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In this issue of Structure, Heo and Feig present cg2all, a novel deep-learningmodel capable of efficiently pre-

dicting all-atom protein structures from coarse-grained (CG) representations. The model maintains high ac-

curacy, even when the CG model is simplified to a single bead per residue, and has a number of promising

applications.

Deep-learning methodologies have un-

dergone swift advances since the intro-

duction of the transformer architecture in

2017.1 Transformers leverage a deep-

learning technique known as ‘‘atten-

tion,’’ which allows neural-network

models to focus on interrelated seg-

ments within a data sequence when

generating outputs. This approach has

demonstrated exceptional efficacy in a

wide range of generative deep-learning

applications, from natural language pro-

cessing to computer vision, yielding

highly realistic and convincing results.

In the realm of biology, AlphaFold2 em-

ploys transformers to discern patterns

in protein sequence data, achieving

unparalleled accuracy in protein struc-

ture prediction.2 In many cases, these

predictions are precise matches to

experimental structures.

However, a machine learning method

that can predict protein conformations

beyond just one (or a few) structures is still

missing, and molecular dynamics (MD)

simulation remains the predominant tool

to study protein dynamics in silico. Tradi-

tionally, MD simulations represent proteins

and their surrounding biological environ-

ments atom by atom, which contributes

to their accuracy but also incurs a high

computational cost. One approach tomiti-

gate the computational cost of MD simula-

tions is the use of coarse-grained (CG)

models, which reduce the resolution of

the system fromatomistic to several beads

per residue. Over the years, CG models

have been utilized to address numerous

questions across fields such as biology

and materials science.3

Coarse graining enables MD simula-

tions to explore protein conformations

more rapidly; however, the reduced reso-

lution limits the accuracy and insights

that can be derived. For example,

hydrogen bonds and salt bridges play

important roles in protein structure and

dynamics; yet, without hydrogen atoms,

CG models fail to capture these interac-

tions explicitly. Prior attempts using li-

brary-based methods to reconstruct all-

atom models from CG models4,5 have

achieved modest accuracy but frequently

require extensive optimization to elimi-

nate steric clashes and other physical

imperfections.

Here, Heo and Feig introduce cg2all, a

deep-learning approach that converts CG

models back into their corresponding all-

atom representations (Figure 1).6 Cg2all

utilizes the SE(3) transformer,7 a variant of

the self-attention mechanism that remains

equivariant under 3D roto-translations, as

well as a rigid-body block representation

of the protein inspired by AlphaFold2, to

construct all-atom structures from CG

models at various resolutions. The model

is trained using high-resolution X-ray crys-

tal structures from the Protein Data Bank

(PDB), with a loss function that incorpo-

rates both data-dependent terms as well

as physics-based terms, such as torsion

energies.

The authors trained individual instances

of cg2all for a variety of CG models, with

resolutions ranging from one to eight

beads per residue, including some well-

established models such as MARTINI8

and PRIMO.9 All models exhibited excel-

lent reconstruction accuracy for the vali-

dation set, with the average heavy-atom

RMSD being 0.31 Å and 0.18 Å for recon-

structions from MARTINI and PRIMO,

respectively. Remarkably, cg2all also

achieved an average heavy-atom RMSD

of 0.46 Å when reconstructing from

the center-of-mass one-bead-per-resi-

due model, underscoring cg2all’s capa-

bility to predict and construct side-

chain-atom coordinates using only
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residue-level information. Interestingly,

when the C
a
position was used instead

of the residue center of mass for the CG

model, the heavy-atom RMSD increased

to 0.96 Å, suggesting that center-of-

mass positions are more informative

than C
a

positions. The authors further

showcased cg2all’s utility in converting

MD trajectories run at CG resolution

to atomistic resolution. Furthermore, the

converted atomistic structures are sta-

ble enough to directly initiate all-atom

MD simulations without additional optimi-

zation, and they remained folded after

10 ns.

One important implication of this

study is that it offers a computationally

efficient and deterministic function to

map any CG model to its all-atom

equivalent. This opens up possibilities

for applications that can leverage the

benefits of both the speed of CG models

and the accuracy of all-atom models.

One such application demonstrated by

the authors is cryo-EM structure refine-

ment. One effective approach, molecu-

lar dynamics flexible fitting (MDFF), em-

ploys restrained MD simulations to

gradually drive the all-atom structure

into the electron density from cryo-EM,

a process that can take hours or even

days to complete.10 This is largely due

to the numerous local minima in the en-

ergy landscape generated by all-atom

force fields, causing simulation time to

be spent repeatedly sampling these

minima. However, with the use of cg2all,

structure optimization can be performed

using a simple potential function that

operates at the one-bead-per-residue

CG level while still maintaining the

density restraint at atomistic resolution

to fully utilize the information provided

by the density. Using the proposed

mechanism, a level of accuracy similar

to MDFF (C
⍺
-RMSD 0.36 vs. 0.35 Å)

was achieved in an order-of-magnitude

lower computational time.

The aforementioned example is just

one instance of how cg2all can be em-

ployed for multi-scale sampling. An

intriguing potential application could

involve running MD simulations at CG

resolution but with forces calculated at

the all-atom level. While such a setup

would eliminate the speed advantage

gained from having fewer particles in

CG models, the acceleration from a

CG-enabled larger simulation timestep

and a smoother energy landscape

would still apply. However, additional

research is required to determine how

to accurately reproduce the dynamics

of the all-atom system while using a

CG model. Conversely, cg2all can be

used to systematically parameterize

bespoke CG force fields from general

all-atom force fields through direct

force matching, which is often chal-

lenging but essential for accuracy in

simpler CG models such as single-

bead-per-residue models. Alternatively,

simpler and faster versions of cg2all

can be created through ‘‘distillation’’ to

serve as a system-specific neural-

network potential, replacing traditional

analytical CG force fields.

While further validation of cg2all’s per-

formance is needed, this work presents

an attractive and promising approach

for converting CG models to their all-

atom counterparts, with significant po-

tential for speeding up many applica-

tions that typically require the accuracy

of atomistic resolution. Additionally,

this work serves as a demonstration of

the application of the SE(3) transformer

in protein-related tasks, which could in-

fluence future developments in areas

such as neural-network-potential design

and other protein-structure-prediction

applications.
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