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Seeing is believing: llluminating the Gram-negative
outer membrane with molecular dynamics simulations
Gvantsa Gutishvili', Lixinhao Yang® and James C. Gumbar

Abstract

Recent advances in molecular dynamics (MD) simulations
have led to rapid improvement in our understanding of the
molecular details of the outer membranes (OMs) of Gram-
negative bacteria. In this review, we highlight the latest dis-
coveries from MD simulations of OMs, shedding light on the
dynamic nature of these bacteria’s first line of defense. With
the focus on cutting-edge approaches, we explore the OM’s
sensitivity to structural features, including divalent cations and
membrane composition, which have emerged as crucial de-
terminants of antimicrobial passage. Additionally, studies have
provided novel insights into outer-membrane proteins (OMPs),
revealing their intricate roles in substrate translocation and
their distinct interactions with lipopolysaccharides (LPS) in the
OM. Finally, we explore the challenging process of -barrel
membrane protein insertion, showcasing recent findings that
have enhanced our grasp of this fundamental biological
phenomenon.
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Introduction

The OM of Gram-negative bacteria constitutes a dy-
namic and multifaceted interface instrumental in
various processes, including nutrient transport, protein
insertion and secretion, and defense against antibiotics.
In recent years, we have seen review papers on these
topics separately [1—3]. Here, we offer a concise and
comprehensive perspective on bacterial OM dynamics
as observed through MD simulations over approximately
the last few years, distinguishing it from recent reviews
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covering a longer period [4,5] or focused on methodo-
logical aspects [6].

The asymmetric OM contains LLPS in its outer leaflet
and phospholipids in its inner leaflet. In addition to a
structural role, LLPS can trigger the innate immune
response through its interaction with Toll-like receptors
such as TLR4, highlighting its significance beyond the
bacterial OM [7]. LPS is itself composed of lipid A, core
sugars, and, in many cases, O-antigen polysaccharides
(Figure 1). MD simulations have emerged as a potent
tool for enabling a detailed exploration of the molecular
intricacies governing bacterial OM behavior. In this
review, we have structured our coverage into four key
sections, each delving into a specific facet of OM
functionality. The first section explores the OM’s
sensitivity to structural features, the second section
reviews recent studies of OM-OMP interactions, the
third section covers the function of pore-forming porins,
and the fourth section delves into the intricate process
of folding and insertion of B-barrel membrane proteins
into the OM.

OM sensitivity to structural features

The composition of the OM, including its asymmetry,
the unique structure of LPS molecules, and the high net
negative charge of LPS, make modeling it especially
complex. To address these challenges, several tools have
been developed, with CHARMM-GUI’s Membrane
Builder emerging as the most prominent and effective
among them [8]. MD simulations of bacterial OMs have
demonstrated the selection of factors such as phosphate
group charges, cation type, lipid composition, and ion
parameterization impact membrane properties such as
the area per lipid (ApL) and inter-lipid hydrogen
bonding [9,10]. Protonating the phosphate groups and
adjusting the non-bonded-interaction parameters for
monovalent cations with LPS produced the best
agreement with experimental results [9]. Notably, a
lower LLPS charge resulted in a reduced AplL. and a
thicker hydrophobic region with a less hydrated LPS
core, highlighting the importance of phosphate proton-
ation states [9]. Even the way the two leaflets of an
asymmetric OM are combined can affect its properties.
The most common approach is to match the surface
areas of the two leaflets, but this can induce a differ-
ential stress between them when combined, which can
alter, e.g., the free energies of small molecules in the
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Figure 1
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Structural representation of LPS. The three primary components of LPS
are indicated in both atomistic (left) and schematic (right) depictions: lipid
A (pink spheres on left) forming the membrane anchor, core oligosac-
charides (core-OS, pink sticks), and O-antigen (O-Ag, blue sticks)
extending outward from the cell surface. The molecular detail on the left
exemplifies the intricate chemical structure, while the schematic on the
right highlights the three distinct regions of LPS, emphasizing its modular
architecture.

membrane [10]. Nonetheless, a zero-differential-stress
approach can also introduce inaccuracies in mechanical
properties of the membrane, and thus the appropriate
choice of method needs to be considered carefully [11].

LLPS is the predominant component of the outer leaflets
of OMs and, when present, the O-antigen poly-
saccharide chains can extend tens of nm above the
surface, forming a mesh-like barrier. In a combined
immunology-simulation study, it was found that the
accessibility of epitopes on OMPs is modulated by O-
antigen length, with longer chains preventing antibody
binding [12]. In addition to LLPS, other molecules may
be present as well. These include the glycolipids
Enterobacterial common antigens (ECA), which are

found in members of the FEnterobacteriaceae family, and
the much longer capsular polysaccharides (CPS), which
are more commonly found across bacteria. Atomistic
simulations of symmetric bilayers composed of LPS and
ECA showed that a higher percentage of ECA makes the
LPS more flexible, increasing its molecular area [13]. In
contrast, LPS-linked CPS makes the membrane more
rigid, decreasing the molecular area of LPS, while PG-
lipid-linked CPS has the opposite effect [14].

Coarse-grained (CG) simulations, investigating both
smooth (with O-antigens) and rough (without O-anti-
gens) LPS, revealed that smooth LPS is packed more
tightly, resulting in stronger intermolecular interactions
and lower lipid mobility. Tighter packing also affects the
mechanical strength of the OM, meaning that rough-
LPS-containing OMs rupture at lower surface tensions
than smooth-LLPS-containing ones [15]. In order to
study more varied LPS-containing systems with CG
simulations, new models and parameters for additional
sugars have been developed and validated through
comparison to atomistic simulations [16].

In order to breach the OM, antibiotics must enter
through a porin or other OMPs or disrupt the LPS to
permeabilize it. Polymyxins, for example, take the latter
route, in part through displacement of the divalent
cations that bridge LLPS molecules [17]. Free-energy
analysis of the route shows a significant free-energy
barrier at the interface between the LLPS inner core and
lipid A [18]. MD simulations illustrate how membrane
composition influences polymyxin’s interaction with the
OM and its effects on membrane dynamics; for example,
it increases diffusion of LPS in the OM, while it de-
creases diffusion of lipids in the outer leaflet of the inner
membrane (IM) [19]. Additionally, polymyxin’s effects
on structural properties such as the ApLL and membrane
thickness depend significantly on membrane composi-
tion [17,19]. Another approach to breaching the OM is
to combine antibiotics with adjuvants, which enhance
their potency. MD simulations of novel adjuvants with a
diamidine core structure demonstrated that the large
separation between the positively charged ends is likely
a key factor in their activity [20].

The roles of outer-membrane proteins

While MD simulations of membranes have yielded a
number of new insights, incorporating proteins into the
simulations provides a more comprehensive and
detailed perspective. OMPs play a pivotal role in
transport across the OM, as demonstrated by MD sim-
ulations showing that the gap in LPS created by OmpF
could be beneficial for the translocation of short anti-
microbial peptides [21]. MD simulations also high-
lighted the profound importance of electrostatic
interactions in ligand-protein binding [22]. CG simula-
tions of multiple OMPs demonstrated that each has a
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“fingerprint”, i.e., a distinct orientation and pattern of
interactions with the OM, which is influenced by both
the OMP and the membrane composition, including
LPS length [23]. Additionally, the tight binding of
divalent cations has been shown to prevent convergence
of CG potential of mean force (PMF) -calculations
during LLPS extraction, a problem that was mitigated by
restraining the ions to remain in the OM [24].

OMPs, such as Ail, can induce rigidity and thickening of
the OM, improving its resistance to antibiotics [25]. On
the other hand, the stability of OMPs is influenced by
the position along the membrane normal of nonpolar
side chains, as revealed by calculations of the interface-
to-bilayer transfer free energy [26]. OMPs often form
clusters, shown by cross-linking and CG simulations,
typically mediated by a single lipid/LLPS between them
[27]. The presence of these interfacial LPS and lipids
not only enhances the impermeability of the OM but
also contributes to the stabilization of OMP assemblies,
ensuring structural integrity [27]. OMP—LPS in-
teractions are also mediated by divalent cations. Because
of the resulting low rate of diffusion of LLPS in the OM,
MD simulations can be heavily biased by initial condi-
tions, necessitating the development of novel ap-
proaches for construction of OMP-membrane systems
[28]. Atomistic and CG simulations of the OM of Pseu-
domonas aeruginosa, with and without embedded OMPs,
have further illustrated how these ions stiffen the OM,
making it an effective permeability barrier [29].

The OM in Gram-negative bacteria is coupled to the IM
through large protein complexes and also to the inter-
vening peptidoglycan (PG) cell wall through various
linkages (Figure 2). MD simulations have been used to
investigate both of these couplings, revealing, for
example, how crowding affects diffusion of polymyxins
from the OM to the IM [30] and how Braun’s lipopro-
tein (Lpp) [31] as well as OmpA [32] regulate the
spacing between the OM and PG in Escherichia coli. OM-
PG linkages in species that lack Lpp have been identi-
fied and studied as well [33]. Simulations were also used
to resolve interactions between PG and the periplasm-
spanning multi-drug efflux pump AcrAB-TolC, which
may influence its assembly and stability [34]. Another
periplasm-spanning complex, the Tol-Pal system, has
been investigated with steered MD simulations, which
helped to elucidate the fundamental mechanisms by
which the Tol assembly orchestrates the localization of
Pal in the OM at the septum for cell division [35].

LLPS molecules are inserted into the OM by LptD/E,
part of the Lpt system. LptD forms a large, 26-stranded
B-barrel in the OM. Both MD simulations and wet-lab
experiments suggest that not only does LptD have a
lateral gate for egress of LLPS into the OM, its opening
can be primed by the presence of an LLPS molecule in
LptD’s “P-taco” domain near the gate [36,37].

Figure 2
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Lpp

OM and peptidoglycan (PG) components of the Gram-negative cell en-
velope. O-antigen is displayed in light blue (sticks), core sugars in pink
(sticks), OmpD trimer in dark pink, lipid A in pink (spheres), phospholipids
(PL) in dark yellow, Lpp in rose, ions in dark blue, and PG in light blue and
dark yellow (surface).

Conversely, this B-taco domain can be stabilized by
binding of the antimicrobial peptide thanatin, which
blocks transport of LLPS [37].

Insights into transport across the OM
Pore-forming OMPs, also known as porins, facilitate the
diffusion of essential nutrients into the Gram-negative
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bacterial cell. Additionally, they serve as a conduit for
the influx of many antibiotics. MD simulations have
provided valuable insights into these processes. For
instance, research on OmpF has demonstrated its L3
loop functions as a gate for antibiotic translocation, with
the open-closed state transition influenced by nega-
tively charged residues on the loop [38]. Furthermore,
the charge distribution of bulky antibiotics can disrupt
the protein’s hydrogen-bond network to open the gate
and, consequently, create a low-energy pathway for
permeation [39]. Interestingly, .3 of OmpF became
more dynamic with increased temperature than 1.3 of
OmpC in MD simulations, which could be connected to
the different conditions under which the two porins are
expressed [40]. Other aspects of translocation through
OMPs, such as the presence of Mg,2+ ions [41], the
arrangement of basic residues on the B-barrel wall
(Figure 3a) [42], and the electric field in the constric-
tion region [43], have also been studied using MD
simulations and shown to play significant roles in influ-
encing antibiotic permeability. Moreover, OmpM of
Veillonella parvula, which possesses a flexible stalk that
interacts with PG, has been studied (through experi-
ments and MD simulations) for its dual functionality in
stabilizing the OM and facilitating nutrient absorption,
indicating its potential evolutionary importance in bac-
teria and the development of the OM [44].

The OMs of certain bacteria, such as P aeruginosa,
feature poor permeability due to the intrinsic rigidity of
the OM [29] as well as to the lack of highly permeable,
large-channel porins such as OmpC and OmpF Instead,
they utilize various substrate-specific channels, like the
Occ family, for nutrient uptake. For example, OprD, a
member of this family, is responsible for transporting
basic amino acids as well as some carbapenem

Figure 3

antibiotics. MD simulations have shown that OprD
possesses a distinct “basic ladder” on one side of its -
barrel (Figure 3b), serving as an electrostatic guide for
substrate permeation [45]. Similarly, phosphate-
selective channels like OprP (Figure 3c¢) and OprO
display an arginine ladder on the extracellular side and a
lysine cluster on the periplasmic side. This feature en-
ables them to interact with the phosphonic acid group of
substrates; MD simulations showed that it also effec-
tively guides antibiotic molecules through each porin
monomer [46].

Even though large molecules are generally not trans-
ported across the OM, there are exceptions. A notable
instance is the passive permeation of cationic antimi-
crobial peptides through the channel CymA. This pro-
cess is facilitated by the negatively charged residues
within the channel as observed in MD simulations [47].
Another OMP, BtuB employs an induced-fit mechanism
during transport of vitamin B12. MD simulations have
suggested that the conformational changes of the
extracellular loops of BtuB, necessary for its opening and
closing movements, are governed by non-specific in-
teractions with substrates [48]. This mechanism has
been explored for potential applications in delivering
peptide nucleic acids to F. co/i cells [49], demonstrating
the feasibility of using oligonucleotides as programma-
ble agents to inhibit bacterial growth. Some species,
such as Bacteroides thetaiotaomicron, encode multiple
copies of BtuB. MD simulations of one example, named
BtuB2, illuminated its interactions with BtuG2, an
accessory extracellular protein, and helped to resolve
how BtuG2 binds B12 and hands it off to BtuB2 [50].

As discussed above, MD simulations have become an
important tool for evaluating the permeability of
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Key basic residues of some porins. Blue spheres indicate the position of C, atoms, while entire residues are displayed in stick representation. (a) Side
view of an OmpF monomer (PDB: 20MF) [42]. (b) Side view of OprD (PDB: 3SY7) highlighting the “basic ladder” [45]. (¢) Side view of an OprP monomer
(PDB: 204V) [46]. The light blue lines indicate the approximate position of the hydrophobic region of the OM. The extracellular side is indicated by “EC”

and the periplasmic side by “Peri”.
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bacterial porins to antibiotics, with a particular focus on
calculating the free energy along the permeation
pathway. For example, through a comparative analysis of
various umbrella sampling (US) methods, replica-
exchange US, in particular, has proven effective at
achieving converged PMF calculations with an accuracy
reaching sub-kcal/mol [51]. Additionally, employing
temperature acceleration in conjunction with slowly
evolving collective variables has helped to mitigate
sampling issues, thus enhancing convergence of free-
energy estimates [52]. The integration of Monte Carlo
simulations and graph theory has also been shown to be
beneficial in determining pathways for enhanced sam-
pling [43], further advancing the field.

Folding and insertion of OMPs into the OM

The folding and insertion of B-barrel membrane pro-
teins into the OM is a challenge for bacteria, exacer-
bated by the lack of chemical energy at the OM.
Certain physicochemical properties of the OM and the
proteins themselves contribute to resolving this chal-
lenge. For example, the asymmetric nature of the OM,
most notably the higher amount of negative charges in
the outer leaflet due to LPS compared to the inner
leaflet, aids the proper insertion of OMPs via specific
interactions with positive charges on their extracellular
side identified via MD simulations [53]. Other protein
features, such as the length and composition of
extracellular loops [54] and the presence of inward-
facing glycines within the B-barrel [55], also modu-
late the insertion process. Ciritically, folding and
insertion is catalyzed by the OM-associated P-barrel
assembly machinery (BAM) complex [56]. Unfolded
OMPs, which are maintained in distinct folding-

Figure 4

competent ensembles in the periplasm [57], are
delivered to BAM by chaperones to initiate folding
and insertion.

The BAM complex, the core component of which is the
16-stranded PB-barrel OMP BamA, catalyzes insertion in
multiple ways. MD simulations of BamA in its native
OM [59] and in a nanodisc [60] have revealed signifi-
cant membrane distortions near the seam between the
N- and C-terminal B-strands, which could lower the
energetic barrier to OMP insertion by thinning and
destabilizing the OM locally. Additionally, the seam, also
called the lateral gate, adopts multiple conformations,
including an open one that may be its predominant form
in the OM [60]. The open lateral gate was proposed to
act as a template for folding of OMPs, which could insert
one or more B-strands at a time, forming a so-called
“hybrid barrel” with BamA. MD simulations provided
support for the hybrid barrel model by demonstrating
the large degree of plasticity of the B-barrel domain of
BamA [61], which must contort to accommodate the
growing B-barrels of numerous substrates [62]. High-
resolution cryo-EM structures of intermediate states,
first of a four-P-strand substrate inserted into BamA’s
lateral gate [61] and then of a 12-B-strand substrate
[63], wvalidated predictions from computational
modeling. For example, hydrogen bonds between
BamA’s Bl strand and the substrate’s C-terminal 3
strand are more numerous and uniform than those at
BamA's 16 strand [62], supporting a more detailed
“asymmetric hybrid barrel” model of folding and inser-
tion [64]. Insights into OMP development have also
carried over to the mitochondrial homolog Sam50, which
was revealed to have a similar hybrid-barrel mechanism;

Current Opinion in Structural Biology

BAM complex with darobactin (PDB 7NRI) [58]. (a) BAM complex (BamA in gold, BamB in blue, resolved portion of BamC in red, BamD in green, BamE in
purple) with darobactin (sticks representation) bound to the 1 strand of BamA. Light blue lines indicate the approximate location of the hydrophobic core
of the OM. (b) Focus on darobactin bound to BamA. Residues involved in resistant mutants are shown in a space-filling representation (tan — F394, E435,
G443; blue — T434, Q445, A705; red — G429, G807). (c) Close-up view of darobactin (right) bound to B1 (left). Hydrogen bonds are indicated by dotted

lines.
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MD simulations were used to fill in three -strands that
were unresolved in the electron density map [65].

Unsurprisingly given its essential function in Gram-
negative bacteria, BamA has recently been a focus of
the development of novel antibiotics. Perhaps most
notable, the natural product darobactin has been
discovered to mimic a BamA substrate, allowing it to
bind to the lateral gate and block access of native sub-
strates to it (Figure 4) [58]. MD simulations further
showed that darobactin displaces lipid molecules from
the lateral gate region, forming stronger contacts with
BamA [58]. In addition to evaluating the bound-state of
darobactin, MD simulations have also revealed how
darobactin-resistant mutants function by enhancing
lateral-gate dynamics (Figure 4b) [66].

Concluding remarks

In conclusion, the application of MD simulations has
provided unprecedented insights into the behavior and
functionality of bacterial OMs. From their sensitivity to
specific constituents to the pivotal roles of OMPs, MD
simulations have illuminated the intricate structure and
dynamics of the OM. Furthermore, these simulations
have deepened our understanding of the folding and
insertion of B-barrel membrane proteins, shedding light
on processes crucial for both bacterial biology and anti-
microbial strategies. Looking ahead, MD simulations are
poised to continue making an impact, including in the
development of antibiotics as well as other innovative
therapies to combat bacterial infections. The dynamic
and adaptable nature of bacterial OMs is still a subject of
intense exploration, and MD simulations will remain an
invaluable tool in elucidating their properties.
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