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Abstract—Foreground-background separation is a crucial task
in various applications such as computer vision, robotics, and
surveillance. Robust Principal Component Analysis (RPCA) is
a popular method for this task, which considers the static
background as the low-rank component and the moving objects
in the foreground as the sparse component. To enhance the
performance of RPCA, graph regularization is typically used to
incorporate the sophisticated geometry of the background and
temporal correlation. However, handling the graph Laplacians can
be challenging due to the substantial number of data points. In
this study, we propose a novel dual-graph regularized foreground-
background separation model based on Sobolev smoothness. Our
model is solved using a fast numerical algorithm based on the
matrix CUR decomposition. Experimental results on real datasets
demonstrate that our proposed algorithm achieves state-of-the-art
computational efficiency.

Index Terms—Robust principal component analysis, CUR
decomposition, graph regularization, background foreground
separation, motion detection.

I. INTRODUCTION

Background and foreground separation (FBS) has been one of
the most fundamental problems in many applications, including
computer vision, medical imaging, security and surveillance
[1]. It can identify the moving object of interest, which can
be further used for motion analysis. More recently, due to the
rapid development of human-robot interaction devices, it is of
high demand to develop fast or even real-time FBS algorithms
for detecting human motion and further intention interpretation.

In general, the goal of FBS is to decompose the video
sequence into a component of static or dynamic background
and a component of foreground. In the case of grayscale videos,
due to the repetitive presence at every video frame, the static
background can typically expressed as a low-rank matrix after
reshaping the video as a matrix whose columns correspond to
the video frames. In the meanwhile, the foreground component
can be described by a sparse matrix where nonzero entries
correspond to the the moving object of interest.

The research of Qin is supported by the NSF grant DMS-1941197. Huang
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Based on the low-rank structure of the background, robust
principle component analysis (RPCA) has been one of the most
popular methods in FBS [2], [3], [4], wherein convex relaxed
formulas for RPCA were proposed and studied. Unfortunately,
these earlier approaches only achieved sublinear convergence
and thus are computationally intensive [5]. Later, a number
of non-convex approaches were studied to solve nonconvex
variants of RPCA directly. In particular, [6] proposed an
alternating projection based non-convex algorithm and an
accelerated version was studied in [7]. Moreover, a gradient
descent based method was proposed in [8], which was recently
modified for accelerating with ill-conditioned problems [9].
All of the aforementioned non-convex methods offered linear
convergence with a complexity of at least O(rn2) flops
per iteration. In recent developments, CUR decompositions
[10], [11] have been harnessed to further expedite RPCA
methods [12], [13] and the complexity can be reduced to
O(r2n log2(n)).

Considering the spatial and temporal correlations of a video
sequence, graph regularization has been exploited and applied to
FBS. For example, spatial and temporal graph Laplacians on the
background to be recovered are used in the objective function to
preserve local geometries together with low-rank regularization
and sparsity of foreground in [14], [15], [16], [17]. In particular,
an adaptive low-rankness regularizer is adopted in [16], [17]
with enhanced performance. However, as the resolution of video
improves, the matrix size of spatial/temporal graph Laplcians
grows rapidly, which brings great computational challenges for
solving the graph regularized models, e.g., data storage and
matrix calculations. To address these issues, we enforce the low-
rank structure implicitly using the matrix CUR decomposition.
In addition, Sobolev smoothness has shown the great potential
in recovering spatiotemporal graph signals [18]. In light of
this work, we propose a novel FBS model with Sobolev
smoothness based spatial and temporal graph regularizations
and develop a fast algorithm based. Specifically, we apply
the alternating direction method of multipliers (ADMM) and
update rows/columns of the low-rank component based on the
matrix CUR decomposition.

The rest of this paper is organized as follows. In Section
II, we provide a brief introduction of foreground/background
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separation. In Section III, we propose a novel a fast FBS
algorithm based on the matrix CUR decomposition. Numerical
experiments on real data sets and the performance comparisons
are presented in Section IV. Finally, conclusions of this research
and future work are presented in Section V.

II. PRELIMINARIES

In this section, we briefly review the matrix CUR decomposi-
tion. Given a matrix, classical dimension reduction techniques
such as Principal Component Analysis (PCA) transform data
from a high-dimensional space into a low-dimensional one
while retaining the intrinsic dimension; however, those approxi-
mations may lose interpretability in some applications [19]. One
way for addressing this issue is to utilize the self-expressiveness
of data, i.e., data points are generally well-represented via
linear combinations of the other data points in the same
set rather than in some abstract bases, e.g., singular vectors.
In particular, CUR decomposition is one such efficient self-
expressive matrix approximation method, which can maintain
the interpretability of the original data during the dimension
reduction. Specifically, given a matrix L ∈ Rn×n with rank r,
CUR matrix decomposition aims to decompose L into terms
involving only some of its columns and rows. If we choose
some columns/rows of L that can span the column/row space
of L, then we can retrieve L itself from these submatrices,
which is guaranteed by the following theorem.

Theorem 1. Let I,J ⊆ [n] with |I|, |J | ≥ r be the respective
row and column index sets, and denote the submatrices
C = L:,J , U = LI,J and R = LI,:. If rank(U) = rank(L),
then L = CU †R, where (·)† denotes the Moore-Penrose
pseudoinverse.

Theorem 1 could be referred to [20] for a history and proof.
From this theorem, one can see that the success of CUR
decomposition highly relies on whether the rank of the mixing
submatrix U equals that of L. In fact, there are various sampling
strategies [21], [22], [23], [24] that can guarantee the condition
with high probability. In particularly, [24] pointed out that
when a given matrix with rank r has µ-coherence, sampling
|I| = O(µr log(n)) rows and |J | = O(µr log(n)) columns
uniformly with replacement can guarantee that L = CU †R
in high probability. Note that when µ ∼ O(1), U is an
O(r log(n)) × O(r log(n)) matrix under uniform sampling.
By Theorem 1, the main computational cost is incurred by
calculating the pseudo-inverse of U , which requires only
O(r3 log2(n)) flops. In contrast, computing the SVD requires
O(rn2) flops. This confirms the computational efficiency of
the CUR decomposition with larger n and smaller r.

Assume that the background is static in a video. The goal
of FBS is to decompose a video in a matrix form D into a
low-rank component L and a sparse component S. To solve
this problem, RPCA [2] proposes the model

min
L,S
∥L∥∗ + λ∥S∥1

with the constraint L+S = D where λ > 0 is a regularization
parameter and ∥·∥∗ is the matrix nuclear norm. Recently, graph

regularized models with known rank of L have been explored
with the form

min
rankL≤r,S

λ1R(L) + λ2∥S∥1 +
1

2
∥D − L− S∥2F

where λ1, λ2 > 0 are parameters and R(L) is typically a graph
regularization of L. Some related works include [14], [15] and
one most recent robust variant [16].

III. PROPOSED METHOD

A. Construction of Two Graph Laplacians

Given a video, we first convert it to a matrix D ∈ Rn×m,
whose rows and columns correspond to the respective number
of spatial and the temporal samples. Next we aim to generate
a weighted graph in the temporal domain Gt = (Vt, Et, At)
where Vt = {vt

i}mi=1 is a set of temporal samples, Et is an
edge set and At ∈ Rm×m is the adjacency matrix whose
entries correspond to the weights or the similarity for any two
temporal samples. To fulfill this task, we create an adjacency
matrix At whose (i, j)-th entry is defined as

(At)i,j = exp

Ç
−
∥vt

i − vt
j∥22

h2
t

å
, i, j ∈ {1, . . . ,m}.

Here ht is a positive filtering parameter. Let Wt be the degree
diagonal matrix of Gt with (Wt)i,i =

∑m
j=1(At)i,j . Next

we follow the ideas in [25], [26] to define a symmetrically
normalized temporal graph Laplacian Ψt ∈ Rm×m defined
as Ψt = Im −W

−1/2
t AtW

−1/2
t , which can handle irregular

graph structures.
Similarly, we use spatial samples to generate a weighted

graph Gs = (Vs, Es, As) in the spatial domain where Vs =
{vs

i }ni=1 is the spatial sample set, Es is the edge set and
As ∈ Rn×n is the associated spatial adjacency matrix. Note
that to exploit non-local geometries in the spatial domain,
we utilize the patch based similarity for designing As. To be
specific, the (i, j)-th entry of As is defined as

(As)i,j = exp

Ç
−
∥N (vs

i )−N (vs
j)∥2F

h2
s

å
, i, j ∈ {1, . . . , n}

where N (vs
i ) ∈ Rp2×m is a vectorized version of the video

patch centered at the i-th pixel and hs is a positive spatial
filtering parameter. The k-nearest neighbors in terms of location
are used to ease the computational burden when calculating
As. In our experiments, we use four nearest neighboring pixels
in the spatial domain to calculate patchwise similarities and
then assemble them to obtain the spatial adjacency matrix As.
In the temporal domain, we also use four nearest neighboring
temporal samples along the time, i.e., preceding and receding
two temporal samples, to compute At. Note that if the given
video is noisy, some local smoothing techniques or more robust
similarity metrics could be incorporated into this procedure.
Finally, we define the spatial graph Laplacian in a symmetrically
normalized form to be

Ψs = In −W−1/2
s AsW

−1/2
s .

 



Similar to Wt, Ws is the degree diagonal matrix corresponding
to Gs which can be obtained by using As. It is worth noting
that all graph Laplacians are stored as sparse matrices to
substantially reduce the data storage memory.

B. Proposed Algorithm

To preserve high-order spatial and temporal correlations for
the background, we propose the following robust background
foreground separation model

min
L,S
∥D − L− S∥1 + ζ∥S∥1+γ1 tr(L

TΦsL)+γ2 tr(LΦtL
T )

s.t. rank(L) ≤ r.

Here Φs = (Ψs + εsI)
αs and Φt = (Ψt + εtI)

αt are the
modified spatial and temporal graph Laplacians based on the
Sobolev smoothness [18] with αs > 0, αt > 0 being the order
of smoothness and εs, εt ≥ 0. We rewrite the above model as

min
L,S
∥P∥1 + ζ∥S∥1 + γ1 tr(L

TΦsL) + γ2 tr(LΦtL
T )

s.t. rank(L) ≤ r, D − L− S = P.

Next we introduce a matrix space with low rank structure

Π = {X ∈ Rn×m : rank(X) ≤ r},

and define its corresponding indicator function as:

δΠ(X) =

®
0, X ∈ Π;

+∞, otherwise.

Then we define the augmented Lagrangian function as

L(S,L, P, “P ) = δΠ(L) + ∥P∥1 + ζ∥S∥1 +
γ1
2

tr(LTΦsL)

+
γ2
2

tr(LΦtL
T ) +

ρ

2
∥D − L− S − P + “P∥2F .

(1)
By applying the ADMM framework, we get the algorithm

L← argmin
rank(L)≤r

γ1
2

tr(LTΦsL) +
γ2
2

tr(LΦtL
T )

+
ρ

2
∥D − L− S − P + “P∥2F := f(L)

S ← argmin
S

ζ∥S∥1 +
ρ

2
∥D − L− S − P + “P∥2F

P ← argmin
P
∥P∥1 +

ρ

2
∥D − L− S − P + “P∥2F“P ← “P + (D − L− S − P )

In the context of background-foreground separation, it is
worth noting that the background remains static throughout the
application. As a result, we can assume that the rank of the
background matrix, denoted as L, is equal to 1, i.e., rank(L) =
1. Based on this assumption, we can approach the L-subproblem
by assuming that L can be factorized as L = CU †R. Here,
C and R represent the column and row submatrices of L,
respectively, with column and row index sets denoted as J and
I . Furthermore, U corresponds to the submatrix of L formed by
the intersection of columns J and rows I , denoted as L(I, J).
The gradient of f in the L-subproblem is

∇f(L) = γ1ΦsL+ γ2LΦt + ρ(L+ S + P −D − “P ). (2)

Algorithm 1 Fast algorithm for dual-graph regularized FBS
1: Input: observed data matrix D; rank r; spatial/temporal

graph Laplacians Ψs, Ψt; initial shrinkage value ζ0; graph
Laplacian smoothness order αs, αt; graph Laplacian
smoothness parameter εs, εt; regularization parameters
γ1, γ2 for spatial/temporal graph Laplacians; penalty pa-
rameter ρ; decay rate β; step size η; step size η; maximum
iteration number T ; row/column sampling index sets I,J .

2: P0 = 0; “P0 = 0; S0 = shrink(D, ζ0)
3: Ic = [m] \ I, J c = [n] \ J
4: C0 = D:,J , R0 = DI,:
5: for k = 1, · · · , T − 1 do
6: Find the gradient Gk = ∇f(L(k)) given by (2)
7: Ck+1(Ic, :) = Ck(Ic, :)− ηGk(Ic,J ),
8: Rk+1(:,J c) = Rk(:,J c)− ηGk(I,J c)
9: Uk+1 = Hr(Uk − ηGk(I,J )); //Hr(·) denotes the

best rank r approximation to the argument.
10: Ck+1(I, :) = Uk+1 and Rk+1(:,J ) = Uk+1

11: Lk+1 = Ck+1U
†
k+1Rk+1

12: ζk+1 = βkζ0
13: Sk+1 = shrink(D − Lk+1 − Pk + “Pk, ζk+1/ρ)

14: Pk+1 = shrink(D − Lk+1 − Sk+1 + “Pk, 1/ρ)

15: “Pk+1 = “Pk +D − Lk+1 − Sk+1 − Pk+1

16: Output: Ck, Uk, Rk: CUR decomposition of L.

We update the C,R,U separately:
C(Ic, :)← C(Ic, :)− η∇f(Ic, J)
R(:, Jc)← R(:, Jc)− η∇f(I, Jc)

U ← Hr(U − η∇f(I, J))
C(I, :)← U,R(:, J)← U

(3)

with Ic = [n] \ I , Jc = [m] \ J and η > 0 being the step size
for the gradient descent.

Both S-subproblem and P -subproblem can be cast as finding
the proximal operator of ℓ1-norm, which is the shrink operator
defined by

shrink(X,µ)ij = sign(xij)max(|xij | − µ, 0).

Then S is updated via

S ← shrink(D − L− P + “P , ζ/ρ),

and P is updated via

P ← shrink(D − L− S + “P , 1/ρ).

IV. NUMERICAL EXPERIMENTS

In this section, we compare the empirical performance of our
method (i.e. Alg. 1) for the FBS problem with the other related
algorithms, including robust dual-graph moving object detection
(RDMOD) [16], [17], robust PCA on graphs (RPCAG) [27]
and PCA using graph total variation (PCAGTV) [28] on two
real videos. All color videos are converted to gray-scale and the
intensities are rescaled to [0, 1]. Since our method involves the
randomly selection of indices I, J to form matrices R and C,

 



we run our methods for 20 times and record the corresponding
reconstruction quality and runtime. The selection of window
size and filtering parameters in the graph Laplacians can be
found in [16], and all the other parameters are tuned to optimize
the performance.

For performance evaluations, we adopt the various com-
parison metrics for the background recovery quality and the
foreground detection accuracy. For the background, we use the
following two metrics:
(a) Peak Signal-to-Noise Ratio (PSNR) in dB is defined by

PSNR = 20 log10(Imax/∥L̂− L∥F),

where Imax is the maximum intensity, and L̂ is an estimate
of the ground truth of the background L;

(b) Structural Similarity Index Measure (SSIM) [29].
For the foreground, we use the following three comparison
metrics from sensitivity analysis. Assume TP is the number of
the foreground pixels that are accurately labeled as foreground,
FP is the number of the background pixels that are inaccurately
labeled as foreground, and FN is the number of foreground
pixels that are incorrectly labeled as background:
(a) Precision (Pr) is defined as Pr = TP/(TP + FP );
(b) Recall (Re) is defined as Re = TP/(TP + FN);
(c) F-measure (Fm) is defined as Fm = 2Re/Pr.

All numerical experiments are conducted on Matlab R2021b
and executed on a laptop with Intel CPU i7-11800H (2.30
GHz) and 16 GB RAM.

A. Experiment 1

The first video, denoted by Lab, is downloaded from
http://web.eee.sztaki.hu/∼bcsaba/FgShBenchmark.htm. The
ground truth of the background is shown in Fig. 1. This dataset
has 205 frames in total and each frame is an image of size
240×320. This dataset is challenging for background recovery
since the closest door in the video is closed for the first 84
frames and then is opened by one person afterwards.

The average runtime and the reconstruction qualities in terms
of PSNR and SSIM for each result are summarized in Fig 1.
Furthermore, one visual result for each method is shown in
Figure 1. We can observe that the PSNR and SSIM values are
higher in our results.

In addition, upon closer examination of the visual results, it
becomes evident that the contrast of the cabinet door is superior
to that of the other doors. In terms of runtime, our approach
demonstrates significantly faster performance with a running
time of only approximately one-fourth that of RDMOD and
merely one-eighth that of PCAGTV.

B. Experiment 2

In the second experiment, we use the walking video from
[16], [17], whose original color video can be downloaded from
http://bxie.engr.uky.edu/dataset. After taking a preprocessing
step, the test video consists of 65 gray-scale image frames, each
with 150 × 200 pixels. The average runtimes and recovered
backgrounds for all the methods are shown in the second

Ground truth Alg. 1 RPCAG PCAGTV RDMOD

PSNR 30.88 27.04 27.04 27.92
SSIM 0.9679 0.9572 0.9572 0.9625

Time (sec) 84.33 592.99 677.23 335.43

PSNR 41.54 39.98 28.58 41.84
SSIM 0.9945 0.992 0.9525 0.9947

Time (sec) 12.15 149.52 77.39 38.68

Fig. 1. Video background subtraction results. Column 1 contains the ground
truth background, the other four columns are the reconstructed background
outputted by Alg. 1, RPCAG, PCAGTV and RDMOD respectively.

row of Fig. 1. The quantitative comparison for the recovered
backgrounds and foregrounds are listed in Table I. Note that our
result has the highest F-measure value indicating a good balance
in precision and recall. Our method outperforms RPCAG and
PCAGTV in almost all quality measurements and runtime.
Compared to RDMOD, our approach significantly reduces
runtime while achieving comparable or better performance in
terms of recovered background image quality and detection
accuracy.

TABLE I
QUANTITATIVE COMPARISON IN EXPERIMENT 2

PSNR SSIM Pr Re Fm
Alg. 1 41.50 0.9944 0.9044 0.7565 0.8239

RPCAG 39.98 0.9920 0.9008 0.7569 0.8226
PCAGTV 28.95 0.9548 0.6292 0.2464 0.3541
RDMOD 41.84 0.9947 0.9150 0.7488 0.8236

V. CONCLUSIONS AND FUTURE WORK

Foreground-background separation is one of the most funda-
mental tasks in many applications, such as social security and
computer vision. Due to the static presence of the background,
a video can be typically decomposed into a sum of low-rank
background and a sparse foreground. Many graph regularization
involving graph Laplacians have been proposed to enhance the
spatiotemporal geometry in the RPCA framework. However,
they suffer from the computational bottleneck when the graph
Laplacian is large. In this work, we propose a Sobolev
smoothness enhanced FBS model with spatial and temporal
graph regularizations, and an efficient algorithm based on CUR
matrix decomposition and ADMM algorithmic framework.
Numerical results have shown our proposed method performs
well on realistic data sets. In the future, we will extend
this framework to develop tensor-based fast color video FBS
algorithms and consider shadow removal from the foreground
under complex lightening situations.
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