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In this issue of Structure, Heo and Feig present cg2all, a novel deep-learning model capable of efficiently pre-
dicting all-atom protein structures from coarse-grained (CG) representations. The model maintains high ac-
curacy, even when the CG model is simplified to a single bead per residue, and has a number of promising

applications.

Deep-learning methodologies have un-
dergone swift advances since the intro-
duction of the transformer architecture in
2017." Transformers leverage a deep-
learning technique known as “atten-
tion,” which allows neural-network
models to focus on interrelated seg-
ments within a data sequence when
generating outputs. This approach has
demonstrated exceptional efficacy in a
wide range of generative deep-learning
applications, from natural language pro-
cessing to computer vision, yielding
highly realistic and convincing results.
In the realm of biology, AlphaFold2 em-
ploys transformers to discern patterns
in protein sequence data, achieving
unparalleled accuracy in protein struc-
ture prediction.” In many cases, these
predictions are precise matches to
experimental structures.

However, a machine learning method
that can predict protein conformations
beyond just one (or a few) structures is still
missing, and molecular dynamics (MD)
simulation remains the predominant tool
to study protein dynamics in silico. Tradi-
tionally, MD simulations represent proteins
and their surrounding biological environ-
ments atom by atom, which contributes

to their accuracy but also incurs a high
computational cost. One approach to miti-
gate the computational cost of MD simula-
tions is the use of coarse-grained (CG)
models, which reduce the resolution of
the system from atomistic to several beads
per residue. Over the years, CG models
have been utilized to address numerous
questions across fields such as biology
and materials science.®

Coarse graining enables MD simula-
tions to explore protein conformations
more rapidly; however, the reduced reso-
lution limits the accuracy and insights
that can be derived. For example,
hydrogen bonds and salt bridges play
important roles in protein structure and
dynamics; yet, without hydrogen atoms,
CG models fail to capture these interac-
tions explicitly. Prior attempts using li-
brary-based methods to reconstruct all-
atom models from CG models®® have
achieved modest accuracy but frequently
require extensive optimization to elimi-
nate steric clashes and other physical
imperfections.

Here, Heo and Feig introduce cg2all, a
deep-learning approach that converts CG
models back into their corresponding all-
atom representations (Figure 1).° Cg2all

utilizes the SE(3) transformer,” a variant of
the self-attention mechanism that remains
equivariant under 3D roto-translations, as
well as a rigid-body block representation
of the protein inspired by AlphaFold2, to
construct all-atom structures from CG
models at various resolutions. The model
is trained using high-resolution X-ray crys-
tal structures from the Protein Data Bank
(PDB), with a loss function that incorpo-
rates both data-dependent terms as well
as physics-based terms, such as torsion
energies.

The authors trained individual instances
of cg2all for a variety of CG models, with
resolutions ranging from one to eight
beads per residue, including some well-
established models such as MARTINI®
and PRIMO.® All models exhibited excel-
lent reconstruction accuracy for the vali-
dation set, with the average heavy-atom
RMSD being 0.31 A and 0.18 A for recon-
structions from MARTINI and PRIMO,
respectively. Remarkably, cg2all also
achieved an average heavy-atom RMSD
of 0.46 A when reconstructing from
the center-of-mass one-bead-per-resi-
due model, underscoring cg2all’s capa-
bility to predict and construct side-
chain-atom coordinates using only
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Figure 1. Schematic representation of the transformation of a CG model (orange spheres)
into an all-atom structure (yellow cartoon and sticks representation) using the cg2all

network

residue-level information. Interestingly,
when the C, position was used instead
of the residue center of mass for the CG
model, the heavy-atom RMSD increased
to 0.96 A, suggesting that center-of-
mass positions are more informative
than C, positions. The authors further
showcased cg2all’s utility in converting
MD trajectories run at CG resolution
to atomistic resolution. Furthermore, the
converted atomistic structures are sta-
ble enough to directly initiate all-atom
MD simulations without additional optimi-
zation, and they remained folded after
10 ns.

One important implication of this
study is that it offers a computationally
efficient and deterministic function to
map any CG model to its all-atom
equivalent. This opens up possibilities
for applications that can leverage the
benefits of both the speed of CG models
and the accuracy of all-atom models.
One such application demonstrated by
the authors is cryo-EM structure refine-
ment. One effective approach, molecu-
lar dynamics flexible fitting (MDFF), em-
ploys restrained MD simulations to
gradually drive the all-atom structure
into the electron density from cryo-EM,
a process that can take hours or even
days to complete.’® This is largely due
to the numerous local minima in the en-
ergy landscape generated by all-atom
force fields, causing simulation time to
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be spent repeatedly sampling these
minima. However, with the use of cg2all,
structure optimization can be performed
using a simple potential function that
operates at the one-bead-per-residue
CG level while still maintaining the
density restraint at atomistic resolution
to fully utilize the information provided
by the density. Using the proposed
mechanism, a level of accuracy similar
to MDFF (C,-RMSD 0.36 vs. 0.35 A)
was achieved in an order-of-magnitude
lower computational time.

The aforementioned example is just
one instance of how cg2all can be em-
ployed for multi-scale sampling. An
intriguing potential application could
involve running MD simulations at CG
resolution but with forces calculated at
the all-atom level. While such a setup
would eliminate the speed advantage
gained from having fewer particles in
CG models, the acceleration from a
CG-enabled larger simulation timestep
and a smoother energy landscape
would still apply. However, additional
research is required to determine how
to accurately reproduce the dynamics
of the all-atom system while using a
CG model. Conversely, cg2all can be
used to systematically parameterize
bespoke CG force fields from general
all-atom force fields through direct
force matching, which is often chal-
lenging but essential for accuracy in

Structure

simpler CG models such as single-
bead-per-residue models. Alternatively,
simpler and faster versions of cg2all
can be created through “distillation” to
serve as a system-specific neural-
network potential, replacing traditional
analytical CG force fields.

While further validation of cg2all’s per-
formance is needed, this work presents
an attractive and promising approach
for converting CG models to their all-
atom counterparts, with significant po-
tential for speeding up many applica-
tions that typically require the accuracy
of atomistic resolution. Additionally,
this work serves as a demonstration of
the application of the SE(3) transformer
in protein-related tasks, which could in-
fluence future developments in areas
such as neural-network-potential design
and other protein-structure-prediction
applications.
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