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Abstract. As one of the most fundamental concepts in transportation science, Wardrop 
equilibrium (WE) has always had a relatively weak behavioral underpinning. To 
strengthen this foundation, one must reckon with bounded rationality in human 
decision-making processes, such as the lack of accurate information, limited computing 
power, and suboptimal choices. This retreat from behavioral perfectionism in the litera
ture, however, was typically accompanied by a conceptual modification of WE. Here, we 
show that giving up perfect rationality need not force a departure from WE. On the con
trary, WE can be reached with global stability in a routing game played by boundedly 
rational travelers. We achieve this result by developing a day-to-day (DTD) dynamical 
model that mimics how travelers gradually adjust their route valuations, hence choice 
probabilities, based on past experiences. Our model, called cumulative logit (CumLog), 
resembles the classical DTD models but makes a crucial change; whereas the classical 
models assume that routes are valued based on the cost averaged over historical data, our 
model values the routes based on the cost accumulated. To describe route choice beha
viors, the CumLog model only uses two parameters, one accounting for the rate at which 
the future route cost is discounted in the valuation relative to the past ones and the other 
describing the sensitivity of route choice probabilities to valuation differences. We prove 
that the CumLog model always converges to WE, regardless of the initial point, as long as 
the behavioral parameters satisfy certain mild conditions. Our theory thus upholds WE’s 
role as a benchmark in transportation systems analysis. It also explains why equally good 
routes at equilibrium may be selected with different probabilities, which solves the insta
bility problem posed by Harsanyi.

Funding: This research is funded by the National Science Foundation [Grants CMMI #2225087 and 
ECCS #2048075]. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0132. 

Keywords: Wardrop equilibrium • bounded rationality • global stability • day-to-day dynamics

1. Introduction
Equilibrium is a fundamental instrument for under
standing and analyzing social systems involving inter
actions between self-interested agents. A premise for 
transportation planning, for example, is that the indi
vidual decisions of travelers tend to bring a transporta
tion system to equilibrium. In the simplest form, the 
interactions between the travelers can be framed as a 
noncooperative routing game in which each pursues, 
in the words of Simon (1955, p. 99), “the highest attain
able point on his preference scale.” Wardrop (1952, 
p. 345) characterized the equilibrium of such a game as 
“the journey times on all the routes actually used are 
equal, and less than those which would be experienced 
by a single vehicle on any unused route.” He added 
that such equilibrium is appealing in practice because it 

has a natural behavioral interpretation; “no driver can 
reduce his journey time by choosing a new route” 
(Wardrop 1952). Although Wardrop (1952) did not 
mention other behavioral assumptions, it is clear that 
his namesake equilibrium, like general equilibrium 
concepts in game theory (von Neumann 1928, Nash 
1951), implicitly assumes perfect rationality, which 
means full and perfect information, well-defined pre
ferences, and the capacity to compute and compare 
the utility of each alternative route. As Sheffi (1985, sec
tion 1.3) asserted in his celebrated book, Wardrop 
equilibrium (WE) implies that “motorists have full 
information” (i.e., they know the travel time on every 
possible route), that “they consistently make the correct 
decisions regarding route choice,” and that “they are 
identical in their behaviors.”
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1.1. Critiques of Wardrop Equilibrium
Given the foundational role that WE plays in transpor
tation science, its validity has been subjected to intense 
scrutiny. Most questions center on perfect rationality 
and stability.

1.1.1. Perfect Rationality. The questions about the 
validity of perfect rationality have been raised in econom
ics since the 1950s (Simon 1955, Arrow 1966, Tversky and 
Kahneman 1985). By the early 1970s, transportation pro
fessionals began to express similar doubts. Dial (1971) 
cited transportation planners’ desire to capture “the non
optimal behavior of trip makers” when choosing alterna
tive routes of similar length. Daganzo and Sheffi (1977) 
observed that assuming that travelers always choose the 
shortest route can produce results unreasonably sensitive 
to inputs, especially in lightly congested networks. 
Clearly, the concern here is that because real travelers are 
no perfect homo economicus, sticking to an equilibrium 
that assumes that they are does not make much sense.

1.1.2. Global Stability. Beckmann, McGuire, and Win
sten (1956) pointed out that to be useful, WE must be sta
ble, or it “would be just an extreme state of rare 
occurrence.” They mentioned both local stability, which 
ensures that the equilibrium can be restored after small 
perturbations, and global stability, which guarantees that 
it is reachable from any initial position (see Beckmann, 
McGuire, and Winsten 1956, section 3.3), although their 
focus was on the latter. Beckmann, McGuire, and Win
sten (1956) suggested that WE may be achieved via an 
iterative adjustment process, in which travelers who 
actively search for better routes in one period base their 
decision on “the traffic conditions that prevailed in the 
preceding period.” They speculated that WE is globally 
stable if the fraction of these “active” travelers decreases 
as time proceeds. Using a dynamical modeling frame
work that in some sense “operationalizes” this idea, 
many have investigated the global stability of WE since 
the 1980s (see, e.g., Smith 1984; Friesz et al. 1994; Zhang 
and Nagurney 1996; Yang and Zhang 2009; He, Guo, and 
Liu 2010; Guo et al. 2015).

1.1.3. Harsanyi’s Instability Problem. Harsanyi’s insta
bility problem was extensively explored by game theo
reticians but less known in transportation. To quote 
Harsanyi (1973), an equilibrium point, like WE, is 
inherently unstable “because any player can deviate 
without penalty from his equilibrium strategy even if 
all other players stick to theirs.” To understand what he 
exactly meant, consider that at WE, travelers split 
between two routes of equal journey time at a ratio, say 
one to two. From the perspective of game theory, each 
traveler, in effect, adopts a mixed strategy that assigns 
a choice probability of 1/3 to one route and 2/3 to the 
other. However, no rational traveler should have the 

incentive to stick to that mixed strategy other than a 
desire to keep the system at WE because the traveler 
can do equally well by shifting to a pure strategy that 
uses either route or any probabilistic mixtures of the 
two pure strategies.

The objection to perfect rationality was typically 
addressed by injecting into the model bounded rational
ity, which “takes into account the cognitive limitations 
of the decision maker—limitations of both knowledge 
and computational capacity” (Simon 1990). In transpor
tation, bounded rationality is often linked specifically 
to Simon’s satisficing theory (Simon 1955), which 
defines boundedly rational user equilibrium (BRUE) as 
a state where all travelers are content with, per their 
level of aspiration for perfection, the current (nonopti
mal) travel choices (Mahmassani and Chang 1987; 
Mahmassani and Jou 2000; Lou, Yin, and Lawphongpa
nich 2010; Di et al. 2013). With the more liberal use of 
the term in Simon (1990), bounded rationality may also 
be interpreted as accepting perception errors and other 
sources of randomness in the system, leading to the 
concept of stochastic user equilibrium (SUE) in routing 
games (Daganzo and Sheffi 1977, Fisk 1980). Both SUE 
and BRUE are meant to be a distinct, if not better, alter
native to WE. Importantly, the fact that these bound
edly rational equilibria presumably converge to WE 
when random errors vanish or aspiration reaches the 
highest level does not offer a boundedly rational expla
nation for WE. This is because rationality is no longer 
bounded at the limit where SUE or BRUE becomes WE.

Using a day-to-day (DTD) dynamical model of a 
two-link network, Horowitz (1984) showed that the 
global stability of SUE depends on how travelers form 
their perception of current traffic conditions from past 
experiences. He also found that global stability is lost 
once random errors are set to zero. More specifically, 
because of discontinuity in the choice function, WE can
not be reached by his adjustment process. In a similar 
vein, Watling and Hazelton (2003) noted that the con
vergence to SUE through a dynamical process depends 
on a condition that becomes increasingly more strin
gent as perception errors become smaller. Indeed, as 
SUE converges to WE, it becomes impossible to meet 
the condition.

Harsanyi (1973) argued that bounded rationality 
could also solve the instability problem he identified. 
By assuming that each player’s perception of other 
players’ payoffs is subject to random errors, Harsanyi 
(1973) created a “disturbed game” that is always stable 
because its equilibrium only admits pure strategies. An 
example of Harsanyi’s disturbed game is our routing 
game based on SUE, in which every traveler chooses 
the route believed to be the best (i.e., a pure strategy). 
Here, we note that there is only one such route for a trav
eler because the probability of having two or more routes 
that are deemed the best by the traveler is zero when 
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errors are continuous variables (see Daganzo and Sheffi 
1977). As the random errors approach zero, the pure- 
strategy equilibrium of the disturbed game approaches 
the mixed-strategy equilibrium of the original game, and 
around the limit, the players would use their pure strate
gies approximately with the probabilities prescribed by 
the mixed-strategy equilibrium. However, this remedy, 
often known as Harsanyi’s purification theorem, implies 
that the mixed-strategy equilibrium may only exist as an 
approximation to pure strategy equilibrium tied to exog
enous random errors. Moreover, when errors are near 
zero, the difference in the payoffs between pure strategies 
diminishes, but the difference in the relative preferences 
for them, as manifested in the choice probabilities, may 
not. It is reasonable to expect a rational player to become 
increasingly indifferent to payoffs that become increas
ingly similar (Rosenthal 1989). However, this behavior is 
not captured at or near the limit of the perturbed game.

To recapitulate, the critiques on the perfect rationality 
assumption have generally led to an intellect exodus 
from WE. With bounded rationality, the definition of 
equilibrium is relaxed so that it can shift with the para
meters chosen by the modeler to “bound” rationality. If 
the goal is to match observations—in terms of both indi
vidual route choices and aggregate traffic conditions— 
such flexibility is no doubt a blessing. On the flip side, it 
can also be a curse to allow the equilibrium to depend on 
latent behavioral variables that could vary in space, time, 
and population. In the case of BRUE, the equilibrium is a 
set rather than a singleton, even at the aggregate level 
and with fixed behavioral variables. Mahmassani and 
Chang (1987) described this lack of uniqueness as “the 
most disturbing question” because it “poses a dilemma 
for flow prediction in networks.” Thus, it is hardly sur
prising that WE remains widely used in practice as a reli
able fallback option for practitioners (Boyce and Williams 
2015). WE also provides a benchmark against which 
alternative equilibrium concepts based on bounded ratio
nality can be evaluated as it can often be viewed as their 
limit. This observation, however, lends no legitimacy to 
WE if one insists that rationality must always be 
bounded—recalling that the above limit is precisely 
where the bound on rationality is gone. Nor does it guar
antee the global stability of WE through a behaviorally 
sound dynamical process compatible with bounded 
rationality.

1.2. Our Contribution
Motivated by the above theoretical gaps, here we set out 
to show that a suitable behavioral theory of route choice 
can resolve the seemingly innate conflict between WE 
and bounded rationality. Under mild conditions, the pro
posed theory guarantees global stability. That is, bound
edly rational travelers can reach WE through a DTD 
dynamical process, regardless of initial conditions. More
over, travelers’ route choices at WE, paradoxically, are 

compatible with both bounded and perfect rationality. In 
the parlance of game theory, this means the mixed- 
strategy equilibrium resulting from perfect rationality 
coincides with the probabilities of choosing pure strate
gies under bounded rationality. Therefore, the theory 
also solves Harsanyi’s instability problem.

Our theory is built on a simple intuition; if two routes 
used at WE are assigned different choice probabilities, 
travelers must value these routes differently, even 
though their costs at WE are identical. To reconcile the 
ostensible contradiction in this statement, we conjec
ture that the route costs realized at WE are not the basis 
for deciding choice probabilities. Instead, travelers 
gradually build their valuation of each route through a 
DTD dynamical process. Consequently, the choice 
probabilities at WE reflect the preferences accumulated 
through the entire history of that process rather than just 
the experience at WE, which is achieved on the “last 
day” (i.e., the limit) of the process.

In our theory, the cost experienced on a route each 
day accrues to its valuation, whereas the DTD models in 
the literature typically view the valuation on a particu
lar day as some average of the costs experienced up to 
that day (e.g., Horowitz 1984). As we shall see, this is a 
subtle but vital difference in a setting with an infinite 
horizon. On each day, travelers act with bounded ratio
nality (i.e., they assign a choice probability to each route 
based on the valuations accumulated hitherto); the bet
ter the valuation, the larger the probability is. We shall 
prove that this dynamical process converges to WE for 
a rather broad class of cost accruement rules, including 
a naive addition rule (i.e., the valuation on day k equals 
the sum of the costs experienced on day t � 1, : : : , 
k � 1). Our proof requires the choice probabilities to be 
determined by the logit model (McFadden 1973), 
although other valuation-to-probability mappings may 
be considered as well.

When our dynamical process reaches WE, travelers 
would still choose the used routes with probabilities 
mapped by their “hidden” valuation of those routes. 
The benchmark route, which has the best valuation, 
receives the highest choice probability. Other routes are 
appraised against the benchmark. Travelers may be 
less inclined to use a route if it has a worse valuation 
than other routes in accordance with the notion of 
bounded rationality. They may also leave many routes 
unused. In our theory, these routes are interpreted as 
“unacceptable,” which mathematically, means that 
their valuation is unboundedly worse than the bench
mark’s valuation.

Although our contribution is largely theoretical, the 
proposed dynamical process does provide a prototype 
algorithm for solving a broad class of routing games. 
This practical value of global stability analysis has been 
recognized early in Beckmann, McGuire, and Winsten 
(1956). An algorithm based on a DTD dynamical 
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process is simple because it requires no more informa
tion than route travel costs to operate. Therefore, it can 
handle routing games with more general features, such 
as user heterogeneity and spatial interactions in travel 
costs.

1.2.1. Organization. The rest of the paper is organized 
as follows. We discuss related works in Section 2. Sec
tion 3 sets up the routing game and describes the WE 
and the basic DTD dynamical model. In Section 4, we 
present and interpret the cumulative logit (CumLog) 
model. In Section 5, we prove the global stability of the 
CumLog model. Section 6 reports numerical experi
ments, and Section 7 concludes the study.

1.2.2. Notation. We use R and R+ to denote the set of 
real numbers and nonnegative real numbers, respec
tively, and we use R̄ � R ∪ {∞, �∞} to denote the set of 
extended real numbers. For a vector a ∈ Rn, we denote 
‖a‖p as its ℓp norm and denote supp(a) � {i : ai > 0} as its 
support. For a matrix A ∈ Rn×m, we denote ‖A‖p as its 
matrix norm induced by the vector ℓp norm. For two 
vectors a, b ∈ Rn, their inner product is denoted as 〈a, b〉. 
For a finite set A, we write |A | as the number of ele
ments in A and 2A as the set of all subsets of A.

2. Related Studies
Our work focuses on the stability analysis of Wardrop 
equilibrium under the assumption of bounded rational
ity. In this section, we review the works that consider 
bounded rationality (Section 2.1) and equilibrium sta
bility (Section 2.2) in game theory and transportation. 
Given the immensity of the literature that touches upon 
these topics, we limit our attention to those that are 
directly related to our work.

2.1. Bounded Rationality
Bounded rationality is the idea that human decisions 
are affected by “the knowledge that decision-makers do 
and don’t have of the world, their ability or inability to 
evoke that knowledge when it is relevant, to work out 
the consequences of their actions, to conjure up possible 
courses of action, to cope with uncertainty, and to adju
dicate among their many competing wants” (Simon 
2000). This concept has been researched extensively by 
game theoreticians (see Section 2.1.1) and transporta
tion researchers (see Section 2.1.2).

2.1.1. Application in Games. The auction game of 
Vickrey (1961), the Bayesian game of Harsanyi (1968), 
and the disturbed game of Harsanyi (1973) are earlier 
examples of games in which players are only bound
edly rational in the sense that they must deal with 
incomplete or imperfect information. The ε-perfect 
equilibrium of Selten (1975) and the ε-proper 

equilibrium of Myerson (1978) also assume bounded 
rationality because they allow for the possibility that 
players choose suboptimal strategies. van Damme 
(1987) examined why a player may mistakenly choose 
suboptimal strategies. He hypothesized that making a 
mental effort could help avoid such mistakes at the 
expense of a so-called “control cost” (van Damme 
1987). The trade-off between finding the optimal strat
egy and minimizing this effort leads to a new game 
with bounded rationality.

In an attempt to resolve the instability problem iden
tified by Harsanyi (1973) (see Section 2.2.3), Rosenthal 
(1989) suggested another boundedly rational alternative 
to the standard game script. Rather than assuming that 
players choose the best strategy with a probability of 
one (which implies perfect rationality), he argued that 
it is sufficient if equally good strategies are played with 
equal probabilities and better strategies are “played 
with probabilities not lower than worse strategies” 
(Rosenthal 1989). This idea was further developed by 
McKelvey and Palfrey (1995) into the quantal response 
equilibrium (QRE; also known as boundedly rational 
Nash equilibrium) model, which essentially assigns 
choice probabilities to strategies based on the random 
utility theory (McFadden 1973). Since the 1990s, the QRE 
game has been extended to deal with—among other 
things—auction games (Goeree, Holt, and Palfrey 2002) 
and capacity allocation games (Chen, Su, and Zhao 
2012) as well as Markov games (Chen et al. 2022).

The idea that players adopt inferior strategies with 
positive probability may also be viewed as a trade-off 
between exploration (gathering new information from 
uncharted territory) and exploitation (making the best 
use of information available). Björnerstedt and Weibull 
(1994) argued that players may need to try inferior 
strategies in order to ensure that they are indeed subop
timal. They proposed an imitative dynamical process 
(more on this in Section 2.2.3) that allows players to use 
demonstrably suboptimal strategies throughout the 
process, not because of mistakes or imperfection but 
because of the need for exploration. We note in passing 
that the exploration-exploitation trade-off is central to 
many machine learning (ML) algorithms, particularly 
bandit algorithms (Lattimore and Szepesvári 2020) and 
reinforcement learning (RL) algorithms (Sutton and 
Barto 2018). Classical exploration strategies in ML 
include the random selection strategy—selecting every 
strategy with at least a small probability, commonly 
known as “ε-greedy”—and the Boltzmann exploration 
strategy (Kocsis and Szepesvári 2006), which assumes 
that the probability of each pure strategy to be selected 
is proportional to its exponential cost (mathematically, 
it is equivalent to the logit choice model). In noncooper
ative games, if the players gradually weigh less toward 
exploration than exploitation, the learning process may 
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be guided toward Nash equilibrium (Cohen, Héliou, 
and Mertikopoulos 2017).

2.1.2. Application in Transportation. The STOCH algo
rithm of Dial (1971) was probably the first attempt to 
replace traffic assignment based on WE with something 
that recognizes “the non-optimal behavior of trip- 
makers” (i.e., bounded rationality). For what it was 
designed to do (i.e., performing a logit-based loading in 
an acyclic network), the algorithm was a remarkable 
success. However, Dial (1971) did not conceive an alter
native equilibrium concept. More importantly, when 
applied in traffic assignment, the logit model’s reliance 
on the independence of irrelevance alternative (IIA) 
assumption can produce nonsensical results (Florian 
and Fox 1976). Daganzo and Sheffi (1977) proposed 
eliminating the IIA dependence by subjecting travelers 
to a normally distributed perception error on each link. 
This leads to the so-called probit model that is free of 
most problematic predictions of its logit counterpart 
but is much more computationally demanding (it usu
ally requires Monte Carlo simulation) (see, e.g., Sheffi 
and Powell 1981). The high computational cost of the 
probit model has motivated many to seek remedies 
within the logit framework. Most efforts aim to account 
for crossroute correlations, such as C-logit (Cascetta 
et al. 1996), path-size logit (Ben-Akiva and Bierlaire 
1999), and generalized nested logit (Wen and Koppel
man 2001).

Daganzo and Sheffi (1977) also introduced a bound
edly rational version of WE, called stochastic user equi
librium, at which “no traveler believes he can improve 
his travel time by unilaterally changing routes.” Clearly, 
bounded rationality here refers to travelers’ inability to 
receive (or perceive) accurate information. Fisk (1980) 
and Sheffi and Powell (1981) established equivalent 
mathematical formulations for SUE problems, respec
tively, based on the logit model and the probit model. 
Conceptually, the logit-based SUE model is quite similar 
to the QRE model discussed in the previous section 
(although the QRE model was originally developed for 
n-person games); see Di and Liu (2016, section 4.2.1) for 
a comparison.

Bounded rationality may also be incorporated 
through Simon’s satisficing theory (Simon 1955). In the 
context of the morning commute, Mahmassani and 
Chang (1987) introduced boundedly rational user equi
librium, which is attained when all travelers are satis
fied with their choices (i.e., the gap between their 
current cost and their optimal cost is within an indiffer
ence band that reflects their aspiration level). They estab
lished the conditions for the existence of a BRUE and 
highlighted the nonuniqueness of such equilibrium. 
Hu and Mahmassani (1997) incorporated indifference 
bands of tolerable “schedule delay” into a simulation- 
assignment model to study the day-to-day evolution of 

network flows under real-time information and reac
tive signal control. Using data collected from a virtual 
laboratory experiment, Mahmassani and Liu (1999) 
confirmed the existence of the indifference band; that 
is, travelers would not switch routes unless the im
provement in trip time exceeds a certain threshold. 
Mahmassani and Jou (2000) took the above virtual 
experiment approach one step further. They compared 
the findings from such experiments with those ob
tained from field surveys to determine the transferabil
ity of the insights. The fact that BRUE is not unique has 
inspired studies that attempt to characterize the BRUE 
set (Di et al. 2013) or to build an equilibrium selection 
model (Lou, Yin, and Lawphongpanich 2010). Han, 
Szeto, and Friesz (2015) formulated a BRUE problem 
that considers within-day dynamics (i.e., including 
both departure time and route choices) as a variational 
inequality problem (VIP) and proposed several solu
tion algorithms.

2.2. Stability
The concept of stability is front and center in equilib
rium analysis because equilibrium may be short lived 
and difficult to reach without stability, thereby render
ing it a useless construct. The stability of an equilib
rium can be tested by the following questions. (i) Can 
the equilibrium be restored after small perturbations 
(local stability)? (ii) Can the equilibrium be reached 
from any initial position (global stability)? (iii) Can 
agents deviate from the equilibrium without penalty 
(Harsanyi’s instability)? We shall focus on questions 
(ii) and (iii) above in this section (note that global sta
bility implies local stability). In Sections 2.2.1 and 2.2.2, 
we review, respectively, classical dynamical models 
for games and in transportation, which were devel
oped largely to answer the question of stability. Sec
tion 2.2.3 deals with the instability of Harsanyi (1973).

2.2.1. Learning and Evolution in Games. Brown (1951) 
proposed an iterative process, called fictitious play, for 
solving certain finite games. His method assumes that a 
player in each round simply responds to what they 
have “learned” about the other player’s strategy, repre
sented as the empirical frequency of plays in the previ
ous rounds. This is often viewed as the origin of the 
learning-based dynamical methods in games (Fuden
berg and Tirole 1991). The convergence of a fictitious 
play to mixed equilibrium was established by Robinson 
(1951) for two-person zero-sum finite games and by 
Miyasawa (1961) for two-person general-sum finite 
games with two pure strategies. However, Shapley 
(1964) showed that fictitious play could not ensure con
vergence in general two-person games, thereby casting 
doubts on the global stability of mixed equilibrium of 
finite games. For finite games with bounded rationality, 
the stability of equilibrium is easier to establish. For 
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example, Fudenberg and Kreps (1993) proved that the 
equilibrium of the disturbed game studied in Harsanyi 
(1973) can be reached through a learning-based dynam
ical process. Similarly, Chen, Friedman, and Thisse 
(1997) established conditions under which players can 
reach the quantal response equilibrium of McKelvey 
and Palfrey (1995) through fictitious play.

Bush and Mosteller (1955) suggested the strategies 
that have worked well in the past tend to be used more 
as the positive experience is “reinforced” through learn
ing (Cross 1973). In reinforcement learning, players need 
not form beliefs about others’ strategies; instead, they 
simply update their strategies in response to realized 
rewards. RL algorithms may be linked to human beha
viors in two ways (see Camerer 2011 for more details). 
The first assumes that the reward received by each 
player directly affects their future probability of choos
ing the same action; the higher the current reward, the 
greater the increases are in the choice probability in the 
future (e.g., Cross 1973, Arthur 1991). The other interpre
tation posits that a player’s probability of selecting each 
action is determined by a “score” associated with the 
action; the higher the current reward, the larger the 
increment is in the score (Erev and Roth 1998, Camerer 
and Hua Ho 1999).

Another line of thinking in the stability analysis for 
games originated from emulating biological evolution. 
Using game theory, Smith (1982) argued that seemingly 
counterintuitive behaviors (e.g., cooperation and altru
ism) can evolve and persist in a population because 
they are evolutionarily stable strategies. Because the 
theory applies to nonhuman species (Smith and Price 
1973), its validity does not rely on any form of human 
rationality (it is difficult to imagine ants as utility- 
maximizing creatures). The imitative dynamical pro
cess proposed by Björnerstedt and Weibull (1994) was 
an early application of evolutionary mechanisms— 
selection, mutation, and replication—in human compe
titions. It builds on a simple assumption; players tend 
to imitate the successful behavior of others. Specifically, 
players in each round switch from their current strat
egy a to a pure strategy b with a certain transmission 
probability, which increases with the utility of b as well 
as the number of players selecting b in the last round. 
Hence, a pure strategy is more attractive if it is not only 
more profitable but also, more popular. Björnerstedt 
and Weibull (1994) proved that their imitative dynami
cal process is locally stable. More recently, Li et al. 
(2022) proved the global convergence. On the one 
hand, the imitative process differs from fictitious play 
in that it implies bounded rationality. On the other 
hand, unlike RL, it allows players to actively learn 
about and act on others’ strategies. The reader is 
referred to Weibull (1997) and Sandholm (2010) for 
details on the evolutionary game theory.

2.2.2. Dynamical Models in Routing Games. The study 
of the route choice adjustment process, referred to as 
dynamical models in transportation, can be traced back 
to the stability analysis of WE by Beckmann, McGuire, 
and Winsten (1956). Most dynamical models operate on 
one of the following two mechanisms: (i) a discrete-time 
mechanism that maps travelers’ valuation of available 
routes to route choice in discrete decision epochs, each 
representing one round of the routing game (Horowitz 
1984) (as the epoch is naturally a day in transportation, 
these models are often referred to as day-to-day mod
els), and (ii) a continuous-time mechanism in which the 
decision epoch is reduced to zero so that the relation 
between the change rate of route flows and the current 
route costs may be represented as an ordinary differen
tial equation (Smith 1984). Our model falls into the first 
category. The reader may consult Watling and Hazelton 
(2003) and Cantarella et al. (2019) for comprehensive 
reviews of dynamical models.

At the core of the discrete-time mechanism is model
ing how travelers re-evaluate and switch routes accord
ing to past experiences. As such learning processes do 
not involve anticipating other players’ strategies, it is 
largely driven by reinforcement. Horowitz (1984) pro
posed that on a given day, travelers may value a route 
based on a weighted average of either all experienced 
costs on that route before that day or the cost and the 
valuation on the previous day. He showed that the 
global stability of the DTD process, even when equilib
rium exists and is unique, depends on how travelers 
incorporate past experience into the present route valu
ation. Instability ensues when the rate of adjustment is 
not properly selected (e.g., too much weight is given to 
either the recent past or the distant past). The schemes 
of Horowitz (1984) have since been extensively studied 
in transportation, with most efforts centering on tuning 
the weights in route evaluation, enriching behavioral 
contents, or establishing the existence and stability of 
equilibrium (e.g., Cascetta 1989, Cascetta and Cantar
ella 1993, Cantarella and Cascetta 1995, Watling 1999, 
Watling and Hazelton 2003, Cantarella and Watling 
2016).

Because traffic conditions are subject to perception 
errors in the model of Horowitz (1984), his DTD pro
cess presumably converges to SUE. He did suggest that 
the model may be employed to study WE when percep
tion errors vanish but concluded that his stability 
results could not be readily extended to the determinis
tic case. Indeed, although it is well known that the fixed 
point of the DTD dynamical process of Horowitz (1984) 
is SUE (see, e.g., Watling and Hazelton 2003, section 3), 
establishing its convergence to WE remains elusive 
even at the limit (i.e., when errors become zero). The 
primary difficulty, as noted in Watling and Hazelton 
(2003), is that a discrete choice model without 
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additional modeling devices cannot properly distribute 
travelers to a set of minimal and equal-cost routes 
according to the proportions prescribed by WE.

By shrinking the decision epoch to zero, the 
continuous-time models center on moving flows 
between routes based on current costs. Behaviorally, 
this aggregate change is explained as travelers switch
ing to routes that promise to lower their current costs. 
For example, the scheme proposed by Smith (1984) 
moves flow between every pair of routes at a rate pro
portional to the product of the flow on the higher-cost 
route and the cost difference. Using the Lyapunov the
ory, he proved that this simple scheme leads to a glob
ally stable dynamical system (i.e., it produces a solution 
trajectory converging to WE regardless of the initial 
solution) if the route cost function is monotone. Simi
larly, the Brown–von Neumann–Nash (BNN) scheme 
employed by Yang (2005) shifts flow away from routes 
with travel costs above the weighted average of all 
routes. He also offered a behavioral explanation by 
interpreting the parameters in the BNN scheme as 
what Cantarella and Cascetta (1995) would call switch
ing choice probability and route choice probability. 
Another widely used scheme is the so-called projected 
dynamical system, which may be viewed as a 
continuous-time version of the projection algorithm for 
variational inequality problems (Dupuis and Nagurney 
1993). The idea is to change the route flows at a rate 
equal to the projection of the negative route cost vector 
onto the feasible set. Nagurney and Zhang (1997) noted 
that this movement can be driven by “travelers’ incen
tive to avoid more costly routes … so that the sum of 
the flows equal the travel demand,” although the direct 
linkage between the projection operation and actual 
route switching behaviors is somewhat abstract. Pro
jected dynamical processes were also employed to 
establish the stability of routing games with elastic 
demands (Friesz et al. 1994, Zhang and Nagurney 1996) 
based on similar conditions used in Smith (1984). The 
common requirement for global stability is the mono
tonicity of the route cost function. It is worth noting 
that the terminology used in these papers is asymptotic 
global stability, which equals stability defined in Smith 
(1984) and global stability concerned herein. Yang 
and Zhang (2009) showed that each of the above 
continuous-time processes is a rational behavior adjust
ment process (RBAP), which means that their flow- 
shifting scheme always leads to a strict reduction in the 
total cost with a sufficiently small step size. This obser
vation gave rise to a class of continuous-time DTD 
models operating at the link level (He, Guo, and Liu 
2010; Guo and Liu 2011; Di et al. 2015; Guo et al. 2015). 
These models have fewer behavioral contents than 
their route-based counterparts as their flow-shifting 
schemes usually rely on a target link flow pattern 
obtained from solving an optimization problem to 

meet the RBAP requirement. More recently, Smith and 
Watling (2016) and Xiao et al. (2019) incorporated logit 
dynamics into continuous-time models and established 
their convergence to SUE.

2.2.3. Harsanyi’s Instability Problem. Harsanyi (1973) 
noted that a mixed-strategy Nash equilibrium of a finite 
game is inherently unstable because at the equilibrium, 
players can switch among equally good strategies (any 
of the pure strategies contained in the mixed strategy 
or their combinations) without penalty. If players can
not be compelled by their self-interest to always follow 
the prescription of the mixed strategy, it is difficult to 
sustain the equilibrium. In their celebrated book on 
equilibrium selection, Harsanyi and Selten (1988, sec
tion 1.6) named this instability problem one of the main 
difficulties with the concept of equilibrium in game the
ory. We note that WE is affected by the instability prob
lem of Harsanyi (1973) as it is also a mixed-strategy 
equilibrium of a finite game.

A common remedy to the instability problem is 
bounded rationality, which typically means introduc
ing random errors into payoffs (travel costs). Examples 
include the disturbed game of Harsanyi (1973), the SUE 
model of Daganzo and Sheffi (1977), and the QRE 
model of McKelvey and Palfrey (1995). Random errors 
suppress Harsanyi’s instability problem because they 
reduce the probability of having two pure strategies 
with identical costs to zero. Strictly speaking, this 
approach does not fix the instability problem in mixed- 
strategy equilibrium. It only posits that the existence of 
such equilibrium may be justified as an approximation 
to pure strategy equilibrium of the perturbed models.

Another remedy is to assume that players would 
never switch to an equally good strategy. Björnerstedt 
and Weibull (1994) argued that this assumption is 
implicit in Nash’s prescription. In the transportation lit
erature, the assumption has been widely used to 
develop dynamical models; see, for instance, the rule of 
Smith (1984) that allows flow shifting to occur between 
two routes only when their costs are strictly different. 
Behaviorally, this may be explained as inertia or the 
tendency to settle with one’s current choices, especially 
when further search promises no additional benefits. 
However, inertia implies that travelers would never 
explore inferior routes. If travelers do, as assumed in 
most models, base their choices on what they have 
learned from past experience, ruling out exploration 
altogether seems a strong assumption that is necessary 
only because otherwise, Nash equilibrium (or WE) 
would be cursed with Harsanyi’s instability. Is the iner
tia assumption necessary? According to Björnerstedt 
and Weibull (1994), the answer is no. In their imitative 
dynamical process, an equally good strategy adopted 
by more players provides more “successful samples” 
for other players to imitate, thus attracting more 
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players in the next round. Under this mechanism, 
players would continue to switch between equally 
good strategies even at equilibrium, but the imitative 
dynamical process ensures that these movements do 
not push the system away from equilibrium. Thus, it 
resolves Harsanyi’s instability problem without resort
ing to the inertia assumption or perturbation-based 
approximation.

2.3. Summary
To summarize what was reviewed earlier, bounded 
rationality may come from a decision maker’s (i) inabil
ity to access accurate information (e.g., perception 
error), (ii) content with a suboptimal choice compatible 
with their level of aspiration, (iii) erroneous choices 
and effort to avoid them, or (iv) desire to explore seem
ingly suboptimal choices. In this paper, we interpret 
bounded rationality as imperfect choices—in the sense 
that decision makers allow themselves to use subopti
mal strategies based on their valuation—which may be 
explained by any of the above four behavioral sources.

Our reading of the literature did not uncover a 
boundedly rational, behavior-driven, and globally sta
ble dynamical process that can converge to WE, 
although such processes do exist for SUE. The conver
gence of continuous-time dynamical models to WE is 
well known. However, these models depend on perfect 
rationality and highly simplified learning and choice 
behaviors. They also need the assumption of inertia to 
overcome Harsanyi’s instability problem.

The dynamical process proposed herein precisely 
fills this gap. On the one hand, it explicitly incorporates 
bounded rationality, learning behaviors, and individ
ual choices. On the other hand, it always converges, for 
any given initial point, to a WE. Like the imitative 
dynamical process (Björnerstedt and Weibull 1994), 
our process also achieves immunity to Harsanyi’s insta
bility problem without assuming inertia. Unlike imita
tive dynamics, however, we do not assume that 
travelers know the flows on each route (i.e., the basis 
for imitation), which is not public information in the 
context of routing games.

3. Problem Setting
A routing game takes place on a transportation net
work modeled as a directed graph G(N ,E), where N 

and E are the set of nodes and links, respectively. Let 
W ⊆ N × N be the set of origin-destination (OD) pairs 
and K ⊆ 2E be the set of available routes connecting all 
OD pairs. We use Kw ⊆ K to denote the set of routes 
connecting w ∈ W and Ek ⊆ E to denote the set of all 
links on route k ∈ K. Also, let Σw, k be the OD-route inci
dence with Σw, k � 1 if the route k ∈ Kw and zero other
wise, and let Λe, k be the link-route incidence, with 
Λe, k � 1 if e ∈ Ek and zero otherwise. We write 

L � (Λe, k)e∈E, k∈K and S � (Σw, k)w∈W, k∈K. Let d � (dw)w∈W 

be a vector with dw denoting the number of travelers 
between w ∈ W. All travelers are identical, and their 
route choice strategies are represented by a vector 
p � (pk)k∈K, where pk equals the probability that they 
select k ∈ Kw. The feasible region for p can then be writ
ten as P � {p ∈ R |K |

+ : Sp � 1}. The equilibrium of the 
routing game is characterized as travelers adopting a 
mixed strategy p that minimizes their own travel costs. 
To simplify the discussion, we assume that travelers 
between the OD pair adopt the same mixed strategy. 
According to the law of large numbers, p can hence be 
equivalently viewed as the proportion of travelers 
selecting each route.

Let f � (fk)k∈K and x � (xe)e∈E , with fk and xe being 
the flow (i.e., number of travelers) on route k and link e, 
respectively. It follows f � diag(STd)p and Lf � x. Fur
ther define u � (ue)e∈E as a vector of link cost determined 
by a continuously differentiable function u(x) �

(ua(x))a∈E (our analysis in the following sections does not 
require ∇u(x) be a diagonal or symmetric matrix). Then, 
the vector of route cost c � LTu. To summarize, the route 
cost function c : P → R |K | can be defined as c(p) �

LTu � LTu(Lf ) � LTu(L̄p), where L̄ � Ldiag (STd).

3.1. Wardrop Equilibrium
A Wardrop equilibrium (Wardrop 1952) of the routing 
game can be defined as follows.

Definition 1 (Wardrop Equilibrium). A route choice strat
egy p∗ ∈ P is a WE strategy if ck(p∗) > mink′∈Kw ck′ (p∗)

implies that p∗
k � 0 for all w ∈ W and k ∈ Kw.

In other words, a route included in a WE strategy 
must have the minimum cost. It is widely accepted 
that travelers must be perfectly rational to reach and 
keep a WE strategy, which in our context, means they 
always know the precise values of all route costs and 
consistently make correct choices accordingly (Sheffi 
1985).

The WE routing game has an equivalent variational 
inequality problem (Dafermos 1980).

Proposition 1 (VIP Formulation of WE). A route choice 
strategy p∗ ∈ P is a WE strategy if and only if it solves the 
following VIP. Find p∗ ∈ P such that

〈c(p∗), p � p∗〉 ≥ 0, ∀p ∈ P: (1) 

We shall denote the solution set to the VIP (1) as P∗, 
referred to as the WE strategy set. It is well known that 
P∗ is a singleton if c(p) is strongly monotone and a poly
hedron if only u(x) is (Dafermos 1980). In the latter 
case, although many WE strategies may exist, they 
must correspond to the same link flow x∗. The ques
tions that concern us here are whether and how a WE 
strategy can always be achieved under reasonable assump
tions of route choice behaviors.
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Since Beckmann, McGuire, and Winsten (1956), 
many have asked these questions and have largely set
tled the “whether” part. Specifically, it has been estab
lished that a WE strategy can be reached through a 
continuous-time dynamical process starting at any ini
tial point, provided that the route cost function c(p) is 
monotone (see, e.g., Smith 1984, Dupuis and Nagurney 
1993, Friesz et al. 1994, Nagurney and Zhang 1997). Yet, 
the answer to the question of “how” is complicated by 
two issues. The first is behavioral. Note that travelers in 
the continuous-time models are supposed to be highly 
rational; they have accurate knowledge of and act on 
the most recent route costs to perpetually switch from 
higher-cost routes to lower-cost ones until a WE is 
reached. Therefore, continuous-time models have a 
limited capacity to accommodate such behaviors as 
learning from past experiences, exploring suboptimal 
routes, and indifference to equal-cost routes. Second 
and perhaps more importantly, global stability is 
secured by implicitly applying an arbitrarily small rate 
of adjustment to the prescribed “direction” of route 
flow changes (Watling 1999). However, whether the 
analysis is employed for the purpose of explaining real- 
world route-switching behaviors or of developing an 
equilibrium-finding algorithm, that rate cannot always 
be arbitrarily small. The questions are as follows. What 
is a suitable magnitude of the adjustment at a given 
time? How fast should this magnitude decrease as time 
proceeds? How is this pattern of time-varying adjust
ments related to route choice behaviors? The discrete- 
time dynamical models are better equipped to address 
these questions.

3.2. Discrete-Time Dynamical Model
At its core, a discrete-time dynamical or day-to-day 
model keeps track of travelers’ route valuation vector 
on day t, denoted as st ∈ R |K | (t � 0, 1, : : : ), which is 
mapped to their route choice strategy pt ∈ P by a func
tion. A commonly used route choice function is based 
on the logit model derived from random utility theory 
(McFadden 1973, Ben-Akiva and Lerman 1985). Given 
a scalar r > 0, a logit-based route choice function qr :

R̄ |K | → P gives pt � qr(st), where

pt
k �

exp(�r · st
k)

P
k′∈Kw

exp(�r · st
k′ )

, ∀k ∈ K: (2) 

By manipulating how st is constructed and updated, 
the DTD models can represent a wide range of learning 
and choice behaviors. Below, we briefly review the two 
most popular models.

The weighted-average model assumes st be a weighted 
average of the costs received in the past by setting

st �
Xt�1

i�0
ηti · c(pi), with

Xt�1

i�0
ηti � 1, (3) 

where ηti ≥ 0 weighs how the cost received on day i 
(0 ≤ i ≤ t � 1) affects the valuation on day t. Thus, the 
entire history of past experiences is allowed to affect 
the present-day decision.

The successive-average (SA) model, as a simplifica
tion of the weighted-average model, sets

st � (1 � ηt) · st�1 + ηt · c(pt�1), (4) 

where {ηt ∈ (0, 1); t � 1, 2, : : : } is a sequence of constants. 
In this model, the past experience is condensed into 
yesterday’s valuation. This decision mode imposes a 
much lower information burden on travelers as it 
claims no direct memory of the experience prior to 
yesterday.

In the literature, both models were initially discussed 
by Horowitz (1984). The latter can be viewed as a spe
cial case of the former, noting that recursively applying 
Equation (4) yields

st � ηt · c(pt�1) + (1 � ηt) · ηt�1 · c(pt�2)

+ ⋯ +
Yt

i�2
(1 � ηi) · η1 · c(p0): (5) 

Horowitz (1984) assumed the travelers’ perception of st 

is subject to a random error �t ∈ R |K | . He considered 
two possibilities for the distribution of �t; the first 
(Model 1) assumes that the distribution of �t is indepen
dent of t, whereas the second (Model 2) treats �t as the 
sum of the perception errors in the past (hence, a func
tion of t). Model 1 is much easier to analyze because it 
allows us to treat the parameter r in the logit Model (2) 
as a time-invariant constant. In this case, if (pt, st) con
verges to a fixed point (p̂, ŝ), then we have ŝ � c(p̂) and 
p̂ � qr(ŝ), and hence, p̂ � qr(c(p̂)): Following Daganzo 
and Sheffi (1977), a route choice p∗ that satisfies this 
equation is a stochastic user equilibrium. The global 
stability of SUE under the successive-average model 
has been extensively studied. For a two-link network, 
Horowitz (1984) analyzed the global stability of the 
dynamical Model (4) under the assumptions that the 
perception error is nonzero and the cost function is 
both monotone and Lipschitz continuous. Here, we 
note that the original Lipschitz continuous assumption 
of Horowitz (1984) is imposed on a composite function 
that combines c(p) and the distribution function of �t. 
This assumption can always be satisfied when c(p) is 
Lipschitz continuous, and the perception errors are not 
reduced to zero (that is, the stochastic model is not 
degraded to a deterministic one). He proved that the 
model is globally stable if (i) 

P∞
t�1 ηt � ∞ and (ii) ηt 

becomes sufficiently small for a sufficiently large t. 
Cantarella and Cascetta (1995) extended Horowitz’s 
analysis to general networks but limited the stability 
analysis to the case where ηt is time invariant. Like 
Cascetta and Cantarella (1993), they introduced the 
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switching probability α to describe the likelihood that a 
traveler would even consider route choice on a given 
day. Thus, the model in Horowitz (1984) can be viewed 
as a special case of their model when α � 1 on every 
day. The global stability of their model can be guaran
teed when either α or η is sufficiently small; a small α 
may be interpreted as strong habitual inertia, whereas 
a sufficiently small η is the same requirement as in 
Horowitz (1984). Watling (1999) analyzed the local sta
bility of the model with a constant η and investigated 
the possibility of applying Lyapunov’s theory to deter
mine its domain of attractions.

It is well known that SUE can be made arbitrarily close 
to WE by letting r → ∞ (Fisk 1980; Erlander 1998; 
Mamun, Xu, and Yin 2011). However, it remains an open 
question whether the stability result of SUE is applicable 
to WE at that limit. As noted by Watling and Hazelton 
(2003, example 4), given a fixed r > 0, the stability of the 
successive-average model requires η to be within (0,ηr], 
where ηr decreases to zero when r → ∞. Thus, attempt
ing to approximate WE with SUE by choosing an arbi
trarily large r is problematic as the feasible range of η 
needed for convergence vanishes at the limit.

Is it possible to design a scheme that coordinates the 
increase of r and the decrease of η so that the final sta
tionary point is steered toward WE? To the best of our 
knowledge, this question has not received much atten
tion in the literature. Even if such a coordinated scheme 
can be identified, a more important question is how to 
make sense of it behaviorally. Specifically, why would 
the travelers couple the changes in r and η in such a 
way as prescribed by the stability analysis?

In the next section, we shall propose an alternative to 
the classical DTD dynamical models that is deceptively 
simple at first glance but holds promise to answer the 
above questions.

4. Cumulative Logit Model
We are now ready to propose a new DTD dynamical 
system that is dubbed, for the reasons that will soon 
become clear, the cumulative logit model. In develop
ing the CumLog model, we were inspired by the con
jecture in Beckmann, McGuire, and Winsten (1956) 
about the study of stability (the emphasis is our own).

Through a simple and plausible model, one can get a rough 
picture of the minimum of conditions that must be met in 
order that the adjustment process should converge to 
equilibrium. (Beckmann, McGuire, and Winsten 1956)

Indeed, the overarching goal of this study is to develop 
that simple and plausible model envisioned by Beckmann, 
McGuire, and Winsten (1956) and to identify “the mini
mum of conditions” that ensures the convergence of a 
dynamical adjustment process to WE.

The CumLog model adopts the basic framework of 
the DTD Model (3). That is, on day t, travelers update 

their route valuation vector st based on the route costs 
on day t � 1 and select a route choice strategy pt accord
ing to st. Unlike (3), st in the CumLog model is 
updated, starting from some s0 ∈ R | K | , as follows:

st � st�1 + ηt · c(pt�1), (6) 

where {ηt, t � 1, 2, : : : } is a sequence of positive con
stants. Moreover, travelers determine their strategy on 
day t according to the logit model by setting pt � qr(st)

according to Equation (2). The simplest interpretation 
of CumLog is that travelers value routes based on the 
cost received and accumulated over the entire history up 
to t � 1. Indeed, in the special case of η � 1, travelers lit
erally add up all received costs without ever discount
ing the experiences in the distant past.

Upon noticing the suspicious similarity between 
Schemes (6) and (4), some readers may understandably 
question the plausibility of our central claim: that 
Scheme (6) can somehow ensure convergence to WE 
under mild conditions, whereas as widely asserted in 
the literature, Scheme (4) cannot. Therefore, in what fol
lows, we shall first explain why averaging and accumu
lating route costs are fundamentally different in the 
dynamical process (Section 4.1). Section 4.2 provides a 
behavioral interpretation of the CumLog model. An 
illustrative example is given in Section 4.3.

4.1. Difference Between Average and 
Accumulation

Let us revisit the thought experiment used to demon
strate Harsanyi’s instability problem in Section 1. Sup
pose a routing game in a two-route network converges 
to a WE strategy that assigns route 1 and route 2 the 
choice probabilities of 1/3 and 2/3, respectively. Panels 
(a) and (b) in Figure 1 depict, respectively, how the 
flows and costs on the two routes gradually reach the 
WE through a dynamic adjustment process. The details 
of the process need not concern us here. Suffice it to say 
that at the end of the process, the costs on both routes 
are identical, and the probability of choosing route 1 
becomes 1/3, which implies that a third of the travelers 
end up using that route.

Figure 1(c) compares the evolution of the difference 
in the two route valuation schemes (average versus 
accumulation) accompanying the dynamical process. 
In the average scheme, the difference in the route eva
luations is bound to vanish regardless of the weights if 
the process ends at the WE. Given the same route 
valuations, it is difficult to see why at WE, travelers 
seem to prefer route 2 over route 1 with a 2:1 margin as 
suggested by the mixed strategy. Indeed, as Harsanyi 
(1973) pointed out, there is no way to explain that pref
erence other than insisting that travelers prefer WE 
itself. This seemingly illogical preference is at the heart 
of Harsanyi’s instability. Nor can this problem be 
explained away by bounded rationality. Note that 
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the errors in the valuation would affect choice proba
bility only when there is a nonzero difference in the 
“deterministic” part of the valuations. At WE, the dif
ference becomes zero. Hence, no errors could, on their 
own, swing travelers one way or the other. Unlike in 
the average scheme, the discrepancy in route valua
tions converges to a nonzero constant in the accumu
lation scheme (see the solid line with x markers in 
Figure 1(c)). The constant equals the shaded area in 
Figure 1(b), which visualizes the valuation difference 
accrued through the dynamical process. This cumula
tive difference then explains the mixed WE strategy; 
the travelers prefer route 2 at equilibrium because 
they value it substantially (but not infinitely) more 
than route 1, although the equilibrium route costs are 
the same.

Remark 1. In behavioral economics, the reinforcement 
learning model proposed by Erev and Roth (1998) 
assumes that players in a finite game have the highest 
propensity to choose the pure strategy that gives the 
greatest total reward in the past. This assumption is 
similar to our assumption that the route with a smal
ler cumulative route cost is selected with a greater 
probability.

4.2. Behavioral Interpretation
The route choice behaviors implied by the CumLog 
model can be summarized as follows. 

• On each day, travelers choose afresh a mixed-route 
choice strategy based on current route valuations 
through a logit model. No additional assumptions are 
needed regarding the behavioral inertia—the reluctance 
to make changes once a choice becomes habitual—that 
is often explicitly modeled by a switching probability in 
the DTD literature (e.g., Cantarella and Cascetta 1995).

• Route choices are driven by relative valuation 
rather than absolute valuation as dictated by the logit 
model. The benchmark is the “best” route that receives 
the highest choice probability. Other routes are 
appraised against the benchmark. They shall also be 
selected with a strictly positive probability as long as 
the valuation difference between these routes and the 

benchmark is finite; they may be selected with a zero 
probability if their valuations are deemed unacceptable 
(i.e., infinitely worse than the benchmark).

Here is the rationale behind our claim that the Cum
Log model is boundedly rational; rather than committing 
to never moving to a route with a worse valuation 
than they currently enjoy, the travelers consistently 
assign a nonzero probability to suboptimal routes with 
an acceptable valuation.

The two parameters of the CumLog model can be 
linked to route choice behaviors as follows. 

• The parameter r characterizes how travelers’ route 
choice strategy pt is determined from the valuation vec
tor st. It measures the trade-off between exploration 
and exploitation; the larger the parameter r, the more 
exploitative the travelers (meaning that they are less 
likely to explore suboptimal routes). Thus, r will be 
referred to as the exploitation parameter. In this study, 
the parameter r is fixed at a constant value. One may 
interpret this setting in one of two ways. (i) The percep
tion errors are independent of t, which is the assump
tion used to justify in Horowitz (1984, model 1), or (ii) 
travelers’ propensity for accepting suboptimal routes 
or their desired balance between exploration and 
exploitation is time invariant (Fudenberg and Kreps 
1993, Kocsis and Szepesvári 2006). Our stability analy
sis is agnostic on the interpretation of the exploitation 
parameter.

• The parameter ηt regulates how the valuation vec
tor st is updated. Before the routing game is played, 
travelers have an initial route valuation vector s0. If no 
prior preference exists, then they simply set s0

k � 0 for 
all k ∈ K. On day t ≥ 1, the travelers update the valua
tion st by adding to it a cost vector ηt · c(pt�1), where 
ηt ≥ 0 is the weight on day t. The weight ηt measures 
the impact of the cost received on day t � 1 on the tra
velers’ valuation on day t. Behaviorally, it captures 
how quickly travelers become disposed to ignore the 
latest information and “settle down.” Thus, ηt will be 
referred to as the proactivity measure. The larger the ηt, 
the less passive the travelers. As we shall see, the stabil
ity of the CumLog model depends on the asymptotic 

Figure 1. (Color online) Illustration of a Convergence Process Toward WE in a Two-Route Routing Game 

(a) (b) (c)

Notes. (a) Evolution of flows. (b) Evolution of costs. (c) Valuation differences.
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behavior of the proactivity measure ηt. Not all feasible 
sequences of ηt guarantee convergence to WE. For 
example, if travelers stop incorporating new informa
tion into route valuation too soon (indicating a rapid 
descent to extreme passivity), CumLog may stabilize 
quickly but at a place far away from WE. We shall con
sider two asymptotic rules for the proactivity measure 
in this study. In the first, ηt � η > 0 for all t ≥ 0 (i.e., the 
level of proactivity remains at a constant level through 
the entire process). The second rule dictates that ηt 

monotonically decreases to zero as t → ∞. Thus, the 
costs received by the travelers will have a progressively 
diminishing impact on their route choice. Another rule, 
in which ηt converges to some constant η > 0 as t → ∞, 
may be inferred from the above two.

4.3. Illustrative Example
We close by illustrating CumLog with a simple routing 
game played on a network with three parallel links con
necting an OD pair. The cost functions on the links are 
u1(x1) � x1, u2(x2) � x2 + 1, and u3(x3) � x3 + 2:25. The 
total demand is d � 3. It can be easily verified the WE 
conditions dictate that the three links be selected with 
probabilities p∗

1 � 2=3, p∗
2 � 1=3, and p∗

3 � 0. The WE 
strategy is unique in this case because all route cost 
functions are strictly increasing.

Setting r � 0.25, fixing ηt � 1, and starting from s0 � 0, 
we run the CumLog model from day 0 to day 12 and 
report the convergence process in Figure 2. A WE is 
reached after day 12, with the proportions of travelers 
selecting each route converging rather precisely to 2/3, 
1/3, and 0, respectively, and the costs on the two routes 
included in the mixed strategy, routes 1 and 2, become 
identical.

In Figure 2(b), the shadowed areas with and without 
hatches highlight the difference in valuation between 
routes 1 and 2 and that between routes 2 and 3, respec
tively. Route 1 is always the lowest-cost route through
out the process, and thus, it is always selected by most 
travelers. The shadowed area without hatches in Figure 
2(b) approaches a constant value as t increases. 

Consequently, the relative preference for route 1 over 
route 2 became stabilized, indicating that route 2 is an 
inferior but acceptable option. The red area in Figure 
2(b), however, grew to infinity as t → ∞, which means 
that route 3 became infinitely worse than route 2 and 
eventually was abandoned.

This example exhibits another distinction between 
the CumLog model and the classical DTD models. 
Even with a finite exploitation parameter r, the Cum
Log model is capable of identifying and eliminating 
the routes that no WE strategy should use. The classi
cal models, however, are obliged by their averaging 
scheme to keep a positive flow on every route unless 
r → ∞. This result can be expected from the fact 
that the limiting point of these models is SUE rather 
than WE.

5. Global Stability
In this section, we present and prove the main stability 
result concerning the CumLog model proposed in Section 
4. Simply put, the objective is to show that under mild con
ditions, the DTD dynamical Model (6) always converges 
to a WE regardless of the initial point. The following 
assumptions describe some of the conditions on the link 
cost function u(x), whose domain (the set of feasible link 
flows) is written as X � {x : R |A | : x � L̄p, p ∈ P}.

Assumption 1. The link cost function u(x) is twice con
tinuously differentiable on X .

Assumption 2. For all x ∈ X , the symmetric parts of both 
∇u(x) and (∇u(x))

2 are positive semidefinite.

Assumption 2 is satisfied as long as u(x) is mono
tone and ∇u(x) is symmetric. If ∇u(x) is asymmetric, 
Assumption 2 still holds if ∇u(x) is not “too asymmetric” 
(i.e., the antisymmetric part does not exceed the symmet
ric part) (see Hammond and Magnanti 1987 for a more 
rigorous description). As the assumptions require nei
ther u(x) to be strongly monotone nor ∇u(x) to be sym
metric, our analysis can be applied to a broad class of 
routing games, including those with nonseparable and 

Figure 2. (Color online) Illustration of a Convergence Process Toward WE in a Three-Route Routing Game 

(a) (b)

Notes. (a) Route choices. (b) Travel costs.
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nonstrictly increasing cost functions. The next proposi
tion characterizes the route cost function c(p) and the 
WE strategy set P∗.

Proposition 2. Under Assumptions 1 and 2, (i) there 
exists L ≥ 0 such that c(p) is 1=4L-cocoercive on P (i.e., 
〈c(p′) � c(p), p′ � p〉 ≥ 1=4L · ‖c(p′) � c(p)‖

2
2 for all p, p′ ∈ P); 

(ii) 〈c(p), p � p∗〉 ≥ 0 for all p ∈ P and p∗ ∈ P∗, with equal
ity for any given p∗ ∈ P∗ if and only if p ∈ P∗; and (iii) P∗

is convex and compact.

Proof. Following the standard convex analysis techni
ques, we can show Assumptions 1 and 2 ⇒ (1) ⇒ (2) 
⇒ (3). The reader is referred to Online Appendix A.1 
for details. w

We note that when ∇c(p) is symmetric, L is the Lip
shitz constant of c(p) on P (i.e., any L ≥ maxp∈P‖∇c(p)‖2 
can be used to fulfill the requirement). The case with 
asymmetric ∇c(p) requires L � maxw∈W{dw} · H · ‖L‖

2
2, 

where H is the Lipshitz constant of u(x) on X � {x ∈

R |A |
+ : x � L̄p, p ∈ P}.
We are now ready to give the main stability result.

Theorem 1. Under Assumptions 1 and 2, suppose that 
s0 < ∞; then, pt in the CumLog Model (6) converges to a 
fixed point p∗ ∈ P∗, the solution set to the VIP (1) if either 
of the following two conditions is satisfied: (i) limt→∞ηt �

0 and limt→∞

Pt
i�0 η

i � ∞ or (ii) ηt � η < 1=2rL for all 
t ≥ 0.

Below, Section 5.1 interprets the convergence result, 
whereas Section 5.2 sketches the proof of Theorem 1
(the complete proof is given in Online Appendices 
A.2–A.5).

5.1. Interpretation of the Convergence 
Result

5.1.1. Convergence Conditions
The two convergence conditions given by Theorem 1
can be interpreted as follows. 

• The first part of condition (i) in Theorem 1 implies 
that the attention paid to the latest route cost decreases 
with t and eventually disappears altogether. In other 
words, travelers tend to settle down in the long run. 
The second part states that convergence may be at risk 
if travelers settle down too soon. Specifically, the 
decreasing rate of ηt cannot be faster than O(t�1). 
The following are a few examples that meet this “not- 
too-soon” requirement: ηt � O(1=t), ηt � O(1=

ffiffi
t

√
), or 

ηt � O(1=log(t)). The second part is introduced to 
ensure that the routes not included in any WE strategy 
become infinitely worse than the best route when 
t → ∞. If the condition is violated, say, for example, 
ηt � O(t�(1+δ)) for some δ > 0, the valuation st would 
remain bounded when t → ∞. The monotone conver
gence theorem then guarantees the convergence of st. 
Denoting its limit as s̄, we can show that the difference 

between any elements of s̄ is bounded because s̄ itself 
is bounded. As a result, per the logit model, all routes 
are bound to receive positive flow as t → ∞, which in 
general, violates the WE conditions.

• Condition (ii) in Theorem 1 means that travelers 
would never stop incorporating new information into 
route valuations. Rather, their propensity for proactiv
ity is maintained at a constant level below a certain 
threshold. Compared with condition (i) in Theorem 1, 
this is a weaker requirement, and thus, the convergence 
under it is more difficult to establish. Condition (ii) in 
Theorem 1 may also be interpreted as given a fixed 
level of proactivity η, the exploitation parameter r must 
not exceed 1=2ηL. At first glance, this upper bound on r 
is puzzling because one would expect that a larger r 
makes it easier to reach WE because in theory, WE is 
the limiting case of SUE when r → ∞. However, a 
moment of reflection reveals that in a dynamical pro
cess, a large and constant r means that travelers tend to 
underexplore the route space, which might prevent 
them from reaching WE. In learning theory, it is well 
known that a sufficient level of exploration in the early 
stage is critical to effective exploitation in the later stage 
(Lattimore and Szepesvári 2020).

5.1.2. Significance. The above interpretation of the con
vergence conditions indicates that CumLog can reach 
Wardrop equilibrium under relatively mild assumptions 
about boundedly rational route choice behaviors. This 
finding challenges the long-standing belief in transporta
tion research that WE has a shaky behavioral foundation 
(see, e.g., Watling and Hazelton 2003).

Our theory also resolves Harsanyi’s instability prob
lem, which manifests as follows. When WE is reached, 
all used routes are equally good. Hence, breaking the 
tie arbitrarily is not against anyone’s interest. However, 
if travelers do break the tie arbitrarily, the system can
not stay at WE. The CumLog model solves this 
dilemma by allowing travelers to assign a different val
uation (hence, a different choice probability) to routes 
that have identical costs at WE. Specifically, when 
CumLog reaches a WE strategy p∗, given any OD pair 
w ∈ W and two WE routes k, k′ ∈ Kw between that pair, 
travelers’ valuation difference between routes k and k′

would be �(log(p∗
k) � log(p∗

k′ ))=r: This valuation differ
ence explains why two identical-cost routes are selected 
with different probabilities.

5.2. Sketch of the Proof
To sketch the proof of Theorem 1, let us define pw �

{pk}k∈Kw and the negative entropy function as φw(pw)

� 〈pw, log(pw)〉. Also, define η̃t ≡ r · ηt and Qt
w � {pw ∈

Pw : supp(pw) ⊆ supp(pt
w)}. We shall prove Theorem 1

by showing that there exists p∗ ∈ P∗ such that the 
distance between p∗ and pt converges to zero when 
t → ∞. Because the decision variable is defined on 
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P �
Q

w∈WPw, the Cartesian product of a set of probabil
ity simplex Pw � {pw ∈ R | Kw |

+ : 1Tpw � 1}, the Kullback– 
Leibler divergence (also known as the statistical distance) 
is a natural measure given by

D(p∗, pt) �
X

w∈W

Dw(p∗
w, pt

w)

�
X

w∈W

φw(pw) �φw(pt
w) � 〈∇φw(pt

w), pw � pt
w〉:

(7) 

The proof is divided into three steps. 
Step 1. We first establish the relation between pt+1 

and pt in the CumLog dynamical process.

Lemma 1. Given any r > 0, ηt > 0, and st ∈ R̄ |K | , let 
pt � qr(st). Then, for a vector p̃ ∈ P, we have p̃ � qr(st + ηt ·

c(pt)) if and only if

〈∇φw(pt
w) � ∇φw(p̃w), pw � p̃w〉 ≤ η̃t · 〈cw(pt), pw � p̃w〉,

∀pw ∈ Qt
w, ∀w ∈ W: (8) 

Proof. The proof follows from two well-known 
results: (1) the equivalence between the logit model 
and a convex program (Proposition A.14 in the Online 
Appendix) and (2) the equivalence between the con
vex program and a VIP (Lemma A.3 in the Online 
Appendix). The reader is referred to Online Appendix 
A.2 for the complete proof. w

Step 2. We next link D(p∗, pt+1) to D(p∗, pt).

Lemma 2. If s0 < ∞, then given any p∗ ∈ P∗, pt and pt+1 

in the CumLog dynamical process satisfy

D(p∗,pt+1) ≤ D(p∗,pt)�
1
2 · ‖pt �pt+1‖

2
2 + η̃t · 〈c(pt),p∗ �pt+1〉:

(9) 

Proof. As s0 < ∞, we have st < ∞, and thus, Qt
w � Pw 

for all t ≥ 0. Invoking Lemma 1 then completes the 
proof. See Online Appendix A.3 for details. w

Proposition 3. Under Assumptions 1 and 2, if s0 < ∞, 
then given any p∗ ∈ P∗, pt and pt+1 in the CumLog dynam
ical process satisfy

D(p∗, pt+1) ≤ D(p∗, pt) �
1 � 2η̃tL

2 · ‖pt � pt+1‖
2
2: (10) 

Proof. As per Proposition 2, c(p) is 1=4L-cocoercive. 
The result then follows from Lemma 2 and the cocoer
civity of c(p). See Online Appendix A.4 for the com
plete proof. w

Step 3. We finally prove the convergence of pt 

toward a point in P∗ under conditions (i) and (ii) in 
Theorem 1.

Proof. Proposition 3 indicates that limt→∞D(p∗, pt)

exists for all p∗ ∈ P under both conditions (i) and (ii) in 
Theorem 1. All that is left to prove is to find a con
vergent subsequence {ptj } ⊆ {pt} with ptj → P∗ when 
j → ∞. Denote p̂ as the limit of ptj . Then, ptj → p̂ 
implies that D(p̂, ptj ) → 0. As limt→∞D(p̂, pt) exists, it 
follows D(p̂, pt) → 0, which implies that pt → p̂. Under 
condition (i) given in Theorem 1, we prove by contra
diction; if there does not exist a subsequence of {pt}

that converges to P∗, properties (ii) and (iii) given in 
Proposition 2 cannot both hold. Under condition (ii) in 
Theorem 1, we first invoke the Bolzano–Weierstrass the
orem to exact a convergent subsequence and then, prove 
that its limit must belong to P∗. The reader is referred to 
Online Appendix A.5 for details. w

Remark 2 (On Infinite Valuations). In our model, when 
either condition (i) or condition (ii) in Theorem 1 is 
met, st converges to infinity when t → ∞. Although an 
infinite value might seem unrealistic, a key feature in 
the logit model is that the choice probability depends 
on the relative, rather than absolute, valuations of alter
natives. In our context, this may be interpreted as tra
velers monitoring the differences between the elements 
in the valuation vector st. Thus, as long as these differ
ences are finite, the model will give correct results. One 
can also modify the original model to avoid such a 
nuanced interpretation. To simplify the discussion, 
assume |W | � 1 (i.e., there is only one OD pair). Con
sider the following two behavioral variants. 

• Variant 1. On each day t, after updating route 
valuations, travelers further adjust them such that the 
best-valued route is normalized to zero (i.e., replacing 
st by st � min(st)).

• Variant 2. One each day t, the travelers update route 
valuations by st � st�1 + ηt · (c(pt�1) � min(c(pt�1)) so 
that the valuation of the route with the lowest cost on 
day t remains unchanged.

Mathematically, both variants are identical to the 
original CumLog model. However, they would ensure 
that travelers’ valuation of routes used at WE would 
be bounded. However, the valuation on the non-WE 
routes would still grow to infinity, signifying that they 
are unacceptable.

Remark 3 (Related Convergence Results). The two con
ditions given in Theorem 1 are similar to the conditions 
detailed in Horowitz (1984, theorem 1). The difference 
is twofold. First, his proof is established only for the 
two-link network. Second and most important, his 
dynamical system, based on an average rather than a 
cumulative scheme, converges to SUE rather than a 
WE. Horowitz (1984) pondered the possibility of ex
tending his stability result to the WE case (what he 
called “the deterministic model”). His conclusion was 
negative because letting r → ∞ (the equivalent of zero 
perception errors) not only violates Lipshitz continuity 
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but also voids the argument that the convergence of the 
average cost difference to the equilibrium value must 
imply the convergence to the correct equilibrium (see 
Horowitz 1984, example 4). The CumLog model also 
shares a similar mathematical structure with a classic 
online convex programming method known as the 
dual-averaging (DA) algorithm (Xiao 2009). Recently, 
Mertikopoulos and Zhou (2019) studied the conver
gence of the DA algorithm in continuous games. The 
convergence conditions given by them are similar to 
condition (i) in Theorem 1, although they were proved 
using a different technique. Condition (ii) in Theorem 1, 
to the best of our knowledge, has never been rigorously 
shown to ensure the convergence of the DA algorithm 
in games or VIPs.

Remark 4 (On the Convergence of the Successive- 
Average Model to WE). At the end of Section 3.2, we 
ask whether properly coupling the increase of r and 
the decrease of η would steer the successive-average 
Model (4) toward WE. With Theorem 1, this question 
can now be partially answered. Consider the follow
ing two DTD models. 

• Model I. st � st�1 + c(pt�1) and pt � qr(st).
• Model II. st � (1 � ηt) · st�1 + ηt · c(pt�1) and pt �

qrt (st) with ηt � 1=(t + 1) and rt � r · (t + 1).
Model I is a CumLog model, and Model II is a 

successive-average model. Mathematically, the two 
models are identical in the sequence of {pt}t�0 that they 
generate (the proof is omitted for brevity). Because 
Model I is a CumLog model with η � 1, its convergence 
is guaranteed for sufficiently small r as per condition 
(ii) in Theorem 1. This means that the successive- 
average model converges to WE as well if ηt decreases 
at a rate of O(1=t) and rt increases at a rate of O(t). 
However, this peculiar coupling between ηt and rt in 
Model II does not seem to have a reasonable behavioral 
explanation. In Section 6.2, we shall show that very 
slight modifications of the coupling mechanism could 
lead to vastly different convergence patterns.

6. Numerical Examples
The proposed CumLog dynamical process is tested on 
two small networks: a three-node, four-link (3N4L) net
work (Friesz et al. 1990) and the Sioux–Falls network 
(Leblanc 1975).

The 3N4L network, as shown in Figure 3, has three 
nodes, four links, and one OD pair. It has four routes 
connecting the origin (node 1) and the destination 
(node 3). For ease of reference, let us say that route 1 
uses links 2 and 4, route 2 uses links 1 and 4, route 3 
uses links 2 and 3, and route 4 uses links 1 and 3. The 
number of travelers from node 1 to node 3 is 10. Given 
the flow xa on link a, we model its costs as ua � ha + wa ·

x4
a , where [h1, h2, h3, h4]

T
� [4, 20, 1, 30]

T and [w1, w2, w3, 

w4]
T

� [1, 5, 30, 1]
T.

The Sioux–Falls network has 24 nodes, 76 links, and 
528 OD pairs. We refer the readers to Leblanc (1975) for 
the topology, travel demand, and cost function of the 
Sioux–Falls network.

On the two networks, we shall perform four sets of 
experiments; the first three run on the 3N4L network, 
whereas the fourth runs on both the 3N4L network 
and the Sioux–Falls network. Section 6.1 tests the 
CumLog model under various behavioral parameters. 
In Section 6.2, we explore how the classical successive- 
average model, like those studied by Horowitz (1984), 
can be redirected toward a WE under the guidance of 
our theory. In Section 6.3, we test the CumLog model 
with heterogeneous travelers who exhibit different 
sensitivity to route valuations. Finally, Section 6.4 in
vestigates the difference between the WE strategies 
reached by the CumLog model starting from different 
initial points.

For a route choice strategy p, we use the relative gap 
of its corresponding link flow x ∈ X � {x : x � L̄p, 
p ∈ P}, denoted as δ(x), to assess its distance from WE. 
The relative gap is computed as

δ(x) � �
〈u(x), x′ � x〉

〈u(x), x〉
, x′ ∈ arg min

x′′∈X

〈u(x), x′′〉: (11) 

6.1. Test of Convergence Conditions
We first examine conditions (i) and (ii) given in Theo
rem 1. To test condition (i) in Theorem 1, we set ηt � 1=

(t + 1) for r � 10, 20, and 40; to test condition (ii) in Theo
rem 1, we fix ηt � 1 for r � 0:25, 0:5, 1, 2:5. For each set
ting, we run the CumLog model starting from 
s0 � [0, 0, 0, 0]

T until one of the following criteria is met. 
(i) The number of iterations reaches 120, (ii) the relative 
gap drops below 10�9, or (iii) the algorithm begins to 
diverge.

The convergence patterns reported in Figures 4 and 5
generally agree with the prediction of Theorem 1. Under 
condition (i) in Theorem 1, convergence is ensured 
regardless of the value of r. Interestingly, the larger the 
value of r, the slower the convergence is at the begin
ning, and the faster the convergence is at the end (see 
Figure 4). For condition (ii) in Theorem 1, the conver
gence can only be guaranteed when r is sufficiently 
small. In this case, we can observe from Figure 5 that the 
convergence rate increases with r when r ≤ 1. Indeed, 

Figure 3. (Color online) The 3N4L Network 
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setting r � 1 and η � 1 delivers the best performance 
among all scenarios; it reaches the target with less than 
30 iterations. However, when r � 2.5, the CumLog 
model failed to converge.

We next fix r � 1 and examine how the decreasing 
rate of ηt affects the convergence performance. We set 
ηt � (t + 1)

α and report the convergence patterns corre
sponding to α � �0:5, �0:25, 0, 0:25 in Figure 6. The 
convergence of the model under α � �0:5, �0:25, 0 is 
guaranteed by Theorem 1. The faster the ηt decreases 
with t, the more quickly travelers tend to settle down, 
and the slower the convergence is. When the decreas
ing rate is zero (i.e., ηt becomes a constant), the conver
gence is the fastest. However, when the trend is 
reversed and ηt begins to increase with t (α � 0:25), the 
process quickly diverges (see the line with dot markers 
in Figure 6). This is expected as neither condition (i) in 
Theorem 1 nor condition (ii) in Theorem 1 would be 
satisfied with r � 1 and ηt � (t + 1)

0:25.

6.2. Convergence of Revised Successive- 
Average Models to WE

In the second experiment, we attempt to manipulate 
the classical successive-average model using our theory 
so that it converges to WE rather than SUE. The basic 

idea is to gradually raise the value of r (the exploitation 
parameter) while reducing η (the proactivity measure), 
as discussed earlier in Remark 4. We test five models, 
all based on the SA process st � (1 � ηt) · st�1 + ηt ·

c(pt�1) and pt � qrt (st). However, ηt and rt are set differ
ently, as detailed below. 

Model A. ηt � 1=(t + 1) and rt � t + 1.
Model B. ηt � 1=(t + 1)

0:99 and rt � t + 1.
Model C. ηt � 1=(t + 1)

1:01 and rt � t + 1.
Model D. ηt � 1=(t + 1)

0:99 and rt � (t + 1)
0:99.

Model E. ηt � 1=(t + 1)
1:01 and rt � (t + 1)

1:01.
Model A, as pointed out in Remark 4, is equivalent to 

the CumLog model with r � 1 and η � 1. Hence, its con
vergence to WE is guaranteed by Theorem 1 and 
already confirmed in Section 6.1. What we try to exam
ine is the robustness of the “perturbed” successive- 
average model. Specifically, what happens if we 
slightly perturb the changing rates of the two para
meters? If the manipulated model is robust, then such 
perturbations should not have a significant impact on 
the convergence pattern. Compared with Model A, 
Models B and C keep the same increasing rate for rt but 
slightly modify the decreasing rate of ηt; Models D and 
E change both rt and ηt but keep rt · ηt � 1 as in Model 
A. We start all models from s0 � [0, 0, 0, 0]

T and report 
the convergence pattern in Figure 7.

Surprisingly, although Model A converges quickly 
as expected, none of its four slightly perturbed versions 
were able to converge at a similar speed—not even 
close. In fact, based on the trend, it is unclear whether 
they would ever converge to a point sufficiently close 
to WE. Figure 7 indicates that after 100,000 days (or 
274 years), they are still far away from reaching the tar
get precision (relative gap of 10�9). We do not know 
what caused this dramatic slowdown when the pertur
bation moves the parameters so slightly away from the 
trajectory charted by Theorem 1. Indeed, if we compare 
Model A with Models B and C, the only difference is 
that ηt is changed from (1 + t)�1 in Model A to 
(1 + t)�0:99 in Model B—which slightly slows down the 

Figure 4. (Color online) Convergence Pattern of the CumLog 
Model Under Conditions (i) in Theorem 1 ηt � 1=(t + 1)

Figure 6. (Color online) Convergence Pattern of the CumLog 
Model with r � 1 and ηt � (1 + t)α 

Figure 5. (Color online) Convergence Pattern of the CumLog 
Model Under Condition (ii) in Theorem 1 with ηt � 1 
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decreasing rate of ηt—and (1 + t)�1:01 in Model C— 
which slightly speeds up how ηt is decreased. Yet, 
Model A converges within less than a month, at least 
four to five orders of magnitude faster than both Mod
els B and C. Regardless of the cause, the phenomenon 
draws a sharp contrast with the robustness of the 
CumLog model against the changing rate in ηt. In 
Figures 4–6, the CumLog model’s convergence speed 
varies within a much narrower range, despite much 
greater variations applied to the parameters.

6.3. User Heterogeneity at WE
We next construct an experiment in which travelers dif
fer from each other in terms of route choice behaviors. 
Specifically, travelers are divided into four classes (clas
ses 1–4) with the exploitation parameter r set to 0.01, 
0.1, 1, and 10, respectively. As noted before, a larger r 
suggests a smaller perception error, a greater sensitivity 
to route evaluations, or a stronger propensity for 
exploitation depending on the preferred interpretation 
of the modeler. The total demand remains the same as 
in the first two experiments but is equally allocated to 
the four classes. The travelers from different classes are 
identical in every aspect except for the value of r. Their 
initial valuations of the routes are [0, 0, 0, 0]

T, and their 
proactivity measure ηt is set to a constant of one. We 

ran the CumLog model for 1,000 iterations and reached 
a relative gap below 10�14. The WE strategy obtained 
corresponds to exactly the same WE link flow as in the 
homogeneous case. Figure 8 reports the WE route 
choice strategies of each class. We can see that all but 
class 4 rank the four routes in the same order: route 2 >
route 1 > route 4 > route 3. Class 4 is different only 
because it does not use the two lower-ranked routes 
(routes 4 and 3). This indicates that, in this setting, dif
ferent travelers value the routes the same way but react 
to the valuations distinctively. Moreover, the class with 
a larger r is more concentrated on the higher-ranked 
routes. Class 1 was almost indifferent among the four 
routes, whereas class 4 completely abandoned routes 4 
and 3.

What is remarkable about the above result is that it 
illustrates that WE is compatible with not only 
bounded rationality but also user heterogeneity. At a 
WE, some travelers may stick to one or very few routes 
because they are too rational (or cost sensitive) to toler
ate inferior routes. On the other end of the spectrum are 
those who are open to exploring all acceptable options 
with similar probabilities, even the routes with much 
worse valuations. Still more travelers would fall 
between the two extremes. The choices of the travelers, 
as diverse as they are, still result in the same network 
traffic conditions as if everyone behaves identically and 
rationally. Therefore, the CumLog model allows us to 
simultaneously accept that WE approximately exists in 
the real world at the aggregate level and reject the 
implausible implication that every traveler must be 
same and perfectly rational.

6.4. Nonuniqueness of WE Strategies
Our last experiment, performed on both the 3N4L net
work and the Sioux–Falls network is devised to demon
strate that the CumLog model may reach WE strategies 
of different properties when initialized from different 
points. Note that in both networks, the link cost func
tion u(x) is strictly monotone on X . According to Sheffi 
(1985), under such conditions, the link flow at WE is 

Figure 7. (Color online) Convergence Pattern of the SA 
Model with rt and ηt of Different Changing Rates 

Figure 8. (Color online) WE Route Choice Strategies of Travelers with Different Exploitation Parameters (r � 0:01, 0:1, 1, 10) 

(a) (b) (c) (d)

Notes. (a) Class 1: r � 0.01. (b) Class 2: r � 0.1. (c) Class 3: r � 1. (d) Class 4: r � 10.
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unique. Denoting the unique link flow at WE as s∗, the 
set of route choice strategies at WE can be represented 
as a polyhedron:

P∗ � {p∗ ∈ P : L̄p∗ � x∗}: (12) 

A useful property for differentiating p∗ ∈ P∗ is their 
entropy, which may be interpreted as its likelihood of 
realization given the information known to the modeler 
(e.g., satisfying the WE conditions) (Wilson 2011). 
Mathematically, entropy may be defined as Φ(p∗) �

�〈diag(q)p∗, log(p∗)〉: Different p∗ ∈ P∗ may use differ
ent set of routes. For example, an interior point of the 
polyhedron (12) uses every route that may be used at 
WE, observing a “no-route-left-behind” policy (Bar- 
Gera and Boyce 1999). A standard WE algorithm, how
ever, usually finds only a subset of all possible WE 
routes (i.e., it admits a solution on the boundary of the 
polyhedron (12)). In what follows, we explore how the 
choice of the initial strategy p0 affects the location and 
entropy of the equilibrium route choice strategy p∗ as 
well as the set of used routes.

In the 3N4L network, the set of route choice strate
gies at WE can be written as

P∗ � {p∗ : p∗ � [0:3 � λ, 0:4 � λ, 0:3 + λ,λ]
T,

λ ∈ [0, 0:3]}:

To visualize the difference between these solutions, we 
plot the relation between the entropy of all p∗ ∈ P∗ and 
their corresponding value of λ in Figure 9. It can be seen 
that the entropy of p∗ first increases and then decreases 
with λ; the entropy peaks at λ � 0:12, which corre
sponds to p̄∗ � [0:18, 0:28, 0:42, 0:12]

T or the “maximum- 
entropy” solution.

We then generate a random sample of 2,000 s0 from a 
normal distribution and run CumLog starting from an 
initial point corresponding to each s0 in the sample. In 
each run, we set r � 1 and ηt � 1, and we terminate it if 
the relative equilibrium gap is smaller than 10�6. Figure 
10 plots the histogram of the entropy of p∗ reached by 
our model. If all of the 2,000 initial solutions end up at 

the same WE strategy, then the entropy values would 
be concentrated at a single point in the histogram. 
Instead, we find that they spread out between a mini
mum of 10.77 and a maximum of 12.84. Moreover, the 
equilibrium solution with the highest entropy among 
the 2,000 points corresponds to the initial solution s0 � 0 
(i.e., all valuations are initially set to zero, representing 
zero information on all routes). A closer look reveals 
that this solution is indeed the maximum-entropy solu
tion (i.e., p̄∗ � [0:18, 0:28, 0:42, 0:12]

T).
We then investigate how s0 affects the set of routes 

used at the WE reached by the CumLog model on the 
Sioux–Falls network. Using the methods by Tobin and 
Friesz (1988) and Xie and Nie (2019), we find that the 
maximum and minimum numbers of routes to be used 
at WE are 770 and 557, respectively. This suggests that 
a WE algorithm may locate a solution whose number of 
used routes is anywhere between 557 and 770. To per
form the test, we use a set of 1,238 routes that contains 
all 770 routes that may be used by a WE strategy. The 
initial valuation s0 is randomly sampled from a normal 
distribution, and the sample size is set to 2,000. The all- 
zero initialization s0 � 0 is employed as a benchmark. 
In all runs, we set r � 2.5, ηt � 1, and the maximum 
number of days to 1,000.

Figure 11 shows how the relative gap and the total 
number of routes actively used by travelers (a route is 
actively used if its probability of being selected is no 
less than 10�6) change with the number of days. We 
can see that the convergence pattern is affected by the 
initial point, but the impact on the convergence rate is 
insignificant. The number of actively used paths also 
descends quickly to the lower bound. Interestingly, the 
CumLog model never “accidentally” eliminates a 
potential WE route, nor does it ever fail to exclude 
routes that are not supposed to be there; the number of 
used routes at the solution reached by CumLog is 
always 770. If this property can be established analyti
cally, it will make the CumLog model a suitable algo
rithm for finding all WE routes.

Figure 10. (Color online) Distribution of Φ(p∗) for p∗ Reached 
by 2,000 s0 

Note. The red line highlights Φ(p∗) for p∗ reached by s0 � 0.

Figure 9. (Color online) Relation Between Φ(p∗) for All p∗ ∈ P 

and Their Corresponding Value of λ 
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7. Conclusions
As one of the most fundamental concepts in transporta
tion science, Wardrop equilibrium was the cornerstone 
of countless large mathematical models that were built 
in the past six decades to plan, design, and operate 
transportation systems around the world. However, 
like Nash equilibrium, its more famous cousin, WE has 
always had a somewhat flimsy behavioral foundation. 
The efforts to strengthen this foundation have largely 
centered on reckoning with the imperfections in human 
decision-making processes, such as the lack of accurate 
information, limited computing power, and subopti
mal choices. This retreat from behavioral perfectionism 
was typically accompanied by a conceptual expansion 
of equilibrium. In place of WE, for example, transporta
tion researchers had defined such generalized equilib
rium concepts as stochastic user equilibrium and 
boundedly rational user equilibrium. Invaluable as 
these alternatives are to enrich our understanding of 
equilibrium and to advance modeling and computa
tional tools, they advocate for the abandonment of WE, 
predicated on its incompatibility with real behaviors. 
Our study aims to demonstrate that giving up perfect 
rationality need not force a departure from WE. To this 
end, we construct a day-to-day dynamical model that 
mimics how travelers gradually adjust their valuations 
of routes, hence the choice probabilities, based on past 
experiences.

Our model, called cumulative logit, resembles the 
classical DTD models but makes a crucial change; 
whereas the classical models assume that routes are 
valued based on the cost averaged over historical data, 
our model values the routes based on the cost accumu
lated. To describe route choice behaviors, the CumLog 
model only uses two parameters, one accounting for 
the rate at which the future route cost is discounted in 
the valuation relative to the past ones (the proactivity 
measure) and the other describing the sensitivity of 
route choice probabilities to valuation differences (the 

exploitation parameter). We prove that CumLog 
always converges to WE, regardless of the initial point, 
as long as the proactivity measure either shrinks to zero 
at a sufficiently slow pace as time proceeds or is held at 
a sufficiently small constant value.

By equipping WE with a route choice theory compati
ble with bounded rationality, we uphold its role as a 
benchmark in transportation systems analysis. Com
pared with the incumbents, our theory requires no modi
fications of WE as a result of behavioral accommodation. 
This simplicity helps to avoid the complications that 
come with a “moving benchmark,” be it caused by a mul
titude of equilibria or the dependence of equilibrium on 
certain behavioral traits. Moreover, by offering a plausi
ble explanation for travelers’ preferences among equal- 
cost routes at WE, the theory resolves the theoretical chal
lenge posed by Harsanyi’s instability problem. Note that 
we lay no claim on the behavioral truth about route 
choices. Real-world routing games take place in such 
complicated and ever-evolving environments that they 
may never reach a true stationary state, much less the 
prediction of a mathematical model riddled with a myr
iad of assumptions. Indeed, a relatively stable traffic pat
tern in a transportation network may be explained as a 
point in a BRUE set, an SUE tied to properly calibrated 
behavioral parameters, or simply, a crude WE reached 
by CumLog. Although more empirical research is 
needed to vet our theory and compare it with existing 
ones, we should no longer write off WE simply because it 
adheres to behavioral perfectionism.

Other than satisfying theoretical interests, the Cum
Log model may also be used as a prototype algorithm 
for solving routing games. On large networks, the con
vergence of the CumLog model may be relatively slow 
(see, for example, Figure 11(a)). This is hardly surprising 
given that no higher-order information (e.g., the deriva
tive of route cost) is employed. However, if the goal is to 
find a good approximate solution quickly, then a 
CumLog-based algorithm can be quite competitive 

Figure 11. (Color online) Convergence Pattern of the CumLog Model with Different s0 

(a) (b)

Notes. The shadowed area represents the collection of the convergence curves corresponding to 2,000 random s0; the solid line represents the 
convergence curve corresponding to s0 � 0. The black dashed line in panel (b) represents the maximum number of routes that may be used by a 
WE strategy. (a) Relative gap. (b) Number of used routes.
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thanks to its simplicity (only route costs are needed), 
flexibility (easy extension to more general settings), and 
stability (relatively weak requirements for conver
gence). To be sure, the current CumLog model is still far 
away from a practical algorithm for WE routing games. 
Of the missing components, the most important is an 
efficient route-generation scheme. We leave the devel
opment of such an algorithm to future investigations.

Numerical experiments in Section 6.4 revealed a few 
noteworthy phenomena. First, the CumLog model is 
capable of identifying all routes that may be used by 
any WE strategy. Second, the WE strategy resulting 
from the dynamical process is closely related to the ini
tial route valuation. In particular, it seems that an all- 
zero initial valuation leads to the entropy-maximizing 
(or most likely) WE strategy. Does this mean the Cum
Log model can be used to guide the selection of a unique 
WE strategy, especially in locating the most likely one? 
We also leave this question to a future study.

Acknowledgments
The authors are grateful for the valuable comments 
offered by Mr. Boyi Liu and Prof. Hani Mahmassani at 
Northwestern University and Prof. Yafeng Yin at the Uni
versity of Michigan, Ann Arbor. The remaining errors are 
the authors’ own.

References
Arrow KJ (1966) Exposition of the theory of choice under uncer

tainty. Synthese 16(3/4):253–269.
Arthur WB (1991) Designing economic agents that act like human 

agents: A behavioral approach to bounded rationality. Amer. 
Econom. Rev. 81(2):353–359.

Bar-Gera H, Boyce D (1999) Route flow entropy maximization in 
origin-based traffic assignment. Ceder A, ed. Proc. 14th Internat. 
Sympos. Transportation Traffic Theory (Emerald Group Publishing 
Limited, Leeds, UK), 397–415.

Beckmann M, McGuire C, Winsten C (1956) Studies in the Economics 
of Transportation (Yale University Press, New Haven, CT).

Ben-Akiva M, Bierlaire M (1999) Discrete choice methods and their 
applications to short term travel decisions. Hall RW, ed. Hand
book of Transportation Science (Springer, Cham, Switzerland), 5–33.

Ben-Akiva ME, Lerman SR (1985) Discrete Choice Analysis: Theory 
and Application to Travel Demand (MIT Press, Cambridge, MA).

Björnerstedt J, Weibull JW (1994) Nash equilibrium and evolution by 
imitation. Technical report, Stockholm University, Stockholm.

Boyce DE, Williams HC (2015) Forecasting Urban Travel: Past, Present 
and Future (Edward Elgar Publishing, Northampton, MA).

Brown GW (1951) Iterative solution of games by fictitious play. 
Koopmans TC, ed. Activity Analysis of Production and Allocation 
(Wiley, New York), 374–376.

Bush R, Mosteller F (1955) Stochastic Models for Learning (Wiley, 
New York).

Camerer CF (2011) Behavioral Game Theory: Experiments in Strategic 
Interaction (Princeton University Press, Princeton, NJ).

Camerer C, Hua Ho T (1999) Experience-weighted attraction learn
ing in normal form games. Econometrica 67(4):827–874.

Cantarella GE, Cascetta E (1995) Dynamic processes and equilib
rium in transportation networks: Toward a unifying theory. 
Transportation Sci. 29(4):305–329.

Cantarella GE, Watling DP (2016) Modelling road traffic assignment 
as a day-to-day dynamic, deterministic process: A unified 
approach to discrete-and continuous-time models. EURO J. 
Transportation Logist. 5(1):69–98.

Cantarella G, Watling D, De Luca S, Di Pace R (2019) Dynamics and 
Stochasticity in Transportation Systems: Tools for Transportation 
Network Modelling (Elsevier, Amsterdam).

Cascetta E (1989) A stochastic process approach to the analysis of 
temporal dynamics in transportation networks. Transportation 
Res. Part B Methodological 23(1):1–17.

Cascetta E, Cantarella GE (1993) Modelling dynamics in transporta
tion networks: State of the art and future developments. Simula
tion Practice Theory 1(2):65–91.

Cascetta E, Nuzzolo A, Russo F, Vitetta A (1996) A modified logit 
route choice model overcoming path overlapping problems: 
Specification and some calibration results for interurban net
works. Lesort JB, ed. Proc. 13th Internat. Sympos. Transportation 
Traffic Theory (Pergamon Press, Oxford, UK), 697–711.

Chen HC, Friedman JW, Thisse JF (1997) Boundedly rational Nash 
equilibrium: A probabilistic choice approach. Games Econom. 
Behav. 18(1):32–54.

Chen Y, Su X, Zhao X (2012) Modeling bounded rationality in 
capacity allocation games with the quantal response equilib
rium. Management Sci. 58(10):1952–1962.

Chen S, Yang D, Li J, Wang S, Yang Z, Wang Z (2022) Adaptive 
model design for Markov decision process. Chaudhuri K, 
Jegelka S, Song L, Szepesvari C, Niu G, Sabato S, eds. Proc. 39th 
Internat. Conf. Machine Learn. (PMLR, New York), 3679–3700.
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