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Dimensional reduction of Kitaev spin liquid at quantum criticality
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We investigate the fate of the Kitaev spin liquid (KSL) under the influence of an external magnetic field h in
the [001] direction and upon tuning bond anisotropy of the Kitaev coupling Kz keeping Kx = Ky = K . Guided
by density matrix renormalization group, exact diagonalization, and with insights from parton mean-field theory,
we uncover a field-induced gapless-to-gapless Lifshitz transition from the nodal KSL to an intermediate gapless
phase. The intermediate phase sandwiched between hc1 and hc2, which persists for a wide range of anisotropy
Kz/K > 0, is composed of weakly coupled one-dimensional quantum critical chains. This intermediate phase
is a dimensional crossover, which asymptotically leads to the one-dimensional quantum Ising criticality charac-
terized by the (1 + 1)D conformal field theory as the field reaches the phase transition at hc2. Beyond hc2 the
system enters a partially polarized phase describable as effectively decoupled bosonic chains in which spin waves
propagate along the one-dimensional zigzag direction. Our findings provide a comprehensive phase diagram and
offer insights into the unusual physics of dimensional reduction generated by a uniform magnetic field in an
otherwise two-dimensional quantum spin liquid.
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I. INTRODUCTION

The Kitaev model is a paradigmatic model for an ex-
actly solvable quantum spin liquid (QSL), consisting of spin
S = 1

2 local magnetic moments on a two-dimensional honey-
comb lattice with compass-like bond-dependent interactions
given by the Hamiltonian HK = ∑

〈i, j〉,α Kασ α
i σα

j [1], where
α = x, y, z labels the three bonds of the honeycomb lattice
and the nature of Ising interactions thereof. The low-energy
excitations of the QSL are the Majorana fermions with a two-
dimensional Dirac-like dispersion. It is natural to pose if such
a two dimensional QSL phase can be assembled from effective
one-dimensional phases. In a manner analogous to the wire
construction of the quantum Hall state, where 1D chiral edge
modes are interwoven to form a 2D topologically ordered
state [2–4], the Kitaev model can indeed be visualized as an
assembly of XY compass chains, that is, the zigzag chains
made up of blue and green bonds in Fig. 1(a), interconnected
by spin exchanges along the ẑ axis, which corresponds to the
nature of interaction on the red-colored z bonds in Fig. 1(a).
The fluxes inherent to the Kitaev solution can be perceived
as the manifestation of the flux quantum in a quantum Hall
system due to the coupling of free fermions between adjacent
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chiral fermionic chains. Notably, this picture has recently been
explored theoretically to show that the Kitaev honeycomb
model can be derived from quantum Ising critical chains via
fine-tuned interchain couplings [5–7].

In this study, we pose the opposite question: Can the Kitaev
spin liquid be effectively transformed into decoupled quantum
Ising chains via a non-fine-tuned and robust external parame-
ter? As we will show, a uniform magnetic field in either x, y,
or z directions, presents a natural choice for such an exter-
nal parameter. This would be analogous to the field-induced
dimensional crossover from a 3D frustrated insulator to an
effective 2D model near the quantum critical point [8–11],
but in a microscopic spin model with one lower dimension.
Previous experimental studies have already shown intriguing
results in 2D Mott insulators related to the field-induced quan-
tum criticality. For instance, a field-induced quantum critical
point has been observed in α − RuCl3 [12,13], which may be
proximate to the Kitaev quantum spin liquid state. The impact
of such a field on the Kitaev spin liquid has also been ex-
tensively researched theoretically, establishing the existence
of a gapless intermediate phase in the Kitaev model under a
Zeeman magnetic field applied in various directions [14–23].
Following these developments, in this paper we demonstrate
that the effect of a uniform magnetic field along the [001],
[010], or [100] axes leads to an effective dimensional reduc-
tion from the two-dimensional Dirac spin liquid to decoupled
Ising critical chains, which is in sharp contrast to the antifer-
romagnetic Heisenberg model on a honeycomb lattice where
no dimensional reduction is present under arbitrary Zeeman
field due to the U(1) symmetry [24].

For completeness, we first present the phase diagram gen-
erated by a magnetic field along the [001] direction and
bond anisotropy Kz and contrast that with the phase diagram
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for a field along [111] [23,25]. In the latter case, there is
an intermediate gapless phase; however, its extent in the
phase diagram is significantly smaller. We also find the emer-
gence of one-dimensional quantum Ising criticality within
the intermediate phase. This criticality approaches an asymp-
totically exact description as a critical transverse field Ising
model (TFIM) near the phase boundary at hc2. Given the re-
cent experiments on α − RuCl3 demonstrating field-induced
quantum criticality under the influence of a magnetic field
[12,13], our results offer a theoretical underpinning for these
observations.

The Hamiltonian of interest is given by the Kitaev model
under a [001] Zeeman field,

H =
∑
i,α

Kα (σα
i,Aσ

α
i,A+α̂ ) −

∑
i

h
(
σ z
i,A + σ z

i,A+ẑ

)
(1)

with antiferromagnetic exchange Kα > 0 and α ∈ {x, y, z}.
A(B) label different sublattices, and the subscript A + α̂ is
equivalent to the B sublattice of the same or another unit
cell separated by a translation along the α bond. We fur-
ther investigate the effect of a [001] field and the exchange
anisotropy Kz/K (Kx = Ky ≡ K) on the Kitaev model using
exact diagonalization (ED) and density matrix renormaliza-
tion group (DMRG) techniques. We gain further insight into
our results from Majorana mean-field theory (MFT) and linear
spin wave (LSM) analysis in the high-field regime. The central
result of our paper is that the gapless phase induced by the
[001] field is effectively a quasi-one-dimensional fermionic
model, i.e., an assembly of weakly coupled chains (WCC).
Its low-energy description should be captured by a (1 + 1)D
conformal field theory (CFT) with central charge c = 1

2 and
weakly coupled left and right chiral Majoranas; and the par-
tially polarized (PP) phase is effectively decoupled bosonic
chains. Figure 1 shows the setup of the problem and the
schematic phase diagram of the Kitaev model as a function
of Kz, h.

II. PHASE DIAGRAM

Figure 1(b) summarizes all the phases induced by the
anisotropy of exchange and [001] field. At small field and low
anisotropy, the Hamiltonian results in the gapless Kitaev spin
liquid whose elementary excitations are itinerant Majorana
fermions and Z2 fluxes. Note that in contrast to the [111] field,
[001] field does not open a gap in the Majorana sector. At
small [001] field, the KSL remains a gapless phase whose
spin-spin correlation decays by a power law [26]. At small
field and high anisotropy, the model enters the toric code (TC)
phase, whose effective degrees of freedoms are given by z
dimers with the low-energy manifold {|↑↓〉 , |↓↑〉} [27]. At
the intermediate field proportional to Kz/K , the Hamiltonian
gives the intermediate WCC phase, as an effective model,
which features weakly coupled fermionic chains, i.e., the
WCC phase is continuously connected to the (Kz = 0, h = 0)
point as decoupled 1D compass chains, which we discuss
below. Notably, unlike the intermediate gapless phase induced
by the [111] field, which terminates at a finite Kz/K [23,25],
the gapless phase induced here by the [001] field persists up
to considerably larger anisotropy, at least up to Kz/K ∼ 3, as
is shown schematically in Fig. 1(b). We diagnose these phases

(a) (b)

FIG. 1. (a) Bond-dependent spin exchange interactions in the
Kitaev honeycomb model. The lower-right corner illustrates the
edge-sharing octahedra of α − RuCl3, whereas the grey bullets on the
vertices denote Ru ions, and the violet and pink circles surrounding
them are ligands of Cl above and below the honeycomb plane. The
[001] field points from the ion to one of its ligands. (b) The schematic
phase diagram as a function of (Kz, h). The inset in each phase illus-
trates the phase: toric code (TC), Kitaev spin liquid (KSL), weakly
coupled chains (WCC), and the partially polarized (PP) phase. The
red-to-white color gradient illustrates the WCC as the crossover from
2D physics due to the nonzero interchain coupling, to the 1D physics
where the interchain coupling asymptotically vanishes as the field
reaches quantum the critical point at hc2, confining excitations across
zigzag chains.

by ED on 24-site clusters with periodic boundary conditions
(PBC) and using DMRG calculations under open boundary
conditions (OBC) [28,29] (see also Appendix D), and com-
plement these with a mean-field analysis. The observables we
monitor are the magnetic susceptibility χ and the expectation
value of the flux 〈Wp〉 in a hexagonal plaquette,

χ = ∂2Egs(Kz, h)

∂h2
, 〈Wp〉 = 〈

σ x
1 σ

y
2 σ z

3σ x
4 σ

y
5 σ z

6

〉
. (2)

χ is sensitive to diverging correlation lengths that arise close
to phase transitions, and 〈Wp〉 is an indicator of emergent Z2

gauge fields. Figure 2(a) shows the magnetic susceptibility
χ as a function of h at fixed Kz/K = 1. The two diverging
peaks at hc1 and hc2 mark out the transition from KSL to
WCC, and from WCC to PP. The data is obtained using
DMRG on a cylindrical geometry. Figure 2(b) shows χ with
different values of Kz anisotropy, which marks out the two
phase boundaries previously sketched in Fig. 1(b). It is also
supported by ED calculation, as is shown in Fig. 2(c): There
are obviously four distinct regions in the contour shown in
both panels marked out by singularities; in particular, the di-
vergence of the susceptibilities in the intermediate field region
and low anisotropy is indicative of a gapless phase whereby ξ

diverges, which is consistent with previous works [14,22] and
our MFT (Appendix C). The average flux calculated in the
same parameter scan, shown in Fig. 2(d), also supports the
phase diagram. Note the average flux 〈Wp〉 becomes negative
in the WCC phase, indicating strong quantum fluctuations in
the gauge sector with the proliferation of plaquette fluxes, in
contrast to the PP where 〈Wp〉 ≈ 0 due to the confinement of
partons. This is similar to the [111]-induced gapless phase,

013298-2



DIMENSIONAL REDUCTION OF KITAEV SPIN LIQUID … PHYSICAL REVIEW RESEARCH 6, 013298 (2024)

(c) (d)

(a)

(b)

FIG. 2. Diagnostics of phases using magnetic susceptibility χ

and plaquette fluxes 〈Wp〉. (a) χ as a function of h at Kz/K = 1.
(b) Scaled cuts of χ in the (Kz, h) plane in a.u.; the black-dashed
lines identify the divergences of χ that marks out an expanding
critical region as the anisotropy increases. (c) Density plot of χ in
the (Kz, h) plane. (d) 〈Wp〉 as a function of (Kz, h). Data in (a) and
(b) are obtained on 36-site (6 × 3 unit cells) and 60-site (6 × 5 unit
cells) using DMRG with OBC. Data in (c) and (d) are obtained by
24-site (3 × 4 unit cells) ED with PBC.

where a putative “glassiness” of high-density fluxes in the
gauge sector has been recently reported [30]. We will revisit
the gauge fluctuations in the parton mean-field analysis in the
forthcoming sections.

III. SCATTERING SIGNATURES

In this section we discuss signatures relevant for scattering
experiments in KSL, WCC and PP phases, including both
static and dynamical structure factors; as well as high-field
limit linear spin wave theory. For consistency, all numer-
ically obtained quantities in this section are obtained by
24-site ED under PBC. Larger scale DMRG calculation under
OBC is discussed in Appendix D, and is consistent with ED
calculation.

A. Signature of WCC in equilibrium

The magnetic field along [001] explicitly breaks the mirror
symmetry along x or y bond, hence it is necessary to inves-
tigate the correlations along z bonds and along x/y bonds
separately. This is achieved by calculating the resolution of
the total magnetic fluctuations in momentum space,

S(k) = 〈σ(k) · σ(−k)〉 − 〈σ(k)〉 · 〈σ(−k)〉 (3)

for KSL and WCC phases using the 24-site ED, shown in
Fig. 3. In KSL, the dominant correlation is from the nearest
neighbor 〈σα

i σα
i+α〉 for α = x, y, z [31]; therefore, S(k) has

its strongest intensities around the extended Brillouin zone
boundary as shown in Figs. 3(a) and 3(b). The pattern of S(k)
changes dramatically in the WCC phase when hc1 < h < hc2

where the threefold rotational symmetry is broken, as shown
in Figs. 3(c) and 3(d). The dominant signal exhibits a stripy
pattern parallel to ky near the second Brillouin zone, along
with weaker noisy signals outside the stripes that reflect the
existence of weak coupling between zigzag chains. Hence the
quantum fluctuation in the WCC phase is predominantly along
the 1D zigzag chains, and the weak coupling between chains
diminishes as h → h−

c2. Notably, the 〈δσ z
i δσ

z
i+z〉 channel in

Eq. (3) becomes negligible in the WCC phase, as the Zeeman
field suppresses quantum fluctuations along the field direction.
This is similar to the intermediate gapless phase induced by
the [111] field, where the out-of-plane fluctuation becomes
negligible while leaving most of the fluctuation within the
plane [32]. With larger field h > hc2, the system becomes
polarized along [001], whose ground state fluctuation is also
strongly anisotropic as shown in Figs. 3(e) and 3(f). We will
revisit the quasi-1D nature of the bosonic excitation in PP in
the next section.

The above characterization of phases is further supported
by the von Neumann entanglement entropy of subsystems
whose boundaries cut through different sets of bonds. Know-
ing the ground-state density matrix ρ, the von Neumann
entropy SvN is obtained by summing over the eigenvalues
of the reduced density matrix ρA of subsystem A: SvN(A) =
−TrρA log ρA with ρA = TrĀρ, where Ā is the complement
of A. The calculated SvN per bond for subsystems whose
boundaries cut through z and y bonds respectively are shown
in Fig. 4(a) and Appendix B. It clearly detects the highly
anisotropic entanglement in the WCC phase in which the
entanglement entropy per z bond is very small SzvN(WCC) ∼
0.1, while that for a y bond cut is much stronger, with
SyvN(WCC) ∼ 0.5, which is close to the maximal Bell pair
entanglement of ln 2. In contrast, the mirror symmetry in the
KSL phase persists and the entanglement entropy remains
SzvN(KSL) ≈ SyvN(KSL). Note that at the integrable limit the
correlation is extremely short ranged, hence the entanglement
per bond can be easily estimated to be Sz(y)

vN (KSL) ∼ 0.5 [33],
which is close to the ED result for KSL shown in Fig. 4(a).
The weak entanglement along z bonds in WCC phase com-
pared to that in KSL indicates the effective exchange coupling
along z bonds is strongly suppressed by the [001] field, while
the coupling along x and y bonds are relatively enhanced.
Therefore the WCC phase is a lot more coherent within the
zigzag chains than across the zigzag chains. This also supports
the results obtained by Majorana mean-field theory [14,22]
where Majoranas under the mean field exhibit quasi-one-
dimensional dispersion in the intermediate phase. We will
later elaborate on the MFT results and investigate the effective
spin exchange induced by the field. Interestingly, emergent
1D behavior is also present in the spin wave dispersion of PP
phase, where the energy density of z bonds in the effective
LSW Hamiltonian vanishes as h → h+

c2 in the PP phase, re-
sulting in 1D magnon modes propagating along zigzag chains
only, as shown in Fig. 4(b) and further details in Appendix A.
Indeed, one may also understand the PP in a fermionic picture
according to [34]: If we start from the decoupled fermionic
chain picture at hc2, a nonzero field in ẑ direction immediately
gaps out the free fermion; and the interchain coupling σ z

i σ
z
i+z

at h > hc2 corresponds only to an interaction between fermion
occupation numbers that share a z-type bond, giving no
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(a) (c) (e)

(b) (d) (f)

(a,b) (c,d) (e,f)

FIG. 3. The ground-state static structure factor S(k), as defined in Eq. (3), in three different phases. White dashed lines mark the first and
extended Brillouin zones. [(a),(b)] S(k) at (Kz/K = 1, h/K = 0.04) in KSL phase along cuts indicated by the orange (C1) and red (C2) lines.
[(c),(d)] S(k) at (Kz/K = 1, h/K = 0.7) in WCC phase. [(e),(f)] S(k) at (Kz/K = 1, h/K = 1.4) in the PP phase. Data obtained by 24-site ED.
The blue dots denote the momentum space resolution of the 24-site cluster.

contribution of interchain hopping. Hence at high field the
only nontrivial dynamics is due to the perturbation of intra-
chain hopping terms.

B. Low-energy dynamics of WCC

Here we investigate the leading order dynamics of the
WCC phase by ED complementary to previous DMRG data.
It can be difficult to accurately capture the dynamics within
DMRG for gapless states. We will show that the intermediate
gapless phase exhibits emergent one-dimensional dynamics
despite interchain interactions. Given that the unit cell of the
honeycomb lattice has two sites that belong to sublattices A
and B, we define two different dynamical structure factors
[17]: (1) The total S(k, ω) as the Fourier transform of all
sites irrespective of the sublattice index, which, similar to the
static structure factor in Eq. (3), is periodic within the second
Brillouin zone, and up to a normalizing factor is defined by

Sαβ (k, ω) ∝ I

⎡
⎣∑

i, j

〈
σα
ri

1

ω − H + iε
σβ
r j

〉
eik·ri j

⎤
⎦ (4)

where ri j = ri − r j ; and (2) the “traced” dynamical structure
factor Str (k, ω) that includes only intrasublattice spin-spin
correlations, i.e., correlations on the Bravais lattice, and is
therefore periodic within the first Brillouin zone, defined by

Sαβ
tr (k, ω) ∝ I

⎡
⎣∑

κ

∑
(i, j)∈κ

〈
σα
ri

1

ω − H + iε
σβ
r j

〉
eik·ri j

⎤
⎦, (5)

where ε ∼ 0− is a small broadening factor, which we set as
10−3 in calculation, κ ∈ {A,B} is sublattice index, and J takes
the imaginary part of the expression.

We calculate the symmetric dynamical structure
factors S(k, ω) = ∑

γ∈{x,y,z} S
γ γ (k, ω) and Str (k, ω) =∑

γ∈{x,y,z} S
γ γ
tr (k, ω) at low energies for the WCC phase

by ED on a 24-site cluster (3 × 4 unit cells). In order
to capture the dynamics we exclude the ground-state
contribution. The results at the ω = 0.018 cut for
Kz/K = 1, h/K = 1.0 < hED

c2 /K ≈ 1.1 are shown in Fig. 4,
where one-dimensional patterns are obvious in both S(k, ω)
and Str (k, ω). For S(k, ω) the intensity peaks are parallel to
k̂y, hence the dynamics is strongly one-dimensional along
zigzag compass chains despite strong spin exchange on z
bonds. Further, the intensity is primarily concentrated about
the second Brillouin zone, which indicates the flux (gauge)
degrees of freedom remain deconfined and is responsible for
the short range correlations between spins [31,33]. Str (k, ω)
in Fig. 4(d) further reveals the emergent 1D nature of the
WCC phase; the intensity modulation is primarily along kx
at low energy, and would only develop minor modulation
along ky in higher-energy sector reflecting the weak coupling
between zigzag chains, which is expected to vanish as
h → hc2. Note that the intensity of the dynamical structure
factor Str (k, ω) is the strongest near kx = 0 (mod 2π ), ∀ky.
This is consistent with the fact that the zigzag compass chain
can be mapped to a critical TFIM with fermion dispersion
ε(kx ) ∝ √

2 − 2 cos kx [35], as well as the mean-field solution
of Majorana dispersion, as will be discussed in the following
section (also see Appendix C), where the band inside the
WCC phase is gapless at the � point.
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(a)

(c,d)

(b)

(c) (d)

(b)

FIG. 4. (a) von Neumann entanglement entropy per bond SvN of
the subsystem enclosed by two Wilson loops that cut through six
z bonds in total (blue); and SvN of the subsystem enclosed by two
Wilson loops that cut through eight y bonds in total (red), as is illus-
trated in the inset torus. (b) The lower magnon band of the PP phase
obtained by linear spin wave (LSW) theory. (c) The total dynamical
structure factor S(k, ω), and (d) the intrasublattice dynamical struc-
ture factor Str (k, ω) at ω = 0.018 for h/K = 1.0 (< hED

c2 /K ≈ 1.1)
inside the WCC phase. (a), (c), and (d) are obtained by 24-site ED
at different h with Kz/K = 1. The blue dots denote the momentum
space resolution of the cluster.

IV. PARTON MEAN-FIELD THEORY

We now apply MFT for the parton decomposition applica-
ble for Z2 topological order. Details of the MFT can be found
in Appendix C. Different MFTs for the isotropic Kitaev model
under a [001] field have been studied previously [14,22]. In
this section we aim to extend the analysis to the entire (Kz, h)
plane and understand the origin of the effectively weakly
coupled fermion chains in the WCC phase observed by ED
and DMRG as described above. The spin operator in Eq. (1) is
fractionalized into static and itinerant Majoranas, denoted by
b and c operators respectively, according to the transformation
σα
i,A = ibα

i,Aci,A. The generic Kitaev Hamiltonian under the
parton representation is HK = ∑

i,α Kα (bα
i,Ab

α
i,A+α̂ci,Aci,A+α̂ ),

where bα
i , ci satisfy the Majorana algebra where c2

i = 1 and
{ci, c j} = 2δi j . We convert the itinerant Majorana fermions
into canonical complex fermions ci,A+ẑ = i( fi − f †

i ), ci,A =
fi + f †

i such that ci,Aci,A+ẑ = i(2n f
i − 1); and similarly the

static Majoranas into bα
i,A = ηiα + η

†
iα, bzi,A+α̂ = i(ηiα − η

†
iα )

such that bα
i,Ab

α
i,A+α̂ = i(2nα

i − 1). Under these transforma-
tions the Kitaev exchanges on z and x bonds become

σ z
i,Aσ

z
i,A+ẑ = (

2n f
i − 1

)(
1 − 2nzi

)
, (6)

σ x
i,Aσ

x
i,A+x̂ = (

1 − 2nxi
)
( fi fi−n1 − fi f

†
i−n1

+ H.c.), (7)

whereas the Ky exchange can be obtained simply by exchang-
ing the indices x̂ ↔ ŷ, n1 ↔ n2; and the external field along

α direction is given by hα (ibα
i,Aci,A) = ihα (ηiα + η

†
iα )( fi +

f †
i ). In the flux-free sector, bond fermions are uniformly

occupied by no = nzo = 1. Since the Majorana sector of the
Kitaev model has p-wave pairing [36], and the ED results
(Fig. 4) indicate a picture of decoupled TFIM chains, we
keep in our mean-field ansatz the superconducting correlator
φ = 〈 fi f j〉 and the Hartree term ξ = 〈 f †

i f j〉 their complex
conjugates, and bond fermion occupation nα

0 = 〈nα〉 with α =
x, y, z. The parton decomposition we here perform allows
tracking fluctuations in gauge and Majorana sectors sepa-
rately; and capturing strong nonlocal gauge fluctuation, which
might connect different topological sectors, as is required for
determining the dimensional reduction, which changes the
effective lattice geometry globally. This differs from the previ-
ous investigation [14] using the Hartree-Fock decomposition,
which neglected the p-wave (spinless) pairing field φ; and
differs from the MFT based on Jordan-Wigner particles [22],
which is not suitable for detecting emergent decoupled chains
due to a nonlocal Jordan-Wigner transformation [37]. The
mean-field phase diagram under h field is shown in Fig. 5.
Three distinct regions can be seen—and the phase transition
points approximately agree with those obtained by ED. The
regions are identified based on the gap to the fermionic exci-
tations and on the occupancy of the ηz fermion. The phases
can be identified in terms of fermionic phases for f fermions
as follows: (i) the KSL phase is identified as a p+ ip nodal
superconductor, (ii) the WCC phase as a weakly coupled one-
dimensional p-wave superconductor, (iii) partially polarized
magnetic phase with one-dimensional spin wave excitations,
and (iv) TC as a gapped superconductor whose nz occupation
is the same as that in KSL.

At large Kz and weak field, the ground state is given by
TC, as shown in Fig. 5. In the TC phase, the occupation
number of z-bond fermion nzi ∼ 1, indicative of the Z2 gauge
theory with zero flux on each plaquette. To leading order
the [001] field does not alter the low-energy subspace of
TC, therefore the toric code ground state is stable against a
Zeeman field perturbation hσ z. It is only at large h that the
z-polarized state can be stabilized—hence one expects a direct
first-order transition between the TC ground state (with zero
magnetization quantum number) to the completely polarized
state at a scale between h ∼ Kz. This is in sharp contrast to
the [111] field, which induces a one-dimensional dispersion
of Abelian anyons at a critical field h[111] ∼ O(K−1

z ) [23]. At
lower anisotropy there are two nontrivial phases, the KSL and
WCC phase, which we now discuss. In the KSL phase the
hybridization between the z-bond fermions and the f fermions
leads to an overall renormalization of the band structure, and
nz ∼ 1 signals a robust KSL. Note that the KSL phase is
an effective nodal gapless superconductor since the hσ z field
does not open the Majorana gap in contrast to h[111] that does
open a gap � ∼ h3

[111].
With further increase of h beyond hc1 one finds the interest-

ing WCC phase where mean-field solutions oscillate between
two saddle points: The solutions of nz fluctuate between two
values 0.5 ± �nz with the variance �nz �= 0, and they average
to 〈nz〉 ∼ 0.5. It is interesting to point out that everywhere else
in the phase diagram the mean field converges to a unique
solution. In WCC, the bistable mean-field solutions reflects
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(b) (c)(a)

FIG. 5. Results from mean-field analysis (see Appendix C) where the self-consistency relations are solved over a 40 × 40 momentum grid
over the Brillouin zone. (a) Contour plot of �nz (the difference between z bond occupancy between two consecutive MFT solutions) shows a
bistable region reflecting the WCC phase. [(b),(c)] The behavior of 〈ñ f 〉 and 〈ñz〉 and �nz as a function of h for Kz/K = 1 and Kz/K = 1.5 in
Kitaev spin liquid (KSL), weakly coupled chains (WCC) and partially polarized (PP) phase.

the strong quantum fluctuation in the gauge sector. This also
makes sense if one considers the fact that the KSL has dif-
ferent topological superselection sectors. Our MFT allows a
global change of the gauge field (e.g., flipping all signs of the
Z2 gauge along Wilson lines). Hence the unstable solution can
be attribute to very strong fluctuation in the gauge sector or
the bond fermion or gauge sector, such that different supers-
election sectors can fluctuate into each other due to the large
fluctuation of the gauge field.

In order to characterize this bistable region we investi-
gate 〈ñz〉 ≡ |〈nz − 1

2 〉| + 1
2 , which tracks the higher branch of

nz solution; and �nz, which tracks the difference between
two consecutive mean-field solutions (see Fig. 5). Regions
where �nz = 0 signal a unique saddle point where 〈ñz〉 =
〈nz〉. We find an extended region in the phase diagram where
�nz �= 0 even while 〈ñz〉 is finite, and is qualitatively in the
same region where the ED/DMRG shows WCC phase (see
Fig. 2). Note that when 〈nz〉 = 0.5, it signals decoupled Ising
chains where (1 − 2nzi ) ∼ 0 in Eq. (6). Thus the WCC re-
gion is characterized by significant fluctuations reflected in
the multiple stabilities (�nz �= 0), signaling significant flux
excitations; and a negligible ensemble average of (1 − 2nzi ),
indicating the weakly coupled nature of WCC. That the chains
are weakly coupled due to renormalized z-bond fermions
is consistent with ED results where low-energy dynamics
is virtually one dimensional. Thus the KSL-WCC transition
is a gapless-to-gapless transition from a nodal KSL to WCC
akin to a Lifshitz transition in the gapless-to-gapless quantum
phase transition in the bilinear-biquadratic spin model [38,39].
With a further increase in h, the system transits into a trivial
polarized phase with 〈nz〉 = 〈ñz〉 = 0.5, where the chains get
completely decoupled in the parton mean-field picture, sig-
naling the breakdown of the mean-field ansatz, which is to
be replaced by a spin wave analysis. In fact ED results near
hc2 directly reflects this physics where effective spin exchange
Kz along z bonds vanishes in the mean-field picture, and the
dynamics is thus dominated by fermions hopping along x and
y bonds, which is numerically verified in Fig. 3(c), Figs. 4(c)
and 4(d) and Figs. 7(a) and 7(b) in the Appendix B.

Furthermore, the quasi-1D and critical nature of the in-
termediate phase close to hc2 can be reflected in the scaling
of von Neumann entanglement entropy as a function of sub-
system size [40–44]. For a circular system it is given by

SvN(x) � ( c3 ) log[ xa ] + C, with x the length of a segment and C
a constant term. In particular, for a finite-size system of an N
legged ladder consisting of N weakly coupled or decoupled
gapless fermion chains, i.e., the subsystem is a union of N
disjoint intervals, the entropy scaling would become

SvN(lx ) � N c

6
log

[
2L

π
sin

(
π lx
L

)]
+ C, (8)

where lx in our setup is the length of the cylindrical subsystem
along x direction of a three-legged ladder measured from the
boundary, and C a constant that does not depend on subsystem
size lx. We numerically verified that the intermediate phase
has N c � N

2 (or c � 1
2 per chain) by DMRG, as is shown in

Fig. 6. Remarkably, the curvature of SvN(lx ) of the decoupled
critical compass chain (Kz = 0) is virtually the same as that
of the Kitaev model (e.g., Kz = K = 1) subjected to h � h−

c2
up to a constant shift, supporting their equivalence despite the
finite-size-induced deviation of the exact value of the fitted
central charge [45].

V. DISCUSSIONS AND CONCLUSIONS

We have shown that WCC phase is dominated by fermions
propagating along the zigzag direction, it is then left to ascer-
tain the universality class of the 1D gapless theory, and discuss
the extent to which the effective 1D theory remains valid. If
we neglect the Kz coupling inside the WCC phase, the model
becomes a 1D compass chain with alternating Kx and Ky spin
exchange interactions. The 1D compass chain can then be
mapped to the critical point of the TFIM, whose dynamics is
governed by gapless free fermions [35,46]. The gapless phase
is therefore governed by a (1 + 1)D CFT with central charge
c = ( 1

2 , 1
2 ) relevant for the left and right moving Majorana

particles: γL and γR. The linear-energy density of WCC, i.e.,
the Hamiltonian of one of the zigzag chains, is then dominated
by the chiral Majorana fields HL = ∫

dx(iγL∂xγL ), HR =∫
dx(−iγR∂xγR). In the presence of a weak interchain cou-

pling, which can be approximated to the leading order by
the coupling between the two Majorana modes, the effective
Hamiltonian is given by

H(WCC) ≈ HL + HR − g
∫

dx(γL∂xγL )(γR∂xγR), (9)
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FIG. 6. (Top) Cylindrical geometry of an N -legged honeycomb
ladder. (Bottom) Scaling of entanglement entropy as a function of
lx at Kz = 0, h = 0 (decoupled compass chain), and Kz = 1, h =
0.71 ≈ h−

c2 (emergent 1D Ising criticality inside the intermediate
phase). Data obtained by DMRG on a 72-site, N = 3 ladder (12 × 3
unit cells), where hc2 � 0.76, with maximal bond dimension 4000
and truncation error ∼10−8.

where g is a parameter that determines the leading self-energy
of γ due to the existence of interchain coupling. The effect
of the interchain coupling g is to gap out the bulk Majorana
modes leading to the emergence of a chiral Ising edge CFT,
which is a universal property of the non-Abelian spin liquid
[47]. It is known that the c = 1

2 phase of Eq. (9) remains
robust against perturbations in g up to a finite critical gc
[48–50]. Therefore, we expect that the WCC phase remains
an effective model of 1D fermion chains under the presence
of weak interchain coupling, as is described in MFT and also
supported by our numerical calculations. Since the coupling
between these fermionic chains is weak, it is expected that for
low temperatures the system’s behavior would be describable
by the quantum Ising criticality [51]. Furthermore, our paper
demonstrates the tunability by magnetic field between the
Z2 Ising critical point and the Kitaev QSL. There have been
several proposals whereby QSLs can be bootstrapped from Z2

Ising critical chains by turning on the interchain coupling be-
tween left and right moving (Majorana) fermions [5–7], which
can be viewed as a reverse process of our finding where Kitaev
QSL is reduced to decoupled Z2 critical fermion chains.

In summary, we have presented the unusual physics of
dimensional reduction generated by a [001] uniform magnetic
field in an otherwise two-dimensional Kitaev spin liquid. The
phase diagram of the anisotropic Kitaev model under a [001]
field is in sharp contrast to that induced by a [111] field. A
weak [001] field induces the gapless KSL phase to remain a
gapless nodal superconductor, which transits to an intermedi-
ate gapless phase dubbed WCC (weakly coupled chains) at
hc1. Remarkably this phase persists even for relatively strong
anisotropy under a finite field h � 1.1Kz. We showed by MFT
paradigm that the transition is described as a Lifshitz-type

transition driven by the reduction of z-type bond fermions.
The intermediate gapless phase induced by the [001] field
can be captured by an effective model of weakly coupled 1D
compass chains, which asymptotically approaches a (1 + 1)D
CFT with c = 1

2 at hc2, as is supported by various numerical
calculations near hc2. Finally, in the trivial PP phase h > hc2,
the model becomes completely decoupled bosonic chains un-
der the LSW theory. Due to the threefold spatial rotational
symmetry (θ = 2π/3) of the original Kitaev Hamiltonian,
such argument holds as well for [010] and [100] fields.

With the advent of recent experiments shedding light on
field-induced quantum criticality under the influence of a
magnetic field [12,13], and theoretical advancements unveil-
ing novel phases in Kitaev systems [23,32], the field-induced
phenomena in QSLs is an area of active research. Particularly
intriguing is the recent discovery of a soliton phase in 1D
Kitaev spin chains [52,53], which bears significant relevance
to the dimensional reduction from 2D Kitaev systems to 1D
Ising chains explored in our paper. Our paper underlines the
rich interplay between dimensionality and criticality and we
anticipate our findings will guide future experimental investi-
gations of spin liquid phases under external fields.
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APPENDIX A: LINEAR SPIN WAVE THEORY

Here we approach the WCC phase from the high field
polarized limit. In PP phase induced by [001] field, LSW
disperses only along the zigzag direction, while exhibits a
flat band along the armchair direction due to the absence of
boson hopping terms on z bonds, which is in sharp contrast
to topological magnons induced by [111] field or Heisenberg
exchange [54], and was previously alluded to in the con-
text of the square-octagon Kitaev lattice [19]. Such virtual
dimensional reduction is visualized in Figs. 3(e) and 3(f),
where it is readily seen from the suppression of propaga-
tion along the armchair direction. This can be made explicit
by the effective LSW Hamiltonian in the PP. We apply
the Holstein–Primakoff, which maps spin-1/2 operators to
bosons as fluctuations from the ordered magnetic moments.
For low magnon density 〈a†

i ai〉/2S � 1 we can keep only up
to the first order as follows: Szi = S − a†

i ai, S
+
i ≈ √

2S(1 −
a†
i ai
4S )ai and S−

i ≈ √
2Sa†

i (1 − a†
i ai
4S ), so that to the leading or-

der, which contributes to boson bilinears, Sxi and Syi becomes

Sxi ≈
√

S
2 (ai + a†

i ), §y
i ≈ −i

√
S
2 (ai − a†

i ). Let a and b denote
the boson operator for A and B sublattice respectively, we now
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(a) (b)

(c) (d)

FIG. 7. Phase diagram measured by entanglement entropy per
bond and susceptibilities. (a) SzvN is entanglement entropy of sub-
system whose boundary cuts through only z bonds; and (b) SyvN is
entanglement entropy of subsystems whose boundary cuts through
only y bonds. (c) The zoomed-in profile of SzvN and SyvN near hED

c2

with Kz/K = 1; the vertical-dashed line marks out hED
c2 /K ≈ 1.1.

(d) Fidelity susceptibility. Data obtained by 24-site ED with torus
geometry.

enumerate all couplings in Kitaev honeycomb Hamiltonian up
to quadratic order,

Sxi,AS
x
j1,B = S

2
(aib j1 + a†

i b
†
j1

+ aib
†
j1

+ a†
i b j1 ), (A1)

Syi,AS
y
j2,B

= S

2
(aib

†
j2

+ a†
i b j2 − aib j2 − a†

i b
†
j2

), (A2)

Szi,AS
z
i,B = S2 − Sa†

i ai − Sb†
i bi, (A3)

where j1 = i + n1, ȷ2 = i + n2. The magnetic field in z direc-
tion is

−h
(
Szi,A + Szi,B

) = −h(2S − a†
i ai − b†

i bi ). (A4)

From Eqs. (A3) and (A4) it is already clear that bosons do not
hop along z bonds, resulting in the flat band along ky cuts in
the Brillouin zone. We apply the Fourier transformation

aj = 1√
N

∑
k

eik·r j ak, bl = 1√
N

∑
k

eik·rl bk, (A5)

where we assume 2N spins. It is then readily to get the LSW
Hamiltonian. By plugging in S = 1/2 and dropping constant
we have

H =
∑
k

1

4
(Kxe

ik·n1 − Kye
ik·n2 )(akb−k + a†

kb
†
−k )

+ 1

4
(Kxe

ik·n1 + Kye
ik·n2 )(akb

†
k + a†

kbk )

+ 1

2
(2h − Kz )(a

†
kak + b†

kbk ), (A6)

which in the block form after symmetrization is written as

HLSW = 1

2

∑
k

�
†
kH(k)�k, H(k) ≡

(
M(k) N(k)

N†(k) M(−k)

)
,

(A7)

where we defined �k ≡ (ak, bk, a
†
−k, b

†
−k )T with a, b boson

operators of A and B sublattices, and the two-by-two matrices
N(k) and M(k) are defined by

N = 1

4
(Kxe

ik·n1 − Kye
ik·n2 )σ x, (A8)

M =
(
h − 1

2
Kz

)
σ z + 1

4
(Kxe

ik·n1 + Kye
ik·n2 )σ x, (A9)

which, in the real space, do not contain boson hopping terms
along z bonds. This is apparent from the fact that Kz is as-
sociated only with σ z in Eq. (A9), which is not coupled to
momentum. The resulting dispersion of LSW in shown in
Fig. 4(b), which is qualitatively consistent with ED result
in Fig. 3(e). It is in sharp contrast to the antiferromagnetic
Heisenberg model on a honeycomb lattice where no dimen-
sional reduction is present under arbitrary Zeeman field [24].
Furthermore, the LSW theory also provides an estimation
of the critical field hc2 in the thermodynamic limit: The en-
ergy contribution of boson occupation number on z bonds
changes sign when the first term in Eq. (A9) changes sign.
Hence from Eq. (A9) we see the singularity between WCC
and PP phase occurs at hc2 ∼ Kz, which is very close to
the numerical result shown in Fig. 4(a). (Note there is a
difference in h/K by a factor of two between spin- 1

2 and
Pauli operator.) Therefore, the boson energy density within
z bonds asymptotically vanishes as the magnetic field ap-
proaches the critical point h → hc2 ∼ Kz from within PP
phase, and the effective model transition from weakly coupled
fermionic chains to that of virtually decoupled bosonic chains.
This is also consistent with h → hc2 from within the WCC
phase, where the z-bond coupling becomes negligible in the
WCC phase.

APPENDIX B: ADDITIONAL ENTANGLEMENT RESULTS

In this Appendix we present additional numerical results.
We first discuss the entanglement entropy of the phase dia-
gram as a function of (Kz/K, h/K ). In order to compare the
entanglement of different cuts, i.e., how entangled the ground
state is along different directions, we reduce that dimension
and calculate the von Neumann entanglement entropy per
bond. The von Neumann entanglement entropy per bond of
the two cuts used in the main text is given by

SivN = − 1

|∂Ai|TrρAi ln ρAi , i ∈ {z, y}, (B1)

where ρAz and ρAy are reduced density matrices of subsystems
whose boundaries cut through only z bonds and y bonds
respectively, and |∂Ai| denotes the length of the boundary
of the subsystem. The calculated entropy per z or y bond is
shown in Figs. 7(a) and 7(b). The zoomed-in profile of the
entanglement entropy is shown in Fig. 7(c), which marks out
the hED

c2 /K ≈ 1.1.
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In the TC phase, SzvN is significantly larger than SyvN. This
is due to that fact that z bonds in TC are much stronger than
x and y bonds. Since the Majorana gap in TC is a lot larger
than the flux gap, the SzvN of TC can be readily estimated to
be SzvN → ln 2, and SyvN → ln 2

2 when Kz/K → ∞ [33]. Simi-
larly, in the KSL phase when h → 0, due to the short range
correlation of spins, we can also estimate SzvN ∼ 0.5 as is
mentioned in the main text. In Fig. 7(a) it is also readily to see
that WCC phase features much smaller SzvN than TC and KSL
phases, which, as is discussed in the main text, reflects the
weak coupling between zigzag chains. In contrast, Fig. 7(b)
shows that SyvN of WCC is strongly entangled along the zigzag
direction. These results suggest that the WCC phase is a lot
more coherent along zigzag chains, yet virtually decoupled
between these chains.

In addition to bipartite entanglement entropy, in Fig. 7(d),
we also show the fidelity susceptibility defined by χ f =
∂2Eg.s./∂K2

z , which reveals a phase diagram consistent with
the that given by the magnetic susceptibility χ shown in
the main text, and that by the entanglement entropy in
Figs. 7(a) and 7(b). The TC-to-KSL phase transition is made
more clear by the measure of χ f [Fig. 7(d)] than that by
χ [Fig. 2(c)], since this transition is essentially driven by
anisotropy instead of magnetic field. Notably, the WCC phase
has significantly larger χ and χ f than all other surrounding
phases, indicating that WCC is a gapless phase with long-
range correlation. This is consistent with that our proposal that
WCC is effectively an (1 + 1)D CFT with c = ( 1

2 , 1
2 ), origi-

nating from the 1D compass model, which can be mapped
to the critical point of TFIM when the interchain coupling
is weak.

APPENDIX C: PARTON MEAN-FIELD THEORY

The spin Hamiltonian with just Kitaev exchanges are given

by H = ∑
j,α Kα (σα

j,Aσ
α
j,A+α̂ ). Note for convenience we for-

malize the MFT in Pauli matrices to avoid 1
2 factors. Under

the transformation σα
j,A = ibα

j,Ac j,A and the static flux sector

the Hamiltonian becomes H = ∑
j,α Kα (ic j,Ac j,A+α̂ ). We now

wish to include the effect of flux excitations as well into the
formalism at the mean-field level. The complete Hamiltonian
of our interest is thus

H =
∑
j,α

Kα (σα
j,Aσ

α
j,A+α̂ ) +

∑
j,α

h(σα
j,A + σα

j,A+ẑ ). (C1)

Using σα
j,A = ibα

j,Ac j,A we write the Hamiltonian in terms of
these Majoranas,

H =
∑
j,α

Kα (bα
j,Ab

α
j,A+α̂c j,Ac j,A+α̂ )

+
∑
j

h(ibα
j,Ac j,A + ibα

j,A+ẑc j,A+ẑ ), (C2)

here bα
j , c j satisfy the Majorana algebra where c2

j =
1 [1] and therefore {c j, ck} = 2δ jk . Converting these
Majorana fermions into complex fermions c j,A ≡ f j +
f †
j , c j,A+ẑ = i( f j − f †

j ), where f satisfy the canonical
fermionic algebra. Using this

c j,Ac j,A+ẑ = i(2n f
j − 1), (C3)

c j,Ac j,A+x̂ = i( f j f j−n1 + f †
j f j−n1 + H.c.) (C4)

c j,Ac j,A+ŷ = i( f j f j−n2 + f †
j f j−n2 + H.c.) (C5)

where we used the fact that c j,Ac j,A+x̂ =
c j,Ac j−n1,A+ẑ, c j,Ac j,A+ŷ = c j,Ac j−n2,A+ẑ. Similarly we have
bα
j,A = η jα + η

†
jα and bzj,A+α̂ = i(η jα − η

†
jα ), such that

bα
j,Ab

α
j,A+α̂ = i(2nα

j − 1). Under these transformations the
Hamiltonian is given by

Kz
(
bzj,Ab

z
j,A+ẑc j,Ac j,A+ẑ

) = Kz
(
2n f

j − 1
)(

1 − 2nzj
)
, (C6)

Kx
(
bxj,Ab

x
j,A+x̂c j,Ac j,A+x̂

)
= Kx

(
1 − 2nxj

)
( f j f j−n1 + f †

j f j−n1 + H.c.) (C7)

Ky
(
byj,Ab

y
j,A+ŷc j,Ac j,A+ŷ

)
= Ky

(
1 − 2nyj

)
( f j f j−n2 + f †

j f j−n2 + H.c.) (C8)

Interestingly at this level we see the system mimics that of
four fermionic degrees of freedom interacting on a triangular
lattice such that the sign structure of various hopping terms are
dependent on the occupancies of nα fermions. The hybridiza-
tion between f and χ fermions is induced by a magnetic field,
in this case, along [001] direction. The field-dependent terms,
for each sublattice in a unit cell, are given by

h
(
ibzj,Ac j,A

) = ih(η jz + η
†
jz )( f j + f †

j ),

h
(
ibzj,A+ẑc j,A+ẑ

) = −ih(η jz − η
†
jz )( f j − f †

j ). (C9)

Define the mean fields: 〈2n f
j − 1〉 ≡ n f

0 , 〈 f j f j−n1〉 =
〈 f j f j−n2〉 ≡ φ, nz0 ≡ 〈nzj〉, n0 ≡ 〈nxj〉 = 〈nyj〉, and 〈 f †

j−n1
f j〉 ≡

ξ , and use the mirror symmetry (n1 ↔ n2), the total MF
Hamiltonian is then given by

HMF = − Kz
[
n f

0

(
2nzj − 1

) + (
2n f

j − 1
)(

2nz0 − 1
)]

− K (φ + φ∗ + ξ + ξ ∗)
[
2
(
nxj + nyj

) − 2
]

− K (2n0 − 1)
[(
f j f j−n1 − f j f

†
j−n1

+ f †
j f j−n1

− f †
j f

†
j−n1

) + (n1 ↔ n2)
] + 2ih(η†

jz f j − f †
j η jz ).

(C10)

Note that since the Majorana sector of Kitaev model has
p-wave pairing, and the ED results indicate a picture of de-
coupled p-wave superconducting chains, we have kept the
superconducting correlators. We neglected the Fock term in
the mean fields of HK since it only amounts to renormal-
izing the magnetic field [Eq. (C9)] by a constant. Moving
to momentum space by f j = 1√

N

∑
k e

ik·r j fk and η jα =
1√
N

∑
k e

ik·r jηkα , we have

HMF(k) = − Kz
[
n f

0

(
2nzk − 1

) + (
2n f

k − 1
)(

2nz0 − 1
)]

− K (φ + φ∗ + ξ + ξ ∗)
[
2
(
nxk + nyk

) − 2
]

− K (2n0 − 1)
∑
l=1,2

[
cos(k · nl )n f

k

+ i sin(k · nl ) fk f−k + H.c.
]

+ 2ih(η†
kz fk − f †

k ηkz ). (C11)
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(a) (b) (c)

FIG. 8. Mean-field analysis of dispersion of different partons. (a) The cut in the first Brillouin zone. (b) Dispersion of different particles in
the KSL phase (Kz/K = 1, h/K = 0.1). f fermion is gapless at K point while bond fermions ηαs remain gapped. (c) Dispersion of different
particles in the WCC phase (Kz/K = 1, h/K = 0.7). f fermions hybridize with ηz and is gapless at � point. The color bar shows the orbital
contribution of the states.

In particular, at h = 0, where the low-energy sector is given
by setting no = nzo = 1. At this level f and η live in separate
quantum sectors, and the MFT is exact. Hence the four matrix
elements of the two-by-two MFT Hamiltonian of f fermions
is given by

HMF
11 = 1

2

( − 2Kz
(
2nz0 − 1

) − 2K (n0 − 1)

× [cos(k · n1) + cos(k · n2)]
)
f †
k fk, (C12)

HMF
22 = − 1

2

( − 2Kz
(
2nz0 − 1

) − 2K (n0 − 1)

× [cos(k · n1) + cos(k · n2)]
)
f−k f

†
−k, (C13)

HMF
12 = −iK (n0 − 1)[sin(k · n1) + sin(k · n2)] f †

k f
†
−k,

(C14)

HMF
21 = iK (n0 − 1)[sin(k · n1) + sin(k · n2)] f−k fk, (C15)

where n1 = ( 1
2 ,

√
3

2 ), n2 = (− 1
2 ,

√
3

2 ), K = Kx = Ky. At h =
0, as Kz is increased the f fermions undergo a transition
at the M = {0, 2π

3 } at Kz = 2K , where the dispersion looks
semi-Dirac like [23,55], given that the gauge configuration is
chosen as nα

i = 1. In presence of magnetic field, the chem-
ical potential of these fermions are effectively renormalized,
changing the band structure and the location of gapless modes.
Parton dispersion obtained by such MFT is shown in Fig. 8,
where we take the momentum cut along � − K − M − � as
presented in Fig. 8(a). As is shown in Figs. 8(b) and 8(c),
where, the (hybridized) gapless fermion mode has moved
from the ±K points in the KSL phase [Fig. 8(b)] to the �

points in the WCC phase [Fig. 8(c)], which is consistent with
the ED results where the dynamical structure factor has its
strongest weight at kx = 0.

APPENDIX D: FINITE-SIZE ANALYSIS

Now we introduce some additional data that mitigate finite-
size effects. Based on further DMG results, we remark that
both the structure factor and the central charge tend to con-
verge on the conclusion that the emergent one-dimensional
physics persist in large system sizes.

Structure f actor. In the main text, we presented the static
structure factor as calculated using ED on a 24-site system

with PBC. Figure 2(b) highlights that within the WCC phase,
the dominant signal is distinctly one-dimensional, aligning
with the zigzag direction; and a different one-dimensional
signature present in the polarized phase, suggesting magnons
with constraint mobility along the same zigzag direction
under the high-field limit. An open question is whether
this one-dimensional characteristic persists in larger systems.
To address this, we employed DMRG on a larger cylin-
der geometry—OBC along the x direction and PBC along
the y direction, as depicted in Fig. 9(a). Our findings re-
veal that the intermediate WCC phase maintains effective
one-dimensional fluctuations even in a 60-site cylindrical sys-
tem, as is shown in Fig. 9(b): at intermediate field h = 0.50
(hc1 < h = 0.50 < hc2 ≈ 0.68), the signal aligns with the ver-
tical boundaries of the second Brillouin zone. Furthermore,
Fig. 9(c) shows that at larger field, the scattering signal of the
PP phase also becomes effectively one-dimensional, suggest-
ing the constraint mobility of magnons. These observations
align with the static structure factor obtained from the 24-
site ED with PBC, illustrated in Figs. 3(c) and 3(e); and
are consistent with low-energy dynamics of WCC and PP
phases, as shown in Figs. 4(b) and 4(c) of the main text. The
agreement between the smaller-scale ED calculations under
PBC and the larger DMRG computations under cylindrical
geometry lends credibility to the persistence of this emergent
one-dimensional physics. Although further validation with
large-scale DMRG would be ideal, such calculations pose
significant challenges in gapless systems. Nonetheless, the
observed consistency across disparate geometrical configura-
tions and system sizes strongly supports the robustness of the
emergent one-dimensional physics.

Central charge. Doing DMRG on a gapless system is
technically difficult in 2D systems. To the best of our ef-
fort, we can reach the stable results presented in Fig. 6
with bond dimension 4000 for the 2D cylinder. To make
sense of the finite-size error, we have looked into the fit-
ted central charge in smaller system sizes: 36-site (Lx =
6) → c ≈ 0.33, 54-site (Lx = 9) → c ≈ 0.39, 72-site (Lx =
12) → c ≈ 0.43. Although a rigorous finite-size scaling is
hard to obtain due to the lack of manageable system sizes,
these data points shows that the central charge obviously
approaches 0.5 as the system size grows along x direction. We
remind the reader that, to make up for the lack of numerical
accuracy in gapless systems, in Fig. 6 we have presented
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WCC60-site DMRG PPhc2

(a) (b) (c)

FIG. 9. (a) The cylinder geometry used for the 60-site DMRG (6 × 5 unit cells), where hc2 � 0.68, with maximal bond dimension 1200 and
truncation error ∼10−8. (b) The interpolated ground-state static structure factor S(k) of WCC phase at (Kz/K = 1, h/K = 0.50), as defined
in Eq. (3). White-dashed lines mark the first and extended Brillouin zones. (c) the same quantity in PP at (Kz/K = 1, h/K = 0.72). The
agreement between the smaller-scale ED calculations in Fig. 2 under PBC and the 60-site DMRG under cylindrical geometry lends credibility
to the persistence of this emergent one-dimensional physics.

two cases: (1) a three-legged ladder with Kz = 0 and h = 0,
corresponding to the truly decoupled chains, each of which is
known to be an integrable model with a c = 1

2 free fermion
theory, and the error in this case is truly only a finite-size error
against its analytical value; (2) the same three-legged ladder
with Kz = 1 and h < hc2. If the magnetic field effectively re-
moves the coupling along z bonds, we expect that the entropy
scaling be the same as that of (1), and the error induced by
the finite size in (2) should be about the same as the error

induced by finite size in (1). In other words, although a precise
value of c = 1

2 is difficult to obtain for a strongly interact-
ing gapless 2D system, the resemblance between (1) and (2)
points out that the entanglement structure in WCC phase is
the same as that of the well-known c = 1/2 decoupled model
in both scaling and finite-size induced error, i.e., the 15%
error due to finite size can be used also as a criteria for com-
parison between them, suggesting the equivalence of the two
cases.

[1] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[2] C. L. Kane, R. Mukhopadhyay, and T. C. Lubensky, Fractional
quantum Hall effect in an array of quantum wires, Phys. Rev.
Lett. 88, 036401 (2002).

[3] J. C. Y. Teo and C. L. Kane, From Luttinger liquid to non-
Abelian quantum Hall states, Phys. Rev. B 89, 085101 (2014).

[4] C. Li, H. Ebisu, S. Sahoo, Y. Oreg, and M. Franz, Coupled wire
construction of a topological phase with chiral tricritical Ising
edge modes, Phys. Rev. B 102, 165123 (2020).

[5] P.-H. Huang, J.-H. Chen, A. E. Feiguin, C. Chamon, and
C. Mudry, Coupled spin- 1

2 ladders as microscopic models
for non-Abelian chiral spin liquids, Phys. Rev. B 95, 144413
(2017).

[6] K. Slagle, Y. Liu, D. Aasen, H. Pichler, R. S. K. Mong, X. Chen,
M. Endres, and J. Alicea, Quantum spin liquids bootstrapped
from Ising criticality in Rydberg arrays, Phys. Rev. B 106,
115122 (2022).

[7] Y. Liu, N. Tantivasadakarn, K. Slagle, D. F. Mross, and
J. Alicea, Assembling Kitaev honeycomb spin liquids from
arrays of one-dimensional symmetry-protected topological
phases, Phys. Rev. B 108, 184406 (2023).

[8] S. E. Sebastian, N. Harrison, C. D. Batista, L. Balicas, M. Jaime,
P. A. Sharma, N. Kawashima, and I. R. Fisher, Dimensional
reduction at a quantum critical point, Nature (London) 441, 617
(2006).

[9] C. D. Batista, J. Schmalian, N. Kawashima, P. Sengupta, S. E.
Sebastian, N. Harrison, M. Jaime, and I. R. Fisher, Geomet-
ric frustration and dimensional reduction at a quantum critical
point, Phys. Rev. Lett. 98, 257201 (2007).

[10] J. Schmalian and C. D. Batista, Emergent symmetry and dimen-
sional reduction at a quantum critical point, Phys. Rev. B 77,
094406 (2008).

[11] R. Okuma, M. Kofu, S. Asai, M. Avdeev, A. Koda, H.
Okabe, M. Hiraishi, S. Takeshita, K. M. Kojima, R. Kadono,
T. Masuda, K. Nakajima, and Z. Hiroi, Dimensional reduc-
tion by geometrical frustration in a cubic antiferromagnet
composed of tetrahedral clusters, Nat. Commun. 12, 4382
(2021).

[12] A. U. B. Wolter, L. T. Corredor, L. Janssen, K. Nenkov, S.
Schönecker, S.-H. Do, K.-Y. Choi, R. Albrecht, J. Hunger,
T. Doert, M. Vojta, and B. Büchner, Field-induced quantum
criticality in the Kitaev system α − RuCl3, Phys. Rev. B 96,
041405(R) (2017).

[13] Y. Nagai, T. Jinno, J. Yoshitake, J. Nasu, Y. Motome, M. Itoh,
and Y. Shimizu, Two-step gap opening across the quantum crit-
ical point in the Kitaev honeycomb magnet α − RuCl3, Phys.
Rev. B 101, 020414(R) (2020).

[14] S. Liang, M.-H. Jiang, W. Chen, J.-X. Li, and Q.-H. Wang,
Intermediate gapless phase and topological phase transition of
the Kitaev model in a uniform magnetic field, Phys. Rev. B 98,
054433 (2018).

[15] M. Gohlke, G. Wachtel, Y. Yamaji, F. Pollmann,
and Y. B. Kim, Quantum spin liquid signatures in
Kitaev-like frustrated magnets, Phys. Rev. B 97, 075126
(2018).

[16] D. C. Ronquillo, A. Vengal, and N. Trivedi, Signatures of
magnetic-field-driven quantum phase transitions in the entan-
glement entropy and spin dynamics of the Kitaev honeycomb
model, Phys. Rev. B 99, 140413(R) (2019).

013298-11

https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.88.036401
https://doi.org/10.1103/PhysRevB.89.085101
https://doi.org/10.1103/PhysRevB.102.165123
https://doi.org/10.1103/PhysRevB.95.144413
https://doi.org/10.1103/PhysRevB.106.115122
https://doi.org/10.1103/PhysRevB.108.184406
https://doi.org/10.1038/nature04732
https://doi.org/10.1103/PhysRevLett.98.257201
https://doi.org/10.1103/PhysRevB.77.094406
https://doi.org/10.1038/s41467-021-24636-1
https://doi.org/10.1103/PhysRevB.96.041405
https://doi.org/10.1103/PhysRevB.101.020414
https://doi.org/10.1103/PhysRevB.98.054433
https://doi.org/10.1103/PhysRevB.97.075126
https://doi.org/10.1103/PhysRevB.99.140413


FENG, AGARWALA, AND TRIVEDI PHYSICAL REVIEW RESEARCH 6, 013298 (2024)

[17] N. D. Patel and N. Trivedi, Magnetic field-induced intermediate
quantum spin liquid with a spinon Fermi surface, Proc. Natl.
Acad. Sci. USA 116, 12199 (2019).

[18] C. Hickey and S. Trebst, Emergence of a field-driven U(1) spin
liquid in the Kitaev honeycomb model, Nat. Commun. 10, 530
(2019).

[19] C. Hickey, M. Gohlke, C. Berke, and S. Trebst, Generic field-
driven phenomena in Kitaev spin liquids: Canted magnetism
and proximate spin liquid physics, Phys. Rev. B 103, 064417
(2021).

[20] S. Trebst and C. Hickey, Kitaev materials, Phys. Rep. 950, 1
(2022).

[21] K. Hwang, A. Go, J. H. Seong, T. Shibauchi, and E.-G.
Moon, Identification of a Kitaev quantum spin liquid by
magnetic field angle dependence, Nat. Commun. 13, 323
(2022).

[22] J. Nasu, Y. Kato, Y. Kamiya, and Y. Motome, Succes-
sive Majorana topological transitions driven by a magnetic
field in the Kitaev model, Phys. Rev. B 98, 060416(R)
(2018).

[23] S. Feng, A. Agarwala, S. Bhattacharjee, and N. Trivedi, Anyon
dynamics in field-driven phases of the anisotropic Kitaev
model, Phys. Rev. B 108, 035149 (2023).

[24] J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky,
Magnon Dirac materials, Phys. Rev. B 94, 075401
(2016).

[25] H.-C. Jiang, C.-Y. Wang, B. Huang, and Y.-M. Lu, Field in-
duced quantum spin liquid with spinon Fermi surfaces in the
Kitaev model, arXiv:1809.08247.

[26] K. S. Tikhonov, M. V. Feigel’man, and A. Y. Kitaev, Power-law
spin correlations in a perturbed spin model on a honeycomb
lattice, Phys. Rev. Lett. 106, 067203 (2011).

[27] A. Nanda, A. Agarwala, and S. Bhattacharjee, Phases and
quantum phase transitions in the anisotropic antiferromag-
netic Kitaev-Heisenberg-� magnet, Phys. Rev. B 104, 195115
(2021).

[28] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor
software library for tensor network calculations, SciPost Phys.
Codebases 4 (2022).

[29] M. Fishman, S. R. White, and E. M. Stoudenmire, Codebase
release 0.3 for ITensor, SciPost Phys. Codebases 4 (2022).

[30] K. B. Yogendra, T. Das, and G. Baskaran, Emergent glassiness
in the disorder-free Kitaev model: Density matrix renormaliza-
tion group study on a one-dimensional ladder setting, Phys. Rev.
B 108, 165118 (2023).

[31] G. Baskaran, S. Mandal, and R. Shankar, Exact results for spin
dynamics and fractionalization in the Kitaev model, Phys. Rev.
Lett. 98, 247201 (2007).

[32] K. Zhang, S. Feng, Y. D. Lensky, N. Trivedi, and E.-A. Kim,
Machine learning reveals features of spinon Fermi surface,
Commun. Phys. 7, 54 (2024).

[33] S. Feng, Y. He, and N. Trivedi, Detection of long-range entan-
glement in gapped quantum spin liquids by local measurements,
Phys. Rev. A 106, 042417 (2022).

[34] K.-W. Sun and Q.-H. Chen, Quantum phase transition of the
one-dimensional transverse-field compass model, Phys. Rev. B
80, 174417 (2009).

[35] W. Brzezicki, J. Dziarmaga, and A. M. Oleś, Quantum phase
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