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ABSTRACT De novo peptide design is a new frontier that has broad application potential in the biological and biomedical
fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based
on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative ma-
chine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from,
the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to
design peptide sequences that can fold into the g-hairpin secondary structure. This deep neural network model is designed
to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of
20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data
from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of 8 hairpin from
« helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial -hairpin peptide sequences
with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant da-
tabases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and
conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary
limits.

SIGNIFICANCE Diverse protein sequences with similar physicochemical properties can lead to identical structural folds
and functions. These evolutionarily driven protein sequences, composed of combinatorial arrangements of canonical
amino acid residues, have a distinct physicochemical property landscape. Machine learning models can play a significant
role in understanding the complex sequence-structure relationships in the context of physicochemical property landscapes
and extend their scope beyond extant sequence space. Here, we developed a generative ML model, beGAN, that encodes
PDB-derived sequences by their physicochemical properties and generates nonnatural B-hairpin sequences. We
demonstrate that the model accurately classifies B hairpins from helical and disordered folds and generates diverse f-
hairpin sequences. These results demonstrate the utility of using physicochemical property-based architectures for protein
generative models.

INTRODUCTION extant protein sequence/structure provides a framework
for the designed structure, de novo design seeks to create
entirely new sequences that will adopt a fold structure of in-
terest (1). Thus far, this challenge has been met using a va-
riety of approaches and with increasing success over the last
20 years (2). De novo protein design is now used in an array
of synthetic biology and biomedical applications for the cre-

ation of biomaterials and bioactive protein switches, in the

De novo protein design, whereby protein structures are de-
signed from scratch and without reference to naturally
occurring sequences, is a long-standing endeavor that prom-
ises to expand the finite limits of the sequence/structure
landscape. Distinct from protein re-design, wherein an
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treatment of viral infections, and in the modulation of im-
muno-signaling pathways (3—13).

Computational design principles underlying de novo pro-
tein design can take on many forms but generally involve
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some form of backbone sampling, sequence optimization,
and possibly functional site design, all of which are aimed
at identifying optimal sequence/structure combinations
(1,2,14). A long-standing approach is to use local structural
assembly, wherein folded modules of extant protein struc-
tures are fused to achieve a final larger protein structure in
which the relative position and orientation of secondary
structure elements, such as side chains and backbone struc-
ture, are sampled to identify local energy minima in the
sequence-structure landscape (15-17). Several research
studies have also noted the importance of physicochemical
properties such as hydrophobicity, residue volume, and
amino acid propensities of canonical amino acids in classi-
fying protein folds (18-20). However, to the best of our
knowledge, no generative machine learning (ML) model
has yet fully explored the application of physicochemical
and conformational properties to design protein secondary
structures.

ML models have already surged within the field of de
novo molecular structure prediction and design, including
high-throughput in silico molecular screening and physico-
chemical property prediction (18-26). Particularly, ML
models based on the generative adversarial network
(GAN) are emerging as a promising new mechanism for
exploring the theoretical protein sequence/structure land-
scape (27-32). These ML approaches are not only
leveraging the accuracy of predictions but also accelerating
existing computational models, such as molecular dynamics
(MD), that are comparatively slow and require rigorous
manual monitoring (33-35). Moreover, in the case of big-
data availability, researchers are shifting from the use of
ML models, such as support vector machines (36-38) and
random forests (39,40), for predictive and clustering studies
toward more robust techniques such as attention-based deep
learning (41,42) and natural language processing (43,44).

Despite extraordinary advances in protein generative arti-
ficial intelligence, inverse folding remains a challenging
problem owing to the vast protein sequence space (20",
where 7 is the number of amino acid residues in a sequence).
Compared to the large sequence space, protein fold space is
only about 10° (45,46). Thus, it is essential to understand the
correlation between sequence space and energy-governed
fold space when designing functional protein scaffolds for
biological applications (47,48). An explosion of effort in
this area for full-length protein design has been published
in recent years (1,42,49-56). In comparison, fewer
models have addressed this challenge for peptide design
(27,57,58,31,32,59-61).

ML models have also begun to address the challenge of
mapping the theoretical sequence-structure relationship
for peptides (8-50 amino acids) (27,28,31,32,58) and small
proteins (>50 amino acids) (27,58,42,62,63). For instance,
Xie and coworkers formulated the HelixGAN model by
combining sequence and structural features from 3 million
helix fragments from the PDB, resulting in the generation
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of stereospecific (D/L) helix structures (31). Karimi et al.
also used fold-specific sequences to train a conditional Was-
serstein GAN model to obtain protein secondary structures
with novel fold representations (28). Most recently, Batra
and coworkers developed an autonomous search engine
combining a Monte Carlo tree search and ML-based random
forest model with MD simulations to discover nonintuitive
self-assembling pentapeptide sequences (58). In the similar
vein, Pandi and coworkers developed and explored the
utility of the generative variational autoencoder model to
generate ~500,000 antimicrobial peptides (64,65).

Peptide sequences with the 3-hairpin secondary fold have
been shown to play a key role in several protein regulatory
functions, such as protein aggregation (66—68), biomolecular
recognition (69,70), and antimicrobial or anti-viral drugs
(32,71). An improved understanding of the sequence-struc-
ture relationship of (-hairpin peptides could potentially
lead to new insights on the protein polymers such as amyloid
fibers, well known for their toxicity to eukaryotic cells and
their correlation with human disease (72).

Despite their growing importance, attempts to design iso-
lated B-hairpin peptides have been met with difficulty due to
their tendency to spontaneously assemble into insoluble
higher-order structures (66,73). Although manual ap-
proaches have been employed for the design of §-hairpin
peptides, these efforts have yielded relatively small-scale
peptidomimetic (-hairpin libraries (74—79). We note that,
very recently, Dupai and coworkers reported a thorough
study on all 49,000 unique B-hairpin sequences extracted
from the PDB (80). Based on their comprehensive struc-
ture-based sequence data exploration, they suggested
several fundamental design principles for 8-hairpin scaf-
folds, such as the incorporation of @strands with amphi-
pathic faces, specificity of the structural orientation at the
turn region, and selection of amino acid residues at a partic-
ular position based on their physicochemical and electronic
properties (80).

Here we describe the development, performance, and
validation of a ML model beta GAN (beGAN) for gener-
ating sequences that conform to a (-hairpin scaffold. The
model is composed of a two-class secondary structure
discriminator that classifies peptide secondary structures
based on the physicochemical and structural properties of
position-specific amino acid residues with a high accuracy
of about 96%, coupled with a generator that designs new
deep-fake sequences. We employ beGAN to design
B-hairpin peptides that we subsequently validated through
in silico modeling such as MD simulations, state-of-the-
art protein structure prediction techniques, and experimental
techniques for structure determination by circular dichroism
(CD) spectroscopy and solution nuclear magnetic resonance
(NMR) spectroscopy. The results provide essential feedback
on using extant protein structure databases for peptide-based
generative models, give new insights on the physicochem-
ical landscape of the (-hairpin scaffold and their design
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principles, and highlight tested avenues for the success or
failure of such approaches.

MATERIALS AND METHODS
ML feature engineering

In deep-learning-based protein structure predictions, contact maps and dis-
tance matrices have been recognized as primary methods of image-like
protein representations. These image-formatted contact maps are con-
structed based on either residue covariation in amino acid contacts within
protein structures or protein sequence patterns and coevolutionary cou-
plings, also known as multiple sequence alignment (81,82). Such represen-
tation of proteins makes it convenient to customize deep learning
architectures already developed for imaging and computer vision technol-
ogies such as convolutional neural networks (NNs) and residual convolu-
tional NNs (83,84). Inspired by deep-network models, in this work, we
encoded our peptide sequences using relevant physicochemical, electronic,
and structural features associated to each residue, where each residue
descriptor was computed from the AAindex database using the propy
package, a tool for automated descriptor generation for amino acids
(85,86). Throughout this work, each residue was assigned 12 descriptors,
namely hydrophobicity; «-CH chemical shift; conformational parameters
for § strands, « helices, and 8 turns; residue volume; steric parameters;
normalization frequency for @ strands, « helices, and ( turns; § strands
indices; and a-helical indices (Figs. SI and S4). This gave a representation
of each 16-mer peptide with 192 features, which allowed our models to
learn patterns in the peptides based on relevant residue level local
information.

Training data exploration

The accuracy and stability of deep learning models can depend upon the
amount of data on which they are trained. With the increasing number of
sequences available in protein databases (87), we first parsed about
100,000 known 16-mer §-hairpin peptide sequences based on their DSSP
information. Since the turn regions of these sequences were variable in
the number of residues and residue positions, we filtered for hairpins where
the turn region was only limited to the middle residue positions R8 and R9,
as shown in Fig. S1. This reduced the number of ground-truth examples
considered for generative modeling to about 16,528 sequences. Corre-
sponding to this 8-hairpin set, we also amassed about 40,000 16-mer helices
and about 72,000 disordered peptides. The disordered peptide sequences
were selected based on the IUPred disordered prediction of their amino
acids, where all consecutive amino acids within a window of 16-mer pep-
tide length have a disorder value of 8.5 and above (88). In both cases, a
stratified train-test-split was set to 0.25 where the models were trained on
75% of the datasets and 25% of examples were used for unbiased
testing. The amino acid sequence logo was created using WebLogo 3.0
webserver (89).

Model training

The unique architecture of deep convolutional discriminative NN provides
a significant advantage in the protein fold-classification problem (90,91).
In this work, we have developed two distinct discriminator models based
on deep convolutional discriminative NN, which can be coupled with a
generator NN. The two-class discriminator (8 hairpin/non-8 hairpin)
was trained using a dataset of 33,056 16-mer peptides evenly distributed
between ( hairpins (16,528) and non-@ hairpins (i.e., helix/intrinsically
disordered peptide) (16,528). Model training convergence was achieved
using a batch size of 2400, 300 epochs, and a learning rate of 0.0002.
The beGAN model was trained using a learning rate of 0.0002, a batch

beGAN: $-hairpin peptide generator

size of 24, and 1500 epochs. To tune the hyperparameters of the beGAN
model, we utilized the learning rate for the ADAM optimization algorithm
due to its quick convergence (92). To avoid mode collapse in the generator
NN, a dropout rate of 3% was applied at each layer for regularization, and,
to improve the overall convergence of the beGAN model, a nonlinear
LeakyReLU activation function was set for all three hidden layers (93).
When applying the GAN model, parameter values were mapped to a
sequence by applying an L1 norm to each set of 12 descriptor values to
select the closest amino acid. The terms of the L1 norm were scaled by
the difference in maximum and minimum parameter values for the de-
scriptors to ensure no descriptor had undue weight in determining the
closest residue in the descriptor space.

Peptide structure prediction using AlphaFold2
and ESMFold

The PDB-derived and beGAN generated peptide (GP) sequences were uti-
lized to predict the corresponding 3D structure of §-hairpin peptides using
AlphaFold2 (41) and ESMFold (94,62) algorithms, respectively. For each
peptide, the structure corresponding to the highest predicted local distance
difference test (pLDDT) score was selected to determine the overall per-
centage of § secondary structure content. The 8 content was defined based
on the percentage of ( sheet residues (E) in the 16-mer peptide sequence.
The 3D peptide structure was characterized using the DSSP algorithm to
obtain per-residue secondary structure annotation such as @ sheet (E),
random coil (C), or helix (H) (95). Based on the 3 content, the GPs were
sorted into four quadrants of increasing 8% (Q1, 0%—-12.5%; Q2, 12.5%—
50%; Q3, 50%—75%; and Q4, 75%—100%).

MD simulations

Each peptide was constructed in an initially extended conformation using
Molefacture in VMD (96), and solvated in a 60 x 60 x 60 A3 box of
~6600 TIP3P water molecules (97). Na™ and C1~ ions were added to a
net concentration of 150 mM (~20 of each type of ion). After a short equil-
ibration with NAMD 2.14 (98), subsequent simulations were run using
Amberl6 on GPUs using the three force fields described below (99).
Although equilibration was run with constant pressure and temperature,
production runs used constant volume and a constant temperature of 298
K enforced with Langevin dynamics. For each sequence, between two
and eight 3- to 6-us simulations (a total of 538 ps) were conducted, and
the average fraction of -hairpin content per residue was calculated. These
data were also converted into a single average (-content percentage for the
entire peptide (Fig. S7.1-S7.10).

MD force fields

Three distinct biomolecular force fields were used to simulate all peptides
with TIP3P water: Amber ff14SB (100), CHARMM36m (C36m) (101), and
CHARMM22* (C22%) (102). Simulations using C36m or C22* had a short-
range cutoff of 12 A for Lennard-Jones interactions and a switching func-
tion starting at 10 A; simulations using ff14SB had a cutoff of 9 A and no
switching function. All simulations used the particle-mesh Ewald method
for long-range electrostatics (103). A uniform time step of 2 fs was used
for the first set of simulations for each force field. The SETTLE algorithm
was used to constrain water molecules, and the SHAKE algorithm con-
strains all other hydrogen atoms. An additional set of C22* simulations
for all peptides was run using a 4-fs time step along with hydrogen mass
repartitioning (HMR) (104,105). HMR increases the mass of hydrogen
atoms to 3 amu, decreasing the parent atoms’ masses accordingly to
conserve mass. We note that others have also identified imbalances in pep-
tide conformations using ff14SB, which have since been corrected in
ff19SB (106,107).
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Representative MD snhapshots selection

For simulation trajectory snapshots in Figs. 4 and S8, three were selected
from the C22* MD simulation as the most representative. To achieve
this, we first divided the entire trajectory into three equal segments.
Then, from each segment, we chose one frame with the maximum number
of structured residues, either as « helices or § sheets, to serve as a
representative.

Peptide synthesis

Synthetic peptides were synthesized with N-terminal acetylation and C-ter-
minal amidation to greater than 95% purity by Genscript Biotech. Lyophi-
lized peptides were reconstituted in deionized water and further diluted to
desired concentrations in 10 mM phosphate buffer (pH 7).

CD spectroscopy

Far-UV (190-250 nm) CD spectra were recorded on JASCO J-815 CD
spectropolarimeter with a Peltier temperature control and a quartz cuvette
with 1-mm path length. All experiments were carried out under 25°C,
with 1-nm bandwidth and 1-s response time, and scanned at 50 nm/min
in 0.2-nm steps. For each sample, 15 scans were averaged after solvent
baseline correction. The final concentration of all peptides is 142 uM in
10 mM phosphate buffer (pH 7). CD analysis (secondary structure content
estimation) was obtained using the BeStSel algorithm (108).

Solution NMR structure determination of peptides

From 1 to 2 mg of peptide (=95% purity, natural isotopic abundance,
chemically synthesized from GenScript) was dissolved in 300 uL of
50 mM NaCl, 20 mM sodium phosphate pH 4.86, 10% D,0, vortexed,
and transferred to a 3-mm NMR tube. The pH was lowered to 4.86 to mini-
mize the solvent exchange of backbone amide hydrogens. Each sample was
used to record a suite of experiments that enabled backbone and side-chain
resonance assignments: 2D "H-3C HSQC, 2D 'H-'>N HSQC, 2D 'H-'H
NOESY (300- and 50-ms mixing times), and 2D 'H-"H TOCSY spectrum
(80-ms isotropic mixing time) (109). All experiments were acquired using
standard parameters at a 'H field of 800 MHz at 4°C with recycle delay (d1)
set to 1.2's on a Bruker AVIIIHD-800 spectrometer equipped with TCI
cryoprobe. Data were processed with nmrPipe (110). Chemical shift and
NOE cross-peaks assignment were performed manually in Sparky (111).
Torsion angle restraints for structure calculations were performed in
TALOS-N using H, N, CA, and CB chemical shift values (112). Structure
calculations were performed in CS-Rosetta using TALOS-N-derived re-
straints together with experimentally determined intramolecular NOEs. A
total of 5000 conformations were calculated and sorted by total energy. Pep-
tide ensembles were generated from the 10 lowest energy structures and
validated using MolProbity.

Basic Local Alignment Search Tool

Basic Local Alignment Search Tool (BLAST) searching of the NCBInr and
PDB databases was accomplished using the web-based BLASTp search en-
gine with the following parameters: word size = 2; expected value =
200,000; hitlist size = 10; gapcosts = 9,1; matrix = PAM30; filter
string = F; genetic code = 1; window size = 40; threshold = 11; and
composition-based stats = 0. BLAST searching the training dataset con-
taining approximately 99,000 unique training set sequences was accom-
plished using Blast2GO (113,114) to create a BLAST searchable
database, followed by BLASTp analysis using a local version of the
NCBI Genome Workbench (115).
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Graphics and statistical analysis

MD and BLAST data were analyzed using JMP Pro 16 (SAS) and
Python software. NMR structures were visualized using UCSF ChimeraX
software (116).

RESULTS

Overview and performance evaluation of a beGAN
model for g-hairpin sequence design

Generative models play a significant role in statistical and
ML modeling where data augmentation is needed or in cases
where an imbalanced dataset is encountered. In recent years,
GANs have emerged as a powerful tool for generative
modeling in computer imaging technologies. A GAN is
composed of two NNs, a generator and a discriminator,
working in an adversarial fashion. The generator is trained
to design realistic new data, in an attempt to fool the
discriminator, whereas the discriminator tries to distinguish
synthetic instances produced by the generator from real
samples in the input dataset. As this adversarial but comple-
mentary learning process goes on, both NNs get better at
their respective jobs. When convergence is achieved, the
GAN can produce synthetic new data that are indistinguish-
able from the real samples to the discriminator. Without
design constraints or conditioning and sampling algorithms,
given a random sequence vector, z, the generator designs
new targeted sequences through joint minmax cross-en-
tropy-loss optimization of the function (117),

E flog(D(x))] + E:[log(1 — D(G(2)))] M

where D(x) is the discriminator’s estimate of the probability
that real sequence x is real, E, is the expected value over all
real sequences, G(z) is the generator’s output when given
random sequence vector z, and D(G(z)) is the discrimina-
tor’s estimate of the probability that a designed sequence
is real. E, is the expected value over all random inputs to
the generator.

In this work, we utilized the GAN framework to develop
the ML model that can classify 8 hairpins from « helices
and disordered peptides to generate novel peptide sequences
that adopt the desired $-hairpin fold. The architecture of the
ML model is summarized in Fig. 1. The polypeptide chain
consisting of 16 amino acid residues was chosen based on
a minimum requirement for G-hairpin structures that were
a primary focus of downstream validation studies. Our
ML model utilizes an input feature matrix encoded using
12 physicochemical and fold-specific conformational
indices of individual amino acid residues in the 16-mer
peptide sequence (Fig. S1). The discriminator NN was
trained with the ground-truth feature dataset using 16,528
PDB-derived 16-mer (-hairpin sequences. On the other
hand, the generator NN was provided with a random vector.
After training the discriminator NN on the ground-truth
feature set derived from the PDB for 2400 batches and
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FIGURE 1

The model architecture of a GAN to design (-hairpin sequences. The input feature matrix was constructed by encoding 16-mer peptide se-

quences with 12 physicochemical and conformational properties of individual amino acids. The discriminator NN was trained on the ground-truth dataset
of 16,528 16-mer $-hairpin sequences accrued from the PDB. The generator NN was trained to generate new target peptides from a feature matrix encoded
using physicochemical and conformational properties of random 16-mer amino acid sequences. The architecture beGAN model contains an input layer
with 192 features connected to three hidden layers with sizes 1024, 512, and 256 for the discriminator and these hidden layers are followed by a binary
output layer with a sigmoid activation function. The generator has a similar architecture except the hidden layer is the conjugate-transpose of that of the

discriminator.

300 epochs, the training loss was computed to be 0.02, and
the training accuracy was 0.94 (Fig. 2 A).

The classification performance of the discriminator NN
was determined using the area under the receiver operating
characteristic curve (AUC-ROC). The value of AUC-ROC
was computed to be 0.96, which suggests that the ML model
was able to distinguish 8 hairpins from « helices and disor-
dered peptides accurately (Fig. 2 B). Based on the binary
classification confusion matrix, both values of recall and
precision were determined to be 0.91 (Fig. 2 C). The
beGAN model, wherein the discriminator model is coupled
with the generator NN, was then trained for 2400 epochs us-
ing 24 batches. After model convergence was achieved, the
generator NN was set to generate new l6-mer peptides
(Fig. S2). The newly generated peptides were sorted into
two distinct categories based on their classification proba-
bility, termed GP score. The first category includes the
non-@B-hairpin class, with a GP score ranging from 0.0 to
0.05. The second category is the (-hairpin class, which
has a GP score ranging from 0.95 to 1.0.

In addition to ML validation, the amino acid conservation
and relative frequencies were compared using the sequences
from PDB-derived training data and newly generated binary
classes (8 hairpin and non-g hairpin) across 16-mer peptides
using sequence logos (Fig. 2 D) and residue frequency dis-
tribution plots (Fig. S3). Naturally occurring §-hairpin se-
quences from the PDB are enriched with glycine (G),
aspartic acid (D), and asparagine (N) at the turn region (res-
idue positions 8 and 9) (Figs. 2 D and S3 A). This observa-
tion is consistent with a previously reported systematic data

exploration of B-hairpin datasets, wherein G, D, and N are
found to have higher propensities than other amino acid res-
idues at the turn regions of the (-hairpin scaffold (80). We
found that $-hairpin sequences generated by the beGAN
model closely resemble the natural order of amino acid oc-
currences at both turn and @ strand regions with a few excep-
tions (Figs. 2 E and S3 B). For example, the generated
16-mer (-hairpin sequences include G residue at the turn re-
gion (R9) with about 25.9% higher residue frequencies than
PDB-derived 16-mer sequences (Figs. 2 E and S3 C).

As expected, the sequence conservation and amino acid
frequencies from the non-gB-hairpin dataset are significantly
different compared to the §-hairpin training and generated
datasets (Fig. 2 F). For example, the sequence conservation
and frequencies suggest the enrichment of histidine (H),
methionine (M), and phenylalanine (F) residues at R8 and
R9 positions.

Most interestingly, the beGAN model was able to learn and
generate the various physicochemical and conformational
trends of the amino acid residues across the peptide sequence.
For instance, the hydrophobicity feature distributions of se-
quences from the §-hairpin training and generated $-hairpin
datasets showed a significant variation in median hydropho-
bicity values from 0.0 up to 1.4 among turn and middle 8
strand regions (Fig. 2 H and I). Moreover, at turn position
(R9), the upper quartile value of hydrophobicity was as low
as 0.6 and 0.0 for the B-hairpin training set and generated
B-hairpin class, respectively. On the other hand, for the gener-
ated non-B-hairpin class, the hydrophobicity values did not
show such significant variation among turn and strand
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between hairpin and nonhairpin classes. (D-F) Sequence logos of 16-mer peptides are shown to indicate amino acid conservation and their relative fre-
quencies. The data for the three logos consist of 16-mer amino acid sequences from PDB-derived 6-hairpin training set, generated 8-hairpin class, and gener-
ated non-B-hairpin class, respectively. (H-J) Hydrophobicity feature distribution across 16 residue positions shown for sequences from PDB-derived
B-hairpin training dataset, generated (-hairpin class, and generated non-G-hairpin class, respectively.

regions, wherein the median of hydrophobicity values
only changed from 0.6 to 1.2 across all residue positions
(Fig. 2 J). Further analysis of the other 11 model features
with respect to amino acid position in the § hairpin showed
that other physicochemical properties captured from natural
sequences were recapitulated in generated sequences
(Fig. S4.1 and S4.2). Based on these trends, we conclude
that the beGAN model learned the complex feature correla-
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tions between the selected feature set and was able to
generate a physicochemical and conformational property
landscape that was effectively decoded into novel amino
acid sequences most suitable for a §-hairpin scaffold.

In addition to 16-mers, the beGAN model architecture
was also extended to generate alternative peptide lengths
including 14-mer, 18-mer, and 20-mer models. Similar to
the 16-mer model, the extended models were trained on
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the available (-hairpin sequences extracted from PDB and
their performance was evaluated (Fig. S4). All new models
were also highly accurate (above 95%) and generated
unique 14-mer, 18-mer, and 20-mer peptide sequences that
are based on the position-specific residue distribution of
the corresponding PDB-derived peptide sequence dataset
(Fig. S5). However, training data available from the PDB
for (8 hairpins become a limiting factor and can affect the
generative performance of the model. For example, with
an extensive training dataset (n = 15,402), the 14-mer
model was able to recapitulate the training sequence distri-
bution and better mimic hydrophobicity trends compared to
the 14-mer model trained on the relatively smaller dataset (n
= 4631) (Fig. S6).

beGAN performance evaluation by AlphaFold2
and ESMFold protein structure prediction tools

Recent protein structure prediction methods have been
demonstrated to predict short (-hairpin structures with
high accuracy (118). In this work, we utilized AlphaFold2
(41) and ESMFold (94,119) models to predict the structures
of 500 beGAN-GP sequences and used this to designate a
success rate of our model. For each peptide sequence, the
peptide structure corresponding to the highest pLDDT score
(41) was selected to determine the overall percentage of (8
secondary structure content (95,120). Based on this, the
GPs were sorted into four quadrants of increasing 3 content
percentage (8%) (Q1, 0%—-12.5%; Q2, 12.5%-50%; Q3,
50%-75%; and Q4, 75%—-100%), wherein the range from
Q2 through Q4 represent hairpins of increasing structural
quality (Fig. 3 A). Of the 500 16-mer-peptides screened us-
ing AlphaFold2, 345 (69%) were classified as ( hairpin (i.e.,
sorting into Q2-Q4), whereas 155 (31%) were classified as
non-B-hairpin structures (i.e., sorting into Q1). Of the 345 -
hairpin structures, 244 were characterized as well-structured
6 hairpins involving 12 or more amino acid residues (Q4) in
the ( sheet structural fold. In comparison, 87 peptide se-
quences adopted moderately well-structured (-hairpin
structures with 8—11 amino acid residues in (-hairpin fold
(Q3), whereas only 14 were determined to be lower-quality
B-hairpin structures with as few as two to eight amino acid
residues involved in a @ sheet structure (Q2). Compared
to the predictive performance of AlphaFold2, ESMFold
yielded 198 B-hairpin structures (Q2-Q4) and 301 non-S-
hairpin structures (Q1) (Fig. 3 B).

To verify the ability of AlphaFold2 to predict the struc-
tures of experimentally resolved 16-mer @ hairpins, we
also used the algorithm to predict structures of PDB-derived
B-hairpin sequences. Out of 500 PDB §-hairpin structures,
AlphaFold2 predicted 445 (89%) @ hairpins (Q2-Q4) and
55 (11%) non-@ hairpins (Q1) (Fig. 3 D). Moreover, the
structural comparison between 100 PDB g-hairpin struc-
tures and corresponding AlphaFold2 structures yielded
Ca-root-mean-square deviation (RMSD) values with a me-

beGAN: $-hairpin peptide generator

dian of 1.13 A and standard deviation of 0.3 A (Fig. 3 E).
The lowest Ca-RMSD value of 0.283 A represented excel-
lent matching between AlphaFold2 and the extracted PDB
B-hairpin structure. In contrast, the highest variation in
Ca-RMSD was found to be 19.15 A, where AlphaFold2
does not correctly predict the B-hairpin structure.

Based on the performance of the AlphaFold2 model to
predict structures of the generated sequences, the overall
success rate of the beGAN model was evaluated across
GP scores ranging from 0.95 to 1.0 (Fig. 3 C). The success
rate was determined as the ratio of the total number of pos-
itive 8 hairpins from Q2 to Q4 to the total number of pep-
tides in all quadrants in the GP score range. The success
rate of the beGAN model ranged from 88.9% above the
highest threshold of 0.995 down to 77% at a score
threshold of 0.95. In contrast to AlphaFold2, evaluating
the success rate based on ESMFold resulted in a lower
range of success rates from 59.0% to 44.4%, corresponding
to the sequences having a GP score range from 0.95 to 1.0
(Fig. 3 O).

The performance of AlphaFold2 was further validated on
500 B-hairpin sequences generated by an alternative model,
ProteinMPNN (Fig. 3 F). We found that, out of 500
ProteinMPNN-generated and AlphaFold2-predicted pep-
tides, 397 peptides (79.4%) were predicted to be 8 hairpins
and 103 peptides (20.6%) were predicted as non-8 hairpins.

Evaluation of beGAN-generated sequences by
MD simulation

In addition to using AlphaFold2 and ESMFold models to
validate beGAN-generated sequences, we also opted to
evaluate our GAN model performance using MD simula-
tions. We selected nine sequences for evaluation: four
beGAN-generated sequences from the nonhairpin class, ex-
hibiting GP scores less than 0.09; four from the (-hairpin
class with GP scores greater than 0.9; and one control
sequence obtained from the well-folded 8 scaffold from
PDB: 1A70 (Table S1) (121). Test sequences were deter-
mined to be nonredundant and significantly distinct from
one another using CD-HIT (see section “materials and
methods”). Since MD force fields are calibrated based on
protein structure data, we refrained from making a priori as-
sumptions about their effectiveness. Instead, we tested three
distinct force fields: CHARMM?22* (C22*), CHARMM36m
(C36m), Amber ff14SB (ff14SB); and a variant of the first,
C22* with hydrogen mass repartitioning (C22*hmr) (see
section “materials and methods”) (101,102,104,105). The
B-hairpin and non-g hairpin classes were statistically distin-
guishable (p < 0.05) regardless of the force field used.
Particularly, the MD data obtained from C22*, C36m, and
C22*hmr force-field simulations showed better class separa-
tion than data from ff14SB simulations (Fig. 3 G-J;
Table S1). Secondary structure analysis of C22* MD data
was performed using the STRIDE algorithm (122), which
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FIGURE 3 Screening and validation of beGAN-generated sequences using in silico and in vitro methods. (A and B) AlphaFold2 and ESMFold models
were utilized to predict the secondary structures of the 500 beGAN-generated sequences with GP scores higher than 0.95. The 500 GP peptides were sorted
into four quadrants (Q1, Q2, Q3, and Q4) based on the total $% content calculated by DSSP algorithm. (C)The success rate of the beGAN model was
computed across 10 windows of GP score ranging from 0.95 to 1.0 using AlphaFold2 (magenta) and ESMFold (gray) models. (D) AlphaFold2 model
was utilized to predict the secondary structures of the 500 PDB-derived 8-hairpin sequences with computed GP scores. The 500 PDB peptides were sorted
into four quadrants (Q1, Q2, Q3, and Q4) based on the total 5% content calculated by DSSP algorithm. (E) Structural comparison between 100 PDB-ex-
tracted B-hairpin structures and their AlphaFold2 structures were performed and the corresponding Ca-RMSD values were plotted in the histogram. (F) Al-
phaFold2 was utilized to predict the secondary structures of the 500 ProteinMPNN-generated $-hairpin sequences, which are sorted into four quadrants (Q1,
Q2, Q3, and Q4) based on the total 3% content calculated by the DSSP algorithm. (G-I) §-hairpin content established by the average maximum per-residue §
content quantified from replicate MD simulations using four force fields revealing distinct classification of positive § (red circles) from the negative class
(non-@) GP peptides (green circles). Control peptide corresponds to a sequence retrieved from the PDB that adopts an individual hairpin that is not part of a
larger § sheet secondary structure (PDB: 1A70). Data plotted on a log; scale for improved visualization. Two-tailed tests (p) using unequal sample sizes were
performed for each of the four forcefields using positive (red circles) and negative (green circles) clusters.

revealed a median difference of 15.8% in the $-hairpin con-
tent between the positive and negative class (p = 0.0228),
wherein the positive class ranged from 10% to 27%, and
the negative class ranged from 0% to 3%. The control (3
scaffold exhibited (-hairpin structure for 32% of the C22*
trajectories. In the case of MD simulations using C36m
and ff14SB force fields, the control peptide yielded lower
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B-content values than the corresponding generated positive
class peptides, whereas the C22*hmr simulation yielded
similar results to C22%.

Simulated peptide structures sampled from the MD sim-
ulations provided further insight into the dynamics of
beGAN peptides in each class (see section “materials
and methods”) (Figs. S7.1-S7.10 and S8). As expected,
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MD-generated configurations of the beGAN (-hairpin se-
quences showed a trend toward the canonical $-hairpin sec-
ondary structure. The secondary structures of non-(-class
sequences were classified into a mixed class that is either
a helix or intrinsically disordered peptide. Overall,
G-hairpin sequences tended to adopt their target structure
at greater frequency than did non-g-hairpin sequences
throughout the 4-us simulations, often remaining stable
for 1-2 us. Additionally, the middle residue (R9) of the §-
hairpin peptides consistently participated in the turn among
all positive test cases.

beGAN-generated sequencesadopt a 3-hairpin
structure in vitro

To experimentally evaluate model performance, we selected
eight potentially soluble, generated sequences: four from the
nonhairpin class, exhibiting GP scores less than 0.09, and
four from the (-hairpin class with GP scores greater than
0.9 (Table S1). Peptide solubility was estimated using a hy-
drophilic residue count, which we validated with an ML-
based solubility model based on a recurrent NN (123)
(Fig. S10). Each peptide was synthesized, purified commer-

far right.

Co-RMSD: 3.939 A
TM-score: 0.2858

cially, and then analyzed independently by CD spectros-
copy. Spectral fitting of CD data for each synthetic
peptide revealed only a 7.2% difference between the (-
hairpin content of the positive and negative class (p =
0.004), wherein the positive class ranged from 32% to
48% and the negative class from 25% to 40% (Figs. 4 A
and S9). In comparison, control peptides selected directly
from the PDB that appeared to form § hairpins in isolation
from larger @ sheet structures showed a narrower range in 3
content spanning from 35% to 40% that was statistically
different (p = 0.002) than all negative class GP peptides.
We successfully resolved NMR structures of two (-
hairpin peptide sequences, namely GP 5 and GP 7, gener-
ated by beGAN (Fig. 4 B and C). These specific peptide se-
quences were selected to survey high GP-scored peptides
(above 0.90) that exhibit high water solubility and high
8% content based on MD simulation results that have also
passed through AlphaFold2 screening. Both peptides adop-
ted the intended (-hairpin structure comprising strongly
bound anti-parallel @strands and a two-residue hairpin
loop (Fig. 4 B and C). Top-ranked peptide structures ob-
tained from AlphaFold2 and MD simulations were
compared with the corresponding NMR structure using
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RMSD in Ca atoms (Ca-RMSD) and TM-score metrics to
quantitively determine a topological similarity between
the two structures (124,125). The top-ranked NMR structure
of GP 5 closely resembled its corresponding AlphaFold2
predicted structures with a Ca-RMSD value of 0.740 A
and TM score of 0.5004, indicating excellent agreement.
In the case of GP 7, the NMR structure was found to be
similar to the AlphaFold2 predicted structure with a lower
Ca-RMSD value of 2.985 A and a TM-score of 0.2734.
Moreover, the solved NMR structures of GP 5 and GP 7
showed similar @ propensities to the corresponding repre-
sentative structures from the MD simulations with Ca-
RMSD values of 2.221 and 3.939 A and TM scores of
0.2890 and 0.2858, respectively. The beGAN peptides
with higher MD % (Fig. 3 G-J) and CD % (Fig. 4 A)
also adopted the (-hairpin NMR ensemble in the aqueous
phase (Fig. 4 B and C). Overall, we found that there was a
positive trend in the 3% content observed by CD and corrob-
orated with MD simulation and NMR spectroscopy, further
supporting the generative performance of the beGAN
model.

beGAN-generated sequences are unique and
diverse from naturally evolved sequences

beGAN-generated sequences are created from random seeds
using PDB-derived evolutionary training data. Therefore,
we sought to establish their uniqueness among sequences
observed in nature. We used the NCBI BLAST algorithm
to quantify sequence homology between the AlphaFold2-
screened 500 GP peptide sequences (see Fig. 3 A) and the
comprehensive PDB and nonredundant (NR) databases. Re-
sults from this search demonstrated that beGAN sequences
matched both databases to varying degrees of query
coverage and sequence identity (Fig. 5). When the complete
range of query coverage is selected (100% query coverage;
full 16-mer), the homology search of GP peptides against
the NCBI PDB database resulted in a minimum sequence
identity of 31.25% for Q1 (non-G class) and 37.50%,
31.25%, and 31.25% for Q2-Q4 (B-class), respectively. In
some cases, beGAN was found to generate sequences that
already existed in the NCBI PDB database, but these were
relatively rare. For example, five out of 244 sequences in
Q4 (2%) were found to be a perfect match with extant se-
quences in the NCBI PDB database (100% query coverage
and 100% sequence identity). Moreover, homology search-
ing of the same peptides against the NCBInr database re-
sulted in the lowest minimum sequence identity of
50.00%, 56.25%, 56.25%, and 50.00% ranging from Q1 to
Q4 quadrants, respectively (Fig. S11). From the last Q4
quadrant, seven out of 244 sequences in Q4 (2.8%) were
found to be a perfect match with extant sequences in the
NCBI NR database. In contrast, there were no perfect
matches found in any of Q1-Q3 (n = 256) in both NCBI
PDB and NR databases (Figs. 5 E-G and S11 E-G).
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To estimate the ability of beGAN-GPs with minimum
sequence identity to adopt a §-hairpin structure, we evaluated
beGAN with sequence identities ranging from 50% to 56%
calculated using the NCBInr dataset (Fig. S12). The
AlphaFold2-predicted 3-hairpin structures of the 10 GP pep-
tides (GP 9-18) with the lowest sequence identity are shown
(Fig. S12 A), along with their percentage § content and
beGAN-generated GP score (Fig. S12 B). Each of the 10 pep-
tides exhibits a high § content of 75% with 12 out of 16 res-
idues involved in the 8-hairpin fold. Taken together, these
results demonstrate that sequences produced by beGAN,
which relies on physicochemical properties rather than
sequence or structural homology, are unique from natural se-
quences and properly fold into their intended fold structures.

Benchmarking against a current state-of-the-art
generative model

The current ProteinMPNN model meets several challenges
in protein design (42). However, unlike our beGAN model
that relies predominantly on physicochemical features of
amino acids, ProteinMPNN is designed to take existing
static protein or peptide structures as its input. Here, we
compared the performance of the beGAN model with
ProteinMPNN to generate novel peptide sequences. Using
30 16-mer (-hairpin structures extracted from the PDB
(Fig. 6 A), we generated 300 sequences using the
ProteinMPNN algorithm (Fig. 6 B). These 300 sequences
were compared against 300 beGAN sequences in terms of
positional residue frequency and peptide sequence diversity.

We compared the amino acid propensity at each position
in the generated sequences (Fig. 6 B and C). Results from
both ProteinMPNN and beGAN models reveal a wide array
of possible amino acid combinations, suggesting that not
one minimal sequence motif defines the physicochemical
landscape of well-structured § hairpins. Beyond this, both
models favored amino acids with lower residue volumes
in the turn regions such as G, D, and N. Both models also
favored hydrophobic amino acids in the § strand region,
although beGAN peptide sequences were notably more
diverse. For example, ProteinMPNN favored valine (V)
(13%—42%), isoleucine (I) (0.6%—9.3%), and tyrosine (Y)
(0.3%-9.3%) in the @strands of many peptides, whereas
beGAN generated a more diverse distribution of amino
acids such as I (0%-24.6%), Y (2.6%—-12%), F (2.3%—
29.6%), and V (0.6%-21.7%). Interestingly, for both
models, we also found a smaller proportion of peptides
with @strands containing complementary charged amino
acid pairs (Fig. 6 D and E). ProteinMPNN generated se-
quences that were enriched with lysine (K) at positions 1
(31.0%) and 10 (35.0%) and glutamic acid (E) at positions
7 (9.6%) and 16 (30.3%). Meanwhile, beGAN generated se-
quences enriched with K at position 11 (26.6%) and E at po-
sition 6 (14.0%) or H at position 10 (32.0%) and D at
position 8 (25.6%). Upon further investigation of beGAN
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FIGURE 5 Homology search of 500 beGAN-generated sequences in the NCBI PDB database. (A—D) NCBI PDB BLAST results for 500 beGAN-generated
16-mer peptides (GP) sequences across four quadrants (Q1-Q4) were determined using calculated 3% content of AlphaFold2-predicted structures with the
highest pLDDT score. Percentage identity (within query coverage (QC)) corresponds to the percentage of the query sequence that shares an identical res-
idue(s) with the target sequence per target length. QC corresponds to the percentage of residues in the 16-mer that are involved in the match. Hits (black
circles) correspond to individual matches between GP peptides and the PDB sequence dataset across query coverage range from 0% to 100% from the
top 10 matches obtained from the protein BLAST search. Density of the hits is also shown for each quadrant in colored hexagonal bins. (E-H) Percentage
sequence identity values of the top match from the BLASTP search (blue) and frequencies of the individual beGAN sequences from four (Q1-Q4) quadrants
are shown. Percentage sequence identity was calculated as the percentage of the query sequence that shares an identical residue(s) with the target sequence

per length of the GP.

peptides, we found the residue-residue contact distance be-
tween these charge pairs was within the cutoff distance
4-6 A) for a potential electrostatic interaction (Fig. S13)
(126). It is also noteworthy to mention that Batra and co-
workers reported similar trends of complementary charged
residues in their (-hairpin self-assembly peptide design
model (58).

Additional differences in the amino acid frequency data-
sets generated by the two ML models can be summarized
based on the amino acid frequency distributions.
The beGAN model was found to generate 28% more G,
32% more H, and 30% more F at positions 9, 10, and 12,
respectively, compared to the ProteinMPNN dataset.
ProteinMPNN generated 30% more V and 26% more of
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FIGURE 6 Benchmarking beGAN model against ProteinMPNN. (A) Sequence logos of 30 PDB-derived 16-mer peptides which were used as the indiviual
input sequences for the ProteinMPNN model. (B) Sequence logos of 16-mer peptides are shown to indicate amino acid conservation and their relative fre-
quencies using 300 ProteinMPNN-generated $-hairpin sequences (left). (C) Sequence logos of 16-mer peptides are shown to indicate amino acid conserva-
tion and their relative frequencies using 300 beGAN-generated $-hairpin sequences. (D) Amino acid residue frequency distribution plots for 300 sequences
from ProteinMPNN-generated sequence dataset, (E) beGAN-generated dataset, and (F) the difference in amino acid residue frequencies from ProteinMPNN
and beGAN sequence datasets. (G)) NCBI PDB BLAST results for 300 ProteinMPNN-generated, and (H) beGAN-generated sequences are shown using a
full query coverage range. (I) Comparison between percentage sequence identity values of the top match from the BLAST search of the individual beGAN-
generated sequences and ProteinMPNN-generated sequences is shown for 300 generated sequences. Percentage sequence identity was calculated using the
percentage of the query sequence that shares identical residue(s) with the target sequence per length of the generated peptide.

both K and E at residue positions of 5, 1, and 16,
respectively.

To compare diversity for the generated sequences, we per-
formed a BLAST homology search against the NCBI PDB
database for 300 beGAN- and 300 ProteinMPNN-generated
sequences. When the complete range of query coverage
is compared (100% query coverage; full 16-mer), beGAN
performed slightly better in generating sequences with
lower percentage identities (compare 31.2% for beGAN
to 37.5% for ProteinMPNN) (Fig. 6 G-I). However,
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ProteinMPNN exhibited a lower overall median percentage
identity (compare 56.2% for beGAN to 50% for
ProteinMPNN). Moreover, although beGAN produced a
small number of identically matched sequences (five out
of 300), ProteinMPNN did not produce any identical se-
quences compared to the NCBI PDB dataset. In addition
to the BLAST homology search, we also performed a
clustering analysis to quantitatively evaluate the sequence
diversity generated by beGAN and identify sequence redun-
dancy. To do this, we used CD-HIT to cluster 300 beGAN
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B-hairpin sequences from quadrants Q2 to Q4 that were vali-
dated by AlphaFold and had classification scores of 0.95 or
higher. Depending on the word size and identity threshold
used, a range between 185 and 295 unique sequence clusters
ws observed, indicating a high level of sequence diversity in
beGAN sequences. In comparison, identical analysis of 300
ProteinMPNN sequences generated using 50 reference
B-hairpin scaffolds yielded a range between 34 and 130
unique clusters, indicating lower sequence diversity
(Fig. S14). These results indicate that the generator and
discriminator performance of the beGAN model produce
diverse sequences.

DISCUSSION

Here, we have demonstrated the potential of a generative
ML model that relies on the physicochemical and conforma-
tional properties of amino acids to create novel peptide se-
quences designed to adopt a $-hairpin secondary structure.
We show that the model is able to uncover key trends and
fingerprints of 12 physicochemical and conformational
properties essential for 8-hairpin folding and generates pep-
tide sequences that adopt their target structure in silico and
in vitro. The beGAN model is able to learn amino acid-en-
coded physicochemical feature space and classify with
high accuracy (96%), precision (91%), and recall (91%)
B-hairpin folds from other fold structures such as helix/
random coil features. Moreover, the GAN model architec-
ture is extendable to generate variable peptide lengths
ranging from 14-mer, 18-mer, and 20-mer amino acid se-
quences primarily dependent upon existing input data.

Our model also provides insights into the design princi-
ples of the $-hairpin peptide scaffold based on the physico-
chemical feature analysis of the generated sequence
datasets. For example, the median hydrophobicity of
B-turn residues (R8/R9) was found to be significantly lower
compared to the median hydrophobicity of the residues at
@ strand positions (R10-R14) and (R3-R7), indicating
incorporation of hydrophilic residues such as G and N at
the turn regions (Fig. 2). A similar observation was found
for residue volume, where the median of the residue volume
at the turn region (R9) was substantially lower by at least
30 A2 or more than the median residue volume at the 8
strand region (Fig. S4.2). The electrostatic pairing observed
between oppositely charged amino acid pairs on opposite
ends of the @ strands, such as in positions 8-10 and 6-11,
may also stabilize the (-hairpin structure in some cases
(Figs. S3 and S13).

The beGAN model has been validated through both
computational and experimental evidence. Computational
evidence was provided largely through AlphaFold2 predic-
tions, which show that beGAN achieves up to 88.9% success
rate in designing sequences that adopt a $-hairpin fold. An
important extension of this work is in establishing the utility
of AlphaFold2 in predicting secondary structures of short

beGAN: $-hairpin peptide generator

peptides at reasonable accuracy and lower overall computa-
tional and experimental cost. Given that the training set for
AlphaFold2 is composed of naturally occurring sequences,
we hypothesize that its ability to make accurate predictions
will be reduced for peptides with lower sequence identity. In
support of this hypothesis, we found that AlphaFold2 suc-
cessfully predicted §-hairpin structures for 89% of a PDB-
extracted (-hairpin test set in which sequence identities
are 100% (Fig. 3). In contrast, for beGAN-generated se-
quences, which are significantly diverse from naturally
occurring ones, we found that peptides with a high degree
of sequence identity to naturally occurring sequences (be-
tween 80% and 100% identical) were only found in the
Q4 quadrant as classified as well structured by § hairpins
AlphaFold2 (Fig. 5 E-H). Thus, in general, given the current
training dataset of AlphaFold2, it may perform better on
naturally occurring rather than designed peptide sequences.

We also validated beGAN peptides with in vitro experi-
ments and MD simulations. Indeed, a test set of
AlphaFold2-predicted peptides were also found to adopt
the expected secondary structure during microsecond-scale
MD simulations, and these results were further supported
by both CD and NMR experimental evidence (Figs. 3, 4,
S7 and S8). We further highlight that the beGAN model de-
signed fold-competent sequences that were diverse from
naturally occurring ones (Fig. 5). These promising results
show the potential of generative ML models for designing
novel targeted peptides based on the physicochemical and
conformational properties of amino acid residues. More-
over, relying on the physicochemical properties of amino
acids instead of the sequence allows potential flexibility
in extending the model to noncanonical amino acid
residues.

Some assumptions were necessary when initiating the
development of the beGAN model, one being that peptides
isolated from whole protein structures in the PDB would
preserve their secondary structure when isolated in silico
or in vitro. However, this is likely not often true as, in
many cases, (§ hairpins require stabilizing forces provided
by surrounding residues in the whole folded protein (as in
a (8 sheet structure) or by nonprotein structures, such as
membranes, that are lost in our experiments (127). Beyond
this, there is an apparent discrepancy between what con-
forms to an isolated hairpin as measured by crystallography
and whether it would also form a well-structured hairpin as a
peptide in vitro. Thus, by virtue of the model’s reliance on
crystal structure data for training, data for the classifier
are not perfectly labeled for the intended outcome of a sol-
uble hairpin. Indeed, isolated (-hairpin peptides have a
documented tendency to exhibit low solubility due to aggre-
gation (66,128). Experimental validation of 3-hairpin pep-
tides requires that they are soluble, which can be
predicted by hydrophilic residue count (Fig. S10). We
recommend this type of filter to identify soluble § hairpins
from beGAN or other similar models.
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The beGAN ML or similar peptide generative models
may be useful for applications that can benefit from
an expansion of the sequence-structure landscape of
peptide libraries. Such applications may include antimi-
crobial peptide generation, materials science, or in the
study of proteinopathies such as Alzheimer’s disease.
Indeed, many antimicrobial peptides adopt (-hairpin-like
structures designed and screened for cell-killing properties
(32,60,71,129). In materials science, aggregation in the
form of amyloids is a desirable property for engineered
biomaterials that rely on (-hairpin secondary structures
(58,66,73), and the GAN-based ML model could provide
particular utility in this area by expanding the sequence/
structure possibilities for such materials. In the study of
proteinopathies that rely on $-hairpin peptides, the model
may provide similar advantages (66,73). Utilizing genera-
tive models to establish detoxifying hairpin structures that
prevent fibril formation, for example, could be enhanced
by generative ML models that allow the generation of pep-
tide structures without being sequence constrained. Alter-
natively, the beGAN model may be useful in exploring the
physicochemical nature of (-hairpin aggregation and am-
yloid formation that can expand beyond the landscape of
naturally occurring sequences. Although beGAN is not de-
signed for these applications in particular, it may be
tailored to achieve such objectives if given functional fea-
tures that inform the model on desired functional
outcomes.

DATA AND CODE AVAILABILITY

The codes used to run the generative model are available at
https://github.com/juliecmitchell/beGAN. Training data and
other codes are available by request to mitchelljc@ornl.gov.

The assigned chemical shifts of GP 5 (RGVTVP
HNGESKDYSV), and GP 7 (RHYYKFNSTGRHYHYY)
peptides have been deposited to the Biological Magnetic
Resonance Data Bank under accession codes 31101 and
31094, respectively. The atomic coordinates of GP 5 and
GP 7 peptides have been deposited to the RCSB PDB under
accession codes 8TXS and 8T61, respectively.

SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
2024.01.029.
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