∑

(ak,bk)∈S j

(yk−⟨ak,x⟩)2,

where S j is a subset of Di associated j-th mini-batch of
i-th client. We use E(i)

j ϕi, j(x) to denote the expectation of
a function ϕi, j(x) provided that the j-th mini-batch index set
is chosen from the set of the all possible mini-batches with
size b, uniformly at random. Hence, the function fi can be
expressed as fi(x) = E(i)

j gi, j(x).
Since the problem (1) is nonconvex in general, it is difficult

to find its solution without additional assumptions on the
objective function. In this work, we adopt the following
assumptions from [14].

Assumption 1 (A -Restricted Strong Convexity (A -RSC)):
The local objective function fi at the i-th client satisfies the
restricted ρ−τ (i)-strongly convexity condition: for each i ∈ [N]
and any x1,x2 ∈ Rn with ∥x1− x2∥0,A ≤ τ , we have

fi(x1)− fi(x2)−⟨∇ fi(x2),x1−x2⟩ ≥
ρ−τ (i)

2
∥x1− x2∥2

2. (3)

Assumption 2 (A -restricted Strong Smoothness (A -RSS)):
The loss function gi, j associated with the j-th mini-batch
at the i-th client satisfies the restricted ρ+

τ (i, j)-strongly
smoothness condition: for each i, j and any x1,x2 ∈ Rn with
∥x1− x2∥0,A ≤ τ , we have

∥∇gi, j(x1)−∇gi, j(x2)∥2 ≤ ρ
+
τ (i, j)∥x1− x2∥2. (4)

Remark 1: Assumptions 1 and 2 are widely used in the
optimization community for solving the high-dimensional
statistical learning or sparse recovery problems. Note that
the local function fi and gi, j may not be convex or smooth
in the entire space Rn since we only need strong convex-
ity and smoothness assumptions for vectors that are sparse
with respect to a dictionary. Most convergence analysis for
the FL algorithms assumes (strong) convexity of fi or the
Polyak-Lojasiewicz (PL) condition [19]; neither is weaker than
Assumption 1.

Several FL algorithms inspired by classical sparse optimiza-
tion techniques [14], [40], [41] have been proposed, including

FedHT and FedIterHT, which are based on IHT [6]. These
algorithms use the hard-thresholding operator Hτ(x), which
keeps the τ largest components of the input vector x in
magnitude with respect to the standard basis, whereas our
algorithm adopts a more general hard-thresholding operator —
the approximate projection operator. To define an approximate
projection, we denote by R(AΓ) the subspace of Rn spanned
by the atoms in A whose indices are restricted to Γ ⊂ [d].
For w ∈ Rn, the orthogonal projection of w to R(AΓ) is
denoted by PΓw. Then, an approximate projection operator
with η > 0, denoted by approxτ(w,η), constructs an index set
Γ of cardinality τ such that

∥PΓw−w∥2 ≤ η∥w−Hτ(w)∥2,

where Hτ(w) is the best τ-sparse approximation of w with
respect to A , i.e.,

Hτ(w) = argmin
x=A α,∥α∥0≤τ

∥w− x∥2.

Here, A is the matrix whose columns are the atoms by abusing
the notation slightly.

The local dissimilarity in FL captures how the data dis-
tributions among clients are different, which is typically in
the following form, especially in the early works in FL
[5], [16], [42]:

Ei∼P∥∇ fi(x)−∇ f (x)∥2
2 ≤ β

2∥∇ f (x)∥2
2 +ζ

2, ∀x ∈ Rn.

(5)

In this work, the assumption of heterogeneity on the client
data is much weaker than (5) by assuming heterogeneity only
at the solution x∗ as follows.

Assumption 3: There is a minimizer for (1), denoted by x∗

with a finite ζ 2
∗ defined as below:

ζ
2
∗ = Ei∼P∥∇ fi(x∗)∥2

2 =
N

∑
i=1

pi∥∇ fi(x∗)∥2
2.

Assumption 3 is the same as the one used for more recent
analyses giving sharper convergence guarantees of FL algo-
rithms [17], [18]. This is also a necessary assumption for the
FedAvg type of algorithms to converge [18]. But there are
a few places where we state the implication of our results
under stronger assumptions such as (5), in order to compare
the implications of our results to previous works.

Remark 2: When β = 0 in the condition (5), it reduces to
the uniform bounded heterogeneity condition that has been
used in early convergence analyses of many popular FL
algorithms including FedAvg [42] and FedDualAvg [5], [16].
However, it is possible that Assumption 3 (which needs to
hold only at the optimal solution x∗) holds but no finite β

and ζ exist for (5) as mentioned in [16] and [17] (this is
essentially because the bound (5) needs to hold uniformly for
all x, for given β and ζ ). Below we provide two examples to
help understand these relationships further.
• Example 1: Consider the uniformly bounded heterogene-

ity condition, which is when β = 0 in Eq (5). Now, if in
addition ζ = 0, this enforces the homogeneous scenario,
i.e., all the local objective functions are the same for
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all x. In contrast, even when ζ ∗ = 0 in Assumption 3,
this only means that there exists a common minimizer x∗

(so, ∇ fi(x∗) = 0 for all i) but the local objective function
could still be different, as mentioned in [18].

• Example 2 (Proposition 2.2 in [43]): In general, for the
uniformly bounded heterogeneity condition (β = 0 in (5)),
even simple quadratic objective functions do not satisfy
the assumption (5) unless all the objective functions have
the same Hessian for all x.

Other common assumptions in the analysis of federated
learning algorithms are the unbiased and bounded variance
conditions of local stochastic gradients.

Assumption 4: The local stochastic gradient ∇gi, j associ-
ated with the randomly selected j-th mini-batch at the i-th
client satisfies

E(i)
j [∇gi, j(x)] = ∇ fi(x) for any τ-sparse vector x, (6)

and

E(i)
j ∥∇gi, j(x)−∇ fi(x)∥2

2 ≤ σ
2
i for any τ-sparse vector x,

(7)

where E(i)
j is the expectation taken over the mini-batch index

selected from [M] at the client i.
Remark 3: The bounded variance condition of local

stochastic gradients associated with mini-batches (7) in
Assumption 4 is widely used in FL and stochastic algorithms
in general [16], [44], but it may not hold for some settings [17].
This assumption (7) is actually not essential for our main
result to hold (See Appendix for the proof of our convergence
theorem without this assumption) but we present our work
under the assumption for the sake of simplicity.

The following lemma is a well-known consequence of the
A -RSS property in Assumption 1.

Lemma 1 (Descent Lemma): Suppose that the function
h(x) satisfies the A -RSS property in Assumption 2 with a
constant ρ+

τ . Then for any x1,x2 ∈ Rn with ∥x2∥0,A ≤ τ ,
it holds

⟨∇h(x1),x2⟩ ≥ h(x1 + x2)−h(x1)−
ρ+

τ

2
∥x2∥2

2.

III. FEDERATED GRADIENT MATCHING PURSUIT

In this section, we propose Federated Gradient Matching
Pursuit (FedGradMP) in Algorithm 1 and discuss its conver-
gence guarantee.

In the FedGradMP framework, the StoGradMP
algorithm [14] is implemented at the client side and
the server aggregates the resulting locally computed models
projects onto a subspace of dimension at most τ in each
round.

We begin with an overview of StoGradMP which Fed-
GradMP is built upon. First, the method computes the
stochastic gradient of the objective function we want to
minimize. The computed stochastic gradient will be the proxy
of the residual between signal and the previous iterate; For
example, for the sparse linear regression case, the proxy is

of the form of A⊤(y−Axt) = A⊤A(x∗− xt) when there is no
noise in the measurement y. Assume further that the data
matrix A satisfies 2s-RIP with respect to the standard basis
for simplicity, and the signal and the thresholding level are
s-sparse. Then x∗− xt approximately equal to the top 2s sub-
vector of A⊤(y−Axt) upto the RIP constant [13]. Hence, the
subspace corresponding to index set of the top 2s largest
components of A⊤(y− Axt) would be a good candidate to
explore to minimize the residual x∗−xt further, along with the
previous support estimate of x∗ by taking the top s component
of xt . Based on this idea, StoGradMP merges these two
subspaces associated with the top 2s largest components of
A⊤(y−Axt) and the top s largest components of xt and solve a
subproblem of minimizing the objective function with respect
to this 3s-dimensional subspace. In the final step, StoGradMP
identifies the index of the top-τ largest magnitude entries of
the solution of the subproblem that will be used in the next
iteration as a support estimate.

Based on this idea of StoGradMP, each iteration of Fed-
GradMP at a client consists of the following five steps:

1) Randomly select a mini-batch from the client batch.
2) Compute the stochastic gradient associated with the

selected mini-batch.
3) Merge the subspace associated with the previously

estimated local model with the closest subspace of
dimension at most 2τ to the stochastic gradient from
Step 2.

4) Solve the minimization problem for the local objective
function at the client over the merged subspace from
Step 3.

5) Identify the closest subspace of dimension at most τ to
the solution at Step 4.

Note that in Step 4, the clients are not minimizing the local
objective function fi over the sparsity constraint, but over
the subspace associated with the estimated sparsity pattern of
the solution in Step 3. This subproblem can be often solved
efficiently since fi are strongly convex/smooth with respect to
such subspaces by Assumptions 1 and 2, especially when the
dimension of the subspace is small or fi are quadratic [45],
[46]. Nevertheless, it could be expensive to solve this subprob-
lem in general, so we discuss how to obtain its approximate
solution by computationally cheap methods in the next section.

A. Linear Convergence of FedGradMP

This subsection is devoted to proving the linear convergence
of FedGradMP in the number of communication rounds. The
first step of the proof for our main theorem is similar to the one
for Theorem 3.1 in [6] but also utilizes several lemmas below
from [14] and [39] after some modifications to accommodate
the FL setting.

Lemma 2 ( [14, Lemma 1]): The approximation error
between the (k + 1)-th local iterate x(i)

t,k+1 and x∗ is bounded
by

∥x(i)
t,k+1− x∗∥2

2 ≤ (1+η2)2∥b(i)
t,k− x∗∥2

2.
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Algorithm 1 FedGradMP
Input: The number of rounds T , the number of clients N, the number of local iterations K, weight vector p, the estimated
sparsity level τ , η1,η2,η3.
Output: x̂ = xT .
Initialize: x0 = 0, Λ = /0.

for t = 0,1, . . . ,T −1 do
for client i = 1,2, . . . ,N do

x(i)
t,1 = xt

for k = 1 to K do
Select a mini-batch index set jk := i(i)t,k uniformly at random from {1,2, . . . ,M}
Calculate the stochastic gradient r(i)

t,k = ∇gi, jk

(
x(i)

t,k

)
Γ = approx2τ(r

(i)
t,k,η1)

Γ̂ = Γ∪Λ

b(i)
t,k = argmin

x
fi(x), x ∈R(A

Γ̂
)

Λ = approxτ(b
(i)
t,k,η2)

x(i)
t,k+1 = PΛ(b(i)

t,k)
end for

end for
Λs = approxτ

(
∑

N
i=1 pix

(i)
t,K+1,η3

)
xt+1 = PΛs

(
∑

N
i=1 pix

(i)
t,K+1

)
end for

For notational convenience, we define the following two
quantities:

ρ
+(i)
τ = max

j
ρ

+
τ (i, j), ρ̄

+(i)
τ =

1
M

M

∑
j=1

ρ
+
τ (i, j).

Lemma 3 ( [39, Lemma 5.7]): Let Γ̂ be the set obtained
from the k-th iteration at client i. Then, we have

E(i)
Jk
∥b(i)

t,k− x∗∥2
2 ≤ β1(i)E

(i)
Jk
∥P⊥

Γ̂
(b(i)

t,k− x∗)∥2
2 +ξ1(i),

where

β1(i) =
ρ̄

+(i)
4τ

2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

, ξ1(i) =
2E(i)

Jk, j∥P̂Γ
∇gi, j(x∗)∥2

2

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)
.

Here Jk denotes the set of all previous mini-batch indices
j1, . . . , jk randomly selected in or before the k-th step of the
local iterations at the i-th client and E(i)

Jk
is the expectation

taken over Jk.
The following lemma is an extended version of Lemma 3

in [14], whose proof further utilizes Young’s inequality to
control the trade-off between contraction and residual error
due to the noise of the stochastic gradient for the FL setting.
It also provides a refinement for the exact projection operator.
Since the proof of the lemma is substantially different from
the original version due to nontrivial changes to accommodate
FL setting, we include its proof.

Lemma 4: Let Γ̂ be the set obtained from the k-th iteration
at client i. Then, for any θ > 0, we have

E(i)
jk
∥P⊥

Γ̂
(b(i)

t,k− x∗)∥2
2 ≤ β2(i)∥x(i)

t,k− x∗∥2
2 +ξ2(i)

where, shown in the equation at the bottom of the next page.

Here E(i)
jk

is the expectation taken over the randomly selected
mini-batch index jk for the stochastic gradient in the k-th step
of the local iterations at the i-th client.

Proof Sketch: Our goal is to estimate the error between
the solution to the subproblem in Algorithm 1 and x∗

incurred by applying the thresholding operator, in terms
of the residual error between the previous iterate and x∗.
First, since both solution to the subproblem b(i)

t,k and x∗

belong to the subspace associated to the support estimate
set Γ̂, and from the property of the projection operator
P⊥

Γ̂
, we have ∥P⊥

Γ̂
(b(i)

t,k − x∗)∥ ≤
∥∥∥x∗− x(i)

t,k−PΓ

(
x∗− x(i)

t,k

)∥∥∥.
We aim to find an upper bound for the right hand side
in expectation taken over the randomly selected mini-batch,
which is of the form of (a contraction factor) ·∥x∗− x(i)

t,k∥ +
C ·ζ ∗ (ζ ∗ is the heterogeneity bound at the global optima in
Assumption 3). On the other hand, leveraging the A restricted
strong convexity assumption along with the property of the
approximate projection operator, fi(x∗)− fi(x

(i)
t,k) can be shown

to be lower bounded by E jk∥PΓgi, jk(x
(i)
t,k)∥∥x

∗ − x(i)
t,k∥ with

some additional error term from the approximation projection
operator. We apply the A restricted smoothness assumption
to this lower bound, which can be lower bounded further by a
quadratic function in the norm of a vector involving x∗− x(i)

t,k
with additional error term due to stochastic gradient noise.
Solving this quadratic function followed by a simple compar-
ison with

∥∥∥x∗− x(i)
t,k−PΓ

(
x∗− x(i)

t,k

)∥∥∥ shows the claim in the
lemma.

Proof: We start with by noticing P⊥
Γ̂

b(i)
t,k = 0 and P⊥

Γ̂
x(i)

t,k =

0 since both b(i)
t,k and x(i)

t,k belong to the span of A
Γ̂
. Let ∆ :=

x∗− x(i)
t,k and the set suppA (∆) be denoted by R. Note that
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|R| ≤ 2τ . Hence, we have

∥P⊥
Γ̂

(b(i)
t,k− x∗)∥2 = ∥P⊥

Γ̂
(b(i)

t,k− x(i)
t,k + x(i)

t,k− x∗)∥2

≤ ∥P⊥
Γ̂

(b(i)
t,k− x(i)

t,k)∥2 +∥P⊥
Γ̂

(x(i)
t,k− x∗)∥2

= ∥P⊥
Γ̂

(x(i)
t,k− x∗)∥2

≤ ∥P⊥Γ (x(i)
t,k− x∗)∥2

= ∥∆−PΓ∆∥2.

Here the second inequality follows from the definitions of the
sets Γ and Γ̂, Γ⊂ Γ̂.

Now we estimate ∥∆ − PΓ∆∥2
2. With a slight abuse of

notation, E(i)
jk

will be denoted by E jk throughout the proof.
First, from the A -RSC property of fi, we have

fi(x∗)− fi(x
(i)
t,k)−

ρ
−
4τ

(i)
2
∥x∗− x(i)

t,k∥
2
2

≥
〈

∇ fi(x
(i)
t,k),x

∗− x(i)
t,k

〉
= E jk

〈
∇gi, jk(x

(i)
t,k),x

∗− x(i)
t,k

〉
= E jk

〈
PR∇gi, jk(x

(i)
t,k),x

∗− x(i)
t,k

〉
≥−E jk∥PR∇gi, jk(x

(i)
t,k)∥∥∆∥2 (8)

By applying the inequality (15) in [14] and from the fact
that Γ is the support set after the projection of the stochastic
gradient ∇gi, jk(x

(i)
t,k) in Algorithm 1, we have

∥PR∇gi, jk(x
(i)
t,k)∥2

≤ ∥PΓ∇gi, jk(x
(i)
t,k)∥2 +

√
η2

1 −1

η1
∥P⊥Γ ∇gi, jk(x

(i)
t,k)∥2.

To make the notation simple, we define

z :=−
PΓ∇gi, jk(x

(i)
t,k)

∥PΓgi, jk(x
(i)
t,k)∥2

∥∆∥2.

Then, the term −E jk∥PR∇gi, jk(x
(i)
t,k)∥2∥∆∥2 can be further

bounded as follows.

−E jk∥PR∇gi, jk (x
(i)
t,k)∥2∥∆∥2

≥−E jk∥PΓ∇gi, jk (x
(i)
t,k)∥2∥∆∥2

−

√
η2

1 −1

η1
E jk∥P

⊥
Γ ∇gi, jk (x

(i)
t,k)∥2∥∆∥2

= E jk

〈
PΓ∇gi, jk (x

(i)
t,k),z

〉
−

√
η2

1 −1

η1
E jk∥P

⊥
Γ ∇gi, jk (x

(i)
t,k)∥2∥∆∥2

= E jk

〈
∇gi, jk (x

(i)
t,k),z

〉
−

√
η2

1 −1

η1
E jk∥P

⊥
Γ ∇gi, jk (x

(i)
t,k)∥2∥∆∥2

≥ E jk

〈
∇gi, jk (x

(i)
t,k),z

〉
−

√
η2

1 −1

2η1
E jk

(
∥P⊥Γ ∇gi, jk (x

(i)
t,k)∥

2
2 +∥∆∥2

2

)
= E jk

〈
∇ fi
(

x(i)
t,k

)
,z
〉

+E jk

〈
∇gi, jk (x

(i)
t,k)−∇ fi

(
x(i)

t,k

)
,z
〉

−

√
η2

1 −1

2η1
E jk

(
∥P⊥Γ ∇gi, jk (x

(i)
t,k)∥

2
2 +∥∆∥2

2

)
,

where the second inequality above follows from the AM-GM
inequality, ab≤ (a2 +b2)/2 for nonnegative real numbers a,b.

Now, we apply the Young’s inequality for the inner product
space to the second term in the last line to obtain∣∣∣〈∇gi, jk(x

(i)
t,k)−∇ fi

(
x(i)

t,k

)
,z
〉∣∣∣

≤ θ 2

2
∥∇gi, jk(x

(i)
t,k)−∇ fi

(
x(i)

t,k

)
∥2

2 +
1

2θ 2 ∥z∥
2
2

for any nonzero θ .
Hence, we have

−E jk∥PR∇gi, jk (x
(i)
t,k)∥2∥∆∥2

≥ E jk

〈
∇ fi
(

x(i)
t,k

)
,z
〉
− θ 2

2
E jk∥∇gi, jk (x

(i)
t,k)−∇ fi

(
x(i)

t,k

)
∥2

2

− 1
2θ 2 E jk∥z∥

2
2−

√
η2

1 −1

2η1

(
E jk∥P

⊥
Γ ∇gi, jk (x

(i)
t,k)∥

2
2 +E jk∥∆∥

2
2

)
≥ E jk

〈
∇ fi
(

x(i)
t,k

)
,z
〉
− θ 2

2
σ

2
i −

1
2θ 2 E jk∥z∥

2
2

−

√
η2

1 −1

2η1

(
E jk∥P

⊥
Γ ∇gi, jk (x

(i)
t,k)∥

2
2 +E jk∥∆∥

2
2

)
,

where we have used (7) in Assumption 4 in the last inequality
above.

Next, we obtain the upper bound for E jk∥P⊥Γ ∇gi, jk(x
(i)
t,k)∥

2
2 as

follows.

E jk∥P
⊥
Γ ∇gi, jk(x

(i)
t,k)∥

2
2

≤ E jk∥∇gi, jk(x
(i)
t,k)∥

2
2

≤ 3E jk∥∇gi, jk(x
(i)
t,k)−∇gi, jk(x

∗)∥2
2

+3E jk∥∇gi, jk(x
∗)−∇ fi (x∗)∥2

2 +3E jk∥∇ fi (x∗)∥2
2

≤ 3E jk(ρ
+
τ (i, jk))2∥x(i)

t,k− x∗∥2
2 +3σ

2
i +3∥∇ fi (x∗)∥2

2

= 3E jk(ρ
+
τ (i, jk))2∥∆∥2

2 +3σ
2
i +3∥∇ fi (x∗)∥2

2,

where we have used the inequality ∥a + b + c∥2
2 ≤ 3∥a∥2

2 +
3∥b∥2

2 +3∥c∥2
2 in the second inequality, and Assumption 2 and

Assumption 4 in the third inequality above.

β2(i) =

2

(
ρ̄

+(i)
4τ

+ 1
θ 2

)
−η2

1 ρ
−
4τ

(i)

η2
1 ρ
−
4τ

(i)
+

2
√

η2
1 −1

η1ρ
−
4τ

(i)
(3E jk(ρ

+
τ (i, jk))2 +1)

 ,

ξ2(i) =


8

(ρ−4τ
(i))2 max

Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2 + 1

ρ
−
4τ

(i)

[(
2θ 2 + 6

√
η2

1−1
η1

)
σ2

i + 6
√

η2
1−1

η1
∥∇ fi (x∗)∥2

2

]
if η1 > 1,

8
(ρ−4τ

(i))2 max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2 + 2θ 2σ2

i
ρ
−
4τ

(i)
if η1 = 1 (when the projection operator is exact).
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Combining this bound with inequality (8) yields

fi(x∗)− fi

(
x(i)

t,k

)
−

ρ
−
4τ

(i)
2
∥x∗− x(i)

t,k∥
2
2

≥ E jk

〈
∇ fi

(
x(i)

t,k

)
,z
〉
− θ 2

2
σ

2
i −

1
2θ 2 E jk∥z∥

2
2 (9)

−

√
η2

1 −1

2η1

(
E jk∥P

⊥
Γ ∇gi, jk (x

(i)
t,k)∥

2
2 +E jk∥∆∥

2
2

)
(10)

≥ E jk

〈
∇ fi

(
x(i)

t,k

)
,z
〉
− θ 2

2
σ

2
i −

1
2θ 2 E jk∥z∥

2
2

−

√
η2

1 −1

2η1

[
(3E jk (ρ

+
τ (i, jk))2 +1)∥∆∥2

2 +3σ
2
i +3∥∇ fi (x∗)∥2

2
]
. (11)

On the other hand, using Lemma 1 for gi, j, a consequence of
the A -RSS property, we have〈

∇gi, j(x
(i)
t,k),z

〉
≥ gi, j

(
x(i)

t,k + z
)
−gi, j

(
x(i)

t,k

)
−

ρ
+
4τ

(i, j)
2

∥z∥2
2

for all j ∈ [M]. By taking the average over all gi, j over j ∈ [M]
on both sides of the inequality above and from the definitions
of fi and ρ

+(i)
4τ

, we obtain〈
∇ fi(x

(i)
t,k),z

〉
≥ fi

(
x(i)

t,k + z
)
− fi

(
x(i)

t,k

)
−

ρ̄
+(i)
4τ

2
∥z∥2

2.

Here we have used (6) in Assumption 4. We then take the
expectation E jk on both sides of the inequality.

E jk

〈
∇ fi(x

(i)
t,k),z

〉
≥ E jk fi

(
x(i)

t,k + z
)
− fi

(
x(i)

t,k

)
−

ρ̄
+(i)
4τ

2
E jk∥z∥

2
2.

After applying this bound to inequality (9), we obtain

fi(x∗)− fi
(

x(i)
t,k

)
−

ρ
−
4τ

(i)
2
∥∆∥2

2

≥ E jk fi
(

x(i)
t,k + z

)
− fi

(
x(i)

t,k

)
−

ρ̄
+(i)
4τ

2
E jk∥z∥

2
2−

θ 2

2
σ

2
i −

1
2θ 2 E jk∥z∥

2
2

−

√
η2

1 −1

2η1

[
(3E jk (ρ

+
τ (i, jk))2 +1)∥∆∥2

2 +3σ
2
i +3∥∇ fi (x∗)∥2

2

]
.

Thus, we have(
ρ̄

+(i)
4τ

2
+

1
2θ 2

)
E jk∥z∥

2
2 (12)

− 1
2

ρ
−
4τ

(i)−

√
η2

1 −1

η1
(3E jk(ρ

+
τ (i, jk))2 +1)

∥∆∥2
2

+

θ 2

2
+

3
√

η2
1 −1

2η1

σ
2
i +

3
√

η2
1 −1

2η1
∥∇ fi (x∗)∥2

2

≥ E jk fi

(
x(i)

t,k + z
)
− fi (x∗)

≥
ρ
−
4τ

(i)
2

E jk∥x
(i)
t,k + z− x∗∥2

2 +E jk

〈
∇ fi(x∗),x

(i)
t,k + z− x∗

〉
(13)

=
ρ
−
4τ

(i)
2

E jk∥∆−z∥2
2 +E jk ⟨∇ fi(x∗),z−∆⟩

=
ρ
−
4τ

(i)
2

E jk∥∆−z∥2
2 +E jk ⟨∇ fi(x∗),PΓ∪R(z−∆)⟩ (⋆)

=
ρ
−
4τ

(i)
2

E jk∥∆−y∥2
2 +E jk ⟨PΓ∪R∇ fi(x∗),(z−∆)⟩

≥
ρ
−
4τ

(i)
2

E jk∥∆−z∥2
2−E jk∥PΓ∪R∇ fi(x∗)∥2∥z−∆∥2

≥
ρ
−
4τ

(i)
2
∥∆−z∥2

2− max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2E jk∥∆− z∥2. (14)

Here, the inequality (12) follows from A -RSC. In (⋆) of
the above inequality chain, we have used the fact that z =

−
PΓ∇gi, jk (x(i)

t,k)

∥PΓgi, jk (x(i)
t,k)∥
∥∆∥2. Let u = E jk∥∆ − z∥2, a = ρ

−
4τ

(i), b =

max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2, and

c =
(

ρ̄
+(i)
4τ

+
1

θ 2

)
E jk∥z∥

2
2

−

ρ
−
4τ

(i)−

√
η2

1 −1

η1
(3E jk(ρ

+
τ (i, jk))2 +1)

∥∆∥2
2

+

θ
2 +

3
√

η2
1 −1

η1

σ
2
i +

3
√

η2
1 −1

η1
∥∇ fi (x∗)∥2

2.

Then the inequality (14) can be rewritten as au2−2bu−c≤
0 which gives

E jk∥∆− z∥2 ≤
√

c
a

+
2b
a

.

Moreover, we have

∥∆−PΓ∆∥2
2 ≤ ∥∆−z∥2

2.

Combining the previous two bounds yields

E jk∥∆−PΓ∆∥2
2 ≤

(√
c
a

+
2b
a

)2

≤ 2c
a

+
8b2

a2 .

On the other hand, since

∥z∥2
2 =

∥∥∥∥∥∥− PΓ∇gi, jk(x
(i)
t,k)

∥PΓgi, jk(x
(i)
t,k)∥2

∥∆∥2

∥∥∥∥∥∥
2

2

= ∥∆∥2
2,

we have

c≤

ρ̄
+(i)
4τ

+
1

θ 2 −ρ
−
4τ

(i)+

√
η2

1 −1

η1
(3E jk (ρ

+
τ (i, jk))2 +1)

∥∆∥2
2

+

θ
2 +

3
√

η2
1 −1

η1

σ
2
i +

3
√

η2
1 −1

η1
∥∇ fi (x∗)∥2

2.

Thus,

E jk∥∆−PΓ∆∥2
2

≤

2

(
ρ̄

+(i)
4τ

+ 1
θ 2

)
−η2

1 ρ
−
4τ

(i)

η2
1 ρ
−
4τ

(i)
+

2
√

η2
1 −1

η1ρ
−
4τ

(i)
(3E jk (ρ

+
τ (i, jk))2 +1)

∥∆∥2
2

+
8

(ρ−4τ
(i))2 max

Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+
1

ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1

σ
2
i +

6
√

η2
1 −1

η1
∥∇ fi (x∗)∥2

2

 .

□
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Equipped with these lemmas, we are ready to prove our
main result for the linear convergence of FedGradMP.

Theorem 5: Let x∗ be the solution to (1) and x0 be the
initial feasible solution. Assume that the local objective fi
satisfies A -RSC with constant ρ

−
4τ

(i) in Assumption 1 and
all of the functions gi, j associated with mini-batches satisfy
A -RSS with constant ρ

+
4τ

(i, j) in Assumption 2. We further
assume that gi, j satisfies the bounded variance condition of
local stochastic gradients in Assumption 4 with variance bound
σ2

i . Let K be the number of local iterations at each client.
Then, for any θ > 0, the expectation of the recovery error at

the (t +1)-th round of FedGradMP described in Algorithm 1
obeys

E∥xt+1− x∗∥2
2≤κ

t+1∥x0− x∗∥2
2 +

(2η2
3 +2)ν

1−κ

N

∑
i=1

pi
1−µ(i)K

1−µ(i)
,

where

κ = (2η
2
3 +2)

N

∑
i=1

pi
[
(1+η2)2

β1(i)β2(i)
]K

and

µ(i) = (1+η2)2
β1(i)β2(i).

Here, shown in the equation at the bottom of the next page.
Remark 4: There are key factors that impact the rate of

convergence of FedGradMP in the number of communication
rounds and the residual error in Theorem 5 as we discuss
below.

1) Impact of parameters β1(i) and β2(i). For a fixed num-
ber of local iterations K, one can see that as the product
of the two parameters β1(i) and β2(i) becomes small,
the convergence rate κ improves (decreases). The prod-
uct β1(i)β2(i) becomes small as the A -RSC constant
ρ
−
4τ

(i) increases or the A -RSS constant ρ̄
+(i)
4τ

decreases.
Choosing a proper dictionary could often improve the
RSC/RSS constants as shown in Section IV-D conse-
quently leading to better convergence, which is also
numerically demonstrated in Section V-B.2.c.

2) Impact of the local iteration number K on the
convergence rate. Increasing the local iteration number
K also makes the convergence rate κ decrease when all
the terms (1+η2)2β1(i)β2(i) are less than 1. To see this,
recall that the convergence rate is given by

κ = (2η
2
3 +2)

N

∑
i=1

pi
[
(1+η2)2

β1(i)β2(i)
]K

.

In this case, increasing K leads to the decay of each
term in ∑

N
i=1 pi

[
(1+η2)2β1(i)β2(i)

]K , improving the
convergence rate. It is possible, however, some of the
terms in the sum (1 + η2)2β1(i)β2(i) exceed 1, while
the sum ∑

N
i=1 pi

[
(1+η2)2β1(i)β2(i)

]K is still less than
1 for small K, making the convergence rate less than 1.
In this case, as we increase the local iteration number
K, the largest term starts dominating the sum which
could increase the convergence rate (even make it greater
than 1 for large K), degrading the performance of
FedGradMP.

3) Impact of the local iteration number K on the
residual error.
The residual error (2η2

3 +2)ν
1−κ ∑

N
i=1 pi

1−µ(i)K

1−µ(i) depends on
the local iteration number K in a more complicated way.
Even when all terms (1+η2)2β1(i)β2(i) are less than 1,
in which case increasing K makes the convergence rate
κ decrease (making the factor 1

1−κ
in the residual error

decrease), but the factor 1−µ(i)K

1−µ(i) increases in K. Hence,
the dependence of residual error on the local iteration
number K may not be simple and this is actually what
we observe in the numerical experiment in Section V-D.
This is consistent with commonly accepted knowledge
on the effect of the local iteration number on the
residual error in the FL literature [5], [6], [16], [17],
[28]: taking more local steps at clients makes the local
estimates closer to the local solutions while the local
estimates could deviate from the global solution in the
FL environment in general.

Remark 5 (Interpretation of Theorem 5): Theorem 5 states
that the iterates of FedGradMP converge linearly up to the
residual error of the solution x∗ as long as κ < 1. The size of
the residual error is proportional to ν . In particular, from the
expression for ν in Theorem 5, one can see that ν = 0 if the
heterogeneity parameter ζ∗ = 0 and stochastic gradient noise
σi = 0 for all i ∈ [N]. We take a look at the related scenarios
in more detail below.
• ζ∗ = 0 or ∇ fi(x∗) = 0 for all the client objective function

fi. For example, the function fi could be the square loss
for the noiseless observations of x∗ with sparsity level τ .

• σi = 0 for all 1 ≤ i ≤ N holds if and only if ∇gi, j(x) =
∇ fi(x) almost surely for all τ-sparse vectors. This hap-
pens when the full batch of each client is used instead of
mini-batches. In particular, when the projection operator
is exact (η1 = 1) and under a slightly strong hetero-
geneity assumption, the residual error is statistically
optimal. More precisely, under slightly strong heterogene-
ity assumptions only at the solution x∗ such as

∥PΩ∇ fi(x∗)−PΩ∇ f (x∗)∥2
2 ≤ β

2∥PΩ∇ f (x∗)∥2
2, (15)

where β > 0 and Ω is any subset of [d] with size 4τ , one
can see that we have

max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2 ≤ 2(1+β

2) max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ f (x∗)∥2
2.

From Theorem 5, after a sufficient number of rounds,
we have

E∥xt+1− x∗∥2 ≤
[
E∥xt+1− x∗∥2

2
]1/2

≤ O

(( N

∑
i=1

pi max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

)1/2
)

,

which is bounded from above by

O

(
max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ f (x∗)∥2

)
. This is the optimal statistical

bias for commonly used FL data including sub-Gaussian
datasets of size |D| that are independently generated
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for each client, which is of order of O
(√

τ logn
N|D|

)
for the sparse linear regression problem (when fi
are the square loss functions). The uniform bounded
heterogeneity condition, which is much stronger than (15)
is used to show the optimal statistical recovery of Fast
FedDualAvg [47]. See [6], [14], and [47] for more
details.

• The parameter θ provides a trade-off between the con-
vergence rate and the residual error due to the stochastic
gradient. In particular, when the full batch is used (σi =
0), then one can set θ = ∞ giving the fastest convergence.

• When σi ̸= 0, the second term of the residual error ν

is not vanishing in the number of rounds t. The similar
term for FedHT/FedIterHT [6] decreases in t, but this
requires that the mini-batch size at each client goes to
infinity in t, which could severely restrict the number
of communication rounds for the applicability of their
theory. The idea of increasing the mini-batch size in
the number of iterations is not new and has been used
in [7] and [48]. However, the settings for these works
are not for FL and the rate of mini-batch size growth is
moderate, whereas the growth rates of FedHT/FedIterHT
need to be generally much higher – they grow expo-
nentially in the number of local iterations at clients.
This potential issue in FL methods based on exponen-
tially increasing mini-batch sizes is also pointed out
in [24].

Proof Sketch: By using the definition of approximate projec-
tion operator, the property of hard thresholding, and Jensen’s
inequality, it turns out that the expected residual between the
global model parameter of FedGradMP and x∗ can be bounded
by the average of the expected residual between local model
parameter and x∗. Then, the residual for each local model can
be further bounded by Lemma 2, 3, and 4. After applying
these lemmas, combining all the error terms and bounding
them by using the heterogeneity bound at the global optima
in Assumption 3 and the variance bound for stochastic gradient
descent in Assumption 4 if necessary, we obtain the statement
in the theorem.

Proof: [Proof of Theorem 5] Let F (t) be the filtration by
all the randomness up to the t-th communication round, which
is all the selected mini-batch indices at all the client up to the

t-th round. We begin with analyzing E
[
∥xt+1− x∗∥2

2|F (t)
]
,

the expected error of the global iterate xt+1 at the (t + 1)-th
round and x∗ conditioned on F (t). Because we will work with
this conditional expectation until the very end of the proof,
by abusing the notation slightly, E

[
·|F (t)

]
will be denoted

by E[·].

E∥xt+1− x∗∥2
2

= E

∥∥∥∥∥PΛs

(
N

∑
i=1

pix
(i)
t,K+1

)
−

N

∑
i=1

pix
(i)
t,K+1 +

N

∑
i=1

pix
(i)
t,K+1− x∗

∥∥∥∥∥
2

2

(16)

≤ 2E

∥∥∥∥∥PΛs

(
N

∑
i=1

pix
(i)
t,K+1

)
−

N

∑
i=1

pix
(i)
t,K+1

∥∥∥∥∥
2

2

+2E

∥∥∥∥∥ N

∑
i=1

pix
(i)
t,K+1− x∗

∥∥∥∥∥
2

2

≤ 2η
2
3 E

∥∥∥∥∥Hτ

(
N

∑
i=1

pix
(i)
t,K+1

)
−

N

∑
i=1

pix
(i)
t,K+1

∥∥∥∥∥
2

2

+2E

∥∥∥∥∥ N

∑
i=1

pix
(i)
t,K+1− x∗

∥∥∥∥∥
2

2

≤ (2η
2
3 +2)E

∥∥∥∥∥ N

∑
i=1

pix
(i)
t,K+1− x∗

∥∥∥∥∥
2

2

= (2η
2
3 +2)E

∥∥∥∥∥ N

∑
i=1

pix
(i)
t,K+1−

N

∑
i=1

pix∗
∥∥∥∥∥

2

2

≤ (2η
2
3 +2)

N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2
(17)

where the second inequality follows from the definition of
the approximation projector operator, the third follows from
the fact that both x∗ and Hτ

(
∑

N
i=1 pix

(i)
t,K+1

)
are τ-sparse

but Hτ

(
∑

N
i=1 pix

(i)
t,K+1

)
is the best τ-sparse approximation of

∑
N
i=1 pix

(i)
t,K+1 with respect to the dictionary A , and the last

one is obtained by applying the Jensen’s inequality.

β1(i) =
ρ̄

+(i)
4τ

2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

, β2(i) =

2

(
ρ̄

+(i)
4τ

+ 1
θ 2

)
−η2

1 ρ
−
4τ

(i)

η2
1 ρ
−
4τ

(i)
+

2
√

η2
1 −1

η1ρ
−
4τ

(i)
(3E jk(ρ

+
τ (i, jk))2 +1)

 ,

ν =



(1+η2)2 maxi

(
8β1(i)

(ρ−4τ
(i))2 + 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)
+ β1(i)

ρ
−
4τ

(i)
6
√

η2
1−1

η1

)
ζ 2
∗

+(1+η2)2
N
∑

i=1
pi

[
β1(i)
ρ
−
4τ

(i)

(
2θ 2 + 6

√
η2

1−1
η1

)
+ 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)

]
σ2

i if η1 > 1,

(1+η2)2 maxi

(
8β1(i)

(ρ−4τ
(i))2 + 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)

)
N
∑

i=1
pi max

Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+(1+η2)2
∑

N
i=1 pi

[
2 β1(i)

ρ
−
4τ

(i)
θ 2 + 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)

]
σ2

i if η1 = 1.
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After applying Lemma 2, 3, and 4 sequentially to (17),
we obtain

N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2
(18)

≤ (1+η2)2
N

∑
i=1

piE
(i)
JK

∥∥∥b(i)
t,K− x∗

∥∥∥2

2

≤ (1+η2)2
N

∑
i=1

pi

[
β1(i)E

(i)
JK
∥P⊥

Γ̂
(b(i)

t,K− x∗)∥2
2 +ξ1(i)

]
= (1+η2)2

N

∑
i=1

piβ1(i)E
(i)
JK−1, jK∥P

⊥
Γ̂

(b(i)
t,K− x∗)∥2

2

+(1+η2)2
N

∑
i=1

piξ1(i)

≤ (1+η2)2
N

∑
i=1

piβ1(i)
[
β2(i)E

(i)
JK−1
∥x(i)

t,K− x∗∥2
2 +ξ2(i)

]
+(1+η2)2

N

∑
i=1

piξ1(i)

= (1+η2)2
N

∑
i=1

piβ1(i)β2(i)E
(i)
JK−1
∥x(i)

t,K− x∗∥2
2

+(1+η2)2
N

∑
i=1

pi (β1(i)ξ2(i)+ξ1(i)) . (19)

First, the term ξ1(i) can be bounded as follows:

ξ1(i) =
2(E(i)

JK , j∥P̂Γ
∇gi, j(x∗)∥2

2)

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

≤ 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

 max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2 +σ

2
i


This is from the property of the projection operator and (7) in
Assumption 4 implying

E(i)
j ∥P̂Γ

∇gi, j(x)− P̂
Γ
∇ fi(x)∥2

2

≤ E(i)
j ∥∇gi, j(x)−∇ fi(x)∥2

2 ≤ σ
2
i ,

so we have

E(i)
j ∥P̂Γ

∇gi, j(x∗)∥2
2

≤ 2(E(i)
j ∥P̂Γ

∇ fi(x∗)∥2
2 +σ

2
i )

≤ 2

 max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2 +σ

2
i

 .

Hence, each term β1(i)ξ2(i)+ξ1(i) in (19) can be bounded
as below.

β1(i)ξ2(i)+ξ1(i)

≤ β1(i)

(
8

(ρ−4τ
(i))2 max

Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+
1

ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1

σ
2
i +

6
√

η2
1 −1

η1
∥∇ fi (x∗)∥2

2

)

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

 max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2 +σ

2
i



≤

(
8β1(i)

(ρ−4τ
(i))2 +

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

)
max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+
β1(i)
ρ
−
4τ

(i)

6
√

η2
1 −1

η1
∥∇ fi (x∗)∥2

2

+

 β1(i)
ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

σ
2
i .

By plugging the above bound to (19), we have
N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2

≤ (1+η2)2
N

∑
i=1

piβ1(i)β2(i)E
(i)
JK−1
∥x(i)

t,K − x∗∥2
2 (20)

+(1+η2)2
N

∑
i=1

pi

((
8β1(i)

(ρ−4τ
(i))2 +

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

)
max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+
β1(i)
ρ
−
4τ

(i)

6
√

η2
1 −1

η1
∥∇ fi (x∗)∥2

2

)

+(1+η2)2
N

∑
i=1

pi

 β1(i)
ρ
−
4τ

(i)

2θ
2+

6
√

η2
1 −1

η1

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

σ
2
i .

Now consider first the case when η1 > 1. Then, since
max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2 ≤ ∥∇ fi (x∗)∥2

2, we have

N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2

≤ (1+η2)2
N

∑
i=1

piβ1(i)β2(i)E
(i)
JK−1
∥x(i)

t,K − x∗∥2
2

+(1+η2)2
N

∑
i=1

pi

(
8β1(i)

(ρ−4τ
(i))2 +

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

+
β1(i)
ρ
−
4τ

(i)

6
√

η2
1 −1

η1

)
∥∇ fi (x∗)∥2

2

+(1+η2)2
N

∑
i=1

pi

 β1(i)
ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

σ
2
i

≤ (1+η2)2
N

∑
i=1

piβ1(i)β2(i)E
(i)
JK−1
∥x(i)

t,K − x∗∥2
2

+(1+η2)2 max
i

(
8β1(i)

(ρ−4τ
(i))2 +

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

+
β1(i)
ρ
−
4τ

(i)

6
√

η2
1 −1

η1

)
N

∑
i=1

pi∥∇ fi (x∗)∥2
2

+(1+η2)2
N

∑
i=1

pi

 β1(i)
ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

σ
2
i .

Let µ(i) = (1+η2)2β1(i)β2(i) and

ν =(1+η2)2 max
i

 8β1(i)
(ρ−4τ

(i))2 +
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)
+

β1(i)
ρ
−
4τ

(i)

6
√

η2
1 −1

η1

ζ
2
∗

v+(1+η2)2
N

∑
i=1

pi

 β1(i)
ρ
−
4τ

(i)

2θ
2+

6
√

η2
1 −1

η1

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)

σ
2
i .

Hence, when η1 > 1, we have
N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2
≤

N

∑
i=1

piµ(i)E(i)
JK−1
∥x(i)

t,K− x∗∥2
2 +ν .

(21)
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The case when the projection operator for the gradient is
exact (η1 = 1) follows the same argument. Setting η1 = 1 in
the inequality (20) reduces the inequality to

N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2

≤ (1+η2)2
N

∑
i=1

piβ1(i)β2(i)E
(i)
JK−1
∥x(i)

t,K− x∗∥2
2

+(1+η2)2
N

∑
i=1

pi

(
8β1(i)

(ρ−4τ
(i))2

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

)
max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+(1+η2)2
N

∑
i=1

pi

[
2

β1(i)
ρ
−
4τ

(i)
θ

2 +
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

]
σ

2
i

≤ (1+η2)2
N

∑
i=1

piβ1(i)β2(i)E
(i)
JK−1
∥x(i)

t,K− x∗∥2
2

+(1+η2)2 max
i

(
8β1(i)

(ρ−4τ
(i))2

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

)
N

∑
i=1

pi max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+(1+η2)2
N

∑
i=1

pi

[
2

β1(i)
ρ
−
4τ

(i)
θ

2 +
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

]
σ

2
i .

The bound for ν for the exact projection case (η1 = 1) is
given as below.

ν = (1+η2)2 max
i

(
8β1(i)

(ρ−4τ
(i))2

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

)
N

∑
i=1

pi max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+(1+η2)2
N

∑
i=1

pi

[
2

β1(i)
ρ
−
4τ

(i)
θ

2 +
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

]
σ

2
i .

Then, applying the bound (21) to (17) repeatedly using the
induction argument on K, we have

E∥xt+1− x∗∥2
2

≤ (2η
2
3 +2)

(
N

∑
i=1

pi

[
E(i)

µ(i)K∥x(i)
t,1− x∗∥2

2

]
+

N

∑
i=1

pi
ν(1−µ(i)K)

1−µ(i)

)

= (2η
2
3 +2)E

(
N

∑
i=1

pi
[
µ(i)K∥xt−x∗∥2

2
]
+

N

∑
i=1

pi
ν(1−µ(i)K)

1−µ(i)

)

= κ∥xt − x∗∥2
2 +(2η

2
3 +2)ν

N

∑
i=1

pi
(1−µ(i)K)

1−µ(i)
,

where the first equality follows from x(i)
t,1 = xt and the second

follows from

κ = (2η
2
3 +2)

N

∑
i=1

piµ(i)K = (2η
2
3 +2)

N

∑
i=1

pi
[
(1+η2)2

β1(i)β2(i)
]K

.

Now, taking the unconditional expectation on both sides of
the above yields

E
[
∥xt+1− x∗∥2

2

]

= E
[
E
[
∥xt+1− x∗∥2

2|F (t)
]]

≤ κE
[
E
[
∥xt − x∗∥2

2|F (t−1)
]]

+(2η
2
3 +2)ν

N

∑
i=1

pi
(1−µ(i)K)

1−µ(i)
.

By applying this result repeatedly, we obtain

E∥xt+1− x∗∥2
2 ≤ κ

t+1∥x0− x∗∥2
2 +

(2η2
3 +2)ν

1−κ

N

∑
i=1

pi
1−µ(i)K

1−µ(i)
.

□
Corollary 6: Under the same conditions and notation in

Theorem 5, we have

E f (xt+1)≤ f (x∗)+
1

2ρ
∥∇ f (x∗)∥2

2

+ρ

[
κ

t+1∥x0− x∗∥2
2 +

(2η2
3 +2)ν

1−κ

N

∑
i=1

pi
1−µ(i)K

1−µ(i)

]
,

where ρ = ∑
N
i=1 piρ̄

+(i)
τ .

See Appendix for the proof of Lemma 6.

IV. DISCUSSION AND EXTENSIONS

A. Inexact FedGradMP

In FedGradMP, each client solves the minimization problem
argmin

x
fi(x) over a subspace R(A

Γ̂
) to update the support

estimate of the solution x∗. When a closed-form solution exists
to the minimization problem such as the least squares problem
and the sparsity level τ is relatively small compared with
the signal dimension, an exact minimizer can be obtained
efficiently. This can be achieved, for example, by computing
the pseudo-inverse with respect to a τ-dimensional subspace
R(A

Γ̂
) or by algorithms based on Cholesky, QR factoriza-

tions, or SVD for the least squares problem [49], [50].
But for the other cases, although the sub-optimization

problem is typically convex due to the A -RSC assumption,
one may still want to reduce the computational cost in the
optimization. By solving it only approximately but with a
desired accuracy, we can save computational resources further.
Because the local loss function fi for the i-th client satisfies the
A -RSC and A -RSS properties with the respective constants
ρ−τ (i) and ρ̄

+(i)
τ , fi is strongly convex/smooth with the same

constants on the domain of the minimization problem, the
linear subspace R(A

Γ̂
). Recall that |Di| is the number of

data points at the i-th client. We define a δ -approximate
solution to argmin

x
fi(x) with x∈R(A

Γ̂
) as a vector b such that

∥b−bopt∥2
2 ≤ δ 2 where bopt is its exact solution. The number

of steps required to achieve a δ -approximate solution at client
i using popular standard algorithms is shown as follows:

• Gradient descent (GD): O
(
|Di|

(
ρ̄

+(i)
τ

ρ
−
τ (i)

)
log
( 1

δ

))
[46].

• Stochastic gradient descent with variance reduction such

as SAG or SVRG: O
(
|Di|+ ρ̄

+(i)
τ

ρ
−
τ (i)

log
( 1

δ

))
[51], [52].

Since the domain is a τ-dimensional space, the computa-
tional complexity per data point of the above algorithms is
O(τ) for the squared or logistic loss, so the overall complexity
of the local step to compute a δ -approximate solution is

O
(
|Di|τ

(
ρ̄

+(i)
τ

ρ
−
τ (i)

log
( 1

δ

)))
for GD. For Newton’s method, the
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Algorithm 2 Inexact FedGradMP With Partial Participation
Input: The number of rounds T , the number of clients N, the cohort size L, the number of local iterations K, weight vector
p, the estimated sparsity level τ , η1,η2,η3,δ .
Output: x̂ = xT .
Initialize: x0 = 0, Λ = /0.

for t = 0,1, . . . ,T −1 do
Randomly select a subset St of clients with size L
for each client i in St , do

x(i)
t,1 = xt

for k = 1 to K do
Select a mini-batch index set jk := i(i)t,k uniformly at random from {1,2, . . . ,M}
Calculate the stochastic gradient r(i)

t,k = ∇gi, jk

(
x(i)

t,k

)
Γ = approx2τ(r

(i)
t,k,η1)

Γ̂ = Γ∪Λ

Solve b(i)
t,k = argmin

x
fi(x), x ∈R(A

Γ̂
) up to accuracy δ

Λ = approxτ(b
(i)
t,k,η2)

x(i)
t,k+1 = PΛ(b(i)

t,k)(
x(i)

t,k+1←ΠR

(
x(i)

t,k+1

))
[Optional projection onto a ball]

end for
end for
Λs = approxτ

(
∑

N
i=1 pix

(i)
t,K+1,η3

)
xt+1 = PΛs

(
∑

N
i=1 pix

(i)
t,K+1

)(
xt+1←ΠR (xt+1)

)
[Optional projection onto a ball]

end for

total computational cost to achieve a δ -approximate solu-
tion is roughly O

(
(|Di|τ2 + τ3) log

( 1
δ

))
[46]. Hence, if the

sparsity level τ is much smaller than the signal dimension
n, the subproblem in FedGradMP can be solved efficiently
up to accuracy δ . As a comparison, most FL methods run
(stochastic) gradient descent to solve argmin

x
fi(x) over the

whole space Rn, which would cost computationally more to
acquire its δ -approximate solution.

Theorem 7: Under the same notation and assumptions as
in Theorem 5, for any θ > 0, the expectation of the recovery
error at the (t +1)-th round of inexact FedGradMP described
in Algorithm 2 obeys

E∥xt+1− x∗∥2
2

≤ κ
t+1∥x0− x∗∥2

2 +
(2η2

3 +2)(ν +δ 2)
1−κ

N

∑
i=1

pi
1−µ(i)K

1−µ(i)
,

where

κ = (2η
2
3 +2)

N

∑
i=1

pi
[
2(1+η2)2

β1(i)β2(i)
]K

and

µ(i) = 2(1+η2)2
β1(i)β2(i).

Here, the parameters β1(i),β2(i), and ν are the same as in
Theorem 5.

See Appendix for the proof of Theorem 7.

B. Client Sampling and the Impact of Cohort Size

In practical FL scenarios, it may not be possible for all of
the clients to participate in each communication round. This
could particularly stand out when there are a large population
of clients or the communication bandwidth of connections
between the server and clients is limited. A common theo-
retical assumption to capture this partial client participation
is that participating clients for each communication round are
drawn randomly according to some probability distribution,
independent with other rounds. It could be considered as client
sampling as noted in [16]. One could also consider more
sophisticated sampling strategies such as importance sampling,
but it seems to be not easy to implement such sampling
techniques for FL since it could leak the private information
of the client datasets [36]. Furthermore, in many real-world
scenarios, client availability (which is usually random) solely
controls participation rather than the server, ruling out the
potential of using such methods [53].

For simplicity, we assume that the weight pi is 1/N in the
global objective function f and a fixed number of clients (the
cohort size) participate per round as in [54] to study the impact
of the cohort size.

Theorem 8: Assume the uniform weights pi = 1/N and L
participating clients are drawn uniformly at random over the
client set without replacement per round. Then, under the same
assumptions and notation in Theorem 5, for any θ > 0, the
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expectation of the recovery error is bounded from above by

E∥xt+1− x∗∥2
2 ≤ κ

t+1∥x0− x∗∥2
2 +

(2η2
3 +2)ν̃(1−µK)

(1−µ)(1−κ)
,

where

κ = (2η
2
3 +2) max

S⊂[N]
|S|=L

1
L ∑

i∈S

[
(1+η2)2

β1(i)β2(i)
]K

,

µ = max
i∈[N]

[
(1+η2)2

β1(i)β2(i)
]K

,

and, shown in the equation at the bottom of the next page.
See Appendix for the proof of Theorem 8.
Remark 6: Note that the convergence rate κ of FedGradMP

improves (decreases) as the cohort size L increases in The-
orem 8, aligning with some of the previous works about
the impact of cohort size on the convergence speed [34].
Our numerical experiments in Section V-E also validate our
theory about the impact of cohort size on the convergence
rates. On the other hand, it appears that the residual error
in Theorem 8 is pessimistic and the actual behavior of FL
algorithms depends on the cohort size in a more complicated
way. See Section V-E for the numerical experiment and
discussion.

C. FedGradMP With a Constraint

Many machine learning problems can be formulated as
an ℓ2-norm constrained optimization problem [5], [15], [55].
Since we focus on the FL setting with a sparse structure, our
goal is to solve the following problem:

min
x∈Rn

f (x) =
N

∑
i=1

pi fi(x) subject to ∥x∥0,A ≤ τ, ∥x∥2 ≤ R,

(22)

for some R > 0, which is our main optimization problem (1)
with the additional ℓ2 constraint ∥x∥2 ≤ R. The ℓ2 constraint
ensures the global minimum exists in the domain. Another
advantage of using the ℓ2-norm constraint is that its orthogonal
projection computationally is cheaper than projections of other
constraints such as the ℓ1-norm [15]. We denote by ΠR the
orthogonal projection of a vector to the set {∥x∥2 ≤ R}, which
is implemented as follows. For any vector u ∈ RN ,

ΠR(u) =

{
u, if ∥u∥2 ≤ R;
Ru/∥u∥2, otherwise.

Let x∗ be a minimizer of the problem (22) and the het-
erogeneity at the solution x∗ is defined as in Assumption 3.
By executing additional steps, the projection to a ℓ2-norm ball
in Algorithm 2, FedGradMP converges to the solution x∗ under
the same conditions in Theorem 5, 7, and 8. The proof follows
a simple modification of the proofs of the theorems due to the
fact that the orthogonal projection of a vector u to a ball with
radius R does not increase the ℓ2-norm distance between u and
v for a vector v in the ball. For instance, we replace (18) in
the proof of Theorem 5 as follows.

N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2

=
N

∑
i=1

piE
(i)
JK

∥∥∥ΠR

(
PΛs

(
b(i)

t,K

))
− x∗

∥∥∥2

2

≤
N

∑
i=1

piE
(i)
JK

∥∥∥PΛs

(
b(i)

t,K

)
− x∗

∥∥∥2

2

≤ (1+η2)2
N

∑
i=1

piE
(i)
JK

∥∥∥b(i)
t,K− x∗

∥∥∥2

2
,

where we have used the fact that x∗ belongs the ℓ2-norm ball
with radius R and the aforementioned property of ΠR in the
first inequality above.

Similarly, note that all the local iterates satisfy ∥x(i)
t,K+1∥2≤R

because of the projection to the ball in Algorithm 2. Thus, their
convex combination ∑

N
i=1 pix

(i)
t,K+1 also belongs to the ball.

Now we apply the same argument to the first step of the
proof of Theorem 5

E∥xt+1− x∗∥2
2

= E

∥∥∥∥∥ΠR

(
PΛs

(
N

∑
i=1

pix
(i)
t,K+1

))
−

N

∑
i=1

pix
(i)
t,K+1 +

N

∑
i=1

pix
(i)
t,K+1− x∗

∥∥∥∥∥
2

2

≤ 2E

∥∥∥∥∥ΠR

(
PΛs

(
N

∑
i=1

pix
(i)
t,K+1

))
−

N

∑
i=1

pix
(i)
t,K+1

∥∥∥∥∥
2

2

+2E

∥∥∥∥∥ N

∑
i=1

pix
(i)
t,K+1− x∗

∥∥∥∥∥
2

2

≤ 2E

∥∥∥∥∥PΛs

(
N

∑
i=1

pix
(i)
t,K+1

)
−

N

∑
i=1

pix
(i)
t,K+1

∥∥∥∥∥
2

2

+2E

∥∥∥∥∥ N

∑
i=1

pix
(i)
t,K+1− x∗

∥∥∥∥∥
2

2

.

After these modifications, we proceed as in the rest of the
proof of Theorem 5.

D. Impact of Dictionary Choice

Recall that our convergence guarantees depend on the
restricted convexity/smoothness (A -RSC, A -RSS) constants
ρ
−
4τ

(i) and ρ̄
+(i)
4τ

as many works for sparse recovery [6],
[9], [13], [14]. In particular, the product β1(i)β2(i) in The-
orems 5, 7, and 8 critically impact the convergence rate κ;
for faster convergence, β1(i) and β2(i) should be small as
stated in Remark 4. This can be achieved especially when the
A -RSS/A -RSC constants ρ

−
4τ

(i) and ρ̄
+(i)
4τ

are close to each
other or their ratio (the restricted condition number) is close
to 1.

1) Sparse Linear Regression: When the local objective
function is the square loss function associated with the local
dataset at the client, the A -RSC and A -RSS constants
essentially reduce to the restricted isometry property (A -RIP)
[20], [21]. Indeed, let the square loss function be given by
h(x) = 1

2l ∥Bx− y∥2
2 where the rows of matrix B ∈ Rl×m are

the input data vectors denoted by bi and y is the observation
vector. Assume that ∥bi∥2 = 1 for all 1≤ i≤ l, which can be
done by normalizing the data vector bi and corresponding yi.
Since the function h is the square loss function, by looking into
its Hessian, we study the restricted strong convexity (RSC) and
smoothness (RSS) properties. The Hessian ∇2h of h is given
by

1
l

B⊤B.

 



4526 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

The RSC and RSS constants are the largest c ≥ 0 and the
smallest d ≥ 0 such that c∥w− z∥2

2 ≤ (w− z)⊤
( 1

l B⊤B
)
(w−

z)≤ d∥w− z∥2
2 for all vectors w and z such that ∥w− z∥0 ≤ τ .

This observation and the definition of RIP [13] imply that
if the RIP constant of 1√

l
B is at least δ then (1− δ )∥z∥2

2 ≤
z⊤
( 1

l B⊤B
)

z≤ (1+δ )∥z∥2
2 for all τ-sparse vectors z, making

it satisfy the RSC/RSS with constants 1−δ and 1+δ respec-
tively.

It could be possible, however, that the data matrix B whose
rows consist of the local data at each client may not satisfy
RSC with respect to the standard basis, but RSC with respect
to a certain dictionary A . Put it differently, if h is not restricted
strong convex for τ-sparse vectors, then B(w−z) = 0 for some
vectors w and z such that ∥w− z∥0 ≤ τ or Bu = 0 for some
τ-sparse vector u, i.e., B is not τ-RIP.

We present our idea of simply using a random Gaussian
dictionary A to improve the ratio RSS to RSC constants of
the associated new loss function 1

2l ∥BAx− y∥2
2 (or improve

the A -RIP constant of B with respect to a dictionary A) with
high probability.

Our idea to improve the RIP with a random dictionary is
based on a recent development in high dimensional geometry.
More specifically, we use the following theorem from [56].

Theorem 9 (Theorem 1.1 in [56]): Let B∈Rl×m be a fixed
matrix, let A ∈ Rm×n be a mean zero, isotropic and
sub-Gaussian matrix with sub-Gaussian parameter K and let
T ⊂ Rn be a bounded set. Then

Esup
x∈T

∣∣∣∥BAx∥2−∥B∥F∥x∥2

∣∣∣≤CK
√

logK ∥B∥ [w(T )+rad(T )] ,

and with probability at least 1−3e−u2
,

sup
x∈T

∣∣∣∥BAx∥2−∥B∥F∥x∥2

∣∣∣≤CK
√

logK ∥B∥ [w(T )+u · rad(T )] .

Here w(T ) is the Gaussian width for the set T , rad(T ) =
sup
y∈T
∥y∥2, and C is an absolute constant.

The following is an immediate consequence of the above
theorem and the well-known fact that w(T )≤Cr

√
τ log(n/τ)

for the set T of all τ-sparse vectors x with ∥x∥ ≤ r for some
universal constant C > 0.

Corollary 10: Let r > 0 and B be the closed unit ball in
Rn. For the set T of all τ-sparse vectors in rB and Gaussian
random matrix A, we have

Esup
x∈T
|∥BAx∥2−∥B∥F∥x∥2| ≤C∥B∥

[
r
√

τ log(n/τ)+ r
]
,

and with probability at least 1−3e−u2
,

sup
x∈T
|∥BAx∥2−∥B∥F∥x∥2| ≤C∥B∥

[
r
√

τ log(n/τ)+ ru
]
.

Since both terms in the bounds in Corollary 10 are homo-
geneous in r for all x in T with ∥x∥2 = r, the corollary
implies that matrix 1

∥B∥F BA satisfies the RIP with a constant

δτ = C1
∥B∥2
∥B∥2F

τ log(n/τ) with high probability, whenever the
stable rank of B

sr(B) :=
∥B∥2

F
∥B∥2 ≥C2τ log(n/τ)

for a sufficiently large constant C2 > 0.
The above corollary can be readily applied to the data matrix

BDi in the local objective function fi = 1
2|Di|∥BDiAx− y∥2

2 for
client i. First, recall that ∥bi∥2 = 1 and by the definition of the
Frobenious norm, ∥BDi∥F =

√
|Di|. The data matrix BDi may

not satisfy the RIP in general but 1
∥BDi∥F

BDiA = 1√
|Di|

BDiA

does with RIP constant

δτ = C
∥BDi∥2

∥BDi∥2
F

τ log(n/τ) = C
∥BDi∥2

|Di|
τ log(n/τ).

Thus, with high probability, 1
2|Di|∥BDiAx− y∥2

2 is A -RSC

and A -RSS with the constant ratio 1+δτ

1−δτ
with respect to the

Gaussian random dictionary A, under the stable rank condition
for BDi (which could be a mild condition for many data
matrices). Since 1+δτ

1−δτ
is close to 1 whenever the RIP constant

δτ is close to 0, this makes β1(i) and β2(i) small, improving
the convergence rate in Theorems 5 7, and 8 as we discussed
before. Furthermore, note that since the Gaussian random
matrix is statistically independent of the client datasets, there
is no privacy leakage.

2) Sparse Binary Logistic Regression: The previous
analysis for the square loss can be extended to the logistic
losses. First, we consider the binary logistic loss function
h(x) = 1

l ∑
l
i=1 log(1 + exp(−2y jb⊤j x)) with input data vector

b j and labels y j ∈ {−1,1}. Assume that ∥bi∥2 = 1 for
all 1 ≤ i ≤ l and x is a τ-sparse vector with ∥x∥ ≤ r.
Since the function h is twice-differentiable, we can
study the RSC and RSS by investigating its Hessian.
We denote the sigmoid function by s(z) = 1

1+exp(z) .
By a direct computation or from the lecture notes
https://www.cs.mcgill.ca/ dprecup/courses/ML/Lectures/ml-
lecture05.pdf, one can verify that Hessian ∇2h of the logistic

ν̃ =



(1+η2)2 maxi

(
8β1(i)

(ρ−4τ
(i))2 + 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)
+ β1(i)

ρ
−
4τ

(i)
6
√

η2
1−1

η1

)
ζ 2
∗

+(1+η2)2 1
L

N
∑

i=1

[
β1(i)
ρ
−
4τ

(i)

(
2θ 2 + 6

√
η2

1−1
η1

)
+ 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)

]
σ2

i , if η1 > 1,

(1+η2)2 max
i

(
8β1(i)

(ρ−4τ
(i))2 + 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)

) 1
N

N
∑

i=1
max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2


+(1+η2)2 1

L

N
∑

i=1

[
β1(i) 2θ 2

ρ
−
4τ

(i)
+ 4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)−ρ̄
+(i)
4τ

)

]
σ2

i if η1 = 1.
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loss function h is given by

∇
2h(x) =

1
l

B⊤Λ(x)B,

where B is the matrix whose rows bi consist of a client dataset
and Λ(x) is the diagonal matrix whose j-th diagonal entry is
4s(2b⊤j x)(1− s(2b⊤j x)).

First, it is easy to check that h is L-smooth [57] with

L≤ 1
l

l

∑
i=1

max
x

4s(2b⊤j x)(1− s(2b⊤j x))≤ 1.

Next, since x is a τ-sparse vector with ∥x∥2 ≤ r, from the
definition of the sigmoid function τ , we deduce [Λ(x)] j j ≥

4
(1+exp(r))2 . Then, we have

4
(1+ exp(r))2 ·

B⊤B
l
⪯ ∇

2h =
1
l

B⊤Λ(x)B⪯ B⊤B
l

.

Note that the above bound does not imply that h is RSC
since it is possible that Bx = 0 for some τ-sparse vector x.
However, if we use a random Gaussian dictionary A, then a
similar derivation gives

4
(1+ exp(r))2 ·

A⊤B⊤BA
l

⪯ ∇
2h =

1
l

A⊤B⊤Λ(x)BA⪯ A⊤B⊤BA
l

.

Collorary 10 implies that

∥B∥F∥x∥−C∥B∥∥x∥
[√

τ log(n/τ)+u
]

≤
√

x⊤A⊤B⊤BAx≤ ∥B∥F∥x∥+C∥B∥∥x∥
[√

τ log(n/τ)+u
]

for all τ-sparse vectors with probability at least 1− 3e−u2
.

Finally, it is easy to check that applying this bound to the
previous bound on ∇2h yields that with high probability, h is
A -RSS and A -RSC with the constant ratio

(1+ exp(r))2

4
·

∥B∥F +C∥B∥
[√

τ log(n/τ)+u
]

∥B∥F−C∥B∥
[√

τ log(n/τ)+u
]
2

,

which is close to (1+exp(r))2

4 as long as the stable rank

sr(B) =
∥B∥2

F
∥B∥2 ≫ τ log(n/τ).

This implies that for any τ-sparse vector x with ∥x∥2 ≤ r,
the logistic loss function is A -RSC/A -RSS with respect to a
random Gaussian dictionary with constant ≈ (1+exp(r))2

4 under
a mild condition, even if the function is not RSC/RSS in the
standard basis (for example, the ratio is infinite if the RSC
constant in the standard basis is 0). We apply the above argu-
ment to each binary logistic loss function fi. Note that since
the RSC/RSS ratio can be understood as a restricted condition
number that controls the convergence rates by Theorems 5,
7, and 8, a random Gaussian dictionary is appropriate for
FedGradMP with an ℓ2-norm constraint that is discussed in
Section IV-C.

3) Sparse Multiclass Logistic Regression: We only high-
light the difference between the multiclass and binary logistic
regression cases since the arguments are very similar to each
other. Consider the multinomial logistic regression function
with K classes. The label yi j is 1 if the j-th training input
belongs to the class i and 0 otherwise, b j are normalized data
vectors (i.e., ∥bi∥2 = 1), and x(i) are τ-sparse classifier vectors
with ∥x(i)∥2 ≤ r.

The corresponding loss function is given as

h(x(1),x(2), . . . ,x(K))

=
l

∑
j=1

[
K

∑
i=1
−yi jb⊤j x(i) + ln

(
exp

(
K

∑
i=1

b⊤j x(i)

))]
.

Similar to the binary logistic regression case, the direct
computation of the Hessian of h gives

∇
2
x(i)h =

1
l

B⊤Λ(x(i))B.

Here Λ(x) is a diagonal matrix whose diagonal entries are
defined as [Λ(x)] j j = s(b⊤j x)(1− s(b⊤j x)), where

s(b⊤j x) =
exp(b⊤j x)

1+∑
K
i=1 exp(b⊤i x)

.

By the same argument used for the sparse binary logistic
regression, h is A -RSS and A -RSC with a constant ratio

(1+K exp(2r))2 ·

∥B∥F +C∥B∥
[√

τ log(n/τ)+u
]

∥B∥F−C∥B∥
[√

τ log(n/τ)+u
]
2

.

This again indicates that for any τ-sparse vector x with
∥x∥ ≤ r, the multiclass logistic loss function is A -RSC/A -
RSS with respect to a random Gaussian dictionary even if it
may not be RSC/RSS in the standard basis. As we saw in
the binary logistic regression, this shows that it is beneficial
to use a random Gaussian dictionary in logistic regression for
ℓ2-norm constrained FedGradMP, which is also verified in our
numerical experiments in Section V-B.2.c.

Remark 7 (Random dictionary): The idea of using a Gaus-
sian random dictionary to improve the restricted condition
number should be distinguished from the sketching in the FL
literature [30], [33], [58]. Our formulation and analysis are
fundamentally different from those for sketching schemes that
focus on compressing the gradient to save communication cost
between a server and clients. In these work [30], [33], and [58],
the sketching mappings (commonly random matrices) devel-
oped for numerical linear algebra [59] are applied after the
clients computed the gradients to compress the information,
whereas our Gaussian random mappings are used to transform
the domain of the solution space to improve the restricted
condition number.

Remark 8 (Sharing the dictionary among clients): The
server either broadcasts the dictionary to clients or the shared
memory can be used to share the dictionary among clients
as suggested in [60] and [61]. When the latter option is
available, the server does not need to send the dictionary to
the clients.

 



4528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments validating
our theory and showing the effectiveness of the proposed
algorithm.

A. FedGradMP for Sparse Linear Regression

1) Synthetic Dataset:
a) Experiment settings: The first numerical experiment

uses synthetic datasets. We run FedGradMP (Algorithm 1)
with the square loss function. More precisely, we consider the
component function of the form fi = 1

2∥Di|∥ADix−yDi∥2
2 where

ADi is the client i data matrix in R100×1000 whose elements are
synthetically generated according to the normal distribution
N (µi,1/i1.1) with the mean value µi that is randomly gener-
ated from the mean-zero Gaussian with variance α . Here, yDi

are observations with yDi = ADix
# and x# ∈R1000 is a randomly

generated vector that is 10-sparse with respect to the standard
basis whose 10 nonzero components are drawn from the unit
sphere S⊂ R10. Since the random mean µi obeys the normal
distribution N (α,0), the parameter α modulates the degree
of client data heterogeneity: as α increases, the more likely µi
vary wildly which in turn makes the client dataset distributions
more different. This type of model is commonly used in
FL numerical experiments to generate synthetic datasets [5],
[6], [16] since randomly generated mean µi and decreasing
variance 1/i1.1 make the client dataset heterogeneous.

The number of clients is 50, the number of data points of
each client is 100, and the mini-batch size of each client for
FedGradMP is 40.

b) Simulation results: Figure 1 shows that FedGradMP
converges linearly for various heterogeneity levels α , vali-
dating Theorem 5. Note that the higher α is, the larger the
variance of random mean shift µi or the higher the degree of
heterogeneity is. The curves on the top panel are the relative
error of FedGradMP for the noiseless case and the curves on
the bottom are for the Gaussian noise case. We observe that
FedGradMP still converges for highly heterogeneous datasets
but with slower convergence rates in both cases.

2) Real Dataset: Sparse Video Recovery: In this experi-
ment, we test FedGradMP on video frame recovery from a
real-world dataset. Our dataset is a xylophone video con-
sisting of 120 frames from YouTube https://www.youtube.
com/watch?v=ORipY6OXltY, which can be also downloaded
from the MathWorks website https://www.mathworks.com/
help/matlab/ref/videoreader.html. Each frame is of size 240×
320 after the conversion to gray-scale frames. We reshape the
82-th frame as a vector in R76800 and our goal is to recover
this frame.

For this experiment, we use the K-SVD algorithm [62] to
generate a dictionary Ψ ∈ R76800×50 consisting of 50 atoms
that are trained over the first 80 frames.

The number of clients to reconstruct this video frame is
50 and non i.i.d. random matrix of size 30×76800 is used for
each client. More specifically, it is generated according to the
normal distribution N (µi,1/i0.9) where µi ∼N (0,α = 0.5),
similar to the one in Sections V-A and V-B.1.

Fig. 1. Linear convergence of FedGradMP with for datasets with various
heterogeneity levels.

Figure 2 shows one frame of the input image sequence on
the top, the image recovered by FedGradMP + K-SVD in the
middle, and the difference on the bottom. Considering that
the sensing matrices for clients are highly heterogeneous, the
recovered image quality is reasonably satisfactory.

B. Comparison of FedGradMP With Other FL Algorithms

1) Federeated Sparse Linear Regression: The next experi-
ments illustrate FedGradMP outperforms other FL algorithms
in both low and highly heterogeneous data environments.

a) Experiment settings: We compare FedGradMP with
FedIterHT, FedMid, and FedDualAvg for the sparse linear
regression or compressed sensing. To make a fair comparison,
we apply FedMid and FedDualAvg with sparsity constraints,
making all the methods have the same objective function.
In this case, the corresponding regularizer is the characteristic
function on the set of τ-sparse vectors and it is easy to
check that the proximal steps in FedMid and FedDualAvg
in [5] are the gradient decent with the hard-thresholding Hτ(x)
(projected gradient descent).

In the low-heterogeneity data experiments for Figure 3, the
100×1000 data matrices ADi are generated by the randomly
shifted mean Gaussian model used for the experiments for
Figure 1 with whose elements are synthetically generated
according to N (µi,1/i0.2) where µi ∼N (0,α = 0.2).

On the other hand, under the same setting as before but
a higher value of the parameter α = 0.5 is used to generate
the data matrices ADi to obtain a more heterogeneous client
dataset for the experiment for Figure 4.
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Fig. 2. Input image on the top: 82-th frame of the xylophone video. The
output image of FedGradMP with K-SVD dictionary in the middle. The
difference between the two images is displayed on the bottom.

The previous two experiments for Figures 3 and 4 are
conducted for a signal with sparsity level 15. The rela-
tive error curves in Figure 5 are obtained for a signal x#

that 400-sparse under the same heterogeneous model as in
Figure 4. Because of the high sparsity level (about the same
order as the ambient dimension 1000), we run the Inexact-
FedGradMP (Algorithm 2) with gradient descent to solve
the sub-optimization problem more efficiently as we have
discussed in Section IV.

b) Simulation results: The plots for Figure 3 demon-
strate FedGradMP converges faster than other methods in the
number of communication rounds for a low heterogeneous
environment both in the number of rounds and wall-clock
time. FedIterHT converges linearly as shown in [6], but with
a slower convergence rate than FedGradMP. We also notice
that FedGradMP offers the smallest residual error evidencing
our theory that FedGradMP guarantees the optimal statistical
bias in Remark 5.

In the highly heterogenous environment setting, Fed-
GradMP still performs well whereas other algorithms start
degrading significantly, as we observe in the plots in
Figure 4.

As for the signals with higher sparsity levels, from the plots
in Figure 5 show, we see that FedGradMP performs better than
other baseline algorithms in terms of both criteria.

Fig. 3. FedGradMP outperforms other methods in a low data heterogeneous
environment.

Fig. 4. FedGradMP outperforms other methods in a high data heterogeneous
environment.

2) Logistic Regression for Federated EMNIST Dataset:
a) Experiment settings: The dataset we use is the Fed-

erated EMNIST-10 dataset (FEMNIST-10), a commonly used
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Fig. 5. FedGradMP outperforms other methods in a high data heterogeneous
environment for high sparsity level signals.

dataset to test FL algorithms. FEMNIST-10 is a collection of
handwritten digits and 10 labels, grouped by writers. Each data
point of FEMNIST-10 consists of a 28×28 gray-scale image
and its label belongs to one of the 10 classes. Note that the
dimension of solution space is 28×28 = 784.

In the experiment, we use 350 clients, which is about 10% of
the original dataset with 100 examples each. We split the data
into a training dataset with 300 clients and a test dataset with
50 clients. The number of participating clients per round is
10 and the mini-batch size is 50. This is similar to the standard
settings used for FL algorithm benchmark [5], [47]. We run the
Inexact-FedGradMP with an ℓ2 norm constraint with 20 local
iterations, in which we solve the sub-optimization problem in
FedGradMP by SGD with 2 iterations. The number of local
iterations for FedIterHT, FedAvg, FedMid, FedDualAvg is 40.
Note that the total number of the effective number of local
iterations for all the algorithms is the same, 40 iterations. The
number of communication rounds is 1000.

The local objective function is fi(x(1),x(2), . . . ,x(N)) =
1
|Di|

|Di|
∑
j=1

[
10
∑

i=1
−yi jb⊤j x(i) + ln

(
exp
(

10
∑

i=1
b⊤j x(i)

))]
, the multi-

class logistic regression function with the sparsity constraint
∥x∥0 ≤ 90 and the ℓ2 ball constraint ∥x∥ ≤ 105 throughout all
the methods.

b) Simulation results: Figure 6 demonstrates that Fed-
GradMP outperforms the baseline algorithms in terms of
prediction accuracy on training and test datasets.

c) Improving FedGradMP performance using random
dictionaries: In this section, we show that FedGradMP

Fig. 6. In both experiments using the training dataset (on the top) and the
test dataset (on the bottom), the performance of FedGradMP is better than
other baseline methods.

combined with a random Gaussian dictionary empirically
outperforms the one with the standard basis. The experiment
settings are the same as the ones in Section V-B.2 except we
use the random Gaussian dictionary of size 200× 784. As a
comparison, we have also included the prediction accuracy
curves of FedGradMP in Figure 6.

The plot in Figure 7 indicates that FedGradMP + random
Gaussian dictionary outperforms FedGradMP + the standard
basis, supporting our theory in Section IV-D.

C. Difficulties of Tuning Learning Rates for FL Methods

As we saw in the numerical experiments, Section V-B.1,
other FL methods suffer especially in a highly heterogeneous
environment. This can be alleviated by tuning hyperparameters
individually for each client such as learning rates, but it
could be challenging or at least time-consuming. To showcase
the difficulties of tuning the learning rates of FL methods,
we study FedIterHT but we empirically observed the same
phenomenon for other baseline algorithms.

The convergence of FedIterHT in [6] strongly depends on
the learning rates. Although they provide the learning rates
that depend on the dissimilarity parameter and restricted strong
convexity/smoothness parameters at the clients, they are quite
often not available and difficult to estimate in practice since
the data at clients are non i.i.d.. FedGradMP is free from this
issue at least for sparse linear regression and is often still
computationally efficient since clients only solve optimization
problems over smaller spaces after the support estimation.
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Fig. 7. Training accuracy curves of FedGradMP for the FEMINST dataset
with respect to the random Gaussian dictionary and the standard basis.

1) Experiment Settings: We run FedIterHT for the squared
loss function with a randomly generated 10-sparse vector
as ground truth. The local loss function fi = 1

2∥Di|∥ADix−
yDi∥2

2 where ADi is the client i data matrix in R100×1000

whose elements are synthetically generated according to
N (µi,1/i1.1) with randomly generated mean µi from the
mean-zero Gaussian with variance α = 1.0. This setting is
similar to the synthetic dataset in [6] except we have com-
mon sparse ground truth. The number of clients is 30 with
mini-batch size 40. The number of total data points m =
3000 and the dimension of solution space n = 1000. The
client learning rate combinations for the experiment are
{0.0001,0.0005,0.001,0.002,0.004,0.01,0.02}.

2) Simulation Results: If the learning rates are chosen from
{0.004,0.01,0.02}, then the top plot in Figure 8 shows that
they quickly diverge from the optimal solution.

On the other hand, the bottom panel in Figure 8 shows
the relative error and squared loss curves for FedIterHT
when the learning rate is in {0.0001,0.0005,0.001,0.002}.
For these smaller learning rates, the iterates of FedIterHT
tend to converge to a highly suboptimal local solution. It has
been observed in the literature [63] that approaches based on
stochastic gradient descents combined with hard-thresholding
(such as FedIterHT) suffer from such phenomena when the
learning rates are chosen to be too small.

Hence, our numerical experiments indicate that the learning
rates should be chosen very carefully for each client. Working
learning rates should depend on the statistics and heterogeneity
of the local dataset at the client. Obtaining this information
could be challenging because it might not be available in

Fig. 8. FedIterHT with learning rates {0.0001,0.0005,0.001,0.002,0.004,
0.01,0.02} for non i.i.d. datasets.

Fig. 9. FedGradMP for non i.i.d. datasets.

general, so usually, a grid search is performed to find learning
rates.

On the other hand, the iterates of FedGradMP converge to
the ground truth up to (almost) machine precision as shown in
Figure 9 under the same setting, only in four rounds with three
local iterations at the clients. Unlike FedIterHT, FedGradMP
does not require fine tuning of learning rates per client.

D. Impact of the Number of Local Iterations

We provide numerical evidence supporting Theorem 5 about
how the number of local iterations at clients affects the
convergence rate and the residual error of FedGradMP.

 



4532 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

Fig. 10. The convergence rate improves as the local iterations at clients
increase in Theorem 5.

1) Experiment Settings: The number of clients is 50, the
dimension of solution space is 1000, the number of data points
of each client is 100, the mini-batch size of each client is
30, and the cohort size is 50. The local objective function
fi is the squared loss with associated data matrix ADi for
client i, similar to the one used for the heterogeneous case
with α = 2.5 in Section V-A. We run FedGradMP with local
iterations 3,6,9,12,15 for noiseless and noisy setup (yDi =
ADix

# +e, where e is a Gaussian noise where each component
are independently generated according to N (0,4×10−6) ).

2) Simulation Results: We display the relative error curves
of iterates of FedGradMP on the top and bottom panels of
Figure 10 for noiseless and noisy case respectively.

The error decay curves in the top plot for the noiseless case
demonstrate that as we increase the number of local iterations
at clients, FedGradMP converges faster or the convergence
rates improve. The plot on the bottom for the noisy case
also exhibits a similar pattern but with a few exceptions
probably due to the noise. This supports our theory about the
dependence of convergence rate κ on the number of local
iterations in Theorem 5 as explained in Remark 4.

As for the residual error of FedGradMP, we observe a
general trend in the right panel that increasing the local
iterations decreases the residual error, but this effect is not as
noticeable as the convergence rate. This is somewhat expected
since the residual error term in 5 depends on the local iteration
numbers in a complicated way as explained in Remark 4.

Fig. 11. The convergence rates improve as the cohort size increases as
predicted in Theorem 8. Note that the residual errors in the right panel decay
to zero (up to the machine precision) since all the non i.i.d. measurements
are noiseless with the squared loss function.

E. Impact of Cohort Size

The next experiment illustrates how well FedGradMP per-
forms when cohort size (the number of participating clients per
round) varies. We notice that Figure 11 provides numerical evi-
dence supporting Theorem 8 about how the cohort size affects
the convergence rate and the residual error of FedGradMP.

1) Experiment Settings: The number of clients is 50, the
dimension of solution space is 50 and we set the mini-batch
size 30. The local objective function fi is the squared loss
with associated non iid data matrix ADi for client i, sim-
ilar to the one used for the heterogeneous case with α =
2.5 in Section V-A. We run FedGradMP with cohort size
10,15,20,25,30 for noiseless and noisy setup.

2) Simulation Results: The relative error curves of iterates
of FedGradMP are given on the top panel (noiseless case) and
bottom panels (noisy case) of Figure 11. These error plots
indicate that the convergence rate improves as we increase the
cohort size, for both noiseless and noisy cases as predicted in
Theorem 8. On the other hand, a careful reader might have
noticed that the residual error actually slightly increases as
the cohort size increases. This implies that the dependence
of our residual error bound on the cohort size in Theorem 8
is pessimistic and may not capture the true dependence as
most of the other works in FL algorithm analysis. For more
details, see the discussion and criticism on the gap between
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the current theoretical analyses of the impact of cohort size in
FL algorithms and their empirical performance [35].

VI. CONCLUSION

In this paper, we propose a novel federated stochastic
gradient matching pursuit algorithm framework and show the
linear convergence in expectation under certain assumptions
of the objective function, including the dictionary restricted-
RSS/RSC conditions and the bounded heterogeneity only at
optima assumption. For the sparse linear regression problem,
our method does not require learning rate tuning at the client
side, which could be challenging for existing baseline algo-
rithms in highly heterogeneous data environments. Numerical
experiments on large scale heterogeneous datasets such as
EFMINIST and videos have shown the effectiveness of the
proposed approach over the state-of-the-art federated learning
algorithms. Our analysis reveals the benefits of adopting ran-
dom dictionaries such as Gaussian random dictionary, which
is also confirmed by our numerical experiments.

APPENDIX A
PROOFS

Proof: [Proof of Corollary 6] First, we recall that the
global objective function f (x) = ∑

N
i=1 pi fi(x) and fi(x) =

1
M ∑

M
j=1 gi, j(x). From Assumption 2 on the A -RSS property

of gi, j with constant ρ+
τ (i, j), we have

∥∇gi, j(x1)−∇gi, j(x2)∥2 ≤ ρ
+
τ (i, j)∥x1− x2∥2

for all x1,x2 ∈ Rn with ∥x1 − x2∥0,A ≤ τ . By Lemma 1,
we have〈

∇gi, j(x1),x2
〉
≥ gi, j(x1 + x2)−gi, j(x1)−

ρ+
τ (i, j)

2
∥x2∥2

2.

Taking average gi, j over j to recover fi and over i with
probability pi to recover f , the above inequality implies that

⟨∇ f (x1),x2⟩ ≥ f (x1 + x2)− f (x1)−
1
2

N

∑
i=1

piρ̄
+(i)
τ ∥x2∥2

2.

Denote ∑
N
i=1 piρ̄

+(i)
τ by ρ . Setting x2 = xt+1− x∗ and x1 = x∗

in the above inequality yields

f (xt+1)

≤ f (x∗)+ ⟨∇ f (x∗),xt+1− x∗⟩+ ρ

2
∥xt+1− x∗∥2

2

≤ f (x∗)+∥∇ f (x∗)∥2∥xt+1− x∗∥2 +
ρ

2
∥xt+1− x∗∥2

2

≤ f (x∗)+
1

2ρ
∥∇ f (x∗)∥2

2 +
ρ

2
∥xt+1− x∗∥2

2 +
ρ

2
∥xt+1− x∗∥2

2

≤ f (x∗)+
1

2ρ
∥∇ f (x∗)∥2

2 +ρ∥xt+1− x∗∥2
2.

Here the third inequality follows from the AM-GM inequality.
Taking the expectation to the last inequality, we have

E f (xt+1)≤ f (x∗)+
1

2ρ
∥∇ f (x∗)∥2

2 +ρE∥xt+1− x∗∥2
2.

Finally, we apply Theorem 5 to the above inequality to
establish the statement in the corollary. □

Proof: [Proof of Theorem 7] We follow the same
arguments used in the first few steps of the proof of Theorem 5
and obtain the following inequality.

E∥xt+1− x∗∥2
2 ≤ (2η

2
3 +2)

N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2
.

Because we are solving b(i)
t,k = argmin

x
fi(x) for x ∈ R(D

Γ̂
)

with an accuracy δ , we have
N

∑
i=1

piE
(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2

≤ (1+η2)2
N

∑
i=1

piE
(i)
JK

∥∥∥b(i)
t,K − x∗

∥∥∥2

2

≤ (1+η2)2
N

∑
i=1

pi

[
2E(i)

JK

∥∥∥b(i,opt)
t,K − x∗

∥∥∥2

2
+2E(i)

JK

∥∥∥b(i,opt)
t,K−1−b(i)

t,K

∥∥∥2

2

]
≤ (1+η2)2

N

∑
i=1

pi

[
2E(i)

JK

∥∥∥b(i,opt)
t,K − x∗

∥∥∥2

2
+2δ

2
]

≤ 2(1+η2)2
N

∑
i=1

pi

[
β1(i)E

(i)
JK
∥P⊥

Γ̂
(b(i)

t,K − x∗)∥2
2 +ξ1(i)+δ

2
]
.

The rest of the proof is similar to that of Theorem 5. □

Proof: [Proof of Theorem 8] As in the proof of The-
orem 5, let F (t) be the filtration by all the randomness up
to the t-th communication round, but in this case, it is all
the selected participating clients and the selected mini-batch
indices at all these clients up to the t-th round. Let us denote
the client subset selected at round t by It . Note that It is chosen
uniformly at random over all possible subsets of cardinality
L whose elements belong to [N], so |It | = L. Again, as we
did in the proof of Theorem 5, by abusing the notation
slightly, E

[
·|F (t)

]
will be denoted E(It ) [E[·]], where E(It ) is

the expectation taken over the randomly selected participating
clients at round t.

We first consider the case for η1 > 1. By following the same
argument for the first step of the proof for Theorem 5, we have

E(It )E∥xt+1− x∗∥2
2

= E(It )E

∥∥∥∥∥PΛs

(
∑
i∈It

1
L

x(i)
t,K+1

)
−∑

i∈It

1
L

x(i)
t,K+1 + ∑

i∈It

1
L

x(i)
t,K+1− x∗

∥∥∥∥∥
2

2

≤ 2E(It )E

∥∥∥∥∥PΛs

(
∑
i∈It

1
L

x(i)
t,K+1

)
−∑

i∈It

1
L

x(i)
t,K+1

∥∥∥∥∥
2

2

+2E(It )E

∥∥∥∥∥∑i∈It

1
L

x(i)
t,K+1− x∗

∥∥∥∥∥
2

2

= (2η
2
3 +2)E(It )E

∥∥∥∥∥∑i∈It

1
L

x(i)
t,K+1−∑

i∈It

1
L

x∗
∥∥∥∥∥

2

2

≤ (2η
2
3 +2)E(It )

[
∑
i∈It

1
L

E
∥∥∥x(i)

t,K+1− x∗
∥∥∥2

2

]
(23)

≤ (2η
2
3 +2)E(It )

[
∑
i∈It

1
L

E(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2

]
. (24)

Moreover, the argument used in the proof of Theorem 5 yields

∑
i∈It

1
L

E(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2

≤ (1+η2)2
∑
i∈It

1
L

β1(i)β2(i)E
(i)
JK−1
∥x(i)

t,K − x∗∥2
2
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+(1+η2)2 max
i

(
8β1(i)

(ρ−4τ
(i))2

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)
+

β1(i)
ρ
−
4τ

(i)

6
√

η2
1 −1

η1

)
ζ

2
∗

+(1+η2)2
∑
i∈It

1
L

[
β1(i)
ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1


+

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

]
σ

2
i .

We define ν(It) that depends on the random index set It as
follows:

ν(It)

= (1+η2)2 max
i

(
8β1(i)

(ρ−4τ
(i))2 +

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

+
β1(i)
ρ
−
4τ

(i)

6
√

η2
1 −1

η1

)
ζ

2
∗

+(1+η2)2
∑
i∈It

1
L

[
β1(i)
ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1


+

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

]
σ

2
i .

After rewriting the previous inequality, we obtain

∑
i∈It

1
L

E(i)
JK

∥∥∥x(i)
t,K+1− x∗

∥∥∥2

2
≤ ∑

i∈It

1
L

µ(i)E(i)
JK−1
∥x(i)

t,K − x∗∥2
2 +ν(It).

(25)

Hence, by the induction on K and using the fact that the cohort
set It is fixed while the local iterations are running, we obtain
a similar upper bound on E∥xt+1− x∗∥2

2 as follows.

E∥xt+1− x∗∥2
2

≤ (2η
2
3 +2)E(It ) ∑

i∈It

1
L

(
µ(i)K

[
E(i)∥x(i)

t,1− x∗∥2
2

]
+

ν(It)(1−µ(i)K)
1−µ(i)

)

= (2η
2
3 +2)E(It )

((
∑
i∈It

1
L

µ(i)K

)
E∥xt − x∗∥2

2

+ν(It) ∑
i∈It

1
L

(1−µ(i)K)
1−µ(i)

)

≤ (2η
2
3 +2)E(It )

((
∑
i∈It

1
L

µ(i)K

)
E∥xt − x∗∥2

2 +ν(It)
(1−µK)

1−µ

)
.

Recall that the index set It is a subset of [N], uniformly selected
at random, for the communication round t. By taking the
maximum of ∑

i∈It

1
L µ(i)K over all possible subsets, we have

E∥xt+1− x∗∥2
2

≤ κE∥xt − x∗∥2
2 +

(2η2
3 +2)(1−µK)

1−µ
E(It )[ν(It)]

≤ κE∥xt − x∗∥2
2 +

(2η2
3 +2)ν̃(1−µK)

1−µ

where

κ = (2η
2
3 +2) max

S⊂[N]
|S|=L

1
L ∑

z∈S

[
(1+η2)2

β1(z)β2(z)
]K

,

and

ν̃ = (1+η2)2 max
i

(
8β1(i)

(ρ−4τ
(i))2 +

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

+
β1(i)
ρ
−
4τ

(i)

6
√

η2
1 −1

η1

)
ζ

2
∗

+(1+η2)2 1
L

N

∑
i=1

[
β1(i)
ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1


+

4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

]
σ

2
i .

Hence, by the induction on t, we have

E∥xt+1− x∗∥2
2 ≤ κ

t+1E∥x0− x∗∥2
2 +

(2η2
3 +2)ν̃(1−µK)

(1−κ)(1−µ)
.

The case for η1 = 1 follows from a similar argument. □

APPENDIX B
FEDGRADMP CONVERGENCE WITHOUT THE BOUNDED

VARIANCE CONDITION OF STOCHASTIC GRADIENTS

We start with the following lemma replacing the bounded
variance condition of stochastic gradients (7) in Assumption 4
only under the A -RSS condition.

Lemma 11: Let E j be the expectation over the uniform
distribution on all possible mini-batches. Then, for all τ-sparse
vectors x, we have

E j∥∇gi, j(x)−∇ fi (x)∥2
2

≤ 3E j((ρ+
τ (i, j))2 + ρ̄

+(i)
4τ

)∥∆∥2
2 +12E j∥∇gi, j(x∗)∥2

2

and

E j∥PΓ(∇gi, j(x)−∇ fi (x))∥2
2

≤ 3E j((ρ+
τ (i, j))2 + ρ̄

+(i)
4τ

)∥∆∥2
2 +12E j∥PΓ∇gi, j(x∗)∥2

2,

where x∗ is a solution to (1) and ∆ = x− x∗.
Proof: [Proof of Lemma]

E j∥∇gi, j(x)−∇ fi (x)∥2
2

≤ 3E j∥∇gi, j(x)−∇gi, j(x∗)∥2
2 +3E j∥∇gi, j(x∗)−∇ fi (x∗)∥2

2

+3E j∥∇ fi (x∗)−∇ fi (x)∥2
2

≤ 3E j(ρ+
τ (i, j))2∥x− x∗∥2

2 +6E j∥∇gi, j(x∗)∥2
2 +6∥∇ fi (x∗)∥2

2

+3E jρ̄
+(i)
4τ
∥x− x∗∥2

2

= 3E j(ρ+
τ (i, j))2∥∆∥2

2 +6E j∥∇gi, j(x∗)∥2
2 +6∥∇ fi (x∗)∥2

2

+3E jρ̄
+(i)
4τ
∥∆∥2

2

≤ 3E j((ρ+
τ (i, j))2 + ρ̄

+(i)
4τ

)∥∆∥2
2 +6E j∥∇gi, j(x∗)∥2

2

+6∥∇ fi (x∗)∥2
2

≤ 3E j((ρ+
τ (i, j))2 + ρ̄

+(i)
4τ

)∥∆∥2
2 +12E j∥∇gi, j(x∗)∥2

2.

The second inequality follows from the A -RSS condition for
∇gi, j with constant ρ+

τ (i, j), and the fact that ∇ fi is the average
of ∇gi, j. The last inequality is from the Jensen’s inequality.
This proves the first part of the lemma and the second part
follows from a similar argument. □
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This lemma allows us to prove a similar statement as in
Lemma 4 without the bounded variance condition (7). Since
the underlying argument of the proof of the following lemma
is the same, we only point out the difference from the proof
for Lemma 4.

Lemma 12: Let Γ̂ be the set obtained from the k-th iteration
at client i. Then, for any θ > 0, we have

E(i)
jk
∥P⊥

Γ̂
(b(i)

t,k− x∗)∥2
2 ≤ β2(i)∥x(i)

t,k− x∗∥2
2 +ξ2(i),

where

β2(i) =

(
4
(2η2

1 −1)
(

ρ̄
+(i)
4τ

+ 1
θ 2

)
−η2

1 ρ
−
4τ

(i)

η2
1 ρ
−
4τ

(i)

+

(
3θ 2E jk (ρ

+
τ (i, jk)+ ρ̄

+(i)
4τ

)
ρ
−
4τ

(i)

)
+

2(η2
1 −1)
η2

1

)
ξ2(i) =

8
(ρ−4τ

(i))2 max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+2

6θ
2 +

15
√

η2
1 −1

2η1

E jk∥∇gi, jk (x
∗)∥2

2.

Note that if η1 = 1, then the projection operator is exact. Here E(i)
jk

is the expectation taken over the randomly selected index jk at the
k-th step of the local iterations of the i-th client.

Proof: We follow the same steps in the proof of Lemma 4
for the bound fi(x∗)− fi

(
x(i)

t,k

)
− ρ

−
4τ

(i)
2 ∥x

∗− x(i)
t,k∥

2
2 but apply

Lemma 12 to the inequality 26 as follows.

fi(x∗)− fi
(

x(i)
t,k

)
−

ρ
−
4τ

(i)
2
∥x∗− x(i)

t,k∥
2
2

≥ E jk

〈
∇ fi
(

x(i)
t,k

)
,z
〉
− θ 2

2
∥∇gi, jk (x

(i)
t,k)−∇ fi

(
x(i)

t,k

)
∥2

2

− 1
2θ 2 E jk∥z∥

2
2−

ρ̄
+(i)
4τ

2
E jk∥z∥

2
2

−

√
η2

1 −1

2η1

(
E jk∥P

⊥
Γ ∇gi, jk (x

(i)
t,k)∥

2
2 +E jk∥∆∥

2
2

)
≥ E jk

〈
∇ fi
(

x(i)
t,k

)
,z
〉
− θ 2

2
(3E j((ρ+

τ (i, j))2 + ρ̄
+(i)
4τ

)∥∆∥2
2 (26)

+12E j∥∇gi, j(x∗)∥2
2)

− 1
2θ 2 E jk∥z∥

2
2−

ρ̄
+(i)
4τ

2
E jk∥z∥

2
2

−

√
η2

1 −1

2η1

(
E jk∥P

⊥
Γ ∇gi, jk (x

(i)
t,k)∥

2
2 +E jk∥∆∥

2
2

)
.

Similarly, we obtain the upper bound for
E jk∥P⊥Γ ∇gi, jk(x

(i)
t,k)∥

2
2 as follows.

E jk∥P
⊥
Γ ∇gi, jk (x

(i)
t,k)∥

2
2

≤ E jk∥∇gi, jk (x
(i)
t,k)∥

2
2

≤ 3E jk∥∇gi, jk (x
(i)
t,k)−∇gi, jk (x

∗)∥2
2

+3E jk∥∇gi, jk (x
∗)−∇ fi (x∗)∥2

2 +3E jk∥∇ fi (x∗)∥2
2

≤ 3E jk (ρ
+
τ (i, jk))2∥x(i)

t,k− x∗∥2
2

+6E jk∥∇gi, jk (x
∗)∥2

2 +6∥∇ fi (x∗)∥2
2 +3∥∇ fi (x∗)∥2

2

= 3E jk (ρ
+
τ (i, jk))2∥∆∥2

2 +6E jk∥∇gi, jk (x
∗)∥2

2 +9∥∇ fi (x∗)∥2
2

= 3E jk (ρ
+
τ (i, jk))2∥∆∥2

2 +15E jk∥∇gi, jk (x
∗)∥2

2,

where the last inequality is from the Jensen’s inequality.
Applying this bound for E jk∥P⊥Γ ∇gi, jk(x

(i)
t,k)∥

2
2 yields

fi(x∗)− fi
(

x(i)
t,k

)
−

ρ
−
4τ

(i)
2
∥∆∥2

2

≥ E jk

〈
∇ fi
(

x(i)
t,k

)
,z
〉
− θ 2

2
(3E j((ρ+

τ (i, j))2 + ρ̄
+(i)
4τ

)∥∆∥2
2

+12E j∥∇gi, j(x∗)∥2
2)−

ρ̄
+(i)
4τ

2
E jk∥z∥

2
2−

1
2θ 2 E jk∥z∥

2
2

−

√
η2

1 −1

2η1

(
3E jk (ρ

+
τ (i, jk))2∥∆∥2

2

+15E jk∥∇gi, jk (x
∗)∥2

2 +E jk∥∆∥
2
2

)
.

Following the same argument in the proof of Lemma 4,
we have(

ρ̄
+(i)
4τ

2
+

1
2θ 2

)
E jk∥z∥

2
2

− 1
2

(
ρ
−
4τ

(i)−3θ
2E jk ((ρ

+
τ (i, jk))2 + ρ̄

+(i)
4τ

)

−

√
η2

1 −1

η1
(3E jk ρ

+
τ (i, jk))2 +1)

)
∥∆∥2

2

+

6θ
2 +

15
√

η2
1 −1

2η1

E jk∥∇gi, jk (x
∗)∥2

2

≥ E jk fi
(

x(i)
t,k + z

)
− fi (x∗)

≥
ρ
−
4τ

(i)
2
∥∆−z∥2

2− max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2E jk∥∆− z∥2.

Let u = E jk∥∆−y∥2, a = ρ
−
4τ

(i), b = max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2, and

c =

(
ρ̄

+(i)
4τ

2
+

1
2θ 2

)
E jk∥z∥

2
2

− 1
2

(
ρ
−
4τ

(i)−3θ
2E jk ((ρ

+
τ (i, jk))2 + ρ̄

+(i)
4τ

)

−

√
η2

1 −1

η1
(3E jk ρ

+
τ (i, jk))2 +1)

)
∥∆∥2

2

+

6θ
2 +

15
√

η2
1 −1

2η1

E jk∥∇gi, jk (x
∗)∥2

2.

Then above inequality can be rewritten in au2−2bu−c≤ 0 and
solving it gives

E jk∥∆− y∥2 ≤
√

c
a

+
2b
a

.

Again, following the same argument for the proof of Lemma 4,
we get

E(i)
jk
∥∆−PΓ∆∥2

2 ≤
2c
a

+
8b2

a2 .

Thus,

E(i)
jk
∥∆−PΓ∆∥2

2
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β1(i) =
ρ̄

+(i)
4τ

2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

,

β2(i) =

2

(
ρ̄

+(i)
4τ

+ 1
θ 2

)
−η2

1 ρ
−
4τ

(i)

η2
1 ρ
−
4τ

(i)
+

(
3θ 2E jk((ρ

+
τ (i, jk))2 + ρ̄

+(i)
4τ

)
ρ
−
4τ

(i)

)
+

√
η2

1 −1

η1
(3E jk ρ

+
τ (i, jk))2 +1)

 ,

ν = (1+η2)2 max
i

(
8β1(i)

(ρ−4τ
(i))2

) N

∑
i=1

pi max
Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+(1+η2)2
N

∑
i=1

pi

 β1(i)
ρ
−
4τ

(i)

2θ
2 +

6
√

η2
1 −1

η1

+
4

ρ̄
+(i)
4τ

(2ρ
−
4τ

(i)− ρ̄
+(i)
4τ

)

 N

∑
i=1

piE j∥∇gi, j(x∗)∥2
2.

≤

(
2

(
ρ̄

+(i)
4τ

+ 1
θ 2

)
−η2

1 ρ
−
4τ

(i)

η2
1 ρ
−
4τ

(i)
+

(
3θ 2E jk ((ρ

+
τ (i, jk))2 + ρ̄

+(i)
4τ

)
ρ
−
4τ

(i)

)

+

√
η2

1 −1

η1
(3E jk ρ

+
τ (i, jk))2 +1)

)
∥∆∥2

2

+
8

(ρ−4τ
(i))2 max

Ω⊂[d]
|Ω|=4τ

∥PΩ∇ fi(x∗)∥2
2

+2

6θ
2 +

15
√

η2
1 −1

2η1

E jk∥∇gi, jk (x
∗)∥2

2.

□
We follow the idea of the proof for Theorem 5 but use

Lemma 12 to show the following convergence theorem of
FedGradMP.

Theorem 13: Under the same notations and assumptions but
without the bounded variance condition (7), the expectation
of the recovery error at the (t + 1)-th round of FedGradMP
described in Algorithm 1 is upper bounded by

E∥xt+1− x∗∥2
2 ≤ κ

t+1∥x0− x∗∥2
2+

(2η2
3 +2)ν

1−κ

N

∑
i=1

pi
1−µ(i)K

1−µ(i)
,

where

κ = (2η
2
3 +2)

N

∑
i=1

pi
[
(1+η2)2

β1(i)β2(i)
]K

.

Here, shown in the equation at the top of the page.

REFERENCES

[1] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[2] J. Verbraeken, “A survey on distributed machine learning,” ACM Com-
put. Surv., vol. 53, no. 2, pp. 1–33, 2020.

[3] B. McMahan and D. Ramage, “Federated learning: Collaborative
machine learning without centralized training data,” Google AI Blog,
Apr. 2017. [Online]. Available: http://research.google/blog/federated-
learning-collaborative-machine-learning-without-centralized-training-
data/

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[5] H. Yuan, M. Zaheer, and S. Reddi, “Federated composite optimization,”
in Proc. 38th Int. Conf. Mach. Learn., vol. 139, 2021, pp. 12253–12266.

[6] Q. Tong, G. Liang, T. Zhu, and J. Bi, “Federated nonconvex sparse
learning,” 2021, arXiv:2101.00052.

[7] P. Zhou, X. Yuan, and J. Feng, “Efficient stochastic gradient
hard thresholding,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 1988–1997.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[9] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, May 2009.

[10] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3,
pp. 265–274, 2009.

[11] H. Rauhut, R. Schneider, and Ž. Stojanac, “Low rank tensor recov-
ery via iterative hard thresholding,” Linear Algebra Appl., vol. 523,
pp. 220–262, Jun. 2017.

[12] R. Grotheer, S. Li, A. Ma, D. Needell, and J. Qin, “Iterative hard thresh-
olding for low CP-rank tensor models,” Linear Multilinear Algebra,
vol. 70, no. 22, pp. 7452–7468, Dec. 2022.

[13] S. Foucart and H. Rauhut, “An invitation to compressive sensing,” in
A Mathematical Introduction to Compressive Sensing. Cham, Switzer-
land: Springer, 2013, pp. 1–39.

[14] N. Nguyen, D. Needell, and T. Woolf, “Linear convergence of stochastic
iterative greedy algorithms with sparse constraints,” IEEE Trans. Inf.
Theory, vol. 63, no. 11, pp. 6869–6895, Nov. 2017.

[15] J. Shen and P. Li, “A tight bound of hard thresholding,” J. Mach. Learn.
Res., vol. 18, no. 1, pp. 7650–7691, 2017.

[16] J. Wang et al., “A field guide to federated optimization,” 2021,
arXiv:2107.06917.

[17] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
SGD on identical and heterogeneous data,” in Proc. Int. Conf. Artif.
Intell. Statist. (AISTATS), 2020, pp. 4519–4529.

[18] B. E. Woodworth, K. K. Patel, and N. Srebro, “Minibatch vs local
SGD for heterogeneous distributed learning,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 33, 2020, pp. 6281–6292.

[19] F. Haddadpour and M. Mahdavi, “On the convergence of local descent
methods in federated learning,” 2019, arXiv:1910.14425.

[20] M. A. Davenport, D. Needell, and M. B. Wakin, “Signal space CoSaMP
for sparse recovery with redundant dictionaries,” IEEE Trans. Inf.
Theory, vol. 59, no. 10, pp. 6820–6829, Oct. 2013.

[21] R. Baraniuk, S. Foucart, D. Needell, Y. Plan, and M. Wootters, “One-
bit compressive sensing of dictionary-sparse signals,” Inf. Inference,
A J. IMA, vol. 7, no. 1, pp. 83–104, Mar. 2018.
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