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Abstract—Sparse signal recovery is one of the most
fundamental problems in various applications, includ-
ing medical imaging and remote sensing. Many greedy
algorithms based on the family of hard thresholding
operators have been developed to solve the sparse signal
recovery problem. More recently, Natural Thresholding
(NT) has been proposed with improved computational
efficiency. This paper proposes and discusses convergence
guarantees for stochastic natural thresholding algorithms
by extending the NT from the deterministic version
with linear measurements to the stochastic version with
a general objective function. We also conduct various
numerical experiments on linear and nonlinear measure-
ments to demonstrate the performance of StoNT.

Index Terms—natural thresholding, stochastic, gradi-
ent matching pursuit, sparse signal recovery

I. INTRODUCTION

In various fields, such as machine learning, computer
vision, and signal processing, there is a widespread
need to make inferences about data with a high number
of dimensions, even when only limited measurements
are available. Effective algorithms for data inference
from a limited number of measurements often rely
on the observation that even though most real-world
data exists in high-dimensional spaces, they often
possess a low-dimensional complexity, such as sparsity.
Many signal recovery algorithms have been developed
to exploit sparsity with promising effectiveness and
efficiency for data inference and recovery.

In the sparse signal recovery, the underlying data
x ∈ Rn is typically recovered by solving an optimiza-
tion problem of the form

min
x

f(x) s.t. ||x||0 ≤ k, (1)

where the objective function, f(x), measures the model
discrepancy and k is a preassigned sparsity level of x.
For example, compressed sensing assumes the mea-
surements are linearly related to the underlying sparse
signal up to noise, which has the objective function

f(x) = ||Ax− y||22 (2)

DN was partially supported by NSF DMS 2011140 and NSF DMS
2108479. JQ was supported by NSF DMS 1941197.

where A ∈ Rm×n is the sensing matrix, and y :=
Ax + ν ∈ Rm is the vector of measurements, with
Gaussian noise ν.

The optimization problem in (1) can be solved using
greedy iterative methods that employ thresholding op-
erators. Thresholding algorithms are particularly effec-
tive at solving these optimization problems due to their
low computational complexity. To enforce the sparsity,
a thresholding operator is usually involved to either
restrict the support of the estimated solution at each
iteration with a fixed cardinality or approximate the
support of the actual solution through iterations. For
example, Iterative Hard Thresholding (IHT) [2] and its
variants [1], [5], [6], and Gradient Matching Pursuit
(GradMP) [8] which are based on the hard thesholding
operator have shown the promising performance in
many applications. Several other types of thresholding
operators exist, such as soft thresholding [3], [4] and
optimal k-thresholding (OT) [9]. More recently, natural
thresholding [10] has been proposed to significantly
reduce the computational cost of OT.

Specifically, to solve (1), application of gradient
descent and thresholding operator yields the IHT with
the following iterative algorithm

x(i+1) = Hk(x
(i) − λ∇f(x(i)))

where Hk is a hard thresholding that sets all but the
largest k components of a vector to zero, ∇f(x(i)) is
the gradient of f at x(i), and λ > 0 is the step size. In
the linear case (2), ∇f(x) = AT (Ax− y). However,
the IHT type of algorithms easily cause numerical
instability when the hard thresholding is independent
of the objective function, especially in the linear case
[9]. To address this issue, OT selects the k components
of a vector that achieves the least residual among all
possible k-sparse selections.

To further enhance the performance of OT, the
Natural Thresholding algorithm (NT) restricts the gra-
dient of the regularized objective function of the OT
given in [9] to its k-smallest elements. The regularized
objective function is given by

gα(w) = ||y −A(u⊗w)||22 + αϕ(w), (3)
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where u ∈ Rn is a given vector, ⊗ is the Hadamard
multiplication, w is a binary vector, α is the regu-
larization parameter and ϕ(w) is the regularization
function that enforces the binary condition on w.
The Natural Thresholding Pursuit algorithm (NTP) is
an extension of the NT algorithm that includes an
orthogonal projection in the last step. Both algorithms
are given in Algorithm 1, where a general objective
function is used while only a linear objective function
was presented in [10].

Algorithm 1 Natural Thresholding (NT) and Natural
Thresholding Pursuit (NTP)

Inputs: x(0), sparsity level k, stepsize λ, tolerance ε,
regularization parameter α > 0, maximum number
of iterations T
for i = 1, 2, . . . , T do

u(i) = x(i) − λ∇f(x(i))

w− = argmin
w∈{0,1}n

∥w − u(i)∥2

∇gα(w
−) = ∇f(w− ⊗ u(i)) + α∇ϕ(w−)

w+ = argmin
w∈{0,1}n, eTw=k

∇gα(w
−)Tw

S(i) = supp(w+ ⊗ u(i))

xi+1 =

w+ ⊗ u(i) (NT )

argmin
supp(z)⊆S(i)

f(z) (NTP )

end for

When the data size is growing, stochastic ver-
sions of these thresholding algorithms, such as
stochastic GradMP (StoGradMP) and stochastic IHT
(StoIHT) [7], have the benefit of reduced computa-
tional complexity and running time. Here the objective
function f(x) is assumed to be separable, that is,
f(x) =

∑
i fi(x). At each iteration, a small subset

of indices ni are randomly chosen, and the gradient is
computed only for the fi where i ∈ ni.

In this paper, we propose two new algorithms–
stochastic Natural Thresholding (StoNT) and Stochas-
tic Natural Thresholding Pursuit (StoNTP). These al-
gorithms are the respective stochastic version of NT
and NTP proposed by [10]. The convergence of our
algorithm is discussed when solving (1) with the ob-
jective function given by (2). A variety of numerical
simulations have shown that StoNTP converges faster
than the NTP algorithm with proper parameters.

II. STOCHASTIC ITERATIVE NATURAL
THRESHOLDING

Before introducing our algorithms, we provide the
necessary assumptions for the objective function. First,

we require that f satisfy the restricted strong convexity
(RSC) condition and that each of the fi satisfy the
restricted strongly smooth condition.

Definition 1 (RSS). A function f : Rn → R is called
restricted strongly smooth (RSS) with a constant ρ+k >
0 if the following condition is satisfied

∥∇f(x)−∇f(x′)∥2 ≤ ρ+k ∥x− x′∥2
for any x,x′ ∈ Rn with | supp(x′) ∪ supp(x)| ≤ k.

Definition 2 (RSC). A function f : Rn → R is called
restricted strongly convexity (RSC) with a constant
ρ−k > 0 if the following condition is satisfied:

f(x′)− f(x)− ⟨∇f(x),x′ − x⟩ ≥
ρ−k
2
∥x′ − x∥22

for any x′,x ∈ Rn with | supp(x′) ∪ supp(x)| ≤ k.

A. Proposed Algorithms

Given a function f : Rn → R which is differentiable
and separable, i.e.,

f(x) =

n∑
i=1

fi(x), n ∈ N,

we consider the sparsity-constrained minimization
problem

min
x

f(x) s.t. ∥x∥0 ≤ k (4)

where k ∈ {1, 2, . . . , n}. By letting x = u ⊗ w, the
sparsity constraint can be recast as

eTw = k, w ∈ {0, 1}n,

where e = [1, 1, . . . , 1]T ∈ Rn.
We propose two new algorithms, the Stochastic Nat-

ural Thresholding (StoNT) algorithm, and the Stochas-
tic Natural Thresholding Pursuit (StoNTP) algorithm,
described in Algorithm 2. For generality, we select an
index or batch of indices ni with probability p(ni)
instead of prescribing a specific probability distribution
for index/batch choice. In applications where no prior
information is known, this distribution is typically
taken to be the uniform distribution.

III. THEORETICAL GUARANTEES

In this section, we will focus on the linear mea-
surement case for convergence analysis, which can
be further extended to the nonlinear case. Consider
f(x) = ∥Ax−y∥22 where y = Ax∗+ν and ∥x∗∥0 ≤ k
where A ∈ Rm×n (m ≪ n) satisfies the RIP Condition
for k-sparse vectors with RIP constant δk.

Theorem 1. (Linear Convergence of StoIHT [7, The-
orem 1]) Let xs be a feasible solution of

min
x

1

m

m∑
i=1

fi(x) s.t. ∥x∥0 ≤ k.
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Algorithm 2 Stochastic Natural Thresholding (StoNT)
and Stochastic Natural Thresholding Pursuit (StoNTP)

Inputs: x(0), sparsity level k, stepsize λ, probability
p(ni), tolerance ε, regularization parameter α > 0,
maximum number of iterations T
for i = 1, 2, . . . , T do

Randomly select an index or a batch of indices ni

with a probability p(ni)

u(i) = x(i) − λ

np(ni)
∇fni

(x(i))

w− = argmin
w∈{0,1}n

∥w − u(i)∥2

∇gα(w
−) = ∇f(w− ⊗ u(i)) + α∇ϕ(w−)

w+ = argmin
w∈{0,1}n, eTw=k

∇gα(w
−)Tw

S(i) = supp(w+ ⊗ u(i))

xi+1 =

w+ ⊗ u(i) (StoNT )

argmin
supp(z)⊆S(i)

f(z) (StoNTP )

end for

Suppose that i ∼ [m] with probability p(i) and let

xt+1 = Hk

(
xt − λ

mp(i)
∇fi(xt)

)
.

If λ < 2/α3k then:

E∥xt+1 − xS∥2 ≤ κ∥xt − xS∥2 + σxS
, (5)

where κ and σxS
are constants that depend on the RSS

and RSC constant and αk = maxi
ρ+
k (i)

mp(i) .

Theorem 2. Assume the rows of A have unit norms.
Consider Algorithm 2 with batch size bs=1, and choose
λ < 2/α3k where α3k = maxi

ρ+
3k(i)

mp(i) . Then

E∥xS − x(p+1)∥2 ≤ κnew∥xS − x(p)∥2 + σnew,

where κnew =
√

1+δ2k
1−δ2k

κ and σ =
√
1+δ2kσxS

+2∥ν′∥2√
1−δ2k

.

Proof. Starting with Eq. (34) in [10], we have:

E∥xS − x(p+1)∥2

≤
√

1 + δ2k
1− δ2k

E∥xS −Hk(u
(p))∥2 +

2∥ν′∥2√
1− δ2k

≤
√

1 + δ2k
1− δ2k

κ∥xS − x(p)∥2 +
√
1 + δ2kσxS

+ 2∥ν′∥2√
1− δ2k

.

where in the first inequality, we are taking an expecta-
tion conditional on the first p iterations of Algorithm 2,
and in the second inequality, we use Theorem 1.
Iterating the expectation obtains the desired result.

IV. NUMERICAL EXPERIMENTS

Various experiments on linear and nonlinear mea-
surements are conducted to evaluate the proposed
performance between NTP and StoNTP. We refer the
reader to [10] for further comparisons of NTP with
alternative approaches such as CoSAMP, HTP, and
OMP . We adopt the following two comparison met-
rics: (1) relative error ∥x − x∗∥2/∥x∗∥2 where x is
an approximation of the ground truth vector x∗; (2)
success rate which is a percentage of successful cases
with correctly identified support out of the total trials.
Numerical experiments were run on a 2015 Macbook
Pro in MATLAB R2017b with 8 GB RAM and a 2.7
GHz Dual-Core Intel Core i5.

A. Linear Measurements

First, we illustrate the performance of StoNTP on
the least squares problem, where the objective function
is given as in (2). We generate x⋆ ∈ R800 as a
normalized sparse Gaussian random vector with 10
uniformly distributed nonzero entries. The sensing
matrix A ∈ R100×800 is generated as a Gaussian
random matrix with normalized columns. We then get
the random measurements as y = Ax⋆. We set the
maximal number of iterations as 150 and the batch
size as 10. The algorithm stops either when it achieves
the maximal number of iterations or the loss function
∥y − Ax∥2 ≤ 10−3. To see the best choice of the
regularization parameter α, we first fix the step size
λ = 2. The value of the loss function and distance
between the estimated x and x⋆ evaluated at each
iteration and versus the running time are illustrated in
Fig. 1. It can be seen that the best choice is α = 1.
Next, we repeat the experiment by fixing α = 1 and
test on a variety of λ values. As is shown in Fig. 2, the
best step size is λ = 2. We also compare our StoNTP
algorithm with the NTP algorithm. It can be seen
from Fig. 3 that the StoNTP algorithm significantly
outperforms the NTP algorithm. In addition, we test
the success rates for NTP and StoNTP for various
parameters in Fig. 4.

B. Nonlinear Measurements

We extend the measurements from the linear case
to the nonlinear case, and consider the L2-regularized
logistic regression model and support vector machine
(SVM). In what follows, we set a = 5, ϵ = 10−3, and
batch size to be 20. We also select each component
function uniformly.

First, we consider the logistic regression model
with the following objective function f(x) =
1
m

∑m
i=1 log(1 + exp(−2yi(aix))), where ai repre-

sents the i-th row from the measurement matrix A ∈
R100×800 and classifiers yi ∈ {−1, 1} such that yi = 1
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Fig. 1. Test StoNTP with various α’s: m = 100, n = 800, k = 10,
λ = 2. Batch size for StoNTP is 10. The best choice is α = 1.
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Fig. 2. Test StoNTP with different λ’s: m = 100, n = 800, k = 10,
α = 1. Batch size for StoNTP is 10. The best step size is λ = 2.
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Fig. 3. NTP vs StoNTP: m = 100, n = 800, k = 10. For NTP,
we choose λ = 2, α = 5. For StoNTP, we choose λ = 2, α = 1.
The batch size for StoNTP is 20.

10 20 30 40
Sparsity level k

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s 

ra
te

s 
fo

r r
ec

ov
er

y NTP - =0.5
StoNTP - =0.5
NTP - =1
StoNTP - =1
NTP - =2
StoNTP - =2
NTP - =3
StoNTP - =3
NTP - =4
StoNTP - =4

StoNTP: bs = 30, λ = 2

10 20 30 40
Sparsity level k

0

0.2

0.4

0.6

0.8

1
Su

cc
es

s 
ra

te
s 

fo
r r

ec
ov

er
y NTP - p=1.5

StoNTP - p=1.5

NTP - p=2
StoNTP - p=2

NTP - p=2.5
StoNTP - p=2.5

NTP - p=3
StoNTP - p=3

NTP: bs = 30, λ = 2, StoNTP α = 1

10 20 30 40
Sparsity level k

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s 

ra
te

s 
fo

r r
ec

ov
er

y StoNTP - bs=10
StoNTP - bs=15
StoNTP - bs=20
StoNTP - bs=25
StoNTP - bs=30

StoNTP: α = 1, λ = 2.
Fig. 4. Success rates for NTP and StoNTP with different parameters:
m = 100, n = 800, α ∈ {0.5, 1, 2, 3, 4}, λ ∈ {1.5, 2, 2.5, 3},
batch size bs ∈ {10, 15, 20, 25, 30}.
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Fig. 5. Comparison of NTP and StoNTP for logistic regression:
convergence of loss (top) and misclassification rate (bottom).

with probability p = exp(aix
∗)/(1 + exp(aix

∗)) for
a fixed x∗ (the solution). The performance of our
algorithms is shown in Fig. 5. In this experiment, the
vectors ai are drawn i.i.d. from a Gaussian distribution
and normalized to have unit norm. We set m = 100,
n = 800, and k = 40. For NTP the step size is λ = 10
and the step size for StoNTP is λ = 30. As shown
in Fig. 6, both StoNTP and NTP can attain a zero
misclassification error. Notably, StoNTP can obtain a
smaller loss than NTP.

Next, we consider the SVM problem with f(x) =
1

2m

∑m
i=1(max{0, 1 − yiaix})2 where ai’s, yi’s are

defined as before. We set m = 100, n = 800, and
k = 40, and obtained the results in Fig. 6. For NTP
the step size is λ = 10, and the step size for StoNTP
is λ = 20. As shown in Fig. 6, both StoNTP and
NTP can attain a zero misclassification error. Notably,
StoNTP can obtain a smaller loss than NTP. The
vectors ai are drawn i.i.d. from a Gaussian distribution
and normalized to have a unit norm.

V. CONCLUSION

In this paper, we propose two stochastic natural
thresholding algorithms, i.e., StoNT and StoNTP, by
extending the natural thresholding from the linear case
to a general one and from the deterministic version to
the stochastic one. Numerical simulations on linear and
nonlinear measurements have shown the great potential

Fig. 6. Comparison of NTP and StoNTP for SVM: convergence of
loss (top) and misclassification rate (bottom).

of our algorithms in improving the recovery accuracy
and computational efficiency.
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