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ABSTRACT

Band selection is an important technique for eliminating spec-
tral redundancy of hyperspectral imagery (HSI) while pre-
serving critical information. Recently, correlations among
neighboring bands or pixels have been exploited in the form
of graph regularizations to reduce the data dimensionality ef-
ficiently. However, manipulation of graph regularizations typ-
ically causes computational bottlenecks. In this work, we pro-
pose a robust method for hyperspectral band selection based
on spatial/spectral graph Laplacians and matrix CUR decom-
position. The efficiency of the proposed method has been
shown on two real data sets by comparing with several other
state-of-the-art band selection methods.

Index Terms— Hyperspectral band selection, matrix
CUR decomposition, classification, robust PCA

1. INTRODUCTION

Hyperspectral imagery (HSI) is an advanced technology that
gathers spectral data from ground objects in the form of hun-
dreds of narrow bands, which can provide more spectral in-
formation than classical RGB imagery and has been success-
fully applied in various fields such as in remote sensing, bio-
medicine, agriculture, and art conservation. However, the
high dimensionality of HSI poses challenges such as spectral
redundancy and computational burden. Therefore, it is neces-
sary to consider dimensionality reduction and redundancy re-
moval for HSI data. Hyperspectral band selection aims to al-
leviate these challenges by selecting a subset of original bands
while preserving important spectral information [1].

In general, HSI band selection methods can be classified
into supervised and unsupervised methods. Supervised band
selection requires prior knowledge of the HSI data. However,
training samples with annotated class labels are often either
limited or difficult to obtain. Therefore, unsupervised meth-
ods are preferable in many applications [1]. Some state-of-
the-art unsupervised HSI band selection algorithms include
enhanced fast density-peak-based clustering (E-FDPC) algo-
rithm [2], fast neighborhood grouping (FNGBS) method [3],
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and similarity-based ranking strategy with structural similar-
ity (SR-SSIM) [4].

Recently, a fast and robust principal component analysis
on Laplacian graph (FRPCALG) method for band selection is
proposed in [5] by considering the band-wise graph structure.
Specifically, it incorporates a graph regularization based on
the band-wise graph Laplacian into the robust PCA frame-
work so that spectral correlation is preserved in a sparse and
low-rank data matrix. However, solving the nuclear norm
regularization typically requires the expensive singular value
decomposition (SVD). In addition, it fails to consider spatial
correlation of the data matrix. To address these issues, we
propose a novel hyperspectral band selection method based
on the spatial and spectral graph regularizations, and also
introduce the CUR decomposition to handle the low-rank
constraint in the alternating direction method of multipliers
(ADMM) algorithm framework. Numerical results on two
real data sets have shown the great potential of our method.

The rest of the paper is organized as follows: Section 2
provides some preliminaries that will be used throughout
this work. Section 3 describes the proposed band selection
method in detail. Various numerical experiments on geo-
metrically deformed remote sensing images are shown in
Section 4. Finally, the conclusion and some future works are
summarized in Section 5.

2. PRELIMINARIES

In this section, we briefly introduce the construction of spatial
and spectral graphs and the matrix CUR decomposition.

The graph Laplacian plays an important role in band se-
lection to preserve local structures across the spectral bands.
Consider a hyperspectral data matrix B € R*™ where / is
the number of pixels and n is the number of bands. The rows
and columns correspond to the spatial and spectral samples
respectively. In the spectral domain, consider a graph G, :=
(Ve, Ec) where V. = {b5}1, is the set of vertices (columns
of B) and &, is the set of edges. Let W, = {(WW,),;} € R™*"
be the weighted matrix where each component is computed
such that (W), is a positive value proportional to the degree
of similarity of pixels ¢ and 7, but zero when ¢ and j are dis-
similar [6]. We consider the k-nearest neighbors to determine
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proximity and utilize the heat kernel,

Hbf—b?\lg) . )
- ’ f b§ and b¢ hbors:
(Wc)z] = {exp ( 0’(2: ) 1 7 an o are nelg ors

0, otherwise,

where o. > 0 is the kernel parameter. Next we define the
symmetrically normalized spectral graph Laplacian &, €
R™"™ given by &, = [, — Dc_l/QI/VCDc_l/2 where I, is the
n X n identity matrix, and D, is the diagonal degree matrix
defined as (D.)i; = >-5_; (We)ij-

Similarly, we consider the spatial neighbor graph G :=
(Vs, Es) where V, = {bf}¢_, is the set of vertices (rows of
B) and &; is the set of edges. In contrast to the spectral case,
we consider a different construction of the weighted matrix
W, = {(Ws)i;}. In the spatial domain, we consider the
patchwise similarity [7]. In particular, we compute

—\NV(5) — N(b3)]]3
eXp( H ( L) - ( J>||2 ’ lfbf andbj
— g
(Ws)ij = s are neighbors;
0, otherwise,

where o is the kernel parameter, and A(b$) € RP”*™ is a re-
shaped patch of size p x p centered at the ¢-th pixel. The sym-
metrically normalized graph Laplacian in the spatial domain
is defined as ®, = I, — D;l/QVVSD;l/2 where the diagonal
matrix Dy has i-th diagonal entry (Dy);; = Z§:1(Ws)ij-

Furthermore, CUR decompositions are efficient low-rank
matrix approximation methods that use a small number of ac-
tual columns and rows of the original matrix. In this paper,
we adopt the following definition.

Definition 2.1 ([8]) Given Y € R*™, let C € R***c be a
column submatrix of Y with column size s., R € R*"*" q
row submatrix of Y with row size s, and U € R®"*5< the
intersection part of C and R. The CUR decomposition of Y
is Y = CU'R, where U' is the pseudoinverse of U.

3. PROPOSED ALGORITHM

Given a hyperspectral data matrix Y € R**" with ¢ spatial
pixels and n spectral bands, we first use Y to construct its
spatial and spectral graph Laplacians as in Section 2. To select
bands, we aim to decompose Y into a sum of low-rank matrix
B and a sparse matrix S via the following model

min_ ||V = B =S|, + A5,
rank(B)<r,S

+ % tr(BT®,B) + % tr(B®.BT) (1)

where ®, € R*¢ is the graph Laplacian in the spatial do-
main and &, € R"*" is the graph Laplacian in the spectral
domain. In order to apply the ADMM framework to minimize

7381

(1), we introduce the auxiliary variable Z and rewrite (1) into
an equivalent form as follows

min || Z|, + A|1S]], + % tr(BT®,B) + % tr(B®.BT)

rank(B)<r
st. Z=Y —-B-S.

We introduce an indicator function to take care of the nonlin-
ear constraint about B. Let IT = {X € R®*"|rank(X) < r}.
The indicator function xpy is defined as 1 (X) = 0if X € II
and oo otherwise. Then the augmented Lagrangian can be
written as

£=Z]l, + AISlly + % tr(BT®.B) + 2 tr(BE.B")

~12
+XH(B)+§HY—B—S—Z+ZHF

where Z is a dual variable and B > 0 is the penalty parameter.
The resulting algorithm can be described as follows:

2
B <+ argmin éHY—B—S—Z—i—ZH
rank(B)<r 2 F
+ % tr(BT®,B) + %2 tr(B®.BT)
3 112
S «—argmin X ||S||; + = HY— B-S—-Z+ ZH
S 2 F

12
ZeargminHZHl+£HY7B757Z+ZH
A 2 F

Z+Z+Y-B-S—-2Z

Then the ADMM algorithm requires solving three subprob-
lems at each iteration. Specifically, we aim to minimize £
with respect to B, S, and Z. A common approach for updat-
ing B is to use the skinny SVD, however this can be costly
when the size of our matrix is large. Instead we utilize the
CUR decomposition. The variable B can be updated as

. . . 112
B! = argmin g HY -B-5 -7+ ZH
rank(B)<r F
+ 2L tr(B"®,B) + 2 tr(B®.B”) := f(B)

Then utilizing gradient descent with step size 7, we update
Bt = BJ — 7V f(B’) where the gradient is calculated as
Vi(BY)=B(B —(Y—-S1-Z14+2))+~®; B! +72BI®,.
The CUR decomposition is updated as

C+C—7Vf(B)(,J)

R+«C —7Vf(BI)(I,:)

U+3(C+R)

where I and J are the respective row and column index sets.
Then

B! = CU'R. )



Holding other variables fixed we update S and Z as

Sj+1 :pI'OX%H.”l(Y—BjJ’_l - Z'7 +Z) (3)
Zitl _ proxy . (Y — Bt st L 7)) @)

Where prox is the soft thresholding operator. The con-
vergence conditions are defined as: ||B7'Jr1 — Bj”OO <e,
|S+Y — 89| < e, || 20+t = Z9|| < e |1 29+ - 27| <
e. Here ¢ is a predefined tolerance. Next we apply a classifier
such as k-means on B7*! to find the desired & clusters. The
column indices of the bands closest to the cluster centroids
are stored in the set (). Then the corresponding bands from
the original matrix Y represent the desired band subset. The
entire algorithm is presented in Algorithm 1.

Algorithm 1: Hyperspectral Band Selection Based
on Matrix CUR Decomposition

Input: YV € Rf*"  maximum number of iterations 7',
number of sampled rows and columns s,- and s,
number of desired bands k, parameters 1, vz, 3,
and tolerance €

Output: The index () of the desired band set.

1. Construct the symmetrically normalized spectral
and spatial graph Laplacians, ®. and ®,.

2. Optimize the model in (1) using ADMM:

Initialize: B°, S°, Z° =0

for j=0,1,2,3,...., T —1do

Update B! asin (2)

Update S711 by solving (3)

Update Z7T! by solving (4)

Update Z/*t! = Z3 +Y — BI*t — G+l _ Zi+1

Check the convergence conditions

if converged then
| Exitand set B = Bi+!

end

end

Set B = BT _

3. Cluster columns of B using a classifier, e.g.,
k-means, and find the index set () which indicates
the bands closest to the k cluster centroids.

4. NUMERICAL EXPERIMENTS

4.1. Experimental Setup

In the numerical experiments, we use two benchmark HSI
data sets !: Indian Pines and Salinas-A. The Indian Pines data
set was gathered by AVIRIS sensor in North-western Indiana
and consists of 145 x 145 pixels, 200 bands, and 16 classes.
The Salinas-A data set is a subscene of a larger image gath-
ered by AVIRIS sensor in California and consists of 86 x 83

"https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing
_Scenes#Indian_Pines
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pixels, 204 bands, and 6 classes. See Fig. 1 for the two sample
bands of the aforementioned data sets.

Indian Pines

Salinas-A
T8

Fig. 1. Images of data seté

For comparison, we have included three state-of-the-art
methods: E-FDPC [2], SR-SSIM [4], and FNGBS [3]. Here
E-FDPC, SR-SSIM, and FNGBS do not require parameter
tuning. FRPCALG is not being compared because it is asso-
ciated with our method when v; = 0, a special case within
our model. However, our empirical findings have demon-
strated that our method performs better when ; > 0. For our
method, the maximum number of iterations, the termination
tolerance ¢ and (3 are set as 100, 1076, and 1 respectively.
The kernel parameters o., o5 for the Laplacian graph are de-
termined as the average distance of connected bands which
differs for each data set. The number of columns s. and rows
s, selected during the CUR decomposition step are calculated
as s = round(kln(n)) and s, = round(kIn(¢n)). While
the number of chosen rows and columns is pre-determined,
the columns and rows chosen are randomly selected using
a random permutation and rng (1) which initializes the
Mersenne Twister generator using a seed of 1. Finally, for
each data set, classification method, and desired number of
bands k, the parameters A, 71, y2 and 7 were tuned via a
grid search. The parameter A\ was tuned via a grid search in
{1074,1073,1072,1071,1, 10, 100, 1000} while 1, 72 and
7 were tuned via a grid search in {107%,1073,1072, 1071, 1}.

To evaluate the effectiveness of our method, classification
experiments are conducted. Support vector machine (SVM)
and k-nearest neighborhood (KNN) are adopted as classifiers
to examine the overall accuracy (OA). For each data set, 10%
of the samples are randomly selected to train the classifier.
The remaining 90% are used for testing. Each experiment
is repeated 50 times to reduce the randomness. The number
of chosen bands varies from 3 to 30 in increments of 3. All
the experiments were implemented in MATLAB 2022b on a
desktop computer with Intel CPU i9-9960X RAM 64GB and
GPU Dual Nvidia Quadro RTX5000 with Windows 10 Pro.

4.2. Experiment 1: Indian Pines

Fig. 2 plots the OA curves produced by SVM (left) and
KNN (right) for the Indian Pines data set. The proposed
method outperforms the state-of-the-art methods in terms
of OA when SVM is used to classify the bands and k& €
{3,6,9,12,15,18,21,24,27}. When k = 30 our method is
comparable to FNGBS, with a marginal difference of only



0.0065 in OA as evaluated by SVM. Similarly, when KNN
is used to classify the bands, the proposed method also out-
performs the state-of-the-art methods in terms of OA for
k € {3,6,9,12,15,18,21,24,27}. When k = 30 the pro-
posed method performs comparably to FNGBS, where the
difference in OA by KNN is only 0.0054. The average run-
ning times for each method in seconds averaged over the
number of selected bands k& are 0.0382 for E-FDPC, 0.1417
for FNGBS, 30.1334 for SR-SIM, and 15.3760 for the pro-
posed method. This running time for our method is expected
as it involves 100 iterations and a classification to find the
band cluster centroids. The proposed method is not only
faster than SR-SSIM, but also yields better classification
performance.
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Fig. 2. Overall Accuracy for Indian Pines

4.3. Experiment 2: Salinas-A

Fig. 3 plots the OA curves produced by SVM and KNN for
the Salinas data set. The proposed method performs compa-
rably to the competitive methods. The standard deviation of
the OA by SVM averaged over different & is 0.25% for E-
FDPC, 0.27% for FNGBS, 0.29% for SR-SSIM, and 0.28%
for the proposed method. The standard deviation of the OA
by KNN averaged over different k is 0.23% for E-FDPC,
FNGBS, and SR-SSIM, and 0.26% for the proposed method.
Table 1 details the ranges of the standard deviation for OA in
our method and thus demonstrates the stability. The average
running times for each method in seconds averaged over the
number of selected bands k are 0.0107 for E-FDPC, 0.0502
for FNGBS, 22.673 for SR-SSIM, and 6.1636 for the pro-
posed method. Our method outperforms SR-SSIM in terms
of computational speed.
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Fig. 3. Overall Accuracy for Salinas-A
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Table 1. Standard Deviation Range of OA for Our Method

’ \ Indian Pines \ Salinas-A ‘
SVM | 0.0054 ~ 0.0218 | 0.0019 ~ 0.0029
KNN | 0.0055 ~ 0.0069 | 0.0024 ~ 0.0033

S. CONCLUSIONS AND FUTURE WORKS

We proposed a novel method for hyperspectral band selection.
Our method utilizes spatial and spectral graph regularization
terms on the sparse and low-rank data with the addition of the
CUR matrix decomposition to the ADMM algorithm frame-
work. Experimental results on two real data sets demonstrate
that our proposed method outperforms several state-of-the-art
methods. In future work, we will explore effective strategies
for applying classification methods to the lower-dimensional
components generated through the CUR decomposition.
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