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Abstract. As one of the most fundamental concepts in transportation science, Wardrop
equilibrium (WE) has always had a relatively weak behavioral underpinning. To
strengthen this foundation, one must reckon with bounded rationality in human
decision-making processes, such as the lack of accurate information, limited computing
power, and suboptimal choices. This retreat from behavioral perfectionism in the litera-
ture, however, was typically accompanied by a conceptual modification of WE. Here, we
show that giving up perfect rationality need not force a departure from WE. On the con-
trary, WE can be reached with global stability in a routing game played by boundedly
rational travelers. We achieve this result by developing a day-to-day (DTD) dynamical
model that mimics how travelers gradually adjust their route valuations, hence choice
probabilities, based on past experiences. Our model, called cumulative logit (CumLog),
resembles the classical DTD models but makes a crucial change; whereas the classical
models assume that routes are valued based on the cost averaged over historical data, our
model values the routes based on the cost accumulated. To describe route choice beha-
viors, the CumLog model only uses two parameters, one accounting for the rate at which
the future route cost is discounted in the valuation relative to the past ones and the other
describing the sensitivity of route choice probabilities to valuation differences. We prove
that the CumLog model always converges to WE, regardless of the initial point, as long as
the behavioral parameters satisfy certain mild conditions. Our theory thus upholds WE’s
role as a benchmark in transportation systems analysis. It also explains why equally good
routes at equilibrium may be selected with different probabilities, which solves the insta-
bility problem posed by Harsanyi.
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1. Introduction

has a natural behavioral interpretation; “no driver can
reduce his journey time by choosing a new route”

Equilibrium is a fundamental instrument for under-
standing and analyzing social systems involving inter-
actions between self-interested agents. A premise for
transportation planning, for example, is that the indi-
vidual decisions of travelers tend to bring a transporta-
tion system to equilibrium. In the simplest form, the
interactions between the travelers can be framed as a
noncooperative routing game in which each pursues,
in the words of Simon (1955, p. 99), “the highest attain-
able point on his preference scale.” Wardrop (1952,
p- 345) characterized the equilibrium of such a game as
“the journey times on all the routes actually used are
equal, and less than those which would be experienced
by a single vehicle on any unused route.” He added
that such equilibrium is appealing in practice because it

(Wardrop 1952). Although Wardrop (1952) did not
mention other behavioral assumptions, it is clear that
his namesake equilibrium, like general equilibrium
concepts in game theory (von Neumann 1928, Nash
1951), implicitly assumes perfect rationality, which
means full and perfect information, well-defined pre-
ferences, and the capacity to compute and compare
the utility of each alternative route. As Sheffi (1985, sec-
tion 1.3) asserted in his celebrated book, Wardrop
equilibrium (WE) implies that “motorists have full
information” (i.e., they know the travel time on every
possible route), that “they consistently make the correct
decisions regarding route choice,” and that “they are
identical in their behaviors.”
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1.1. Critiques of Wardrop Equilibrium

Given the foundational role that WE plays in transpor-
tation science, its validity has been subjected to intense
scrutiny. Most questions center on perfect rationality
and stability.

1.1.1. Perfect Rationality. The questions about the
validity of perfect rationality have been raised in econom-
ics since the 1950s (Simon 1955, Arrow 1966, Tversky and
Kahneman 1985). By the early 1970s, transportation pro-
fessionals began to express similar doubts. Dial (1971)
cited transportation planners’ desire to capture “the non-
optimal behavior of trip makers” when choosing alterna-
tive routes of similar length. Daganzo and Sheffi (1977)
observed that assuming that travelers always choose the
shortest route can produce results unreasonably sensitive
to inputs, especially in lightly congested networks.
Clearly, the concern here is that because real travelers are
no perfect homo economicus, sticking to an equilibrium
that assumes that they are does not make much sense.

1.1.2. Global Stability. Beckmann, McGuire, and Win-
sten (1956) pointed out that to be useful, WE must be sta-
ble, or it “would be just an extreme state of rare
occurrence.” They mentioned both local stability, which
ensures that the equilibrium can be restored after small
perturbations, and global stability, which guarantees that
it is reachable from any initial position (see Beckmann,
McGuire, and Winsten 1956, section 3.3), although their
focus was on the latter. Beckmann, McGuire, and Win-
sten (1956) suggested that WE may be achieved via an
iterative adjustment process, in which travelers who
actively search for better routes in one period base their
decision on “the traffic conditions that prevailed in the
preceding period.” They speculated that WE is globally
stable if the fraction of these “active” travelers decreases
as time proceeds. Using a dynamical modeling frame-
work that in some sense “operationalizes” this idea,
many have investigated the global stability of WE since
the 1980s (see, e.g., Smith 1984; Friesz et al. 1994; Zhang
and Nagurney 1996; Yang and Zhang 2009; He, Guo, and
Liu 2010; Guo et al. 2015).

1.1.3. Harsanyi’s Instability Problem. Harsanyi’s insta-
bility problem was extensively explored by game theo-
reticians but less known in transportation. To quote
Harsanyi (1973), an equilibrium point, like WE, is
inherently unstable “because any player can deviate
without penalty from his equilibrium strategy even if
all other players stick to theirs.” To understand what he
exactly meant, consider that at WE, travelers split
between two routes of equal journey time at a ratio, say
one to two. From the perspective of game theory, each
traveler, in effect, adopts a mixed strategy that assigns
a choice probability of 1/3 to one route and 2/3 to the
other. However, no rational traveler should have the

incentive to stick to that mixed strategy other than a
desire to keep the system at WE because the traveler
can do equally well by shifting to a pure strategy that
uses either route or any probabilistic mixtures of the
two pure strategies.

The objection to perfect rationality was typically
addressed by injecting into the model bounded rational-
ity, which “takes into account the cognitive limitations
of the decision maker—limitations of both knowledge
and computational capacity” (Simon 1990). In transpor-
tation, bounded rationality is often linked specifically
to Simon’s satisficing theory (Simon 1955), which
defines boundedly rational user equilibrium (BRUE) as
a state where all travelers are content with, per their
level of aspiration for perfection, the current (nonopti-
mal) travel choices (Mahmassani and Chang 1987;
Mahmassani and Jou 2000; Lou, Yin, and Lawphongpa-
nich 2010; Di et al. 2013). With the more liberal use of
the term in Simon (1990), bounded rationality may also
be interpreted as accepting perception errors and other
sources of randomness in the system, leading to the
concept of stochastic user equilibrium (SUE) in routing
games (Daganzo and Sheffi 1977, Fisk 1980). Both SUE
and BRUE are meant to be a distinct, if not better, alter-
native to WE. Importantly, the fact that these bound-
edly rational equilibria presumably converge to WE
when random errors vanish or aspiration reaches the
highest level does not offer a boundedly rational expla-
nation for WE. This is because rationality is no longer
bounded at the limit where SUE or BRUE becomes WE.

Using a day-to-day (DTD) dynamical model of a
two-link network, Horowitz (1984) showed that the
global stability of SUE depends on how travelers form
their perception of current traffic conditions from past
experiences. He also found that global stability is lost
once random errors are set to zero. More specifically,
because of discontinuity in the choice function, WE can-
not be reached by his adjustment process. In a similar
vein, Watling and Hazelton (2003) noted that the con-
vergence to SUE through a dynamical process depends
on a condition that becomes increasingly more strin-
gent as perception errors become smaller. Indeed, as
SUE converges to WE, it becomes impossible to meet
the condition.

Harsanyi (1973) argued that bounded rationality
could also solve the instability problem he identified.
By assuming that each player’s perception of other
players’ payoffs is subject to random errors, Harsanyi
(1973) created a “disturbed game” that is always stable
because its equilibrium only admits pure strategies. An
example of Harsanyi’s disturbed game is our routing
game based on SUE, in which every traveler chooses
the route believed to be the best (i.e., a pure strategy).
Here, we note that there is only one such route for a trav-
eler because the probability of having two or more routes
that are deemed the best by the traveler is zero when
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errors are continuous variables (see Daganzo and Sheffi
1977). As the random errors approach zero, the pure-
strategy equilibrium of the disturbed game approaches
the mixed-strategy equilibrium of the original game, and
around the limit, the players would use their pure strate-
gies approximately with the probabilities prescribed by
the mixed-strategy equilibrium. However, this remedy,
often known as Harsanyi’s purification theorem, implies
that the mixed-strategy equilibrium may only exist as an
approximation to pure strategy equilibrium tied to exog-
enous random errors. Moreover, when errors are near
zero, the difference in the payoffs between pure strategies
diminishes, but the difference in the relative preferences
for them, as manifested in the choice probabilities, may
not. It is reasonable to expect a rational player to become
increasingly indifferent to payoffs that become increas-
ingly similar (Rosenthal 1989). However, this behavior is
not captured at or near the limit of the perturbed game.

To recapitulate, the critiques on the perfect rationality
assumption have generally led to an intellect exodus
from WE. With bounded rationality, the definition of
equilibrium is relaxed so that it can shift with the para-
meters chosen by the modeler to “bound” rationality. If
the goal is to match observations—in terms of both indi-
vidual route choices and aggregate traffic conditions—
such flexibility is no doubt a blessing. On the flip side, it
can also be a curse to allow the equilibrium to depend on
latent behavioral variables that could vary in space, time,
and population. In the case of BRUE, the equilibrium is a
set rather than a singleton, even at the aggregate level
and with fixed behavioral variables. Mahmassani and
Chang (1987) described this lack of uniqueness as “the
most disturbing question” because it “poses a dilemma
for flow prediction in networks.” Thus, it is hardly sur-
prising that WE remains widely used in practice as a reli-
able fallback option for practitioners (Boyce and Williams
2015). WE also provides a benchmark against which
alternative equilibrium concepts based on bounded ratio-
nality can be evaluated as it can often be viewed as their
limit. This observation, however, lends no legitimacy to
WE if one insists that rationality must always be
bounded—recalling that the above limit is precisely
where the bound on rationality is gone. Nor does it guar-
antee the global stability of WE through a behaviorally
sound dynamical process compatible with bounded
rationality.

1.2. Our Contribution

Motivated by the above theoretical gaps, here we set out
to show that a suitable behavioral theory of route choice
can resolve the seemingly innate conflict between WE
and bounded rationality. Under mild conditions, the pro-
posed theory guarantees global stability. That is, bound-
edly rational travelers can reach WE through a DTD
dynamical process, regardless of initial conditions. More-
over, travelers’ route choices at WE, paradoxically, are

compatible with both bounded and perfect rationality. In
the parlance of game theory, this means the mixed-
strategy equilibrium resulting from perfect rationality
coincides with the probabilities of choosing pure strate-
gies under bounded rationality. Therefore, the theory
also solves Harsanyi's instability problem.

Our theory is built on a simple intuition; if two routes
used at WE are assigned different choice probabilities,
travelers must value these routes differently, even
though their costs at WE are identical. To reconcile the
ostensible contradiction in this statement, we conjec-
ture that the route costs realized at WE are not the basis
for deciding choice probabilities. Instead, travelers
gradually build their valuation of each route through a
DTD dynamical process. Consequently, the choice
probabilities at WE reflect the preferences accumulated
through the entire history of that process rather than just
the experience at WE, which is achieved on the “last
day” (i.e., the limit) of the process.

In our theory, the cost experienced on a route each
day accrues to its valuation, whereas the DTD models in
the literature typically view the valuation on a particu-
lar day as some average of the costs experienced up to
that day (e.g., Horowitz 1984). As we shall see, this is a
subtle but vital difference in a setting with an infinite
horizon. On each day, travelers act with bounded ratio-
nality (i.e., they assign a choice probability to each route
based on the valuations accumulated hitherto); the bet-
ter the valuation, the larger the probability is. We shall
prove that this dynamical process converges to WE for
a rather broad class of cost accruement rules, including
a naive addition rule (i.e., the valuation on day k equals
the sum of the costs experienced on day t=1,...,
k —1). Our proof requires the choice probabilities to be
determined by the logit model (McFadden 1973),
although other valuation-to-probability mappings may
be considered as well.

When our dynamical process reaches WE, travelers
would still choose the used routes with probabilities
mapped by their “hidden” valuation of those routes.
The benchmark route, which has the best valuation,
receives the highest choice probability. Other routes are
appraised against the benchmark. Travelers may be
less inclined to use a route if it has a worse valuation
than other routes in accordance with the notion of
bounded rationality. They may also leave many routes
unused. In our theory, these routes are interpreted as
“unacceptable,” which mathematically, means that
their valuation is unboundedly worse than the bench-
mark’s valuation.

Although our contribution is largely theoretical, the
proposed dynamical process does provide a prototype
algorithm for solving a broad class of routing games.
This practical value of global stability analysis has been
recognized early in Beckmann, McGuire, and Winsten
(1956). An algorithm based on a DTD dynamical



4

Li, Wang, and Nie: Wardrop Equilibrium Can Be Boundedly Rational
Transportation Science, Articles in Advance, pp. 1-22, © 2024 INFORMS

process is simple because it requires no more informa-
tion than route travel costs to operate. Therefore, it can
handle routing games with more general features, such
as user heterogeneity and spatial interactions in travel
costs.

1.2.1. Organization. The rest of the paper is organized
as follows. We discuss related works in Section 2. Sec-
tion 3 sets up the routing game and describes the WE
and the basic DTD dynamical model. In Section 4, we
present and interpret the cumulative logit (CumLog)
model. In Section 5, we prove the global stability of the
CumLog model. Section 6 reports numerical experi-
ments, and Section 7 concludes the study.

1.2.2. Notation. We use R and R, to denote the set of
real numbers and nonnegative real numbers, respec-
tively, and we use R = R U {co0, —oo} to denote the set of
extended real numbers. For a vector a € R”, we denote
llall, as its £, norm and denote supp(a) = {i : a; > 0} as its
support. For a matrix A € R™", we denote ||Al|, as its
matrix norm induced by the vector £, norm. For two
vectors a,b € R”, their inner product is denoted as (a, b).
For a finite set A, we write | A| as the number of ele-
ments in A and 24 as the set of all subsets of A.

2. Related Studies

Our work focuses on the stability analysis of Wardrop
equilibrium under the assumption of bounded rational-
ity. In this section, we review the works that consider
bounded rationality (Section 2.1) and equilibrium sta-
bility (Section 2.2) in game theory and transportation.
Given the immensity of the literature that touches upon
these topics, we limit our attention to those that are
directly related to our work.

2.1. Bounded Rationality

Bounded rationality is the idea that human decisions
are affected by “the knowledge that decision-makers do
and don’t have of the world, their ability or inability to
evoke that knowledge when it is relevant, to work out
the consequences of their actions, to conjure up possible
courses of action, to cope with uncertainty, and to adju-
dicate among their many competing wants” (Simon
2000). This concept has been researched extensively by
game theoreticians (see Section 2.1.1) and transporta-
tion researchers (see Section 2.1.2).

2.1.1. Application in Games. The auction game of
Vickrey (1961), the Bayesian game of Harsanyi (1968),
and the disturbed game of Harsanyi (1973) are earlier
examples of games in which players are only bound-
edly rational in the sense that they must deal with
incomplete or imperfect information. The e-perfect
equilibrium of Selten (1975) and the e&-proper

equilibrium of Myerson (1978) also assume bounded
rationality because they allow for the possibility that
players choose suboptimal strategies. van Damme
(1987) examined why a player may mistakenly choose
suboptimal strategies. He hypothesized that making a
mental effort could help avoid such mistakes at the
expense of a so-called “control cost” (van Damme
1987). The trade-off between finding the optimal strat-
egy and minimizing this effort leads to a new game
with bounded rationality.

In an attempt to resolve the instability problem iden-
tified by Harsanyi (1973) (see Section 2.2.3), Rosenthal
(1989) suggested another boundedly rational alternative
to the standard game script. Rather than assuming that
players choose the best strategy with a probability of
one (which implies perfect rationality), he argued that
it is sufficient if equally good strategies are played with
equal probabilities and better strategies are “played
with probabilities not lower than worse strategies”
(Rosenthal 1989). This idea was further developed by
McKelvey and Palfrey (1995) into the quantal response
equilibrium (QRE; also known as boundedly rational
Nash equilibrium) model, which essentially assigns
choice probabilities to strategies based on the random
utility theory (McFadden 1973). Since the 1990s, the QRE
game has been extended to deal with—among other
things—auction games (Goeree, Holt, and Palfrey 2002)
and capacity allocation games (Chen, Su, and Zhao
2012) as well as Markov games (Chen et al. 2022).

The idea that players adopt inferior strategies with
positive probability may also be viewed as a trade-off
between exploration (gathering new information from
uncharted territory) and exploitation (making the best
use of information available). Bjornerstedt and Weibull
(1994) argued that players may need to try inferior
strategies in order to ensure that they are indeed subop-
timal. They proposed an imitative dynamical process
(more on this in Section 2.2.3) that allows players to use
demonstrably suboptimal strategies throughout the
process, not because of mistakes or imperfection but
because of the need for exploration. We note in passing
that the exploration-exploitation trade-off is central to
many machine learning (ML) algorithms, particularly
bandit algorithms (Lattimore and Szepesvari 2020) and
reinforcement learning (RL) algorithms (Sutton and
Barto 2018). Classical exploration strategies in ML
include the random selection strategy—selecting every
strategy with at least a small probability, commonly
known as “e-greedy”—and the Boltzmann exploration
strategy (Kocsis and Szepesvari 2006), which assumes
that the probability of each pure strategy to be selected
is proportional to its exponential cost (mathematically,
it is equivalent to the logit choice model). In noncooper-
ative games, if the players gradually weigh less toward
exploration than exploitation, the learning process may
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be guided toward Nash equilibrium (Cohen, Héliou,
and Mertikopoulos 2017).

2.1.2. Application in Transportation. The STOCH algo-
rithm of Dial (1971) was probably the first attempt to
replace traffic assignment based on WE with something
that recognizes “the non-optimal behavior of trip-
makers” (i.e.,, bounded rationality). For what it was
designed to do (i.e., performing a logit-based loading in
an acyclic network), the algorithm was a remarkable
success. However, Dial (1971) did not conceive an alter-
native equilibrium concept. More importantly, when
applied in traffic assignment, the logit model’s reliance
on the independence of irrelevance alternative (IIA)
assumption can produce nonsensical results (Florian
and Fox 1976). Daganzo and Sheffi (1977) proposed
eliminating the IIA dependence by subjecting travelers
to a normally distributed perception error on each link.
This leads to the so-called probit model that is free of
most problematic predictions of its logit counterpart
but is much more computationally demanding (it usu-
ally requires Monte Carlo simulation) (see, e.g., Sheffi
and Powell 1981). The high computational cost of the
probit model has motivated many to seek remedies
within the logit framework. Most efforts aim to account
for crossroute correlations, such as C-logit (Cascetta
et al. 1996), path-size logit (Ben-Akiva and Bierlaire
1999), and generalized nested logit (Wen and Koppel-
man 2001).

Daganzo and Sheffi (1977) also introduced a bound-
edly rational version of WE, called stochastic user equi-
librium, at which “no traveler believes he can improve
his travel time by unilaterally changing routes.” Clearly,
bounded rationality here refers to travelers” inability to
receive (or perceive) accurate information. Fisk (1980)
and Sheffi and Powell (1981) established equivalent
mathematical formulations for SUE problems, respec-
tively, based on the logit model and the probit model.
Conceptually, the logit-based SUE model is quite similar
to the QRE model discussed in the previous section
(although the QRE model was originally developed for
n-person games); see Di and Liu (2016, section 4.2.1) for
a comparison.

Bounded rationality may also be incorporated
through Simon’s satisficing theory (Simon 1955). In the
context of the morning commute, Mahmassani and
Chang (1987) introduced boundedly rational user equi-
librium, which is attained when all travelers are satis-
fied with their choices (i.e., the gap between their
current cost and their optimal cost is within an indiffer-
ence band that reflects their aspiration level). They estab-
lished the conditions for the existence of a BRUE and
highlighted the nonuniqueness of such equilibrium.
Hu and Mahmassani (1997) incorporated indifference
bands of tolerable “schedule delay” into a simulation-
assignment model to study the day-to-day evolution of

network flows under real-time information and reac-
tive signal control. Using data collected from a virtual
laboratory experiment, Mahmassani and Liu (1999)
confirmed the existence of the indifference band; that
is, travelers would not switch routes unless the im-
provement in trip time exceeds a certain threshold.
Mahmassani and Jou (2000) took the above virtual
experiment approach one step further. They compared
the findings from such experiments with those ob-
tained from field surveys to determine the transferabil-
ity of the insights. The fact that BRUE is not unique has
inspired studies that attempt to characterize the BRUE
set (Di et al. 2013) or to build an equilibrium selection
model (Lou, Yin, and Lawphongpanich 2010). Han,
Szeto, and Friesz (2015) formulated a BRUE problem
that considers within-day dynamics (i.e., including
both departure time and route choices) as a variational
inequality problem (VIP) and proposed several solu-
tion algorithms.

2.2. Stability

The concept of stability is front and center in equilib-
rium analysis because equilibrium may be short lived
and difficult to reach without stability, thereby render-
ing it a useless construct. The stability of an equilib-
rium can be tested by the following questions. (i) Can
the equilibrium be restored after small perturbations
(local stability)? (ii) Can the equilibrium be reached
from any initial position (global stability)? (iii) Can
agents deviate from the equilibrium without penalty
(Harsanyi’s instability)? We shall focus on questions
(ii) and (iii) above in this section (note that global sta-
bility implies local stability). In Sections 2.2.1 and 2.2.2,
we review, respectively, classical dynamical models
for games and in transportation, which were devel-
oped largely to answer the question of stability. Sec-
tion 2.2.3 deals with the instability of Harsanyi (1973).

2.2.1. Learning and Evolution in Games. Brown (1951)
proposed an iterative process, called fictitious play, for
solving certain finite games. His method assumes that a
player in each round simply responds to what they
have “learned” about the other player’s strategy, repre-
sented as the empirical frequency of plays in the previ-
ous rounds. This is often viewed as the origin of the
learning-based dynamical methods in games (Fuden-
berg and Tirole 1991). The convergence of a fictitious
play to mixed equilibrium was established by Robinson
(1951) for two-person zero-sum finite games and by
Miyasawa (1961) for two-person general-sum finite
games with two pure strategies. However, Shapley
(1964) showed that fictitious play could not ensure con-
vergence in general two-person games, thereby casting
doubts on the global stability of mixed equilibrium of
finite games. For finite games with bounded rationality,
the stability of equilibrium is easier to establish. For
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example, Fudenberg and Kreps (1993) proved that the
equilibrium of the disturbed game studied in Harsanyi
(1973) can be reached through a learning-based dynam-
ical process. Similarly, Chen, Friedman, and Thisse
(1997) established conditions under which players can
reach the quantal response equilibrium of McKelvey
and Palfrey (1995) through fictitious play.

Bush and Mosteller (1955) suggested the strategies
that have worked well in the past tend to be used more
as the positive experience is “reinforced” through learn-
ing (Cross 1973). In reinforcement learning, players need
not form beliefs about others’ strategies; instead, they
simply update their strategies in response to realized
rewards. RL algorithms may be linked to human beha-
viors in two ways (see Camerer 2011 for more details).
The first assumes that the reward received by each
player directly affects their future probability of choos-
ing the same action; the higher the current reward, the
greater the increases are in the choice probability in the
future (e.g., Cross 1973, Arthur 1991). The other interpre-
tation posits that a player’s probability of selecting each
action is determined by a “score” associated with the
action; the higher the current reward, the larger the
increment is in the score (Erev and Roth 1998, Camerer
and Hua Ho 1999).

Another line of thinking in the stability analysis for
games originated from emulating biological evolution.
Using game theory, Smith (1982) argued that seemingly
counterintuitive behaviors (e.g., cooperation and altru-
ism) can evolve and persist in a population because
they are evolutionarily stable strategies. Because the
theory applies to nonhuman species (Smith and Price
1973), its validity does not rely on any form of human
rationality (it is difficult to imagine ants as utility-
maximizing creatures). The imitative dynamical pro-
cess proposed by Bjornerstedt and Weibull (1994) was
an early application of evolutionary mechanisms—
selection, mutation, and replication—in human compe-
titions. It builds on a simple assumption; players tend
to imitate the successful behavior of others. Specifically,
players in each round switch from their current strat-
egy a to a pure strategy b with a certain transmission
probability, which increases with the utility of b as well
as the number of players selecting b in the last round.
Hence, a pure strategy is more attractive if it is not only
more profitable but also, more popular. Bjornerstedt
and Weibull (1994) proved that their imitative dynami-
cal process is locally stable. More recently, Li et al.
(2022) proved the global convergence. On the one
hand, the imitative process differs from fictitious play
in that it implies bounded rationality. On the other
hand, unlike RL, it allows players to actively learn
about and act on others’ strategies. The reader is
referred to Weibull (1997) and Sandholm (2010) for
details on the evolutionary game theory.

2.2.2. Dynamical Models in Routing Games. The study
of the route choice adjustment process, referred to as
dynamical models in transportation, can be traced back
to the stability analysis of WE by Beckmann, McGuire,
and Winsten (1956). Most dynamical models operate on
one of the following two mechanisms: (i) a discrete-time
mechanism that maps travelers’ valuation of available
routes to route choice in discrete decision epochs, each
representing one round of the routing game (Horowitz
1984) (as the epoch is naturally a day in transportation,
these models are often referred to as day-to-day mod-
els), and (ii) a continuous-time mechanism in which the
decision epoch is reduced to zero so that the relation
between the change rate of route flows and the current
route costs may be represented as an ordinary differen-
tial equation (Smith 1984). Our model falls into the first
category. The reader may consult Watling and Hazelton
(2003) and Cantarella et al. (2019) for comprehensive
reviews of dynamical models.

At the core of the discrete-time mechanism is model-
ing how travelers re-evaluate and switch routes accord-
ing to past experiences. As such learning processes do
not involve anticipating other players’ strategies, it is
largely driven by reinforcement. Horowitz (1984) pro-
posed that on a given day, travelers may value a route
based on a weighted average of either all experienced
costs on that route before that day or the cost and the
valuation on the previous day. He showed that the
global stability of the DTD process, even when equilib-
rium exists and is unique, depends on how travelers
incorporate past experience into the present route valu-
ation. Instability ensues when the rate of adjustment is
not properly selected (e.g., too much weight is given to
either the recent past or the distant past). The schemes
of Horowitz (1984) have since been extensively studied
in transportation, with most efforts centering on tuning
the weights in route evaluation, enriching behavioral
contents, or establishing the existence and stability of
equilibrium (e.g., Cascetta 1989, Cascetta and Cantar-
ella 1993, Cantarella and Cascetta 1995, Watling 1999,
Watling and Hazelton 2003, Cantarella and Watling
2016).

Because traffic conditions are subject to perception
errors in the model of Horowitz (1984), his DTD pro-
cess presumably converges to SUE. He did suggest that
the model may be employed to study WE when percep-
tion errors vanish but concluded that his stability
results could not be readily extended to the determinis-
tic case. Indeed, although it is well known that the fixed
point of the DTD dynamical process of Horowitz (1984)
is SUE (see, e.g., Watling and Hazelton 2003, section 3),
establishing its convergence to WE remains elusive
even at the limit (i.e., when errors become zero). The
primary difficulty, as noted in Watling and Hazelton
(2003), is that a discrete choice model without
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additional modeling devices cannot properly distribute
travelers to a set of minimal and equal-cost routes
according to the proportions prescribed by WE.

By shrinking the decision epoch to zero, the
continuous-time models center on moving flows
between routes based on current costs. Behaviorally,
this aggregate change is explained as travelers switch-
ing to routes that promise to lower their current costs.
For example, the scheme proposed by Smith (1984)
moves flow between every pair of routes at a rate pro-
portional to the product of the flow on the higher-cost
route and the cost difference. Using the Lyapunov the-
ory, he proved that this simple scheme leads to a glob-
ally stable dynamical system (i.e., it produces a solution
trajectory converging to WE regardless of the initial
solution) if the route cost function is monotone. Simi-
larly, the Brown-von Neumann-Nash (BNN) scheme
employed by Yang (2005) shifts flow away from routes
with travel costs above the weighted average of all
routes. He also offered a behavioral explanation by
interpreting the parameters in the BNN scheme as
what Cantarella and Cascetta (1995) would call switch-
ing choice probability and route choice probability.
Another widely used scheme is the so-called projected
dynamical system, which may be viewed as a
continuous-time version of the projection algorithm for
variational inequality problems (Dupuis and Nagurney
1993). The idea is to change the route flows at a rate
equal to the projection of the negative route cost vector
onto the feasible set. Nagurney and Zhang (1997) noted
that this movement can be driven by “travelers’ incen-
tive to avoid more costly routes ... so that the sum of
the flows equal the travel demand,” although the direct
linkage between the projection operation and actual
route switching behaviors is somewhat abstract. Pro-
jected dynamical processes were also employed to
establish the stability of routing games with elastic
demands (Friesz et al. 1994, Zhang and Nagurney 1996)
based on similar conditions used in Smith (1984). The
common requirement for global stability is the mono-
tonicity of the route cost function. It is worth noting
that the terminology used in these papers is asymptotic
global stability, which equals stability defined in Smith
(1984) and global stability concerned herein. Yang
and Zhang (2009) showed that each of the above
continuous-time processes is a rational behavior adjust-
ment process (RBAP), which means that their flow-
shifting scheme always leads to a strict reduction in the
total cost with a sufficiently small step size. This obser-
vation gave rise to a class of continuous-time DTD
models operating at the link level (He, Guo, and Liu
2010; Guo and Liu 2011; Di et al. 2015; Guo et al. 2015).
These models have fewer behavioral contents than
their route-based counterparts as their flow-shifting
schemes usually rely on a target link flow pattern
obtained from solving an optimization problem to

meet the RBAP requirement. More recently, Smith and
Watling (2016) and Xiao et al. (2019) incorporated logit
dynamics into continuous-time models and established
their convergence to SUE.

2.2.3. Harsanyi’s Instability Problem. Harsanyi (1973)
noted that a mixed-strategy Nash equilibrium of a finite
game is inherently unstable because at the equilibrium,
players can switch among equally good strategies (any
of the pure strategies contained in the mixed strategy
or their combinations) without penalty. If players can-
not be compelled by their self-interest to always follow
the prescription of the mixed strategy, it is difficult to
sustain the equilibrium. In their celebrated book on
equilibrium selection, Harsanyi and Selten (1988, sec-
tion 1.6) named this instability problem one of the main
difficulties with the concept of equilibrium in game the-
ory. We note that WE is affected by the instability prob-
lem of Harsanyi (1973) as it is also a mixed-strategy
equilibrium of a finite game.

A common remedy to the instability problem is
bounded rationality, which typically means introduc-
ing random errors into payoffs (travel costs). Examples
include the disturbed game of Harsanyi (1973), the SUE
model of Daganzo and Sheffi (1977), and the QRE
model of McKelvey and Palfrey (1995). Random errors
suppress Harsanyi’s instability problem because they
reduce the probability of having two pure strategies
with identical costs to zero. Strictly speaking, this
approach does not fix the instability problem in mixed-
strategy equilibrium. It only posits that the existence of
such equilibrium may be justified as an approximation
to pure strategy equilibrium of the perturbed models.

Another remedy is to assume that players would
never switch to an equally good strategy. Bjornerstedt
and Weibull (1994) argued that this assumption is
implicit in Nash'’s prescription. In the transportation lit-
erature, the assumption has been widely used to
develop dynamical models; see, for instance, the rule of
Smith (1984) that allows flow shifting to occur between
two routes only when their costs are strictly different.
Behaviorally, this may be explained as inertia or the
tendency to settle with one’s current choices, especially
when further search promises no additional benefits.
However, inertia implies that travelers would never
explore inferior routes. If travelers do, as assumed in
most models, base their choices on what they have
learned from past experience, ruling out exploration
altogether seems a strong assumption that is necessary
only because otherwise, Nash equilibrium (or WE)
would be cursed with Harsanyi’s instability. Is the iner-
tia assumption necessary? According to Bjornerstedt
and Weibull (1994), the answer is no. In their imitative
dynamical process, an equally good strategy adopted
by more players provides more “successful samples”
for other players to imitate, thus attracting more
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players in the next round. Under this mechanism,
players would continue to switch between equally
good strategies even at equilibrium, but the imitative
dynamical process ensures that these movements do
not push the system away from equilibrium. Thus, it
resolves Harsanyi’s instability problem without resort-
ing to the inertia assumption or perturbation-based
approximation.

2.3. Summary

To summarize what was reviewed earlier, bounded
rationality may come from a decision maker’s (i) inabil-
ity to access accurate information (e.g., perception
error), (i) content with a suboptimal choice compatible
with their level of aspiration, (iii) erroneous choices
and effort to avoid them, or (iv) desire to explore seem-
ingly suboptimal choices. In this paper, we interpret
bounded rationality as imperfect choices—in the sense
that decision makers allow themselves to use subopti-
mal strategies based on their valuation—which may be
explained by any of the above four behavioral sources.

Our reading of the literature did not uncover a
boundedly rational, behavior-driven, and globally sta-
ble dynamical process that can converge to WE,
although such processes do exist for SUE. The conver-
gence of continuous-time dynamical models to WE is
well known. However, these models depend on perfect
rationality and highly simplified learning and choice
behaviors. They also need the assumption of inertia to
overcome Harsanyi’s instability problem.

The dynamical process proposed herein precisely
fills this gap. On the one hand, it explicitly incorporates
bounded rationality, learning behaviors, and individ-
ual choices. On the other hand, it always converges, for
any given initial point, to a WE. Like the imitative
dynamical process (Bjornerstedt and Weibull 1994),
our process also achieves immunity to Harsanyi’s insta-
bility problem without assuming inertia. Unlike imita-
tive dynamics, however, we do not assume that
travelers know the flows on each route (i.e., the basis
for imitation), which is not public information in the
context of routing games.

3. Problem Setting

A routing game takes place on a transportation net-
work modeled as a directed graph G(N, &), where N/
and £ are the set of nodes and links, respectively. Let
W CN x N be the set of origin-destination (OD) pairs
and K C 2¢ be the set of available routes connecting all
OD pairs. We use K, €K to denote the set of routes
connecting w € W and &, € € to denote the set of all
links on route k € K. Also, let ©;, x be the OD-route inci-
dence with X, ; =1 if the route k € K, and zero other-
wise, and let A, be the link-route incidence, with
Ngr=1 if e€& and zero otherwise. We write

A = (Aek)ece kex and 3= (Zw,k)wew,kelo Let d = (dw)pep
be a vector with d,, denoting the number of travelers
between w € W. All travelers are identical, and their
route choice strategies are represented by a vector
P = (Pi)rex, Where py equals the probability that they
select k € ICy. The feasible region for p can then be writ-
ten as P = {p e RI*!: 3p = 1}. The equilibrium of the
routing game is characterized as travelers adopting a
mixed strategy p that minimizes their own travel costs.
To simplify the discussion, we assume that travelers
between the OD pair adopt the same mixed strategy.
According to the law of large numbers, p can hence be
equivalently viewed as the proportion of travelers
selecting each route.

Let f = (firex and x = (x,),ee, With fi and x, being
the flow (i.e., number of travelers) on route k and link e,
respectively. It follows f = diag(3"d)p and Af = x. Fur-
ther define u = (1t,),¢ as a vector of link cost determined
by a continuously differentiable function u(x)=
(114(x)) ¢ (our analysis in the following sections does not
require Vi(x) be a diagonal or symmetric matrix). Then,

the vector of route costc = A" u. To summarize, the route
cost function ¢:P — R_'K | can be defined as_c(p) =
ATu= ATu(Af) = ATu(Ap), where A = Adiag (3d).

3.1. Wardrop Equilibrium
A Wardrop equilibrium (Wardrop 1952) of the routing
game can be defined as follows.

Definition 1 (Wardrop Equilibrium). A route choice strat-
egy p* € P is a WE strategy if ci(p”) > mingex, cr(p*)
implies that p; = 0 for all w € YW and k € ICy,.

In other words, a route included in a WE strategy
must have the minimum cost. It is widely accepted
that travelers must be perfectly rational to reach and
keep a WE strategy, which in our context, means they
always know the precise values of all route costs and
consistently make correct choices accordingly (Sheffi
1985).

The WE routing game has an equivalent variational
inequality problem (Dafermos 1980).

Proposition 1 (VIP Formulation of WE). A route choice
strategy p* € P is a WE strategy if and only if it solves the
following VIP. Find p* € P such that
<C(P*)/P _P*> 20, VP eP. 1
We shall denote the solution set to the VIP (1) as P,
referred to as the WE strategy set. It is well known that
P is a singleton if c(p) is strongly monotone and a poly-
hedron if only u(x) is (Dafermos 1980). In the latter
case, although many WE strategies may exist, they
must correspond to the same link flow x*. The ques-
tions that concern us here are whether and how a WE
strategy can always be achieved under reasonable assump-
tions of route choice behaviors.
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Since Beckmann, McGuire, and Winsten (1956),
many have asked these questions and have largely set-
tled the “whether” part. Specifically, it has been estab-
lished that a WE strategy can be reached through a
continuous-time dynamical process starting at any ini-
tial point, provided that the route cost function c(p) is
monotone (see, e.g., Smith 1984, Dupuis and Nagurney
1993, Friesz et al. 1994, Nagurney and Zhang 1997). Yet,
the answer to the question of “how” is complicated by
two issues. The first is behavioral. Note that travelers in
the continuous-time models are supposed to be highly
rational; they have accurate knowledge of and act on
the most recent route costs to perpetually switch from
higher-cost routes to lower-cost ones until a WE is
reached. Therefore, continuous-time models have a
limited capacity to accommodate such behaviors as
learning from past experiences, exploring suboptimal
routes, and indifference to equal-cost routes. Second
and perhaps more importantly, global stability is
secured by implicitly applying an arbitrarily small rate
of adjustment to the prescribed “direction” of route
flow changes (Watling 1999). However, whether the
analysis is employed for the purpose of explaining real-
world route-switching behaviors or of developing an
equilibrium-finding algorithm, that rate cannot always
be arbitrarily small. The questions are as follows. What
is a suitable magnitude of the adjustment at a given
time? How fast should this magnitude decrease as time
proceeds? How is this pattern of time-varying adjust-
ments related to route choice behaviors? The discrete-
time dynamical models are better equipped to address
these questions.

3.2. Discrete-Time Dynamical Model

At its core, a discrete-time dynamical or day-to-day
model keeps track of travelers” route valuation vector
on day t, denoted as s’ eRIXI (t=0,1,...), which is
mapped to their route choice strategy p' € P by a func-
tion. A commonly used route choice function is based
on the logit model derived from random utility theory
(McFadden 1973, Ben-Akiva and Lerman 1985). Given
a scalar r > 0, a logit-based route choice function g, :
RI* — P gives p! = g,(s), where

i exp(=r-sp)
P D ek, OXP(=75,) '

By manipulating how s' is constructed and updated,
the DTD models can represent a wide range of learning
and choice behaviors. Below, we briefly review the two
most popular models.

The weighted-average model assumes s’ be a weighted
average of the costs received in the past by setting

VkeKk. @)

t—
t:

[y

S

t—1
n-c(ph), with > =1, 6)
i=0

Il
o

1

where 1’ > 0 weighs how the cost received on day i
(0 < i < t—1) affects the valuation on day ¢. Thus, the
entire history of past experiences is allowed to affect
the present-day decision.

The successive-average (SA) model, as a simplifica-
tion of the weighted-average model, sets

s'=1—1)-s" 40 cp™), 4

where {f € (0,1);t=1,2,...} is a sequence of constants.
In this model, the past experience is condensed into
yesterday’s valuation. This decision mode imposes a
much lower information burden on travelers as it
claims no direct memory of the experience prior to
yesterday.

In the literature, both models were initially discussed
by Horowitz (1984). The latter can be viewed as a spe-
cial case of the former, noting that recursively applying
Equation (4) yields

st — nt . C(pt—l) + (1 _ T]t) . T]t_l _C(pt—Z)
3
+oH A=)t e (5)
i=2

Horowitz (1984) assumed the travelers’ perception of s
is subject to a random error € € RI*I. He considered
two possibilities for the distribution of €'; the first
(Model 1) assumes that the distribution of €’ is indepen-
dent of t, whereas the second (Model 2) treats € as the
sum of the perception errors in the past (hence, a func-
tion of t). Model 1 is much easier to analyze because it
allows us to treat the parameter 7 in the logit Model (2)
as a time-invariant constant. In this case, if (p',s') con-
verges to a fixed point (p, §), then we have § = ¢(p) and
p =4,(8), and hence, p =q,(c(p)). Following Daganzo
and Sheffi (1977), a route choice p* that satisfies this
equation is a stochastic user equilibrium. The global
stability of SUE under the successive-average model
has been extensively studied. For a two-link network,
Horowitz (1984) analyzed the global stability of the
dynamical Model (4) under the assumptions that the
perception error is nonzero and the cost function is
both monotone and Lipschitz continuous. Here, we
note that the original Lipschitz continuous assumption
of Horowitz (1984) is imposed on a composite function
that combines c¢(p) and the distribution function of €.
This assumption can always be satisfied when c(p) is
Lipschitz continuous, and the perception errors are not
reduced to zero (that is, the stochastic model is not
degraded to a deterministic one). He proved that the
model is globally stable if (i) > 2,7, =00 and (i) 7;
becomes sufficiently small for a sufficiently large t.
Cantarella and Cascetta (1995) extended Horowitz’s
analysis to general networks but limited the stability
analysis to the case where 1’ is time invariant. Like
Cascetta and Cantarella (1993), they introduced the
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switching probability « to describe the likelihood that a
traveler would even consider route choice on a given
day. Thus, the model in Horowitz (1984) can be viewed
as a special case of their model when a = 1 on every
day. The global stability of their model can be guaran-
teed when either a or 7 is sufficiently small; a small «
may be interpreted as strong habitual inertia, whereas
a sufficiently small 7 is the same requirement as in
Horowitz (1984). Watling (1999) analyzed the local sta-
bility of the model with a constant 1 and investigated
the possibility of applying Lyapunov’s theory to deter-
mine its domain of attractions.

It is well known that SUE can be made arbitrarily close
to WE by letting r — oo (Fisk 1980; Erlander 1998;
Mamun, Xu, and Yin 2011). However, it remains an open
question whether the stability result of SUE is applicable
to WE at that limit. As noted by Watling and Hazelton
(2003, example 4), given a fixed r > 0, the stability of the
successive-average model requires 7 to be within (0,7, ],
where 7], decreases to zero when r — oo. Thus, attempt-
ing to approximate WE with SUE by choosing an arbi-
trarily large r is problematic as the feasible range of 1
needed for convergence vanishes at the limit.

Is it possible to design a scheme that coordinates the
increase of r and the decrease of 7 so that the final sta-
tionary point is steered toward WE? To the best of our
knowledge, this question has not received much atten-
tion in the literature. Even if such a coordinated scheme
can be identified, a more important question is how to
make sense of it behaviorally. Specifically, why would
the travelers couple the changes in r and 71 in such a
way as prescribed by the stability analysis?

In the next section, we shall propose an alternative to
the classical DTD dynamical models that is deceptively
simple at first glance but holds promise to answer the
above questions.

4. Cumulative Logit Model

We are now ready to propose a new DTD dynamical
system that is dubbed, for the reasons that will soon
become clear, the cumulative logit model. In develop-
ing the CumLog model, we were inspired by the con-
jecture in Beckmann, McGuire, and Winsten (1956)
about the study of stability (the emphasis is our own).

Through a simple and plausible model, one can get a rough
picture of the minimum of conditions that must be met in
order that the adjustment process should converge to
equilibrium. (Beckmann, McGuire, and Winsten 1956)

Indeed, the overarching goal of this study is to develop
that simple and plausible model envisioned by Beckmann,
McGuire, and Winsten (1956) and to identify “the mini-
mum of conditions” that ensures the convergence of a
dynamical adjustment process to WE.

The CumLog model adopts the basic framework of
the DTD Model (3). That is, on day ¢, travelers update

their route valuation vector s’ based on the route costs
onday t — 1 and select a route choice strategy p' accord-
ing to s'. Unlike (3), s’ in the CumLog model is
updated, starting from some s° € R!*1, as follows:

st = st—l + nt . C(pt—l), (6)

where {n',t=1,2,...} is a sequence of positive con-
stants. Moreover, travelers determine their strategy on
day t according to the logit model by setting p' = g,(s")
according to Equation (2). The simplest interpretation
of CumLog is that travelers value routes based on the
cost received and accumulated over the entire history up
tot — 1. Indeed, in the special case of ) = 1, travelers lit-
erally add up all received costs without ever discount-
ing the experiences in the distant past.

Upon noticing the suspicious similarity between
Schemes (6) and (4), some readers may understandably
question the plausibility of our central claim: that
Scheme (6) can somehow ensure convergence to WE
under mild conditions, whereas as widely asserted in
the literature, Scheme (4) cannot. Therefore, in what fol-
lows, we shall first explain why averaging and accumu-
lating route costs are fundamentally different in the
dynamical process (Section 4.1). Section 4.2 provides a
behavioral interpretation of the CumLog model. An
illustrative example is given in Section 4.3.

4.1. Difference Between Average and
Accumulation

Let us revisit the thought experiment used to demon-
strate Harsanyi’s instability problem in Section 1. Sup-
pose a routing game in a two-route network converges
to a WE strategy that assigns route 1 and route 2 the
choice probabilities of 1/3 and 2/3, respectively. Panels
(a) and (b) in Figure 1 depict, respectively, how the
flows and costs on the two routes gradually reach the
WE through a dynamic adjustment process. The details
of the process need not concern us here. Suffice it to say
that at the end of the process, the costs on both routes
are identical, and the probability of choosing route 1
becomes 1/3, which implies that a third of the travelers
end up using that route.

Figure 1(c) compares the evolution of the difference
in the two route valuation schemes (average versus
accumulation) accompanying the dynamical process.
In the average scheme, the difference in the route eva-
luations is bound to vanish regardless of the weights if
the process ends at the WE. Given the same route
valuations, it is difficult to see why at WE, travelers
seem to prefer route 2 over route 1 with a 2:1 margin as
suggested by the mixed strategy. Indeed, as Harsanyi
(1973) pointed out, there is no way to explain that pref-
erence other than insisting that travelers prefer WE
itself. This seemingly illogical preference is at the heart
of Harsanyi’s instability. Nor can this problem be
explained away by bounded rationality. Note that
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Figure 1. (Color online) Illustration of a Convergence Process Toward WE in a Two-Route Routing Game
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Notes. (a) Evolution of flows. (b) Evolution of costs. (c) Valuation differences.

the errors in the valuation would affect choice proba-
bility only when there is a nonzero difference in the
“deterministic” part of the valuations. At WE, the dif-
ference becomes zero. Hence, no errors could, on their
own, swing travelers one way or the other. Unlike in
the average scheme, the discrepancy in route valua-
tions converges to a nonzero constant in the accumu-
lation scheme (see the solid line with x markers in
Figure 1(c)). The constant equals the shaded area in
Figure 1(b), which visualizes the valuation difference
accrued through the dynamical process. This cumula-
tive difference then explains the mixed WE strategy;
the travelers prefer route 2 at equilibrium because
they value it substantially (but not infinitely) more
than route 1, although the equilibrium route costs are
the same.

Remark 1. In behavioral economics, the reinforcement
learning model proposed by Erev and Roth (1998)
assumes that players in a finite game have the highest
propensity to choose the pure strategy that gives the
greatest total reward in the past. This assumption is
similar to our assumption that the route with a smal-
ler cumulative route cost is selected with a greater
probability.

4.2. Behavioral Interpretation
The route choice behaviors implied by the CumLog
model can be summarized as follows.

e On each day, travelers choose afresh a mixed-route
choice strategy based on current route valuations
through a logit model. No additional assumptions are
needed regarding the behavioral inertia—the reluctance
to make changes once a choice becomes habitual—that
is often explicitly modeled by a switching probability in
the DTD literature (e.g., Cantarella and Cascetta 1995).

e Route choices are driven by relative valuation
rather than absolute valuation as dictated by the logit
model. The benchmark is the “best” route that receives
the highest choice probability. Other routes are
appraised against the benchmark. They shall also be
selected with a strictly positive probability as long as
the valuation difference between these routes and the

benchmark is finite; they may be selected with a zero
probability if their valuations are deemed unacceptable
(i.e., infinitely worse than the benchmark).

Here is the rationale behind our claim that the Cum-
Log model is boundedly rational; rather than committing
to never moving to a route with a worse valuation
than they currently enjoy, the travelers consistently
assign a nonzero probability to suboptimal routes with
an acceptable valuation.

The two parameters of the CumLog model can be
linked to route choice behaviors as follows.

o The parameter r characterizes how travelers’ route
choice strategy p' is determined from the valuation vec-
tor s'. It measures the trade-off between exploration
and exploitation; the larger the parameter r, the more
exploitative the travelers (meaning that they are less
likely to explore suboptimal routes). Thus, » will be
referred to as the exploitation parameter. In this study,
the parameter 7 is fixed at a constant value. One may
interpret this setting in one of two ways. (i) The percep-
tion errors are independent of ¢, which is the assump-
tion used to justify in Horowitz (1984, model 1), or (ii)
travelers’ propensity for accepting suboptimal routes
or their desired balance between exploration and
exploitation is time invariant (Fudenberg and Kreps
1993, Kocsis and Szepesvari 2006). Our stability analy-
sis is agnostic on the interpretation of the exploitation
parameter.

e The parameter 7' regulates how the valuation vec-
tor s' is updated. Before the routing game is played,
travelers have an initial route valuation vector s°. If no
prior preference exists, then they simply set s, =0 for
all k€ K. On day t > 1, the travelers update the valua-
tion s' by adding to it a cost vector n' - c(p'~!), where
n' > 0 is the weight on day t. The weight i’ measures
the impact of the cost received on day ¢t — 1 on the tra-
velers” valuation on day t. Behaviorally, it captures
how quickly travelers become disposed to ignore the
latest information and “settle down.” Thus, nt will be
referred to as the proactivity measure. The larger the 1,
the less passive the travelers. As we shall see, the stabil-
ity of the CumLog model depends on the asymptotic
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behavior of the proactivity measure 1. Not all feasible
sequences of 1’ guarantee convergence to WE. For
example, if travelers stop incorporating new informa-
tion into route valuation too soon (indicating a rapid
descent to extreme passivity), CumLog may stabilize
quickly but at a place far away from WE. We shall con-
sider two asymptotic rules for the proactivity measure
in this study. In the first, n =1 >0 for all t > 0 (i.e., the
level of proactivity remains at a constant level through
the entire process). The second rule dictates that n'
monotonically decreases to zero as t — co. Thus, the
costs received by the travelers will have a progressively
diminishing impact on their route choice. Another rule,
in which 1 converges to some constant 17> 0 as t — oo,
may be inferred from the above two.

4.3. lllustrative Example

We close by illustrating CumLog with a simple routing
game played on a network with three parallel links con-
necting an OD pair. The cost functions on the links are
u1(x1) = x1, ua(x2) = x, + 1, and uz(x3) = x3 +2.25. The
total demand is d = 3. It can be easily verified the WE
conditions dictate that the three links be selected with
probabilities p; =2/3,p;=1/3, and p;=0. The WE
strategy is unique in this case because all route cost
functions are strictly increasing.

Setting r = 0.25, fixing n' = 1, and starting from s° = 0,
we run the CumLog model from day 0 to day 12 and
report the convergence process in Figure 2. A WE is
reached after day 12, with the proportions of travelers
selecting each route converging rather precisely to 2/3,
1/3, and 0, respectively, and the costs on the two routes
included in the mixed strategy, routes 1 and 2, become
identical.

In Figure 2(b), the shadowed areas with and without
hatches highlight the difference in valuation between
routes 1 and 2 and that between routes 2 and 3, respec-
tively. Route 1 is always the lowest-cost route through-
out the process, and thus, it is always selected by most
travelers. The shadowed area without hatches in Figure
2(b) approaches a constant value as t increases.

Consequently, the relative preference for route 1 over
route 2 became stabilized, indicating that route 2 is an
inferior but acceptable option. The red area in Figure
2(b), however, grew to infinity as t — oo, which means
that route 3 became infinitely worse than route 2 and
eventually was abandoned.

This example exhibits another distinction between
the CumLog model and the classical DTD models.
Even with a finite exploitation parameter r, the Cum-
Log model is capable of identifying and eliminating
the routes that no WE strategy should use. The classi-
cal models, however, are obliged by their averaging
scheme to keep a positive flow on every route unless
r— oo. This result can be expected from the fact
that the limiting point of these models is SUE rather
than WE.

5. Global Stability

In this section, we present and prove the main stability
result concerning the CumLog model proposed in Section
4. Simply put, the objective is to show that under mild con-
ditions, the DTD dynamical Model (6) always converges
to a WE regardless of the initial point. The following
assumptions describe some of the conditions on the link
cost function u(x), whose domain (the set of feasible link
flows) is written as X' = {x : Rl : x = Ap, p e P}.

Assumption 1. The link cost function u(x) is twice con-
tinuously differentiable on X.

Assumption 2. For all x € X, the symmetric parts of both
Vu(x) and (Vu(x))* are positive semidefinite.

Assumption 2 is satisfied as long as u(x) is mono-
tone and Vu(x) is symmetric. If Vu(x) is asymmetric,
Assumption 2 still holds if Vu(x) is not “too asymmetric”
(i.e., the antisymmetric part does not exceed the symmet-
ric part) (see Hammond and Magnanti 1987 for a more
rigorous description). As the assumptions require nei-
ther u(x) to be strongly monotone nor Vu(x) to be sym-
metric, our analysis can be applied to a broad class of
routing games, including those with nonseparable and

Figure 2. (Color online) Illustration of a Convergence Process Toward WE in a Three-Route Routing Game
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nonstrictly increasing cost functions. The next proposi-
tion characterizes the route cost function c(p) and the
WE strategy set P".

Proposition 2. Under Assumptions 1 and 2, (i) there
exists L >0 such that c(p) is 1/4L-cocoercive on P (i.e.,
(c(p') — cp),p’ — p) 2 /AL~ e(p) — c(p)I for all p,p’ € P);
(ii) {c(p),p —p*) = 0 for all p € P and p* € P*, with equal-
ity for any given p* € P* if and only if p € P*; and (iii) P*
is convex and compact.

Proof. Following the standard convex analysis techni-
ques, we can show Assumptions 1 and 2 = (1) = (2)
= (3). The reader is referred to Online Appendix A.1
for details. O

We note that when Vc(p) is symmetric, L is the Lip-
shitz constant of c(p) on P (i.e., any L > max,ep||Ve(p)ll,
can be used to fulfill the requirement). The case with
asymmetric Vc(p) requires L = maxyew{dy} -H- ||A||§,
where H is the Lipshitz constant of u(x) on X ={xe
R4 x=Ap, peP}.

We are now ready to give the main stability result.

Theorem 1. Under Assumptions 1 and 2, suppose that
s% < oo; then, p' in the CumLog Model (6) converges to a
fixed point p* € P*, the solution set to the VIP (1) if either
of the following two conditions is satisfied: (i) limy_en' =
0 and lim;_ed o1’ =00 or (i) nf =1 < 1/2rL for all
t>0.

Below, Section 5.1 interprets the convergence result,
whereas Section 5.2 sketches the proof of Theorem 1
(the complete proof is given in Online Appendices
A2-A5).

5.1. Interpretation of the Convergence

Result
5.1.1. Convergence Conditions
The two convergence conditions given by Theorem 1
can be interpreted as follows.

o The first part of condition (i) in Theorem 1 implies
that the attention paid to the latest route cost decreases
with t and eventually disappears altogether. In other
words, travelers tend to settle down in the long run.
The second part states that convergence may be at risk
if travelers settle down too soon. Specifically, the
decreasing rate of 1’ cannot be faster than O(t71).
The following are a few examples that meet this “not-
too-soon” requirement: n' = O(1/t), n = O(1/Vt), or
n' = O(1/log(t)). The second part is introduced to
ensure that the routes not included in any WE strategy
become infinitely worse than the best route when
t — oo. If the condition is violated, say, for example,
nt = O(t~+9) for some 6 >0, the valuation s* would
remain bounded when t — co. The monotone conver-
gence theorem then guarantees the convergence of s'.
Denoting its limit as s, we can show that the difference

between any elements of s is bounded because 5 itself
is bounded. As a result, per the logit model, all routes
are bound to receive positive flow as t — oo, which in
general, violates the WE conditions.

e Condition (ii) in Theorem 1 means that travelers
would never stop incorporating new information into
route valuations. Rather, their propensity for proactiv-
ity is maintained at a constant level below a certain
threshold. Compared with condition (i) in Theorem 1,
this is a weaker requirement, and thus, the convergence
under it is more difficult to establish. Condition (ii) in
Theorem 1 may also be interpreted as given a fixed
level of proactivity 1, the exploitation parameter » must
not exceed 1/2nL. At first glance, this upper bound on r
is puzzling because one would expect that a larger r
makes it easier to reach WE because in theory, WE is
the limiting case of SUE when r — co. However, a
moment of reflection reveals that in a dynamical pro-
cess, a large and constant r means that travelers tend to
underexplore the route space, which might prevent
them from reaching WE. In learning theory, it is well
known that a sufficient level of exploration in the early
stage is critical to effective exploitation in the later stage
(Lattimore and Szepesvari 2020).

5.1.2. Significance. The above interpretation of the con-
vergence conditions indicates that CumLog can reach
Wardrop equilibrium under relatively mild assumptions
about boundedly rational route choice behaviors. This
finding challenges the long-standing belief in transporta-
tion research that WE has a shaky behavioral foundation
(see, e.g., Watling and Hazelton 2003).

Our theory also resolves Harsanyi’s instability prob-
lem, which manifests as follows. When WE is reached,
all used routes are equally good. Hence, breaking the
tie arbitrarily is not against anyone’s interest. However,
if travelers do break the tie arbitrarily, the system can-
not stay at WE. The CumLog model solves this
dilemma by allowing travelers to assign a different val-
uation (hence, a different choice probability) to routes
that have identical costs at WE. Specifically, when
CumLog reaches a WE strategy p*, given any OD pair
w € W and two WE routes k, k' € K, between that pair,
travelers’ valuation difference between routes k and £’
would be —(log(p;) —log(p;.))/r. This valuation differ-
ence explains why two identical-cost routes are selected
with different probabilities.

5.2. Sketch of the Proof

To sketch the proof of Theorem 1, let us define p,, =
{Pi}kex, and the negative entropy function as ¢ (p,,)
=(p,,log(p,)). Also, define i =r-n' and Q! ={p, €
P : supp(p,,) € supp(p’,)}. We shall prove Theorem 1
by showing that there exists p*€ P* such that the
distance between p* and p' converges to zero when
t — co. Because the decision variable is defined on
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P =] Ivey Pu, the Cartesian ?roduct of a set of probabil-
ity simplex P, = {p,, € R :17p =1}, the Kullback-
Leibler divergence (also known as the statistical distance)
is a natural measure given by

D(p",p') = > _ Dulp;,p',)

weWw

= Dupa) — D, (Pl — (Vo pl) P, — Pl
wew
@)

The proof is divided into three steps.
Step 1. We first establish the relation between p'*!
and p' in the CumLog dynamical process.

Lemma 1. Given any r > 0, n' >0, and s' e RI*I, let
p' = q,(s"). Then, for a vector p € P, we have p = q,(s' + 1" -
c(p") ifand only i

<v¢w(piu) B quw(ﬁw)’pw - ﬁw> < ﬁt ’ <Cw(pt)/pw - ﬁw>’
Vp,€Q,, YweW. (8
Proof. The proof follows from two well-known

results: (1) the equivalence between the logit model
and a convex program (Proposition A.14 in the Online
Appendix) and (2) the equivalence between the con-
vex program and a VIP (Lemma A.3 in the Online
Appendix). The reader is referred to Online Appendix
A.2 for the complete proof. O

Step 2. We next link D(p*, p'*!) to D(p", p").

Lemma 2. If s° < oo, then given any p* € P, p' and p'*!
in the CumLog dynamical process satisfy

£ * 1 ~ *
D(p*,p"") < D(p ,pt)—z'llpt —p S +7(eph) P —ph.

©)

Proof. As s’ < oo, we have s < o, and thus, @', =P,
for all t>0. Invoking Lemma 1 then completes the
proof. See Online Appendix A.3 for details. O

Proposition 3. Under Assumptions 1 and 2, if s° < oo,
then given any p* € P*, p' and p'*' in the CumLog dynam-
ical process satisfy
. . 1-27'L
Dp,p'*!) < D', p) ——— - Ip' = p" !l (10)
Proof. As per Proposition 2, c(p) is 1/4L-cocoercive.
The result then follows from Lemma 2 and the cocoer-

civity of c(p). See Online Appendix A.4 for the com-
plete proof. O

Step 3. We finally prove the convergence of p'
toward a point in P* under conditions (i) and (ii) in
Theorem 1.

Proof. Proposition 3 indicates that lim;,.D(p",p’)
exists for all p* € P under both conditions (i) and (ii) in
Theorem 1. All that is left to prove is to find a con-
vergent subsequence {p"} C {p'} with p — P* when
j— oo. Denote p as the limit of pi. Then, p' — p
implies that D(p pi) — 0. As hmt_,ooD(p p') exists, it
follows D(p, p') — 0, which implies that p* — p. Under
condition (i) given in Theorem 1, we prove by contra-
diction; if there does not exist a subsequence of {p'}
that converges to 7", properties (i) and (iii) given in
Proposition 2 cannot both hold. Under condition (ii) in
Theorem 1, we first invoke the Bolzano—Weierstrass the-
orem to exact a convergent subsequence and then, prove
that its limit must belong to P*. The reader is referred to
Online Appendix A.5 for details. O

Remark 2 (On Infinite Valuations). In our model, when
either condition (i) or condition (ii) in Theorem 1 is
met, s converges to infinity when t — co. Although an
infinite value might seem unrealistic, a key feature in
the logit model is that the choice probability depends
on the relative, rather than absolute, valuations of alter-
natives. In our context, this may be interpreted as tra-
velers monitoring the differences between the elements
in the valuation vector s'. Thus, as long as these differ-
ences are finite, the model will give correct results. One
can also modify the original model to avoid such a
nuanced interpretation. To simplify the discussion,
assume |W| =1 (i.e., there is only one OD pair). Con-
sider the following two behavioral variants.

e Variant 1. On each day ¢, after updating route
valuations, travelers further adjust them such that the
best-valued route is normalized to zero (i.e., replacing
s' by s' — min(s')).

e Variant 2. One each day ¢, the travelers update route
valuations by s'=s""1+n"-(c(p'!) —min(c(p'!)) so
that the valuation of the route with the lowest cost on
day t remains unchanged.

Mathematically, both variants are identical to the
original CumLog model. However, they would ensure
that travelers’ valuation of routes used at WE would
be bounded. However, the valuation on the non-WE
routes would still grow to infinity, signifying that they
are unacceptable.

Remark 3 (Related Convergence Results). The two con-
ditions given in Theorem 1 are similar to the conditions
detailed in Horowitz (1984, theorem 1). The difference
is twofold. First, his proof is established only for the
two-link network. Second and most important, his
dynamical system, based on an average rather than a
cumulative scheme, converges to SUE rather than a
WE. Horowitz (1984) pondered the possibility of ex-
tending his stability result to the WE case (what he
called “the deterministic model”). His conclusion was
negative because letting r — co (the equivalent of zero
perception errors) not only violates Lipshitz continuity
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but also voids the argument that the convergence of the
average cost difference to the equilibrium value must
imply the convergence to the correct equilibrium (see
Horowitz 1984, example 4). The CumLog model also
shares a similar mathematical structure with a classic
online convex programming method known as the
dual-averaging (DA) algorithm (Xiao 2009). Recently,
Mertikopoulos and Zhou (2019) studied the conver-
gence of the DA algorithm in continuous games. The
convergence conditions given by them are similar to
condition (i) in Theorem 1, although they were proved
using a different technique. Condition (ii) in Theorem 1,
to the best of our knowledge, has never been rigorously
shown to ensure the convergence of the DA algorithm
in games or VIPs.

Remark 4 (On the Convergence of the Successive-
Average Model to WE). At the end of Section 3.2, we

ask whether properly coupling the increase of r and
the decrease of n would steer the successive-average
Model (4) toward WE. With Theorem 1, this question
can now be partially answered. Consider the follow-
ing two DTD models.

e Model L s =s'"! + c(p'!) and p' = g,(s").

e Model 1. s'=(1—nf)-s"1+7n'-c(p'!) and p'=
gu(shwithn'=1/t+1)and ' =r-(t+1).

Model I is a CumLog model, and Model II is a
successive-average model. Mathematically, the two
models are identical in the sequence of {p'},_, that they
generate (the proof is omitted for brevity). Because
Model I is a CumLog model with n = 1, its convergence
is guaranteed for sufficiently small r as per condition
(ii)) in Theorem 1. This means that the successive-
average model converges to WE as well if 1’ decreases
at a rate of O(1/t) and 7' increases at a rate of O(t).
However, this peculiar coupling between 1' and ' in
Model II does not seem to have a reasonable behavioral
explanation. In Section 6.2, we shall show that very
slight modifications of the coupling mechanism could
lead to vastly different convergence patterns.

6. Numerical Examples

The proposed CumLog dynamical process is tested on
two small networks: a three-node, four-link (3N4L) net-
work (Friesz et al. 1990) and the Sioux—Falls network
(Leblanc 1975).

The 3N4L network, as shown in Figure 3, has three
nodes, four links, and one OD pair. It has four routes
connecting the origin (node 1) and the destination
(node 3). For ease of reference, let us say that route 1
uses links 2 and 4, route 2 uses links 1 and 4, route 3
uses links 2 and 3, and route 4 uses links 1 and 3. The
number of travelers from node 1 to node 3 is 10. Given
the flow x, on link 2, we model its costs as u, = h, + w, -

x4, where [I1,ly, 13, 14]" =[4,20,1,30]" and [w;, w,, w3,
ws]" =[1,5,30,1]".

The Sioux—Falls network has 24 nodes, 76 links, and
528 OD pairs. We refer the readers to Leblanc (1975) for
the topology, travel demand, and cost function of the
Sioux—Falls network.

On the two networks, we shall perform four sets of
experiments; the first three run on the 3N4L network,
whereas the fourth runs on both the 3N4L network
and the Sioux—Falls network. Section 6.1 tests the
CumLog model under various behavioral parameters.
In Section 6.2, we explore how the classical successive-
average model, like those studied by Horowitz (1984),
can be redirected toward a WE under the guidance of
our theory. In Section 6.3, we test the CumLog model
with heterogeneous travelers who exhibit different
sensitivity to route valuations. Finally, Section 6.4 in-
vestigates the difference between the WE strategies
reached by the CumLog model starting from different
initial points.

For a route choice strategy p, we use the relative gap
of its corresponding link flow x€ X ={x:x=Ap,
p € P}, denoted as 6(x), to assess its distance from WE.
The relative gap is computed as

_% X’ear%gmw(x),x") (11)

o(x) =
6.1. Test of Convergence Conditions
We first examine conditions (i) and (ii) given in Theo-
rem 1. To test condition (i) in Theorem 1, we set ' =1/
(t+1) for r =10, 20, and 40; to test condition (ii) in Theo-
rem 1, we fix f =1 for r = 0.25,0.5,1,2.5. For each set-
ting, we run the CumLog model starting from
s =10,0,0,0]" until one of the following criteria is met.
(i) The number of iterations reaches 120, (ii) the relative
gap drops below 107, or (iii) the algorithm begins to
diverge.

The convergence patterns reported in Figures 4 and 5
generally agree with the prediction of Theorem 1. Under
condition (i) in Theorem 1, convergence is ensured
regardless of the value of r. Interestingly, the larger the
value of r, the slower the convergence is at the begin-
ning, and the faster the convergence is at the end (see
Figure 4). For condition (ii) in Theorem 1, the conver-
gence can only be guaranteed when r is sufficiently
small. In this case, we can observe from Figure 5 that the
convergence rate increases with » when r < 1. Indeed,

Figure 3. (Color online) The 3N4L Network
1 3
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Figure 4. (Color online) Convergence Pattern of the CumLog
Model Under Conditions (i) in Theorem 11/ = 1/(t + 1)
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setting r = 1 and n = 1 delivers the best performance
among all scenarios; it reaches the target with less than
30 iterations. However, when r = 2.5, the CumLog
model failed to converge.

We next fix r = 1 and examine how the decreasing
rate of 1" affects the convergence performance. We set
n' = (t+1)" and report the convergence patterns corre-
sponding to a =—0.5, —0.25,0,0.25 in Figure 6. The
convergence of the model under a = —0.5, —0.25,0 is
guaranteed by Theorem 1. The faster the 1 decreases
with ¢, the more quickly travelers tend to settle down,
and the slower the convergence is. When the decreas-
ing rate is zero (i.e., )’ becomes a constant), the conver-
gence is the fastest. However, when the trend is
reversed and 1’ begins to increase with ¢ (a = 0.25), the
process quickly diverges (see the line with dot markers
in Figure 6). This is expected as neither condition (i) in
Theorem 1 nor condition (ii) in Theorem 1 would be
satisfied with 7 = 1and nf = (t +1)°%.

6.2. Convergence of Revised Successive-
Average Models to WE

In the second experiment, we attempt to manipulate

the classical successive-average model using our theory

so that it converges to WE rather than SUE. The basic

Figure 5. (Color online) Convergence Pattern of the CumLog
Model Under Condition (ii) in Theorem 1 with ' =1
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Figure 6. (Color online) Convergence Pattern of the CumLog
Model withr=1and nf = (1+¢)*
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idea is to gradually raise the value of r (the exploitation
parameter) while reducing 7 (the proactivity measure),
as discussed earlier in Remark 4. We test five models,
all based on the SA process s'=(1—n')-s'"1+n-
c(p'~!) and p' = g,(s'). However, ' and 7* are set differ-
ently, as detailed below.

Model A.n' =1/(t+1)and ' =t + 1.

Model B.  =1/(t+1)** and r' = t + 1.

Model C.nff =1/(t+1)" " and # =t + 1.

Model D. f = 1/(t +1)** and #* = (¢ + 1)*%.

Model E. nf =1/(t+1)"" and # = (£ +1)""".

Model A, as pointed out in Remark 4, is equivalent to
the CumLog model with 7 =1 and 1 = 1. Hence, its con-
vergence to WE is guaranteed by Theorem 1 and
already confirmed in Section 6.1. What we try to exam-
ine is the robustness of the “perturbed” successive-
average model. Specifically, what happens if we
slightly perturb the changing rates of the two para-
meters? If the manipulated model is robust, then such
perturbations should not have a significant impact on
the convergence pattern. Compared with Model A,
Models B and C keep the same increasing rate for 7* but
slightly modify the decreasing rate of ; Models D and
E change both 7' and ' but keep * -1 =1 as in Model
A. We start all models from s° = [0,0,0,0]" and report
the convergence pattern in Figure 7.

Surprisingly, although Model A converges quickly
as expected, none of its four slightly perturbed versions
were able to converge at a similar speed—mnot even
close. In fact, based on the trend, it is unclear whether
they would ever converge to a point sufficiently close
to WE. Figure 7 indicates that after 100,000 days (or
274 years), they are still far away from reaching the tar-
get precision (relative gap of 10~). We do not know
what caused this dramatic slowdown when the pertur-
bation moves the parameters so slightly away from the
trajectory charted by Theorem 1. Indeed, if we compare
Model A with Models B and C, the only difference is
that ' is changed from (1+ £ in Model A to
(1 + )" in Model B—which slightly slows down the
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Figure 7. (Color online) Convergence Pattern of the SA
Model with 7 and 7' of Different Changing Rates
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decreasing rate of n'—and (1 +)7"" in Model C—
which slightly speeds up how 7' is decreased. Yet,
Model A converges within less than a month, at least
four to five orders of magnitude faster than both Mod-
els B and C. Regardless of the cause, the phenomenon
draws a sharp contrast with the robustness of the
CumLog model against the changing rate in 7". In
Figures 4-6, the CumLog model’s convergence speed
varies within a much narrower range, despite much
greater variations applied to the parameters.

6.3. User Heterogeneity at WE

We next construct an experiment in which travelers dif-
fer from each other in terms of route choice behaviors.
Specifically, travelers are divided into four classes (clas-
ses 1-4) with the exploitation parameter r set to 0.01,
0.1, 1, and 10, respectively. As noted before, a larger r
suggests a smaller perception error, a greater sensitivity
to route evaluations, or a stronger propensity for
exploitation depending on the preferred interpretation
of the modeler. The total demand remains the same as
in the first two experiments but is equally allocated to
the four classes. The travelers from different classes are
identical in every aspect except for the value of r. Their
initial valuations of the routes are [0,0,0, O]T, and their
proactivity measure nt is set to a constant of one. We

ran the CumLog model for 1,000 iterations and reached
a relative gap below 107*. The WE strategy obtained
corresponds to exactly the same WE link flow as in the
homogeneous case. Figure 8 reports the WE route
choice strategies of each class. We can see that all but
class 4 rank the four routes in the same order: route 2 >
route 1 > route 4 > route 3. Class 4 is different only
because it does not use the two lower-ranked routes
(routes 4 and 3). This indicates that, in this setting, dif-
ferent travelers value the routes the same way but react
to the valuations distinctively. Moreover, the class with
a larger r is more concentrated on the higher-ranked
routes. Class 1 was almost indifferent among the four
routes, whereas class 4 completely abandoned routes 4
and 3.

What is remarkable about the above result is that it
illustrates that WE is compatible with not only
bounded rationality but also user heterogeneity. At a
WE, some travelers may stick to one or very few routes
because they are too rational (or cost sensitive) to toler-
ate inferior routes. On the other end of the spectrum are
those who are open to exploring all acceptable options
with similar probabilities, even the routes with much
worse valuations. Still more travelers would fall
between the two extremes. The choices of the travelers,
as diverse as they are, still result in the same network
traffic conditions as if everyone behaves identically and
rationally. Therefore, the CumLog model allows us to
simultaneously accept that WE approximately exists in
the real world at the aggregate level and reject the
implausible implication that every traveler must be
same and perfectly rational.

6.4. Nonuniqueness of WE Strategies

Our last experiment, performed on both the 3N4L net-
work and the Sioux—Falls network is devised to demon-
strate that the CumLog model may reach WE strategies
of different properties when initialized from different
points. Note that in both networks, the link cost func-
tion u(x) is strictly monotone on X. According to Sheffi
(1985), under such conditions, the link flow at WE is

Figure 8. (Color online) WE Route Choice Strategies of Travelers with Different Exploitation Parameters (r = 0.01,0.1,1,10)

(a) (b)

25.2% %
W=
|

' ) Route 1 Route 2

() (d)

K %

. /Y
\

nr% | o127% 85.2%
"
T4
III Route 3 :: Route 4

Notes. (a) Class 1: r = 0.01. (b) Class 2: ¥ = 0.1. (c) Class 3: r = 1. (d) Class 4: r = 10.
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unique. Denoting the unique link flow at WE as s, the
set of route choice strategies at WE can be represented
as a polyhedron:

P ={peP:Ap" =x"}. (12)

A useful property for differentiating p* € P* is their
entropy, which may be interpreted as its likelihood of
realization given the information known to the modeler
(e.g., satisfying the WE conditions) (Wilson 2011).
Mathematically, entropy may be defined as ®(p*) =
—(diag(q)p*,log(p)). Different p* € P* may use differ-
ent set of routes. For example, an interior point of the
polyhedron (12) uses every route that may be used at
WE, observing a “no-route-left-behind” policy (Bar-
Gera and Boyce 1999). A standard WE algorithm, how-
ever, usually finds only a subset of all possible WE
routes (i.e., it admits a solution on the boundary of the
polyhedron (12)). In what follows, we explore how the
choice of the initial strategy p° affects the location and
entropy of the equilibrium route choice strategy p* as
well as the set of used routes.

In the 3N4L network, the set of route choice strate-
gies at WE can be written as

P ={p:p =[03-104—-2103+1A7],
A €[0,03]}.

To visualize the difference between these solutions, we
plot the relation between the entropy of all p* € P* and
their corresponding value of A in Figure 9. It can be seen
that the entropy of p* first increases and then decreases
with A; the entropy peaks at A =0.12, which corre-
sponds to p* = [0.18,0.28,0.42,0.12] " or the “maximum-
entropy” solution.

We then generate a random sample of 2,000 s” from a
normal distribution and run CumLog starting from an
initial point corresponding to each s° in the sample. In
each run, we set 7 = 1 and ) =1, and we terminate it if
the relative equilibrium gap is smaller than 10~°. Figure
10 plots the histogram of the entropy of p* reached by
our model. If all of the 2,000 initial solutions end up at

Figure 9. (Color online) Relation Between ®(p*) for All p* € P
and Their Corresponding Value of A
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Figure 10. (Color online) Distribution of ®(p*) for p* Reached
by 2,000 s°
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Note. The red line highlights ®(p*) for p* reached by s’ = 0.

the same WE strategy, then the entropy values would
be concentrated at a single point in the histogram.
Instead, we find that they spread out between a mini-
mum of 10.77 and a maximum of 12.84. Moreover, the
equilibrium solution with the highest entropy among
the 2,000 points corresponds to the initial solution s°=0
(i-e., all valuations are initially set to zero, representing
zero information on all routes). A closer look reveals
that this solution is indeed the maximum-entropy solu-
tion (i.e., p* = [0.18,0.28,0.42,0.12]").

We then investigate how s affects the set of routes
used at the WE reached by the CumLog model on the
Sioux-Falls network. Using the methods by Tobin and
Friesz (1988) and Xie and Nie (2019), we find that the
maximum and minimum numbers of routes to be used
at WE are 770 and 557, respectively. This suggests that
a WE algorithm may locate a solution whose number of
used routes is anywhere between 557 and 770. To per-
form the test, we use a set of 1,238 routes that contains
all 770 routes that may be used by a WE strategy. The
initial valuation s” is randomly sampled from a normal
distribution, and the sample size is set to 2,000. The all-
zero initialization s° = 0 is employed as a benchmark.
In all runs, we set r = 2.5, f =1, and the maximum
number of days to 1,000.

Figure 11 shows how the relative gap and the total
number of routes actively used by travelers (a route is
actively used if its probability of being selected is no
less than 107°) change with the number of days. We
can see that the convergence pattern is affected by the
initial point, but the impact on the convergence rate is
insignificant. The number of actively used paths also
descends quickly to the lower bound. Interestingly, the
CumLog model never “accidentally” eliminates a
potential WE route, nor does it ever fail to exclude
routes that are not supposed to be there; the number of
used routes at the solution reached by CumlLog is
always 770. If this property can be established analyti-
cally, it will make the CumLog model a suitable algo-
rithm for finding all WE routes.
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Figure 11. (Color online) Convergence Pattern of the CumLog Model with Different s°
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Notes. The shadowed area represents the collection of the convergence curves corresponding to 2,000 random s°; the solid line represents the
convergence curve corresponding to s” = 0. The black dashed line in panel (b) represents the maximum number of routes that may be used by a

WE strategy. (a) Relative gap. (b) Number of used routes.

7. Conclusions

As one of the most fundamental concepts in transporta-
tion science, Wardrop equilibrium was the cornerstone
of countless large mathematical models that were built
in the past six decades to plan, design, and operate
transportation systems around the world. However,
like Nash equilibrium, its more famous cousin, WE has
always had a somewhat flimsy behavioral foundation.
The efforts to strengthen this foundation have largely
centered on reckoning with the imperfections in human
decision-making processes, such as the lack of accurate
information, limited computing power, and subopti-
mal choices. This retreat from behavioral perfectionism
was typically accompanied by a conceptual expansion
of equilibrium. In place of WE, for example, transporta-
tion researchers had defined such generalized equilib-
rium concepts as stochastic user equilibrium and
boundedly rational user equilibrium. Invaluable as
these alternatives are to enrich our understanding of
equilibrium and to advance modeling and computa-
tional tools, they advocate for the abandonment of WE,
predicated on its incompatibility with real behaviors.
Our study aims to demonstrate that giving up perfect
rationality need not force a departure from WE. To this
end, we construct a day-to-day dynamical model that
mimics how travelers gradually adjust their valuations
of routes, hence the choice probabilities, based on past
experiences.

Our model, called cumulative logit, resembles the
classical DTD models but makes a crucial change;
whereas the classical models assume that routes are
valued based on the cost averaged over historical data,
our model values the routes based on the cost accumu-
lated. To describe route choice behaviors, the CumLog
model only uses two parameters, one accounting for
the rate at which the future route cost is discounted in
the valuation relative to the past ones (the proactivity
measure) and the other describing the sensitivity of
route choice probabilities to valuation differences (the

exploitation parameter). We prove that CumLog
always converges to WE, regardless of the initial point,
as long as the proactivity measure either shrinks to zero
at a sufficiently slow pace as time proceeds or is held at
a sufficiently small constant value.

By equipping WE with a route choice theory compati-
ble with bounded rationality, we uphold its role as a
benchmark in transportation systems analysis. Com-
pared with the incumbents, our theory requires no modi-
fications of WE as a result of behavioral accommodation.
This simplicity helps to avoid the complications that
come with a “moving benchmark,” be it caused by a mul-
titude of equilibria or the dependence of equilibrium on
certain behavioral traits. Moreover, by offering a plausi-
ble explanation for travelers’ preferences among equal-
cost routes at WE, the theory resolves the theoretical chal-
lenge posed by Harsanyi’s instability problem. Note that
we lay no claim on the behavioral truth about route
choices. Real-world routing games take place in such
complicated and ever-evolving environments that they
may never reach a true stationary state, much less the
prediction of a mathematical model riddled with a myr-
iad of assumptions. Indeed, a relatively stable traffic pat-
tern in a transportation network may be explained as a
point in a BRUE set, an SUE tied to properly calibrated
behavioral parameters, or simply, a crude WE reached
by CumlLog. Although more empirical research is
needed to vet our theory and compare it with existing
ones, we should no longer write off WE simply because it
adheres to behavioral perfectionism.

Other than satisfying theoretical interests, the Cum-
Log model may also be used as a prototype algorithm
for solving routing games. On large networks, the con-
vergence of the CumLog model may be relatively slow
(see, for example, Figure 11(a)). This is hardly surprising
given that no higher-order information (e.g., the deriva-
tive of route cost) is employed. However, if the goal is to
find a good approximate solution quickly, then a
CumlLog-based algorithm can be quite competitive
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thanks to its simplicity (only route costs are needed),
flexibility (easy extension to more general settings), and
stability (relatively weak requirements for conver-
gence). To be sure, the current CumLog model is still far
away from a practical algorithm for WE routing games.
Of the missing components, the most important is an
efficient route-generation scheme. We leave the devel-
opment of such an algorithm to future investigations.

Numerical experiments in Section 6.4 revealed a few
noteworthy phenomena. First, the CumLog model is
capable of identifying all routes that may be used by
any WE strategy. Second, the WE strategy resulting
from the dynamical process is closely related to the ini-
tial route valuation. In particular, it seems that an all-
zero initial valuation leads to the entropy-maximizing
(or most likely) WE strategy. Does this mean the Cum-
Log model can be used to guide the selection of a unique
WE strategy, especially in locating the most likely one?
We also leave this question to a future study.
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