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ABSTRACT De novo peptide design is a new frontier that has broad application potential in the biological and biomedical

fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based

on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative ma-

chine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from,

the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to

design peptide sequences that can fold into the b-hairpin secondary structure. This deep neural network model is designed

to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of

20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data

from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of b hairpin from

a helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial b-hairpin peptide sequences

with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant da-

tabases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and

conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary

limits.

INTRODUCTION

De novo protein design, whereby protein structures are de-

signed from scratch and without reference to naturally

occurring sequences, is a long-standing endeavor that prom-

ises to expand the finite limits of the sequence/structure

landscape. Distinct from protein re-design, wherein an

extant protein sequence/structure provides a framework

for the designed structure, de novo design seeks to create

entirely new sequences that will adopt a fold structure of in-

terest (1). Thus far, this challenge has been met using a va-

riety of approaches and with increasing success over the last

20 years (2). De novo protein design is now used in an array

of synthetic biology and biomedical applications for the cre-

ation of biomaterials and bioactive protein switches, in the

treatment of viral infections, and in the modulation of im-

muno-signaling pathways (3–13).

Computational design principles underlying de novo pro-

tein design can take on many forms but generally involve
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SIGNIFICANCE Diverse protein sequences with similar physicochemical properties can lead to identical structural folds

and functions. These evolutionarily driven protein sequences, composed of combinatorial arrangements of canonical

amino acid residues, have a distinct physicochemical property landscape. Machine learning models can play a significant

role in understanding the complex sequence-structure relationships in the context of physicochemical property landscapes

and extend their scope beyond extant sequence space. Here, we developed a generative MLmodel, beGAN, that encodes

PDB-derived sequences by their physicochemical properties and generates nonnatural b-hairpin sequences. We

demonstrate that the model accurately classifies b hairpins from helical and disordered folds and generates diverse b-

hairpin sequences. These results demonstrate the utility of using physicochemical property-based architectures for protein

generative models.
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some form of backbone sampling, sequence optimization,

and possibly functional site design, all of which are aimed

at identifying optimal sequence/structure combinations

(1,2,14). A long-standing approach is to use local structural

assembly, wherein folded modules of extant protein struc-

tures are fused to achieve a final larger protein structure in

which the relative position and orientation of secondary

structure elements, such as side chains and backbone struc-

ture, are sampled to identify local energy minima in the

sequence-structure landscape (15–17). Several research

studies have also noted the importance of physicochemical

properties such as hydrophobicity, residue volume, and

amino acid propensities of canonical amino acids in classi-

fying protein folds (18–20). However, to the best of our

knowledge, no generative machine learning (ML) model

has yet fully explored the application of physicochemical

and conformational properties to design protein secondary

structures.

ML models have already surged within the field of de

novo molecular structure prediction and design, including

high-throughput in silico molecular screening and physico-

chemical property prediction (18–26). Particularly, ML

models based on the generative adversarial network

(GAN) are emerging as a promising new mechanism for

exploring the theoretical protein sequence/structure land-

scape (27–32). These ML approaches are not only

leveraging the accuracy of predictions but also accelerating

existing computational models, such as molecular dynamics

(MD), that are comparatively slow and require rigorous

manual monitoring (33–35). Moreover, in the case of big-

data availability, researchers are shifting from the use of

ML models, such as support vector machines (36–38) and

random forests (39,40), for predictive and clustering studies

toward more robust techniques such as attention-based deep

learning (41,42) and natural language processing (43,44).

Despite extraordinary advances in protein generative arti-

ficial intelligence, inverse folding remains a challenging

problem owing to the vast protein sequence space (20n,

where n is the number of amino acid residues in a sequence).

Compared to the large sequence space, protein fold space is

only about 103 (45,46). Thus, it is essential to understand the

correlation between sequence space and energy-governed

fold space when designing functional protein scaffolds for

biological applications (47,48). An explosion of effort in

this area for full-length protein design has been published

in recent years (1,42,49–56). In comparison, fewer

models have addressed this challenge for peptide design

(27,57,58,31,32,59–61).

ML models have also begun to address the challenge of

mapping the theoretical sequence-structure relationship

for peptides (8–50 amino acids) (27,28,31,32,58) and small

proteins (>50 amino acids) (27,58,42,62,63). For instance,

Xie and coworkers formulated the HelixGAN model by

combining sequence and structural features from 3 million

helix fragments from the PDB, resulting in the generation

of stereospecific (D/L) helix structures (31). Karimi et al.

also used fold-specific sequences to train a conditional Was-

serstein GAN model to obtain protein secondary structures

with novel fold representations (28). Most recently, Batra

and coworkers developed an autonomous search engine

combining a Monte Carlo tree search and ML-based random

forest model with MD simulations to discover nonintuitive

self-assembling pentapeptide sequences (58). In the similar

vein, Pandi and coworkers developed and explored the

utility of the generative variational autoencoder model to

generate �500,000 antimicrobial peptides (64,65).

Peptide sequences with the b-hairpin secondary fold have

been shown to play a key role in several protein regulatory

functions, such as protein aggregation (66–68), biomolecular

recognition (69,70), and antimicrobial or anti-viral drugs

(32,71). An improved understanding of the sequence-struc-

ture relationship of b-hairpin peptides could potentially

lead to new insights on the protein polymers such as amyloid

fibers, well known for their toxicity to eukaryotic cells and

their correlation with human disease (72).

Despite their growing importance, attempts to design iso-

lated b-hairpin peptides have been met with difficulty due to

their tendency to spontaneously assemble into insoluble

higher-order structures (66,73). Although manual ap-

proaches have been employed for the design of b-hairpin

peptides, these efforts have yielded relatively small-scale

peptidomimetic b-hairpin libraries (74–79). We note that,

very recently, Dupai and coworkers reported a thorough

study on all 49,000 unique b-hairpin sequences extracted

from the PDB (80). Based on their comprehensive struc-

ture-based sequence data exploration, they suggested

several fundamental design principles for b-hairpin scaf-

folds, such as the incorporation of bstrands with amphi-

pathic faces, specificity of the structural orientation at the

turn region, and selection of amino acid residues at a partic-

ular position based on their physicochemical and electronic

properties (80).

Here we describe the development, performance, and

validation of a ML model beta GAN (beGAN) for gener-

ating sequences that conform to a b-hairpin scaffold. The

model is composed of a two-class secondary structure

discriminator that classifies peptide secondary structures

based on the physicochemical and structural properties of

position-specific amino acid residues with a high accuracy

of about 96%, coupled with a generator that designs new

deep-fake sequences. We employ beGAN to design

b-hairpin peptides that we subsequently validated through

in silico modeling such as MD simulations, state-of-the-

art protein structure prediction techniques, and experimental

techniques for structure determination by circular dichroism

(CD) spectroscopy and solution nuclear magnetic resonance

(NMR) spectroscopy. The results provide essential feedback

on using extant protein structure databases for peptide-based

generative models, give new insights on the physicochem-

ical landscape of the b-hairpin scaffold and their design
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principles, and highlight tested avenues for the success or

failure of such approaches.

MATERIALS AND METHODS

ML feature engineering

In deep-learning-based protein structure predictions, contact maps and dis-

tance matrices have been recognized as primary methods of image-like

protein representations. These image-formatted contact maps are con-

structed based on either residue covariation in amino acid contacts within

protein structures or protein sequence patterns and coevolutionary cou-

plings, also known as multiple sequence alignment (81,82). Such represen-

tation of proteins makes it convenient to customize deep learning

architectures already developed for imaging and computer vision technol-

ogies such as convolutional neural networks (NNs) and residual convolu-

tional NNs (83,84). Inspired by deep-network models, in this work, we

encoded our peptide sequences using relevant physicochemical, electronic,

and structural features associated to each residue, where each residue

descriptor was computed from the AAindex database using the propy

package, a tool for automated descriptor generation for amino acids

(85,86). Throughout this work, each residue was assigned 12 descriptors,

namely hydrophobicity; a-CH chemical shift; conformational parameters

for b strands, a helices, and b turns; residue volume; steric parameters;

normalization frequency for b strands, a helices, and b turns; b strands

indices; and a-helical indices (Figs. S1 and S4). This gave a representation

of each 16-mer peptide with 192 features, which allowed our models to

learn patterns in the peptides based on relevant residue level local

information.

Training data exploration

The accuracy and stability of deep learning models can depend upon the

amount of data on which they are trained. With the increasing number of

sequences available in protein databases (87), we first parsed about

100,000 known 16-mer b-hairpin peptide sequences based on their DSSP

information. Since the turn regions of these sequences were variable in

the number of residues and residue positions, we filtered for hairpins where

the turn region was only limited to the middle residue positions R8 and R9,

as shown in Fig. S1. This reduced the number of ground-truth examples

considered for generative modeling to about 16,528 sequences. Corre-

sponding to this b-hairpin set, we also amassed about 40,000 16-mer helices

and about 72,000 disordered peptides. The disordered peptide sequences

were selected based on the IUPred disordered prediction of their amino

acids, where all consecutive amino acids within a window of 16-mer pep-

tide length have a disorder value of 8.5 and above (88). In both cases, a

stratified train-test-split was set to 0.25 where the models were trained on

75% of the datasets and 25% of examples were used for unbiased

testing. The amino acid sequence logo was created using WebLogo 3.0

webserver (89).

Model training

The unique architecture of deep convolutional discriminative NN provides

a significant advantage in the protein fold-classification problem (90,91).

In this work, we have developed two distinct discriminator models based

on deep convolutional discriminative NN, which can be coupled with a

generator NN. The two-class discriminator (b hairpin/non-b hairpin)

was trained using a dataset of 33,056 16-mer peptides evenly distributed

between b hairpins (16,528) and non-b hairpins (i.e., helix/intrinsically

disordered peptide) (16,528). Model training convergence was achieved

using a batch size of 2400, 300 epochs, and a learning rate of 0.0002.

The beGAN model was trained using a learning rate of 0.0002, a batch

size of 24, and 1500 epochs. To tune the hyperparameters of the beGAN

model, we utilized the learning rate for the ADAM optimization algorithm

due to its quick convergence (92). To avoid mode collapse in the generator

NN, a dropout rate of 3% was applied at each layer for regularization, and,

to improve the overall convergence of the beGAN model, a nonlinear

LeakyReLU activation function was set for all three hidden layers (93).

When applying the GAN model, parameter values were mapped to a

sequence by applying an L1 norm to each set of 12 descriptor values to

select the closest amino acid. The terms of the L1 norm were scaled by

the difference in maximum and minimum parameter values for the de-

scriptors to ensure no descriptor had undue weight in determining the

closest residue in the descriptor space.

Peptide structure prediction using AlphaFold2

and ESMFold

The PDB-derived and beGAN generated peptide (GP) sequences were uti-

lized to predict the corresponding 3D structure of b-hairpin peptides using

AlphaFold2 (41) and ESMFold (94,62) algorithms, respectively. For each

peptide, the structure corresponding to the highest predicted local distance

difference test (pLDDT) score was selected to determine the overall per-

centage of b secondary structure content. The b content was defined based

on the percentage of b sheet residues (E) in the 16-mer peptide sequence.

The 3D peptide structure was characterized using the DSSP algorithm to

obtain per-residue secondary structure annotation such as b sheet (E),

random coil (C), or helix (H) (95). Based on the b content, the GPs were

sorted into four quadrants of increasing b% (Q1, 0%–12.5%; Q2, 12.5%–

50%; Q3, 50%–75%; and Q4, 75%–100%).

MD simulations

Each peptide was constructed in an initially extended conformation using

Molefacture in VMD (96), and solvated in a 60 � 60 � 60 Å3 box of

�6600 TIP3P water molecules (97). Naþ and Cl� ions were added to a

net concentration of 150 mM (�20 of each type of ion). After a short equil-

ibration with NAMD 2.14 (98), subsequent simulations were run using

Amber16 on GPUs using the three force fields described below (99).

Although equilibration was run with constant pressure and temperature,

production runs used constant volume and a constant temperature of 298

K enforced with Langevin dynamics. For each sequence, between two

and eight 3- to 6-ms simulations (a total of 538 ms) were conducted, and

the average fraction of b-hairpin content per residue was calculated. These

data were also converted into a single average b-content percentage for the

entire peptide (Fig. S7.1–S7.10).

MD force fields

Three distinct biomolecular force fields were used to simulate all peptides

with TIP3P water: Amber ff14SB (100), CHARMM36m (C36m) (101), and

CHARMM22* (C22*) (102). Simulations using C36m or C22* had a short-

range cutoff of 12 Å for Lennard-Jones interactions and a switching func-

tion starting at 10 Å; simulations using ff14SB had a cutoff of 9 Å and no

switching function. All simulations used the particle-mesh Ewald method

for long-range electrostatics (103). A uniform time step of 2 fs was used

for the first set of simulations for each force field. The SETTLE algorithm

was used to constrain water molecules, and the SHAKE algorithm con-

strains all other hydrogen atoms. An additional set of C22* simulations

for all peptides was run using a 4-fs time step along with hydrogen mass

repartitioning (HMR) (104,105). HMR increases the mass of hydrogen

atoms to 3 amu, decreasing the parent atoms’ masses accordingly to

conserve mass. We note that others have also identified imbalances in pep-

tide conformations using ff14SB, which have since been corrected in

ff19SB (106,107).

beGAN: b-hairpin peptide generator
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Representative MD snapshots selection

For simulation trajectory snapshots in Figs. 4 and S8, three were selected

from the C22* MD simulation as the most representative. To achieve

this, we first divided the entire trajectory into three equal segments.

Then, from each segment, we chose one frame with the maximum number

of structured residues, either as a helices or b sheets, to serve as a

representative.

Peptide synthesis

Synthetic peptides were synthesized with N-terminal acetylation and C-ter-

minal amidation to greater than 95% purity by Genscript Biotech. Lyophi-

lized peptides were reconstituted in deionized water and further diluted to

desired concentrations in 10 mM phosphate buffer (pH 7).

CD spectroscopy

Far-UV (190–250 nm) CD spectra were recorded on JASCO J-815 CD

spectropolarimeter with a Peltier temperature control and a quartz cuvette

with 1-mm path length. All experiments were carried out under 25�C,

with 1-nm bandwidth and 1-s response time, and scanned at 50 nm/min

in 0.2-nm steps. For each sample, 15 scans were averaged after solvent

baseline correction. The final concentration of all peptides is 142 mM in

10 mM phosphate buffer (pH 7). CD analysis (secondary structure content

estimation) was obtained using the BeStSel algorithm (108).

Solution NMR structure determination of peptides

From 1 to 2 mg of peptide (R95% purity, natural isotopic abundance,

chemically synthesized from GenScript) was dissolved in 300 mL of

50 mM NaCl, 20 mM sodium phosphate pH 4.86, 10% D2O, vortexed,

and transferred to a 3-mm NMR tube. The pH was lowered to 4.86 to mini-

mize the solvent exchange of backbone amide hydrogens. Each sample was

used to record a suite of experiments that enabled backbone and side-chain

resonance assignments: 2D 1H-13C HSQC, 2D 1H-15N HSQC, 2D 1H–1H

NOESY (300- and 50-ms mixing times), and 2D 1H-1H TOCSY spectrum

(80-ms isotropic mixing time) (109). All experiments were acquired using

standard parameters at a 1H field of 800 MHz at 4�C with recycle delay (d1)

set to 1.2 s on a Bruker AVIIIHD-800 spectrometer equipped with TCI

cryoprobe. Data were processed with nmrPipe (110). Chemical shift and

NOE cross-peaks assignment were performed manually in Sparky (111).

Torsion angle restraints for structure calculations were performed in

TALOS-N using H, N, CA, and CB chemical shift values (112). Structure

calculations were performed in CS-Rosetta using TALOS-N-derived re-

straints together with experimentally determined intramolecular NOEs. A

total of 5000 conformations were calculated and sorted by total energy. Pep-

tide ensembles were generated from the 10 lowest energy structures and

validated using MolProbity.

Basic Local Alignment Search Tool

Basic Local Alignment Search Tool (BLAST) searching of the NCBInr and

PDB databases was accomplished using the web-based BLASTp search en-

gine with the following parameters: word size ¼ 2; expected value ¼

200,000; hitlist size ¼ 10; gapcosts ¼ 9,1; matrix ¼ PAM30; filter

string ¼ F; genetic code ¼ 1; window size ¼ 40; threshold ¼ 11; and

composition-based stats ¼ 0. BLAST searching the training dataset con-

taining approximately 99,000 unique training set sequences was accom-

plished using Blast2GO (113,114) to create a BLAST searchable

database, followed by BLASTp analysis using a local version of the

NCBI Genome Workbench (115).

Graphics and statistical analysis

MD and BLAST data were analyzed using JMP Pro 16 (SAS) and

Python software. NMR structures were visualized using UCSF ChimeraX

software (116).

RESULTS

Overview and performance evaluation of a beGAN

model for b-hairpin sequence design

Generative models play a significant role in statistical and

MLmodeling where data augmentation is needed or in cases

where an imbalanced dataset is encountered. In recent years,

GANs have emerged as a powerful tool for generative

modeling in computer imaging technologies. A GAN is

composed of two NNs, a generator and a discriminator,

working in an adversarial fashion. The generator is trained

to design realistic new data, in an attempt to fool the

discriminator, whereas the discriminator tries to distinguish

synthetic instances produced by the generator from real

samples in the input dataset. As this adversarial but comple-

mentary learning process goes on, both NNs get better at

their respective jobs. When convergence is achieved, the

GAN can produce synthetic new data that are indistinguish-

able from the real samples to the discriminator. Without

design constraints or conditioning and sampling algorithms,

given a random sequence vector, z, the generator designs

new targeted sequences through joint minmax cross-en-

tropy-loss optimization of the function (117),

Ex½logðDðxÞÞ� þ Ez½logð1 � DðGðzÞÞÞ� (1)

where D(x) is the discriminator’s estimate of the probability

that real sequence x is real, Ex is the expected value over all

real sequences, G(z) is the generator’s output when given

random sequence vector z, and D(G(z)) is the discrimina-

tor’s estimate of the probability that a designed sequence

is real. Ez is the expected value over all random inputs to

the generator.

In this work, we utilized the GAN framework to develop

the ML model that can classify b hairpins from a helices

and disordered peptides to generate novel peptide sequences

that adopt the desired b-hairpin fold. The architecture of the

ML model is summarized in Fig. 1. The polypeptide chain

consisting of 16 amino acid residues was chosen based on

a minimum requirement for b-hairpin structures that were

a primary focus of downstream validation studies. Our

ML model utilizes an input feature matrix encoded using

12 physicochemical and fold-specific conformational

indices of individual amino acid residues in the 16-mer

peptide sequence (Fig. S1). The discriminator NN was

trained with the ground-truth feature dataset using 16,528

PDB-derived 16-mer b-hairpin sequences. On the other

hand, the generator NN was provided with a random vector.

After training the discriminator NN on the ground-truth

feature set derived from the PDB for 2400 batches and
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300 epochs, the training loss was computed to be 0.02, and

the training accuracy was 0.94 (Fig. 2 A).

The classification performance of the discriminator NN

was determined using the area under the receiver operating

characteristic curve (AUC-ROC). The value of AUC-ROC

was computed to be 0.96, which suggests that the ML model

was able to distinguish b hairpins from a helices and disor-

dered peptides accurately (Fig. 2 B). Based on the binary

classification confusion matrix, both values of recall and

precision were determined to be 0.91 (Fig. 2 C). The

beGAN model, wherein the discriminator model is coupled

with the generator NN, was then trained for 2400 epochs us-

ing 24 batches. After model convergence was achieved, the

generator NN was set to generate new 16-mer peptides

(Fig. S2). The newly generated peptides were sorted into

two distinct categories based on their classification proba-

bility, termed GP score. The first category includes the

non-b-hairpin class, with a GP score ranging from 0.0 to

0.05. The second category is the b-hairpin class, which

has a GP score ranging from 0.95 to 1.0.

In addition to ML validation, the amino acid conservation

and relative frequencies were compared using the sequences

from PDB-derived training data and newly generated binary

classes (b hairpin and non-b hairpin) across 16-mer peptides

using sequence logos (Fig. 2 D) and residue frequency dis-

tribution plots (Fig. S3). Naturally occurring b-hairpin se-

quences from the PDB are enriched with glycine (G),

aspartic acid (D), and asparagine (N) at the turn region (res-

idue positions 8 and 9) (Figs. 2 D and S3 A). This observa-

tion is consistent with a previously reported systematic data

exploration of b-hairpin datasets, wherein G, D, and N are

found to have higher propensities than other amino acid res-

idues at the turn regions of the b-hairpin scaffold (80). We

found that b-hairpin sequences generated by the beGAN

model closely resemble the natural order of amino acid oc-

currences at both turn and b strand regions with a few excep-

tions (Figs. 2 E and S3 B). For example, the generated

16-mer b-hairpin sequences include G residue at the turn re-

gion (R9) with about 25.9% higher residue frequencies than

PDB-derived 16-mer sequences (Figs. 2 E and S3 C).

As expected, the sequence conservation and amino acid

frequencies from the non-b-hairpin dataset are significantly

different compared to the b-hairpin training and generated

datasets (Fig. 2 F). For example, the sequence conservation

and frequencies suggest the enrichment of histidine (H),

methionine (M), and phenylalanine (F) residues at R8 and

R9 positions.

Most interestingly, the beGANmodelwas able to learn and

generate the various physicochemical and conformational

trends of the amino acid residues across the peptide sequence.

For instance, the hydrophobicity feature distributions of se-

quences from the b-hairpin training and generated b-hairpin

datasets showed a significant variation in median hydropho-

bicity values from 0.0 up to 1.4 among turn and middle b

strand regions (Fig. 2 H and I). Moreover, at turn position

(R9), the upper quartile value of hydrophobicity was as low

as 0.6 and 0.0 for the b-hairpin training set and generated

b-hairpin class, respectively.On the other hand, for the gener-

ated non-b-hairpin class, the hydrophobicity values did not

show such significant variation among turn and strand
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regions, wherein the median of hydrophobicity values

only changed from 0.6 to 1.2 across all residue positions

(Fig. 2 J). Further analysis of the other 11 model features

with respect to amino acid position in the b hairpin showed

that other physicochemical properties captured from natural

sequences were recapitulated in generated sequences

(Fig. S4.1 and S4.2). Based on these trends, we conclude

that the beGAN model learned the complex feature correla-

tions between the selected feature set and was able to

generate a physicochemical and conformational property

landscape that was effectively decoded into novel amino

acid sequences most suitable for a b-hairpin scaffold.

In addition to 16-mers, the beGAN model architecture

was also extended to generate alternative peptide lengths

including 14-mer, 18-mer, and 20-mer models. Similar to

the 16-mer model, the extended models were trained on

beGAN Sequences

GP score > 0.95 (beta-hairpins) (n = 16528)

Training Set (beta-hairpins)

(n = 16528)

beGAN Sequences
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FIGURE 2 Model evaluation. (A) Computed training loss and classification accuracy trends are shown for the two-class discriminator NN (b-hairpin/non-

b-hairpin class) during model training using 300 epochs. (B) The classification performance of the two-class discriminator NN (b-hairpin/nonb-hairpin class)

was measured with the AUC-ROC of the discriminator NN using 25% of the overall dataset (n ¼ 33,054). (C) Confusion matrix for binary classification

between hairpin and nonhairpin classes. (D–F) Sequence logos of 16-mer peptides are shown to indicate amino acid conservation and their relative fre-

quencies. The data for the three logos consist of 16-mer amino acid sequences from PDB-derived b-hairpin training set, generated b-hairpin class, and gener-

ated non-b-hairpin class, respectively. (H–J) Hydrophobicity feature distribution across 16 residue positions shown for sequences from PDB-derived

b-hairpin training dataset, generated b-hairpin class, and generated non-b-hairpin class, respectively.
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the available b-hairpin sequences extracted from PDB and

their performance was evaluated (Fig. S4). All new models

were also highly accurate (above 95%) and generated

unique 14-mer, 18-mer, and 20-mer peptide sequences that

are based on the position-specific residue distribution of

the corresponding PDB-derived peptide sequence dataset

(Fig. S5). However, training data available from the PDB

for b hairpins become a limiting factor and can affect the

generative performance of the model. For example, with

an extensive training dataset (n ¼ 15,402), the 14-mer

model was able to recapitulate the training sequence distri-

bution and better mimic hydrophobicity trends compared to

the 14-mer model trained on the relatively smaller dataset (n

¼ 4631) (Fig. S6).

beGAN performance evaluation by AlphaFold2

and ESMFold protein structure prediction tools

Recent protein structure prediction methods have been

demonstrated to predict short b-hairpin structures with

high accuracy (118). In this work, we utilized AlphaFold2

(41) and ESMFold (94,119) models to predict the structures

of 500 beGAN-GP sequences and used this to designate a

success rate of our model. For each peptide sequence, the

peptide structure corresponding to the highest pLDDT score

(41) was selected to determine the overall percentage of b

secondary structure content (95,120). Based on this, the

GPs were sorted into four quadrants of increasing b content

percentage (b%) (Q1, 0%–12.5%; Q2, 12.5%–50%; Q3,

50%–75%; and Q4, 75%–100%), wherein the range from

Q2 through Q4 represent hairpins of increasing structural

quality (Fig. 3 A). Of the 500 16-mer-peptides screened us-

ing AlphaFold2, 345 (69%) were classified as b hairpin (i.e.,

sorting into Q2–Q4), whereas 155 (31%) were classified as

non-b-hairpin structures (i.e., sorting into Q1). Of the 345 b-

hairpin structures, 244 were characterized as well-structured

b hairpins involving 12 or more amino acid residues (Q4) in

the b sheet structural fold. In comparison, 87 peptide se-

quences adopted moderately well-structured b-hairpin

structures with 8–11 amino acid residues in b-hairpin fold

(Q3), whereas only 14 were determined to be lower-quality

b-hairpin structures with as few as two to eight amino acid

residues involved in a b sheet structure (Q2). Compared

to the predictive performance of AlphaFold2, ESMFold

yielded 198 b-hairpin structures (Q2–Q4) and 301 non-b-

hairpin structures (Q1) (Fig. 3 B).

To verify the ability of AlphaFold2 to predict the struc-

tures of experimentally resolved 16-mer b hairpins, we

also used the algorithm to predict structures of PDB-derived

b-hairpin sequences. Out of 500 PDB b-hairpin structures,

AlphaFold2 predicted 445 (89%) b hairpins (Q2–Q4) and

55 (11%) non-b hairpins (Q1) (Fig. 3 D). Moreover, the

structural comparison between 100 PDB b-hairpin struc-

tures and corresponding AlphaFold2 structures yielded

Ca-root-mean-square deviation (RMSD) values with a me-

dian of 1.13 Å and standard deviation of 0.3 Å (Fig. 3 E).

The lowest Ca-RMSD value of 0.283 Å represented excel-

lent matching between AlphaFold2 and the extracted PDB

b-hairpin structure. In contrast, the highest variation in

Ca-RMSD was found to be 19.15 Å, where AlphaFold2

does not correctly predict the b-hairpin structure.

Based on the performance of the AlphaFold2 model to

predict structures of the generated sequences, the overall

success rate of the beGAN model was evaluated across

GP scores ranging from 0.95 to 1.0 (Fig. 3 C). The success

rate was determined as the ratio of the total number of pos-

itive b hairpins from Q2 to Q4 to the total number of pep-

tides in all quadrants in the GP score range. The success

rate of the beGAN model ranged from 88.9% above the

highest threshold of 0.995 down to 77% at a score

threshold of 0.95. In contrast to AlphaFold2, evaluating

the success rate based on ESMFold resulted in a lower

range of success rates from 59.0% to 44.4%, corresponding

to the sequences having a GP score range from 0.95 to 1.0

(Fig. 3 C).

The performance of AlphaFold2 was further validated on

500 b-hairpin sequences generated by an alternative model,

ProteinMPNN (Fig. 3 F). We found that, out of 500

ProteinMPNN-generated and AlphaFold2-predicted pep-

tides, 397 peptides (79.4%) were predicted to be b hairpins

and 103 peptides (20.6%) were predicted as non-b hairpins.

Evaluation of beGAN-generated sequences by

MD simulation

In addition to using AlphaFold2 and ESMFold models to

validate beGAN-generated sequences, we also opted to

evaluate our GAN model performance using MD simula-

tions. We selected nine sequences for evaluation: four

beGAN-generated sequences from the nonhairpin class, ex-

hibiting GP scores less than 0.09; four from the b-hairpin

class with GP scores greater than 0.9; and one control

sequence obtained from the well-folded b scaffold from

PDB: 1A70 (Table S1) (121). Test sequences were deter-

mined to be nonredundant and significantly distinct from

one another using CD-HIT (see section ‘‘materials and

methods’’). Since MD force fields are calibrated based on

protein structure data, we refrained from making a priori as-

sumptions about their effectiveness. Instead, we tested three

distinct force fields: CHARMM22* (C22*), CHARMM36m

(C36m), Amber ff14SB (ff14SB); and a variant of the first,

C22* with hydrogen mass repartitioning (C22*hmr) (see

section ‘‘materials and methods’’) (101,102,104,105). The

b-hairpin and non-b hairpin classes were statistically distin-

guishable (p < 0.05) regardless of the force field used.

Particularly, the MD data obtained from C22*, C36m, and

C22*hmr force-field simulations showed better class separa-

tion than data from ff14SB simulations (Fig. 3 G–J;

Table S1). Secondary structure analysis of C22* MD data

was performed using the STRIDE algorithm (122), which

beGAN: b-hairpin peptide generator
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revealed a median difference of 15.8% in the b-hairpin con-

tent between the positive and negative class (p ¼ 0.0228),

wherein the positive class ranged from 10% to 27%, and

the negative class ranged from 0% to 3%. The control b

scaffold exhibited b-hairpin structure for 32% of the C22*

trajectories. In the case of MD simulations using C36m

and ff14SB force fields, the control peptide yielded lower

b-content values than the corresponding generated positive

class peptides, whereas the C22*hmr simulation yielded

similar results to C22*.

Simulated peptide structures sampled from the MD sim-

ulations provided further insight into the dynamics of

beGAN peptides in each class (see section ‘‘materials

and methods’’) (Figs. S7.1–S7.10 and S8). As expected,

A B C

D FE

G H I J

FIGURE 3 Screening and validation of beGAN-generated sequences using in silico and in vitro methods. (A and B) AlphaFold2 and ESMFold models

were utilized to predict the secondary structures of the 500 beGAN-generated sequences with GP scores higher than 0.95. The 500 GP peptides were sorted

into four quadrants (Q1, Q2, Q3, and Q4) based on the total b% content calculated by DSSP algorithm. (C)The success rate of the beGAN model was

computed across 10 windows of GP score ranging from 0.95 to 1.0 using AlphaFold2 (magenta) and ESMFold (gray) models. (D) AlphaFold2 model

was utilized to predict the secondary structures of the 500 PDB-derived b-hairpin sequences with computed GP scores. The 500 PDB peptides were sorted

into four quadrants (Q1, Q2, Q3, and Q4) based on the total b% content calculated by DSSP algorithm. (E) Structural comparison between 100 PDB-ex-

tracted b-hairpin structures and their AlphaFold2 structures were performed and the corresponding Ca-RMSD values were plotted in the histogram. (F) Al-

phaFold2 was utilized to predict the secondary structures of the 500 ProteinMPNN-generated b-hairpin sequences, which are sorted into four quadrants (Q1,

Q2, Q3, and Q4) based on the total b% content calculated by the DSSP algorithm. (G–I) b-hairpin content established by the average maximum per-residue b

content quantified from replicate MD simulations using four force fields revealing distinct classification of positive b (red circles) from the negative class

(non-b) GP peptides (green circles). Control peptide corresponds to a sequence retrieved from the PDB that adopts an individual hairpin that is not part of a

larger b sheet secondary structure (PDB: 1A70). Data plotted on a log10 scale for improved visualization. Two-tailed tests (p) using unequal sample sizes were

performed for each of the four forcefields using positive (red circles) and negative (green circles) clusters.
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MD-generated configurations of the beGAN b-hairpin se-

quences showed a trend toward the canonical b-hairpin sec-

ondary structure. The secondary structures of non-b-class

sequences were classified into a mixed class that is either

a helix or intrinsically disordered peptide. Overall,

b-hairpin sequences tended to adopt their target structure

at greater frequency than did non-b-hairpin sequences

throughout the 4-ms simulations, often remaining stable

for 1–2 ms. Additionally, the middle residue (R9) of the b-

hairpin peptides consistently participated in the turn among

all positive test cases.

beGAN-generated sequencesadopt a b-hairpin

structure in vitro

To experimentally evaluate model performance, we selected

eight potentially soluble, generated sequences: four from the

nonhairpin class, exhibiting GP scores less than 0.09, and

four from the b-hairpin class with GP scores greater than

0.9 (Table S1). Peptide solubility was estimated using a hy-

drophilic residue count, which we validated with an ML-

based solubility model based on a recurrent NN (123)

(Fig. S10). Each peptide was synthesized, purified commer-

cially, and then analyzed independently by CD spectros-

copy. Spectral fitting of CD data for each synthetic

peptide revealed only a 7.2% difference between the b-

hairpin content of the positive and negative class (p ¼
0.004), wherein the positive class ranged from 32% to

48% and the negative class from 25% to 40% (Figs. 4 A

and S9). In comparison, control peptides selected directly

from the PDB that appeared to form b hairpins in isolation

from larger b sheet structures showed a narrower range in b

content spanning from 35% to 40% that was statistically

different (p ¼ 0.002) than all negative class GP peptides.

We successfully resolved NMR structures of two b-

hairpin peptide sequences, namely GP 5 and GP 7, gener-

ated by beGAN (Fig. 4 B and C). These specific peptide se-

quences were selected to survey high GP-scored peptides

(above 0.90) that exhibit high water solubility and high

b% content based on MD simulation results that have also

passed through AlphaFold2 screening. Both peptides adop-

ted the intended b-hairpin structure comprising strongly

bound anti-parallel bstrands and a two-residue hairpin

loop (Fig. 4 B and C). Top-ranked peptide structures ob-

tained from AlphaFold2 and MD simulations were

compared with the corresponding NMR structure using

A

B

C

FIGURE 4 Structural comparison of select

beGAN-GPs using experimental and computational

methods. (A) b-hairpin content derived from CD

spectral fitting revealing classification between

four positive-class (b) peptides (red box) from the

four negative-class (non-b) peptides (green box)

(p (two-tailed) ¼ 0.00434 with Z score R1.5). The

CD spectral fitting of three control peptides (purple

box) corresponding to sequences retrieved from the

PDB can also be distinguished from the four nega-

tive (non-b) peptides (p (two-tailed) ¼ 0.00212

with Z score R1.5). (B and C) An experimentally

determined solution NMR structure ensemble of

two representative peptides (left) is shown with their

sequences and secondary structure assignments per

residue using highest-ranked NMR structure. Sec-

ondary structure assignments were determined using

the DSSP algorithm. The highest-ranked NMR struc-

ture of peptide was used to compare against the cor-

responding AlphaFold2-predicted structure with the

highest pLDDT score (middle) and a representative

snapshot sampled from MD simulations (C22*,

right) using both Ca-RMSD values and TM score.

All three structures are shown overlayed on the

far right.
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RMSD in Ca atoms (Ca-RMSD) and TM-score metrics to

quantitively determine a topological similarity between

the two structures (124,125). The top-ranked NMR structure

of GP 5 closely resembled its corresponding AlphaFold2

predicted structures with a Ca-RMSD value of 0.740 Å

and TM score of 0.5004, indicating excellent agreement.

In the case of GP 7, the NMR structure was found to be

similar to the AlphaFold2 predicted structure with a lower

Ca-RMSD value of 2.985 Å and a TM-score of 0.2734.

Moreover, the solved NMR structures of GP 5 and GP 7

showed similar b propensities to the corresponding repre-

sentative structures from the MD simulations with Ca-

RMSD values of 2.221 and 3.939 Å and TM scores of

0.2890 and 0.2858, respectively. The beGAN peptides

with higher MD b% (Fig. 3 G–J) and CD b% (Fig. 4 A)

also adopted the b-hairpin NMR ensemble in the aqueous

phase (Fig. 4 B and C). Overall, we found that there was a

positive trend in the b% content observed by CD and corrob-

orated with MD simulation and NMR spectroscopy, further

supporting the generative performance of the beGAN

model.

beGAN-generated sequences are unique and

diverse from naturally evolved sequences

beGAN-generated sequences are created from random seeds

using PDB-derived evolutionary training data. Therefore,

we sought to establish their uniqueness among sequences

observed in nature. We used the NCBI BLAST algorithm

to quantify sequence homology between the AlphaFold2-

screened 500 GP peptide sequences (see Fig. 3 A) and the

comprehensive PDB and nonredundant (NR) databases. Re-

sults from this search demonstrated that beGAN sequences

matched both databases to varying degrees of query

coverage and sequence identity (Fig. 5). When the complete

range of query coverage is selected (100% query coverage;

full 16-mer), the homology search of GP peptides against

the NCBI PDB database resulted in a minimum sequence

identity of 31.25% for Q1 (non-b class) and 37.50%,

31.25%, and 31.25% for Q2–Q4 (b-class), respectively. In

some cases, beGAN was found to generate sequences that

already existed in the NCBI PDB database, but these were

relatively rare. For example, five out of 244 sequences in

Q4 (2%) were found to be a perfect match with extant se-

quences in the NCBI PDB database (100% query coverage

and 100% sequence identity). Moreover, homology search-

ing of the same peptides against the NCBInr database re-

sulted in the lowest minimum sequence identity of

50.00%, 56.25%, 56.25%, and 50.00% ranging from Q1 to

Q4 quadrants, respectively (Fig. S11). From the last Q4

quadrant, seven out of 244 sequences in Q4 (2.8%) were

found to be a perfect match with extant sequences in the

NCBI NR database. In contrast, there were no perfect

matches found in any of Q1–Q3 (n ¼ 256) in both NCBI

PDB and NR databases (Figs. 5 E–G and S11 E–G).

To estimate the ability of beGAN-GPs with minimum

sequence identity to adopt ab-hairpin structure, we evaluated

beGAN with sequence identities ranging from 50% to 56%

calculated using the NCBInr dataset (Fig. S12). The

AlphaFold2-predicted b-hairpin structures of the 10 GP pep-

tides (GP 9–18) with the lowest sequence identity are shown

(Fig. S12 A), along with their percentage b content and

beGAN-generatedGP score (Fig. S12B). Each of the 10 pep-

tides exhibits a high b content of 75% with 12 out of 16 res-

idues involved in the b-hairpin fold. Taken together, these

results demonstrate that sequences produced by beGAN,

which relies on physicochemical properties rather than

sequence or structural homology, are unique from natural se-

quences and properly fold into their intended fold structures.

Benchmarking against a current state-of-the-art

generative model

The current ProteinMPNN model meets several challenges

in protein design (42). However, unlike our beGAN model

that relies predominantly on physicochemical features of

amino acids, ProteinMPNN is designed to take existing

static protein or peptide structures as its input. Here, we

compared the performance of the beGAN model with

ProteinMPNN to generate novel peptide sequences. Using

30 16-mer b-hairpin structures extracted from the PDB

(Fig. 6 A), we generated 300 sequences using the

ProteinMPNN algorithm (Fig. 6 B). These 300 sequences

were compared against 300 beGAN sequences in terms of

positional residue frequency and peptide sequence diversity.

We compared the amino acid propensity at each position

in the generated sequences (Fig. 6 B and C). Results from

both ProteinMPNN and beGAN models reveal a wide array

of possible amino acid combinations, suggesting that not

one minimal sequence motif defines the physicochemical

landscape of well-structured b hairpins. Beyond this, both

models favored amino acids with lower residue volumes

in the turn regions such as G, D, and N. Both models also

favored hydrophobic amino acids in the b strand region,

although beGAN peptide sequences were notably more

diverse. For example, ProteinMPNN favored valine (V)

(13%–42%), isoleucine (I) (0.6%–9.3%), and tyrosine (Y)

(0.3%–9.3%) in the bstrands of many peptides, whereas

beGAN generated a more diverse distribution of amino

acids such as I (0%–24.6%), Y (2.6%–12%), F (2.3%–

29.6%), and V (0.6%–21.7%). Interestingly, for both

models, we also found a smaller proportion of peptides

with bstrands containing complementary charged amino

acid pairs (Fig. 6 D and E). ProteinMPNN generated se-

quences that were enriched with lysine (K) at positions 1

(31.0%) and 10 (35.0%) and glutamic acid (E) at positions

7 (9.6%) and 16 (30.3%). Meanwhile, beGAN generated se-

quences enriched with K at position 11 (26.6%) and E at po-

sition 6 (14.0%) or H at position 10 (32.0%) and D at

position 8 (25.6%). Upon further investigation of beGAN
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peptides, we found the residue-residue contact distance be-

tween these charge pairs was within the cutoff distance

(4–6 Å) for a potential electrostatic interaction (Fig. S13)

(126). It is also noteworthy to mention that Batra and co-

workers reported similar trends of complementary charged

residues in their b-hairpin self-assembly peptide design

model (58).

Additional differences in the amino acid frequency data-

sets generated by the two ML models can be summarized

based on the amino acid frequency distributions.

The beGAN model was found to generate 28% more G,

32% more H, and 30% more F at positions 9, 10, and 12,

respectively, compared to the ProteinMPNN dataset.

ProteinMPNN generated 30% more V and 26% more of

A B

C D

FE G H

FIGURE 5 Homology search of 500 beGAN-generated sequences in the NCBI PDB database. (A–D) NCBI PDB BLAST results for 500 beGAN-generated

16-mer peptides (GP) sequences across four quadrants (Q1–Q4) were determined using calculated b% content of AlphaFold2-predicted structures with the

highest pLDDT score. Percentage identity (within query coverage (QC)) corresponds to the percentage of the query sequence that shares an identical res-

idue(s) with the target sequence per target length. QC corresponds to the percentage of residues in the 16-mer that are involved in the match. Hits (black

circles) correspond to individual matches between GP peptides and the PDB sequence dataset across query coverage range from 0% to 100% from the

top 10 matches obtained from the protein BLAST search. Density of the hits is also shown for each quadrant in colored hexagonal bins. (E–H) Percentage

sequence identity values of the top match from the BLASTP search (blue) and frequencies of the individual beGAN sequences from four (Q1–Q4) quadrants

are shown. Percentage sequence identity was calculated as the percentage of the query sequence that shares an identical residue(s) with the target sequence

per length of the GP.
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both K and E at residue positions of 5, 1, and 16,

respectively.

To compare diversity for the generated sequences, we per-

formed a BLAST homology search against the NCBI PDB

database for 300 beGAN- and 300 ProteinMPNN-generated

sequences. When the complete range of query coverage

is compared (100% query coverage; full 16-mer), beGAN

performed slightly better in generating sequences with

lower percentage identities (compare 31.2% for beGAN

to 37.5% for ProteinMPNN) (Fig. 6 G–I). However,

ProteinMPNN exhibited a lower overall median percentage

identity (compare 56.2% for beGAN to 50% for

ProteinMPNN). Moreover, although beGAN produced a

small number of identically matched sequences (five out

of 300), ProteinMPNN did not produce any identical se-

quences compared to the NCBI PDB dataset. In addition

to the BLAST homology search, we also performed a

clustering analysis to quantitatively evaluate the sequence

diversity generated by beGAN and identify sequence redun-

dancy. To do this, we used CD-HIT to cluster 300 beGAN

A

B C

D FE

G H I

FIGURE 6 Benchmarking beGAN model against ProteinMPNN. (A) Sequence logos of 30 PDB-derived 16-mer peptides which were used as the indiviual

input sequences for the ProteinMPNN model. (B) Sequence logos of 16-mer peptides are shown to indicate amino acid conservation and their relative fre-

quencies using 300 ProteinMPNN-generated b-hairpin sequences (left). (C) Sequence logos of 16-mer peptides are shown to indicate amino acid conserva-

tion and their relative frequencies using 300 beGAN-generated b-hairpin sequences. (D) Amino acid residue frequency distribution plots for 300 sequences

from ProteinMPNN-generated sequence dataset, (E) beGAN-generated dataset, and (F) the difference in amino acid residue frequencies from ProteinMPNN

and beGAN sequence datasets. (G)) NCBI PDB BLAST results for 300 ProteinMPNN-generated, and (H) beGAN-generated sequences are shown using a

full query coverage range. (I) Comparison between percentage sequence identity values of the top match from the BLAST search of the individual beGAN-

generated sequences and ProteinMPNN-generated sequences is shown for 300 generated sequences. Percentage sequence identity was calculated using the

percentage of the query sequence that shares identical residue(s) with the target sequence per length of the generated peptide.
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b-hairpin sequences from quadrants Q2 to Q4 that were vali-

dated by AlphaFold and had classification scores of 0.95 or

higher. Depending on the word size and identity threshold

used, a range between 185 and 295 unique sequence clusters

ws observed, indicating a high level of sequence diversity in

beGAN sequences. In comparison, identical analysis of 300

ProteinMPNN sequences generated using 50 reference

b-hairpin scaffolds yielded a range between 34 and 130

unique clusters, indicating lower sequence diversity

(Fig. S14). These results indicate that the generator and

discriminator performance of the beGAN model produce

diverse sequences.

DISCUSSION

Here, we have demonstrated the potential of a generative

ML model that relies on the physicochemical and conforma-

tional properties of amino acids to create novel peptide se-

quences designed to adopt a b-hairpin secondary structure.

We show that the model is able to uncover key trends and

fingerprints of 12 physicochemical and conformational

properties essential for b-hairpin folding and generates pep-

tide sequences that adopt their target structure in silico and

in vitro. The beGAN model is able to learn amino acid-en-

coded physicochemical feature space and classify with

high accuracy (96%), precision (91%), and recall (91%)

b-hairpin folds from other fold structures such as helix/

random coil features. Moreover, the GAN model architec-

ture is extendable to generate variable peptide lengths

ranging from 14-mer, 18-mer, and 20-mer amino acid se-

quences primarily dependent upon existing input data.

Our model also provides insights into the design princi-

ples of the b-hairpin peptide scaffold based on the physico-

chemical feature analysis of the generated sequence

datasets. For example, the median hydrophobicity of

b-turn residues (R8/R9) was found to be significantly lower

compared to the median hydrophobicity of the residues at

b strand positions (R10–R14) and (R3–R7), indicating

incorporation of hydrophilic residues such as G and N at

the turn regions (Fig. 2). A similar observation was found

for residue volume, where the median of the residue volume

at the turn region (R9) was substantially lower by at least

30 Å2 or more than the median residue volume at the b

strand region (Fig. S4.2). The electrostatic pairing observed

between oppositely charged amino acid pairs on opposite

ends of the b strands, such as in positions 8–10 and 6–11,

may also stabilize the b-hairpin structure in some cases

(Figs. S3 and S13).

The beGAN model has been validated through both

computational and experimental evidence. Computational

evidence was provided largely through AlphaFold2 predic-

tions, which show that beGAN achieves up to 88.9% success

rate in designing sequences that adopt a b-hairpin fold. An

important extension of this work is in establishing the utility

of AlphaFold2 in predicting secondary structures of short

peptides at reasonable accuracy and lower overall computa-

tional and experimental cost. Given that the training set for

AlphaFold2 is composed of naturally occurring sequences,

we hypothesize that its ability to make accurate predictions

will be reduced for peptides with lower sequence identity. In

support of this hypothesis, we found that AlphaFold2 suc-

cessfully predicted b-hairpin structures for 89% of a PDB-

extracted b-hairpin test set in which sequence identities

are 100% (Fig. 3). In contrast, for beGAN-generated se-

quences, which are significantly diverse from naturally

occurring ones, we found that peptides with a high degree

of sequence identity to naturally occurring sequences (be-

tween 80% and 100% identical) were only found in the

Q4 quadrant as classified as well structured by b hairpins

AlphaFold2 (Fig. 5 E–H). Thus, in general, given the current

training dataset of AlphaFold2, it may perform better on

naturally occurring rather than designed peptide sequences.

We also validated beGAN peptides with in vitro experi-

ments and MD simulations. Indeed, a test set of

AlphaFold2-predicted peptides were also found to adopt

the expected secondary structure during microsecond-scale

MD simulations, and these results were further supported

by both CD and NMR experimental evidence (Figs. 3, 4,

S7 and S8). We further highlight that the beGAN model de-

signed fold-competent sequences that were diverse from

naturally occurring ones (Fig. 5). These promising results

show the potential of generative ML models for designing

novel targeted peptides based on the physicochemical and

conformational properties of amino acid residues. More-

over, relying on the physicochemical properties of amino

acids instead of the sequence allows potential flexibility

in extending the model to noncanonical amino acid

residues.

Some assumptions were necessary when initiating the

development of the beGAN model, one being that peptides

isolated from whole protein structures in the PDB would

preserve their secondary structure when isolated in silico

or in vitro. However, this is likely not often true as, in

many cases, b hairpins require stabilizing forces provided

by surrounding residues in the whole folded protein (as in

a b sheet structure) or by nonprotein structures, such as

membranes, that are lost in our experiments (127). Beyond

this, there is an apparent discrepancy between what con-

forms to an isolated hairpin as measured by crystallography

and whether it would also form a well-structured hairpin as a

peptide in vitro. Thus, by virtue of the model’s reliance on

crystal structure data for training, data for the classifier

are not perfectly labeled for the intended outcome of a sol-

uble hairpin. Indeed, isolated b-hairpin peptides have a

documented tendency to exhibit low solubility due to aggre-

gation (66,128). Experimental validation of b-hairpin pep-

tides requires that they are soluble, which can be

predicted by hydrophilic residue count (Fig. S10). We

recommend this type of filter to identify soluble b hairpins

from beGAN or other similar models.
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The beGAN ML or similar peptide generative models

may be useful for applications that can benefit from

an expansion of the sequence-structure landscape of

peptide libraries. Such applications may include antimi-

crobial peptide generation, materials science, or in the

study of proteinopathies such as Alzheimer’s disease.

Indeed, many antimicrobial peptides adopt b-hairpin-like

structures designed and screened for cell-killing properties

(32,60,71,129). In materials science, aggregation in the

form of amyloids is a desirable property for engineered

biomaterials that rely on b-hairpin secondary structures

(58,66,73), and the GAN-based ML model could provide

particular utility in this area by expanding the sequence/

structure possibilities for such materials. In the study of

proteinopathies that rely on b-hairpin peptides, the model

may provide similar advantages (66,73). Utilizing genera-

tive models to establish detoxifying hairpin structures that

prevent fibril formation, for example, could be enhanced

by generative ML models that allow the generation of pep-

tide structures without being sequence constrained. Alter-

natively, the beGAN model may be useful in exploring the

physicochemical nature of b-hairpin aggregation and am-

yloid formation that can expand beyond the landscape of

naturally occurring sequences. Although beGAN is not de-

signed for these applications in particular, it may be

tailored to achieve such objectives if given functional fea-

tures that inform the model on desired functional

outcomes.

DATA AND CODE AVAILABILITY

The codes used to run the generative model are available at

https://github.com/juliecmitchell/beGAN. Training data and

other codes are available by request to mitchelljc@ornl.gov.

The assigned chemical shifts of GP 5 (RGVTVP

HNGESKDYSV), and GP 7 (RHYYKFNSTGRHYHYY)

peptides have been deposited to the Biological Magnetic

Resonance Data Bank under accession codes 31101 and

31094, respectively. The atomic coordinates of GP 5 and

GP 7 peptides have been deposited to the RCSB PDB under

accession codes 8TXS and 8T61, respectively.

SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2024.01.029.
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