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Abstract. The lack of a unique user equilibrium (UE) route flow in traffic assignment has
posed a significant challenge to many transportation applications. The maximum-entropy
principle, which advocates for the consistent selection of the most likely solution, is often
used to address the challenge. Built on a recently proposed day-to-day discrete-time
dynamical model called cumulative logit (CumLog), this study provides a new behavioral
underpinning for the maximum-entropy user equilibrium (MEUE) route flow. It has been
proven that CumLog can reach a UE state without presuming that travelers are perfectly
rational. Here, we further establish that CumLog always converges to the MEUE route
flow if (i) travelers have no prior information about routes and thus, are forced to give all
routes an equal initial choice probability or if (ii) all travelers gather information from the
same source such that the general proportionality condition is satisfied. Thus, CumLog
may be used as a practical solution algorithm for the MEUE problem. To put this idea into
practice, we propose to eliminate the route enumeration requirement of the original Cum-
Log model through an iterative route discovery scheme. We also examine the discrete-time
versions of four popular continuous-time dynamical models and compare them with Cum-
Log. The analysis shows that the replicator dynamic is the only one that has the potential
to reach the MEUE solution with some regularity. The analytical results are confirmed
through numerical experiments.
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1. Introduction

that emerges from a traffic assignment procedure, elect-

A fundamental problem in transportation systems
analysis is predicting the distribution of traffic over
routes connecting each origin-destination (OD) pair in
a general congestible network, commonly known as
traffic assignment (Beckmann, McGuire, and Winsten
1956). In transportation planning, traffic assignment is
often framed as a noncooperative routing game in
which travelers’ selfish route choices drive network-
wide traffic distribution toward a user equilibrium
(UE) state (Wardrop 1952, Roughgarden and Tardos
2002). Generally speaking, neither the set of routes
used at UE nor the number of travelers selecting these
routes (called route flow) are unique (Sheffi 1985).
Indeed, there are potentially infinitely many route
flows that correspond to a UE state of the routing
game. Practitioners used to accept any UE route flow

ing to ignore this nuance altogether. However, even
when aggregate assignment results are not affected by
the lack of uniqueness, this practice may undermine
any applications that depend on UE route flows (e.g.,
select link analysis) (see Bar-Gera, Boyce, and Nie
2012). The problem is that using an arbitrary UE route
flow can be difficult to justify, and more importantly,
such a flow may vary disproportionately with small
perturbations in system inputs (Lu and Nie 2010). The
same problem also affects multiclass traffic assignment
models, in which travelers are classified into groups
based on their individual characteristics, such as the
value of time. In these models, the class-specific link
flow, in addition to the route flow, is often nonunique
at UE (Bar-Gera, Boyce, and Nie 2012). This constitutes
a serious concern for any efforts to understand the
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distributional effects of certain control and/or manage-
ment policies, such as equity analysis (Wang et al. 2023)
or mixed-autonomy traffic analysis (Bahrami and
Roorda 2020).

It has been suggested that additional criteria may be
imposed to rank the UE route flows, and a decision
maker should stick to the highest-ranked flow to main-
tain consistency and stability of the decision process.
Lu and Nie (2010) showed that such a rank could be
produced by maximizing a suitable function of UE
route flows. Yet, this does not solve the issue of justifi-
cation because suitable objective functions are count-
less, and there seems hardly any good reason to prefer
one to another. The only exception, to the best of our
knowledge, is the entropy function (Rossi, McNeil, and
Hendrickson 1989; Akamatsu 1997; Bell and lida 1997;
Bar-Gera and Boyce 1999; Larsson et al. 2001). Selecting
the UE route flow that maximizes entropy is justified
by the fact that such flow is the most likely to be
observed given the prior information (i.e., adherence to
UE by travelers). This principle, widely used in statisti-
cal mechanics and information theory, can also be inter-
preted as a claim of maximum ignorance beyond what
is firmly known by the modeler.

Despite its popularity, the maximum-entropy user
equilibrium (MEUE) route flow lacks a solid microbe-
havioral foundation. It remains an open question what,
if any, route choice behaviors can consistently lead the
routing game to such a flow. Bar-Gera and Boyce (1999)
noted that an MEUE route flow always distributes traf-
fic to two paired equal-cost alternative segments by the
same proportion regardless of travelers’ origin or desti-
nation. This observation connects MEUE route flows to
route choice behaviors and in so doing, provides a scal-
able solution method for the MEUE route flow problem
(Bar-Gera 2006, 2010; Xie and Nie 2019). Using a large
taxi trajectory data set, Xie, Nie, and Liu (2017) showed
that proportionality, as it is often referred to in the litera-
ture, is approximately satisfied among taxi trips. How-
ever, proportionality is an aggregate result of route
choice that cannot be easily linked to individual beha-
viors. It is one thing to observe that travelers obey the
condition of proportionality collectively, but it is quite
another to explain why they behave this way individu-
ally. Moreover, proportionality between paired alterna-
tive segments is a necessary but insufficient condition
for entropy maximization (Bar-Gera 2006). Sufficiency
requires high-order proportionality conditions (Borch-
ers et al. 2015), but enforcing them weakens not only
the behavioral interpretation of proportionality but
also, the scalability of the solution methods derived
from it.

MEUE may also be viewed as a limit of the stochastic
user equilibrium (SUE). SUE is a “perturbed” UE where
travelers, subject to perception errors, elect to choose
the route “believed” to be the best (Daganzo and Sheffi

1977) through a random utility model (Ben-Akiva and
Lerman 1985). A well-known result in transportation is
that SUE approaches UE when perception errors are
reduced to zero (Fisk 1980). In game theory, this is
known as the purification theorem (Harsanyi 1973).
Moreover, if travelers’ choices are given by the logit
model (McFadden 1973), the limiting—or “purified”—
SUE would coincide with MEUE (Larsson et al. 2001;
Mamun, Xu, and Yin 2011). However, interpreting
MEUE as a limit of SUE implies that it could be reached
only if travelers always select the best route—an
assumption widely contested in the literature (see, e.g.,
Simon 1955). Moreover, that SUE can be steered toward
MEUE by tweaking its parameters does not mean that
travelers are likely to behave accordingly. Indeed, it is
unclear whether, why, and how the perception errors
should gradually decrease to zero from a behavioral
point of view.

In this paper, we attempt to provide a new behav-
ioral foundation for the MEUE route flow using a day-
to-day (DTD) dynamical approach. In part, our effort is
inspired by a recently developed DTD dynamical
model called cumulative logit (CumLog) (Li, Wang,
and Nie 2023), which is capable of reaching a UE state
of the routing game under the presumption that trave-
lers are not perfectly rational even at the equilibrium.
CumLog describes how travelers gradually adjust their
route valuations and hence, choice probabilities based
on past experiences. A crucial difference between Cum-
Log and the classical DTD models (e.g., Horowitz 1984,
Cascetta and Cantarella 1993, Watling 1999, Watling
and Hazelton 2003) is route valuation; whereas classical
models value routes based on the cost averaged over
time, CumLog values them based on the cumulative
cost. As a result, CumLog converges to UE globally
under mild conditions, whereas other similar DTD
models converge to SUE (Horowitz 1984, Cascetta and
Cantarella 1993, Watling 1999). In numerical experi-
ments, Li, Wang, and Nie (2023) discovered that Cum-
Log can converge to the MEUE route flow when
starting from an equal-distribution initial route flow
(obtained by assigning the same choice probability to
all routes between the same OD pair). This finding is
intriguing because it indicates that MEUE may be
obtained from a simple and behaviorally sound DTD
process, a possibility that, to the best of our knowledge,
has never been discussed in the literature before. Once
confirmed, it would not only help explain how the
MEUE route flow may emerge from the evolution of
imperfect route choices but also, give a general algo-
rithm for finding such a flow. Motivated by this obser-
vation, we set out in this study to identify the conditions
under which the convergence of CumLog to MEUE is
Quaranteed.

Originally, CumLog assumes that travelers actively
consider all routes or at least a set that covers all UE



Li et al.: Day-to-Day Approach for Maximum-Entropy User Equilibrium
Transportation Science, Articles in Advance, pp. 1-21, © 2024 INFORMS

routes at the beginning. In reality, such a route set may
be either unknown to the travelers a priori or simply
too large to be included in the decision process. Xie and
Nie (2019) discovered a case in which the number of
UE routes for a single OD pair can be as many as more
than half a billion. There are also considerable cross-
OD variations. For example, Bar-Gera and Boyce (2005)
noted that up to 2,000 routes could be used at UE for
some OD pairs in the Chicago regional network,
although travelers from most OD pairs settle for one to
two UE routes. Hence, we further propose to iteratively
generate the route set in CumLog, assuming that trave-
lers continuously explore the vast route space and
attempt to strike a balance between exploration (i.e.,
discovering new routes) and exploitation (i.e., making
the best use of the routes found so far). This concept of
exploration versus exploitation is central to bandit pro-
blems and reinforcement learning problems (Bush and
Mosteller 1955). It also bears similarities with the use of
column generation—which generates routes on the
fly—in traffic assighment (Jayakrishnan et al. 1994).
Can the convergence of CumLog toward MEUE still be
secured with route discovery? That is the second ques-
tion to be explored in our study.

CumlLog is unique not because it converges to UE
globally but because it does so by allowing explicit
learning and deviation from perfect rationality. Many
other dynamical models—the vast majority of which
are continuous-time models—are known to converge
to UE. For instance, the Smith dynamic (Smith 1984)
moves flow between every pair of routes at a rate pro-
portional to the product of the flow on the higher-cost
route and the cost difference. The projection dynamic is
a continuous-time version of the projection method for
solving variational inequality (VI) problems (Dupuis
and Nagurney 1993, Friesz et al. 1994, Zhang and
Nagurney 1996). Some evolutionary dynamics from
game theory (Weibull 1997, Sandholm 2010) have also
been adapted to study routing games (see, e.g., Yang
and Zhang 2009). What is the relationship between
MEUE and the equilibrium solutions achieved by these
models? That is our third question.

1.1. Our Contributions

Our first and foremost result is that the limiting point
of CumLog minimizes the “distance” from the initial
solution (corresponding to travelers’ initial route valua-
tion) to the set of UE route flows (referred to as the UE
set hereafter) as measured by the Kullback-Leibler
(KL) divergence. In other words, running CumlLog
until convergence is equivalent to “KL projecting” the
initial solution onto the UE set. This result is then used
to establish several useful properties for CumLog. First,
if CumLog does converge, it always admits the same
UE route flow starting from the same initial point. This
property ensures that the behavioral parameters in

CumLog, which may affect the trajectory of conver-
gence, do not affect the equilibrium state. Second, the
limiting point of CumLog changes continuously with
the initial solution, which prevents the dynamical
model from suffering large prediction errors caused by
inaccurate information about the initial state. Third, all
routes that may be used by a UE route flow—called the
UE routes hereafter—will be used at the limiting point
of CumLog, provided that they are included in the
choice set from the beginning. Combining the first two
properties gives us the existence, uniqueness, and con-
tinuity of solutions condition described in Sandholm
(2005), which is part of the “desiderata” for an ideal
dynamical model. The third one is a necessary condi-
tion for achieving MEUE, sometimes known as “no-
route-left-behind” policy (Bar-Gera and Boyce 1999).

We also identify and verify the conditions that can
steer CumLog to MEUE based on the results. We con-
firm that starting from the equal-distribution route
flow is indeed one of them. Intuitively, this does make
sense; if no one has prior information about the routes,
then equal distribution is the logical and entropy-
maximizing outcome. CumLog simply preserves this
property throughout the KL projection process. Yet, we
also show that equal distribution is but one of infinitely
many MEUE-inducing initial conditions. A more gen-
eral requirement is that the initial valuation on any
route is equal to the sum of the valuations on the links
used by the route, and the link valuations are identical
for all routes.

Our third result concerns how to enhance CumLog
with a route discovery module. Integrating route dis-
covery with CumLog requires strategies to (i) initialize
valuation on newly found routes and (ii) encourage tra-
velers to explore routes beyond the best ones. For (i),
we propose to keep a vector of cumulative link valua-
tions from which the cumulative valuation on any
route can be obtained without knowing the details
about the evolution history. To enhance exploration,
white noise is added to link valuations whenever trave-
lers attempt to search for new routes, which allows
them to explore a greater portion of the route space and
consequently, to come across and retain more non-UE
paths in the choice set. Such redundancy is necessary to
ensure that no path is left behind. As a by-product,
CumlLog is turned from an instrument for analysis into
a practical solution algorithm for the MEUE route flow
problem. Unlike most algorithms proposed for this
problem (e.g., Bell and Iida 1997, Larsson et al. 2001,
Bar-Gera 2006, Xie and Nie 2019), the CumLog algo-
rithm does not view it as a constrained optimization
problem. Instead, it simply mimics the evolutionary
process by which the routing game converges. Cum-
Log may not be as efficient—in terms of both memory
consumption and computation time—as the state-of-
the-art algorithms, such as the bush-based algorithm of
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Xie and Nie (2019), but it compensates for this short-
coming with simplicity and robustness. Indeed, imple-
menting CumLog requires little more than a standard
shortest-path algorithm plus the ability (and computer
memory) to manage routes found in the dynamical
process. It is also designed to find the exact MEUE solu-
tion rather than an approximation that may fail to sat-
isfy higher-order proportionality conditions. Thus, for
small to medium applications that need a high-quality
MEUE route flow, CumLog offers a rather appealing
alternative.

Last but not least, we examine a group of DTD
dynamical models that are known to converge to UE
while focusing on their ability to reach MEUE under
similar conditions. Well known in their continuous-
time form, these models are discretized in this study to
strengthen the behavioral representation (i.e., to reflect
the fact that route choice is not continuously adjustable
in time (Watling and Hazelton 2003)). Although only
numerical findings are available because of analytical
difficulties, the insights are new and interesting. We
shall see that the popular replicator dynamic (Taylor
and Jonker 1978) demonstrates a surprisingly strong
potential to find a near-MEUE solution. Its perfor-
mance tracks that of CumLog closely, despite the fact
that they are completely different models in appear-
ance. On the other hand, the Smith (1984) dynamic is
incapable of getting close to MEUE. Nor is the projec-
tion dynamic (Friesz et al. 1994, Zhang and Nagurney
1996) or the best-response dynamic (Gilboa and Matsui
1991).

1.2. Organization

The rest of the paper is organized as follows. Section 2
sets up the problem and discusses related works. In
Section 3, we prove our main result, which establishes
that running CumLog until it converges is equivalent
to performing a KL projection of the initial route choice
onto the set of UE. Building on this foundation, we then
conduct an analysis of CumLog and identify specific
conditions that lead to its convergence at MEUE. Sec-
tion 4 addresses the issue of route space exploration,
and Section 5 examines and compares the discretized
version of several continuous-time dynamical models
with CumLog. Results of numerical experiments
designed to validate the analyses are reported in Sec-
tion 6. Section 7 concludes the paper.

1.3. Notation

We use R and R, to denote, respectively, the set of real
numbers and nonnegative real numbers, and we use
R =R U {oo, —o0} to denote the set of extended real
numbers. For a vector a € R”, we denote ||a||p as its ¢,
norm, and we denote supp(a) ={i € [n] :a;, >0} ([n] =
{1,...,n}) as its support and diag(a) as a square diago-
nal matrix with the elements of vector a on the main

diagonal. For a matrix A € R, we denote [|A[|, as its
matrix norm induced by the vector £, norm, denote
ker(A) ={x e R": Ax=0} as its kernel, and denote
im(A) ={y e R":y = Ax, x e R"} as its image. For two
vectors a,b eR", their inner product is denoted as
(a,b). For a finite set A, we write | A| as the number of
elements in A and 2% as the set of all subsets of .A. For a
real number a € A, we denote [a], = max{a,0}. Given a
set of vectors ai,...,a, € R, we denote their linear
span as span(ay, ..., a,) ={>. ", Ai-a;: L €R,

i=1,...,n}. Givenany set .4 C R", we define its orthog-
onal complement as A* = {x e R" : (x,y) =0, Vye A}.

2. Problem Setting and Preliminaries
We model a transportation network as a directed graph
G(NV, A), where N and A are the set of nodes and links,
respectively. Let WW C N x N be the set of OD pairs and
K C 24 be the set of available routes connecting all OD
pairs. We use K, C K to denote the set of routes con-
necting w € W and Ay C A to denote the set of all links
on route k € K. Also, denote ¥, ; as the OD-route inci-
dence, with X, = 1 if the route k € IC;, and zero other-
wise, and denote A,y as the link-route incidence, with
Ay =1 if e€ A, and zero otherwise. We write A =
(Ae,k)een kexc and % = (Zy, e, keic- Let d = (dy) ey be a
vector with d;, denoting the number of travelers
between w € W. All travelers are identical, and their
route choice strategy is represented by a vector
P = (Pr)kexc, Where py is the proportion of travelers select-
ing k€ Ky. The feasible set for p can be written as
P={peR[:Zp=1}. Let f = (fider and x = (¥o)sen,
with f; and x, being the flow (i.e., number of travelers)
on route k and link a, respectively. It follows f =
diag(q)p (where g = 37d) and Af = x. Further, define
1 = (Uy),e 4 as a vector of link cost determined by a func-
tion u(x) = (145(x)),e4. Then, the vector of route cost
c=A"u.To summarize, the route cost functionc: P —
RI®l can be defined as c(p) = ATu= ATu(Af) =ATu
(Adiag(q)p). For notational simplicity, we also intro-
duce the symbol A = Adiag(q) so that x can be written
as Ap.

Throughout the paper, we impose two assumptions on
the link cost function u#(x) whose domain (the set of feasi-
ble link flows) is written as X = {x : RI*| :x = Ap, p e P}.

Assumption 1. The link cost function u(x) is continu-
ously differentiable and nonnegative on X.

Assumption 2. The link cost function u(x) is strictly
monotone on X (ie., (u(x)—u(x'),x—x)>0 for all
x,x € X such that x £ x').

Travelers are viewed as playing a routing game by
choosing a mixed strategy p to minimize their own
travel costs. Those from the same OD pair adopt the
same mixed strategy, and per the law of large numbers,
p gives the proportion of the travelers from each OD
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pair selecting each route connecting that OD pair. We
define a user equilibrium route choice strategy of the
routing game (Wardrop 1952) as follows in Definition 1.

Definition 1 (The UE Strategy). A route choice strategy
p* € P is a user equilibrium strategy if ¢ (p*) > ming e, cr
(p*) implies that p; = 0 for allw € W and k € IC,,.

Proposition 1 (Dafermos 1980). A route choice strategy
p* is a UE strategy if and only if it solves the following var-
iational inequality problem. Find p* € P such that

(c@),p—p’)=0, VpeP. (1)

Denoting the solution set to the VI problem as P*, the
following two propositions, both established by Dafer-
mos (1980), characterize the geometry of P".

Proposition 2. If c(p) is strictly monotone on P, then the
route flow at UE is unique (i.e., P" is a singleton).

Proposition 3. If u(x) is strictly monotone on X, then the
link flow at UE is unique (i.e., X" ={x" = Ap" :p* € P} is
a singleton). Moreover, P* can be represented as a polyhe-
dron {p* € P: Ap* =x'}, where x* is the unique UE link

flow.

When the function u(x) is strictly monotone, the strict
monotonicity of ¢(p) can be guaranteed if A has a full
column rank. This condition, however, is rarely satis-
fied in the networks of practical interest. Hence, the UE
strategy p* (hence, the UE route flow f*) is usually not
unique.

In what follows, Section 2.1 introduces the MEUE
problem, including the formulation, the basic proper-
ties, and the relationship with the logit-based stochastic
user equilibrium model. In Section 2.2, we present the
CumLog model that was developed in Li, Wang, and
Nie (2023), and we contrast it with the classical DTD
model (Horowitz 1984).

2.1. The MEUE Problem

To consistently select a unique UE strategy from P, one
may define another function of p € P that admits a
unique extreme value (Lu and Nie 2010). The most
widely used function is the negative entropy function.
Rossi, McNeil, and Hendrickson (1989) defined the
negative entropy of any p € P as

¢(p) = (diag(q)p,log(p)), 2)

which measures the number of different ways that tra-
velers can be arranged to produce the route flow corre-
sponding to p (see Online Appendix A for a detailed
explanation). The lower the value of ¢(p), the more
likely to occur the route flow associated with p is. Thus,
maximizing entropy or minimizing ¢(p) is expected to
produce the most likely outcome.

Definition 2 (Maximum-Entropy User Equilibrium). A route
choice strategy p* € P corresponds to the MEUE route
flow or the most likely route flow if and only if it
solves the following MEUE problem:

min  ¢(p),

3
st. preP. )

Problem (3) admits a unique solution because its
objective function is strictly convex and because its
feasible region is a compact convex set, as indicated
by Proposition 3.

2.1.1. Proportionality. Bar-Gera and Boyce (1999) found
that MEUE always satisfies the so-called proportionality
condition, which dictates that “the same proportions
occur for all travelers facing a choice between a pair of
alternative segments, regardless of their origins and
destinations.” For an illustrative example, consider
the three-node, four-link (3N4L) network shown in
Figure 1, which has four routes connecting the origin
(node 1) and the destination (node 3). Route 1 uses
links 1 and 3, route 2 uses links 2 and 4, route 3 uses
links 1 and 4, and route 4 uses links 2 and 3. In this net-
work, a strategy p = [p1, P2, p3,pa] € P satisfies the pro-
portionality condition if p;/ps3 = ps/p2, which implies
that the travelers’ choice between the paired alterna-
tive segments (link 3 versus link 4) is irrelevant to their
other choices (e.g., link 1 versus link 2). Bar-Gera
(2006) pointed out that the proportionality condition
may be used to solve the MEUE problem. This obser-
vation has led to the development of highly efficient
primal algorithms for the MEUE problem (Bar-Gera
2010, Xie and Nie 2019). Despite their success, how-
ever, these algorithms are incapable of solving the
MEUE problem exactly. This is because satisfying the
proportionality condition identified is not sufficient to
find the MEUE route flow (Bar-Gera 2006). In fact, pro-
portionality between paired alternative segments is
but one of many similar conditions that the MEUE
route flow must obey. As those higher-order condi-
tions involve complex topology that is much more
tedious to identify, Borchers et al. (2015) proposed an
alternative condition, which we shall call the general
proportionality condition in this paper.

Definition 3 (General Proportionality Condition). We say
that a route choice strategy p € P satisfies the general
proportionality condition if and only if

(e, log(p)) =0, Veeker(Z)Nker(A). 4)

Figure 1. A Three-Node, Four-Link Network
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To enforce the general proportionality condition, it
suffices to identify the basis of ker(%) N ker(A), which
consists of a set of vector e, (m =1,...,M) that spans
the kernel (i.e., ker(2) Nker(A) = span(e, ..., eym)), and
to make sure that (e, log(p)) =0 holds for every
m=1,...,M. In the literature, (e, log(p)) =0 may be
referred to as the mth-order proportionality condition.
In the 3N4L network, for example, ker(%) Nker(A) =
span([1,1, -1, ~1]") (ie., the kernel space can be
spanned by a single vector [1,1, —1, —1]"). Because the
kernel space is one dimensional, the general propor-
tionality condition is reduced to the first-order propor-
tionality condition identified by Bar-Gera and Boyce
(1999): that is,

log(p1) +1og(p2) — log(ps) —log(ps) =0
or equivalently, pi/ps =pa/p2.

Proposition 4 (Borchers et al. 2015, Theorem 3.3). Under
Assumption 2, a UE strategy p* € P~ is the solution to the
MEUE Problem (3) if and only if it satisfies the general pro-
portionality condition (4).

©)

Although this result is a significant step forward,
operationalizing the general proportionality condition
in an MEUE solution algorithm remains elusive. The
challenge is to obtain the basis of the kernel for a sparse
matrix in a computationally viable manner, especially
when the matrix contains hundreds of millions of col-
umns. Moreover, it is worth emphasizing that Proposi-
tion 4 requires strict monotonicity. In fact, it can fail
even for a monotone (but not strictly monotone) u(x).
Section 3.2 provides such an example.

2.1.2. MEUE and Logit-Based Stochastic User Equilib-
rium. Stochastic user equilibrium may be viewed as
the equilibrium of a “perturbed” routing game in
which travelers no longer have access to perfect infor-
mation. To describe such information in more general
terms, let s € RIX! be the valuation of routes, which
depends on the route cost. In the perturbed game, tra-
velers receive a route valuation littered with a random
error €, which is typically attributed to their imperfect
perception. Subject to this error, the system reaches
SUE when every traveler “believes” that their route
choice is the best (Daganzo and Sheffi 1977). Further-
more, when € is sampled from a Gumbel distribution,
travelers’ best response toward route valuation can be
described by a logit model (McFadden 1973). Given a
scalar r > 0, the logit model is a map ¢, : R'*! — P from
travelers’ route valuation s to the corresponding route
choice strategy p, defined as

B exp(—r-si)
> kerc, OXP(=7sp)

A strategy p € P is then defined as a logit-based SUE
strategy if it coincides with travelers’ choice in response

Dk Vkek. (6)

to c(p) given by the logit model (ie., p =q,(c(p)))
(Daganzo and Sheffi 1977). It is well known (see, e.g.,
Larsson et al. 2001; Mamun, Xu, and Yin 2011) that
logit-based SUE converges to MEUE when r — co. To
interpret this result, we note that a logit-based SUE
with a positive dispersion parameter r has a higher
entropy than all UE solutions as long as » > 0 (see
Mamun, Xu, and Yin 2011 for a proof). This result is
intuitive; the entropy of a route choice pattern is posi-
tively related to the number of routes with positive
flows. As UE uses a subset of routes, whereas SUE uses
all possible routes, it makes sense that SUE should have
a larger entropy. This relationship, together with the
well-known result that SUE converges to UE when r — oo
(Fisk 1980), indicates that the UE reached by SUE when
r — oo must be the UE with the highest entropy.

In theory, this result means that one can obtain a
solution arbitrarily close to MEUE by solving a logit-
based SUE problem with a proper r. In practice, how-
ever, few have attempted to solve the MEUE problem
this way. The lack of interest may stem from two main
challenges. First, solving the logit-based SUE problem
precisely requires enumerating all routes, even those
with loops, because technically, every route should be
used at SUE, however small the probability may be.
This is a daunting task on large networks. Second, it is
difficult to determine ex ante the value of r that guaran-
tees the desired quality of the approximation achieved
by this method. In fact, even measuring the quality of
this approximation does not seem straightforward.
How do we know that an SUE route flow is close
enough to the MEUE route flow unless we know how
to solve the MEUE problem or at least know how to
obtain a tight lower bound?

Finally, viewing the MEUE route flow as the limit of
the SUE flow implies that to achieve MEUE, travelers
must have perfect information because ¥ — c0o =€ — 0
according to the standard explanation. Such behavioral
perfectionism has been widely criticized in the litera-
ture (Simon 1955, Arrow 1966). Moreover, the interpre-
tation tells us little about how the MEUE route flow
might emerge from the evolution of the routing game.

Therefore, we turn to day-to-day dynamical models
for a better behavioral foundation.

2.2. The CumLog Model

The cumulative logit model (Li, Wang, and Nie 2023) is
a day-to-day dynamical model of the routing game. At
its core, CumLog consists of two modules: a learning
module that updates the route valuation s' € RI*! on
each day t and a choice module that maps s’ to the
route choice strategy p'. Before the routing game is
played, travelers may have a preference for routes,
represented by the route valuation s”. Those who have
no prior information on the routes may simply set s;; =
0 for all ke K. CumLog assumes that the travelers
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incorporate the newly learned route cost c(p'~!) into
the route valuation s’ through a weighted cumulative
dynamic as follows:

st=s"Tane(pth, 7)
where the weight 1’ measures the impact of the cost
received on day t — 1 on the travelers’ valuation on day
t. Mathematically, the parameter controls how fast the
route valuation accrues with the route cost. Behavior-
ally, it captures how quickly travelers become disposed
to ignore the latest information and “settle down.”
Thus, 1" is referred to as the proactivity measure; the
larger the ' is, the more proactive the travelers are.

On each day, a new route choice strategy p' = g,(s') is
obtained from the latest route valuation, according to
the logit model (6). The parameter r in the logit model
(6), referred to as the exploration parameter in CumLog,
measures the trade-off between exploration and exploi-
tation; the larger the parameter r, the more exploitative
the travelers (meaning that they are less likely to
explore suboptimal routes). In the CumLog model, the
parameter r is fixed at a constant value. One may inter-
pret this setting as travelers” propensity for accepting
suboptimal routes, or their desired balance between
exploration and exploitation is time invariant. The fol-
lowing result establishes the global stability (GS) of the
CumLog model—that is, the convergence to a UE strat-
egy regardless of the initial solution—under mild
requirements for 7i'. Worth noting here is that the
weaker of the two conditions only requires 7' to be suf-
ficiently small rather than reaching zero at the limit.

Proposition 5 (Li, Wang, and Nie 2023, Theorem 5.4).
Under Assumptions 1 and 2, suppose that s° < co; then, p'
in the CumLog model (7) converges to a fixed point p* € 7",
the solution set to the VI Problem (1), if either of the follow-
ing two conditions is satisfied: (i) limieon' =0 and
lim e i =0 or (i) nf =n < 1/2rL for all t>0,
where L is the Lipschitz constant of c(p) (mathematically,
any L >maxuep||Ve(p)ll, can be used to fulfill the
requirement).

In this study, we will further explore the relationship
between the limiting point of CumLog and the initial
solution. As we shall see, this relation is the key to
unlocking the conditions that ensure the convergence
of CumLog to the MEUE strategy.

Remark 1 (Relation with Classical DTD Models). A reader
familiar with the DTD literature, upon noticing the
seemingly striking similarities between CumLog and
the classical discrete-time DTD models (e.g., Horowitz
1984), may question why CumLog converges to UE
when other similar models converge to SUE. This
question is addressed at length in Li, Wang, and Nie
(2023). A brief discussion is provided here for the con-
venience of the reader. Let us first consider the DTD

model of Horowitz (1984), which updates s' as a
weighted average of s' ! and c(p'~!): that is,

ss=1—-n)-s1+n-c(p?). 8)

Variants of the model have been extensively studied
in the literature (e.g., Cascetta and Cantarella 1993,
Watling 1999), although a fundamental feature remains
the same; s' is a weighted average of route costs learned
over time. Because s’ is a weighted average, when
(p',s") converges to a fixed point (p,8), we have § =
c(p) and p =q,(8). This leads to p =g,(c(p)), which
implies that p is a logit-based SUE, with the route valu-
ation at the limit being equal to the route cost. With a
finite exploitation parameter r, this model cannot reach
UE because if it does, the travelers would find all UE
routes to be equally good and thus, choose them with
equal probabilities (not necessarily a UE strategy). In
game theory, this is known as the Harsanyi instability
problem (Harsanyi 1973). In the DTD context, the issue
was noted in Watling and Hazelton (2003, section 3).
Once CumLog converges to a UE, however, it will be
free of this curse. This is because the cumulative route
costs explain why travelers prefer some routes more
than others as prescribed by the mixed strategy at UE,
even though the present route costs predict indifference.
More specifically, after reaching UE, travelers may
have a higher propensity to choose one UE route over
another if the former delivers a lower accumulated
cost, which may happen when it has a better perfor-
mance in the past. We refer the readers to Li, Wang,
and Nie (2023, section 4.3) for an illustrative example.

3. MEUE Affirmation Conditions

In this section, we present the main theoretical results
concerning the conditions that guarantee the conver-
gence of CumLog to the MEUE strategy of the routing
game. These conditions will be referred to as the MEUE
affirmation conditions. Throughout this section, we
assume that the following conditions always hold.

e Assumptions 1 and 2.

e The CumLog model starts from some initial point
s” < oo with a fixed and finite exploration parameter r
and proactivity parameters 1’ that satisfy either of the
two convergence conditions given in Proposition 5.

We begin by presenting a crucial property of the
CumLog model.

Lemma 1. Starting from any s° € RI®!, the CumLog
model produces a sequence {p'},_, that satisfies (e,log(p'))
= —r-{(e,s) for all e € ker(2) N ker(A).

Proof. See Online Appendix B.1 for a detailed proof. O
Lemma 1 implies that for any vector e in the basis of
ker(%) Nker(A), the CumLog model preserves the

value of (e, log(p')) as a constant dependent only on the
initial solution. As we shall see, this property is a
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cornerstone of the results presented in this section. In
what follows, Section 3.1 explores the relationship
between running CumLog and performing KL projec-
tion, and Section 3.2 gives the conditions under which
CumLog is guaranteed to reach MEUE.

3.1. CumLog and KL Projection
Given any two p,p’ € P, the KL divergence between p
and p’ can be defined as

D(p,p’) = (diag(q)p,log(p) —log(p’)). ©)

Definition 4 (The KL Projection Problem). Given any
p° € P, the KL projection of p° on 7" is defined as

p* = arg min D(p*,p°). (10)

peP”

The KL projection Problem (10) is a natural generali-
zation of the MEUE Problem (3). Indeed, it reduces to
the MEUE problem when p°=1/3"31, the equal-
distribution route choice that dictates that all available
routes between each OD pair have an equal probabil-
ity of being selected. To understand this assertion, it
suffices to note that the KL divergence of any p € P
against the equal-distribution route choice p° reads

D(p,p°) = (diag(q)p,log(p) —log(p"))
= ¢(p) — (diag(q)p, log(p°))
=)+ Y dy-log(|Kul), (11)

wew

which equals the negative entropy function ¢(p) plus a
constant (the second term). The relation is well known
in the information theory literature (Jaynes 1957, Kull-
back 1959).

The following lemma enables us to check whether a
p*€P" is the solution to the KL projection problem
corresponding to an initial solution p°.

Lemma 2. A UE strategy p* € P is the KL projection of
p° on P if (e, log(p*) —log(p®)) = 0 for all e € ker(%) N
ker(A).

Proof. See Online Appendix B.2 for a detailed proof. O

We are now ready to present the main result linking
the limiting point of CumLog to the KL projection of its
initial strategy.

Theorem 1. Let p° be an initial strateqy and p* be the lim-
iting point of the CumLog model corresponding to p°.
Then, p* is the KL projection of p° on P*.

Proof. See Online Appendix B.3 for a detailed proof. O

Theorem 1 may be used to establish several useful
properties of the CumLog model.

Corollary 1. The limiting point of the CumLog model is
solely determined by the initial strateqy p°.

This property asserts that once the initial point is set,
the CumLog model will always converge to the same
UE strategy if it does converge. This property ensures
the behavioral parameters in CumLog—the explora-
tion parameter r and the proactivity parameter 1'—
may not affect the limiting point, even though they
clearly have an impact on the evolution path of the
dynamical system. With this property, there exists a
stable, one-to-one mapping between the initial and ter-
minal strategies. Otherwise, predicting the terminal
strategy would require careful calibration of the behav-
ioral parameters.

Corollary 2. The limiting point of the CumLog model is
continuous with respect to p°.

This result follows from Nagurney (2013, theorem
1.19) by recalling that the KL projection Problem (10) is
a strictly convex program. It guarantees that a small
fluctuation in p° will not result in a large variation in
the limiting point. If we only have limited or inaccurate
knowledge of p°, the property of continuity means that
limitation would not be a great concern because it
would not cause disproportionately large errors in the
predicted outcome of the routing game.

Combining the two properties with the general
convergence condition given in Proposition 5 yields the
existence, uniqueness, and continuity of solutions con-
dition described in Sandholm (2005), which is part of
what he called the “desiderata” for an ideal dynamical
model needed for equilibrium selection.

To present the third property, let us first denote the
set of all routes that may be used by a UE strategy as
K" = Upepsupp(p’).

Corollary 3. Suppose p° >0 (i.e., every available route is
used by someone at the beginning). Then, the limiting point
p* of the CumLog model satisfies supp(p*) = K"

Proof. See Online Appendix B.4 for a detailed proof. O

Corollary 3 guarantees that the CumLog model
never excludes a UE route from the set of routes used
by the terminal strategy reached at the limit, provided
that all routes are initially used. Thus, the CumLog
model satisfies the “no-route-left-behind” policy (Bar-
Gera and Boyce 1999), which is a necessary condition
for achieving MEUE.

3.2. Two MEUE Affirmation Conditions

With the results given in the previous section, we are
ready to give two conditions that can ensure that the
limiting point of CumLog is MEUE.

3.2.1. Condition (A). The first condition follows from
Theorem 1, which links the limiting point of CumLog to
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the KL projection, and Equation (11), which asserts that
minimizing the KL divergence is equivalent to maximiz-
ing entropy against the equal-distribution route choice.

Proposmon 6. If the initial route valuation s° = 0 (hence,
=1/3731), then the limiting point of the CumLog
model is the MEUE strategy.

The initial valuation s’ =0 means that the travelers
have “zero information” about the routes initially; hence,
no preference on any routes can be formed This leads to
an equal-distribution strategy p°=1/3"31. Interest-
ingly, the equal-distribution strategy is the one with
the maximum entropy among all p € P. Hence, when
starting from an equal-distribution strategy, CumLog
essentially maps arg min,cp(p)—the maximum-entropy
strategy—to arg min,,p-(p*)—the MEUE strategy.

3.2.2. Condition (B). The following result delineates a
much larger set of initial strategies that ensure conver-
gence to MEUE.

Proposition 7. If the initial route valuation is formed

based on the valuation at the link level (i.e., s* = ATo° for
some v° € RIA!Y, then the limiting point p of the CumLog
model is the MEUE strategy.

Proof. See Online Appendix B.5 for a detailed proof. O

Thus, as long as all travelers share the same source of
initial link valuations and form their initial route valuation
% (hence, the initial strategy) based on that source, the
CumLog model always converges to the MEUE strategy.

One is inclined to view Condition (B) as more general
than Condition (A) because the former depicts a set
containing infinitely many strategies, whereas the latter
defines a singleton. However, it is worth noting that
Proposition 7 relies on Proposition 4, which in turn,
requires the link cost function u(x) to be strictly mono-
tone (Assumption 2). The problem is that strict monoto-
nicity is often violated in real-world applications. For
example, if a link has a flow-independent constant cost,
then u(x) is monotone but not strictly monotone. In this
case, the condition given in Proposition 7 may fail to
secure convergence to MEUE for the CumLog model,
as illustrated in the following counterexample.

3.2.3. Counterexample. Consider a network consisting
of three parallel routes with constant costs of one, one,
and two, respectively. The set of UE strategies is readily
described as follows:

P ={{p,py 3l €RY :p) +py =1,p3 = 0}.
Because the network is parallel, it is easy to verify that
ker(A) N ker(X) is an empty set. As a result, any UE strat-
egy p* € P* would satisfy the general proportionality
condition. Thus, no matter how we set the initial link val-

uation v° = [v9,09,09]", Proposition 7 asserts that forming

p” based on v° will lead the CumLog model to the MEUE
strategy; this must be true because in this case, any UE
strategy would be considered the MEUE strategy per
Proposition 4. However, this is reductio ad absurdum
because one can easily verify that the only MEUE strat-
egy is p* =[1/2,1/2,0]. The problem here is that both
Propositions 4 and 7 fail to hold because of the lack of
strict monotonicity. Importantly, Theorem 1 remains
valid in this case, and so does Proposition 6. We leave it

to the reader to verify that if started from s° = [0,0, 0]T (so
that p° = [1/3,1/3, 1/3]"), the CumLog model will con-
vergeto[1/2,1/2, 0]", the MEUE strategy.

4. Exploration of Route Space
Up to this point, we have required that all routes be used
in the initial strategy to ensure the convergence of
CumLog—not only to the MEUE strategy but also, to any
UE solution (see Proposition 5). However, this require-
ment is impractical as enumerating all routes is an
unbearable computational burden, even for networks of
modest size. Nor is it necessary. In fact, starting from any
set that “covers” the UE route set (covering a set means
containing it as a subset) would sulffice to secure conver-
gence. Intuitively, if CumLog can reduce an initial strat-
egy using all routes to a strategy only using UE routes, it
must be capable of doing the same for an initial strategy
using any “cover” of all UE routes. In this section, we
shall show that even predetermining such a cover is
unnecessary. Instead, the cover can be “constructed” iter-
atively in the evolution of the routing game. This route
generation process may be interpreted as the result of the
travelers’ exploration of the route space.

We assume that travelers start the routing game with
a subset of all available routes, and on each day ¢, we
attempt to add to that set the “best” route discovered
on day f —1, provided that the route is not already in
the set. In Section 4.1, we prove that CumLog equipped
with this simple route exploration scheme always con-
verges to a UE strategy. Yet, the convergence to the
MEUE strategy is uncertain because of two complica-
tions. First, because the initial strategy no longer
encompasses all routes, neither of the two conditions
given in Section 3.2 seem applicable. Second, the explo-
ration process may not uncover all UE routes. In Sec-
tion 4.2, we propose a revised route exploration scheme
that promises to resolve these issues. Although the the-
oretical guarantee can only be partially established,
numerical experiments indicate that the scheme is an
effective heuristic for solving the MEUE problem.

4.1. Convergence to UE

We use X', €K to represent the set of routes that the
travelers actlvely evaluate on each day and use s €
RIE: for the corresponding route valuation. At the end
of each day, the travelers between each OD pair w
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“discover” the shortest route given the link cost u(x")
observed on that day, say k*. If k* ¢ KC',, it is added to
K1 for possible exploration on the next day. Travelers
need to initialize the valuation for the new route. This
may be done based on past experience; for example,
1 t
s¢t=, min_ (s (12)
if route k* is believed to be as good as any route found
so far. It is worth noting that this initial valuation has
little impact on the convergence as long as it is finite.
Algorithm 1 describes the revised CumLog model,
with the route exploration process described detailed
on lines 8-14. On line 6 in Algorithm 1, we updated the
valuation of active routes assuming the proactivity
parameter n' =1, which is but one of many possible
choices that can ensure convergence.

Algorithm 1 (CumLog with Route Exploration and Cumu-
lative Route Valuation)
1: Set KY C K as a subset of routes such that £ N
Kuw#0 for all we W and s” =0 (a zero vector
with length |, |).
2: fort=0,1,... do
3:  Set A’ and 3 route-link and route-demand
incidence matrices corresponding to K.

4 Set pl=y' /() Y, where v =exp(—r-
(A},

5. Set x'=Aldiag(g’)p! and u'=u(x'), where
g, =()"d.

6: Update st = +¢c.
7. SetKM'=K'.
8: forallweWdo
9: Find the shortest route k* based on u'.
10: if k* ¢ K, then
11: Add k* into K.
12: Initialize s{*! < oo (e.g,, following the scheme

(12)), and add it to s’! as a new element.
13: end if
14:  end for
15: end for

The next result establishes the convergence of Algo-
rithm 1 to a UE strategy of the original routing game.

Proposition 8. By setting the exploration parameter r as a
sufficiently small constant in Algorithm 1, the active route
set KC', will converge to a fixed K. C K, and the route choice
strategy p' will converge to a fixed point p, € P, =
{r. eRL’al :2_)+p . =1}, where 2_)+ is the route-demand
incidence matrices corresponding to K. Furthermore, p =
[p.;0]€P (by p =[p,;0], we mean a vector in P such
that (poeic, =Py and (Piierre, = 0)-

Proof. See Online Appendix C.1 for a detailed proof. O

Although Algorithm 1 always converges to a UE
strategy, its convergence to the MEUE strategy is not

guaranteed. In part, the problem is caused by the fact
that the initial valuation of newly added routes may
not always adhere to the general proportionality condi-
tion. We address this issue in the next section.

4.2. Convergence to MEUE

As discussed in Section 3, the convergence to MEUE
may be ensured if (i) the routes under travelers’ consid-
eration cover all UE routes and if (ii) the route valua-
tions are obtained from shared link valuations (see
Condition (B) and Proposition 6). In this section, we
discuss how these conditions may be satisfied in the
context of route exploration.

Instead of evaluating the newly discovered route in an
ad hoc manner, travelers should rely on their past experi-
ence of link usage to conform to Condition (B). That is,
they anticipate their route experience based on the expe-
rience they had on links used by that route. In order for
this initialization scheme to work, the cost accumulation
in CumLog should occur at the link level. More specifi-
cally, we assume that the travelers keep a record of valua-
tions on links as a vector o' e R4 (=0,1,...) and
update it using a cumulative scheme similar to (7) (i.e.,

’Ut — 7)1‘71 + nt . u(xtfl), (13)

starting from some v° € RI“1). Based on v, all routes in
K'. can be evaluated—whether a route is new or old—
asst, =(A") o',

The new scheme gives rise to Algorithm 2. On line 6
in Algorithm 2, we set the proactivity parameter ' = 1,
similar to Algorithm 1. The route exploration process,
described on lines 8-13 in Algorithm 2, requires no ini-
tial valuation of the new route because all route evalua-
tions are performed on line 4 in Algorithm 2.

Algorithm 2 (CumLog with Route Exploration and Cumu-
lative Link Valuations)

1: Set K% C K as a subset of routes such that £J N
Ko #0 for all we W and v° =0 (a zero vector
with length | Al).

2: fort=0,1,... do

3:  Set Al and 3! route-link and route-demand

incidence matrices corresponding to '

4 Set pl =y, /)Ly, where st =(A))To!

and y', = exp(—r-s.).

5:  Set x' = Al diag(q!)p!. and u'=u(x'), where

q, =)'

6: Update o' =of +u'.
7. SetKiM =K.
8: forallwe W do
9: Find the shortest route k* based on #'.
10: if k" ¢ ', then
11: Add k* into K1
12: end if
13:  end for
14: end for
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If Algorithm 2 is initialized from K9 =K (hence,
Al = A forallt >0), we have

t-1 -1
ss=ATot = AT (vo + Z u(x’)) =ATo + ZATu(xi)

i=0 i=0

-1
=ATo" + Z c(p’), (14)
i=0

which is the accumulated route cost. Because the valid-
ity of Proposition 8 does not rely on the initial valuation
of newly added routes (as long as it is finite), the con-
vergence to a UE strategy by Algorithm 2 can be simi-
larly established. We next discuss the conditions under
which Algorithm 2 converges to the MEUE strategy.

Proposition 9. Suppose that Algorithm 2 converges to a
fixed active route set IC, and a fixed strategy p,. If i 2
Up-supp(p), then p =[p ;0] €P* must be the MEUE
strategy.

Proof. See Online Appendix C.2 for a detailed proof. O

In practice, Algorithm 2 cannot always discover a
cover of all UE routes, although as we have seen, it can
find a cover for the routes used by at least one UE strat-
egy. A potential remedy is to add some random noises
to the current route costs to encourage route explora-
tion. For example, we may rewrite line 6 in Algorithm 2
as

o =0t ru@d) + €, (15)
where €' € R* is a vector of random noises. The vari-
ance of € may vary with ¢, typically starting at a rela-
tively large value (in favor of more aggressive
exploration) but gradually decreasing as time proceeds.
Of course, it is difficult to establish any theoretical guar-
antee for such heuristics, and its performance may vary
with problems and parameters. However, the numeri-
cal experiments reported in Section 6 will provide pre-
liminary evidence about its effectiveness.

We close this section by noting that Algorithm 2, in
addition to being a behavioral instrument to the proof
of convergence, may also be used as a viable alternative
to existing specialized algorithms for solving the
MEUE problem. Implementing Algorithm 2 is simple
as it requires little more than solving the standard
shortest-route problem and managing the routes dis-
covered in the dynamical process. Moreover, it is a
strict zeroth-order algorithm, meaning that all that is
needed to feed into the algorithm is link costs. Without
the need to exploit special problem structures or
manipulate complicated graph objects, Algorithm 2 can
be quickly implemented to find an approximate solu-
tion to the MEUE problem as well as other nonstandard
UE routing problems.

5. Comparison with Other

Dynamical Models
In Sections 3.1 and 3.2, we have shown that the Cum-
Log model possesses the following properties.

e Global stability. The dynamical process converges
to a UE strategy regardless of the initial point. A
dynamical process must possess this property to qual-
ify as a behavioral model of UE (i.e., explaining why
UE can be reached by reasonable users).

o Trajectory stability (IS). The limiting point of the
dynamical process is uniquely determined by its initial
point, independent of other parameters integral to the
process. By ensuring that the outcome of the dynamical
process is not affected by any behavioral contents, TS
enhances its robustness.

e Route conservation (RC). If the initial point of the
dynamical process uses all routes, so does the limiting
point. RC means that no route is left behind through-
out the dynamical process, a necessary condition of
entropy maximization.

e Proportionality conservation (PC). If the initial point
of the dynamical process satisfies the general proportion-
ality condition, so does the limiting point. PC is related to
RC. The difference is that the general proportionality con-
dition is a sufficient condition for entropy maximization.

In the literature, there is a group of continuous-time
dynamical models of the routing game that are globally
stable under Assumptions 1 and 2. Given the immen-
sity of the literature on this topic, we shall limit our
attention to some of the most well-known models,
namely the best-response dynamic (Gilboa and Matsui
1991), the projection dynamic (Friesz et al. 1994, Zhang
and Nagurney 1996), the Smith dynamic (Smith 1984),
and the replicator dynamic (Taylor and Jonker 1978). A
key difference between these models and a discrete-
time model like CumLog is how the time between two
consecutive decision epochs is treated. In continuous-
time models, this time shrinks to zero, which means
that travelers’ route choice is viewed as “continuously”
adjustable, and as a result, the potential impact of the
rate of this adjustment on convergence is ignored
(Watling 1999). However, whether the model is
employed to justify a certain equilibrium as the reason-
able outcome of the routing game or to develop a solu-
tion algorithm for finding such equilibrium, the rate of
adjustment cannot be arbitrarily small. In other words,
a continuous model can be “operationalized” only
when it is discretized. Hence, in this section, we discre-
tize these continuous-time models and compare their
discrete-time versions with the CumLog model in
terms of their conformity to the four properties.

To reveal the mechanism of discretization, let us
first present the continuous-time version of the Cum-
Log model. If both the decision epoch and the proac-
tivity parameter 1 shrink to zero, the CumLog model
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can be written as the following differential equation
system:

§ =c(p),
{,, = :(s), 16)

in which s increases continuously in time at the rate of
c(p). Accordingly, the original model—which updates
s =s' + 1 - c(p')—may be viewed as a numerical solu-
tion algorithm for the differential Equation (16) based on
the Euler method (see, e.g., Butcher 2016 for an introduc-
tion), in which 1’ may be interpreted as a step size. As we
shall see, discretizing other continuous-time models may
involve parameters playing a similar role as 1". For sim-
plicity, we shall use the same symbol 1’ (or 7 if the
parameter is a constant) to represent such parameters in
the remaining of this section.

5.1. Best-Response Dynamic

5.1.1. Description and Discretization. The best-response
dynamic (Gilboa and Matsui 1991) assumes that travelers
“receive revision opportunities at a unit rate, and use
these opportunities to switch to a current best response”
(Sandholm 2015). Given a route choice p € P, we define
B(p) = arg min, p(p’,c(p)) as the best response of the
travelers given the cost received on the previous day. The
best-response dynamic may be written as

i’ EB(p)—p, (17)

which is a differential inclusion rather than a differen-
tial equation as the best response may not be unique
(e.g., multiple minimum cost routes). The best-response
dynamic is often used to explain why the Nash equilib-
rium may be reached in finite games (e.g., rock-paper-
scissors) (Sandholm 2015, section 13.5.2). Discretizing
Equation (17) using the Euler method gives rise to

p*t—p'en - (B -pH), (18)

where 1’ is the step size. To ensure p'*! € P, the param-
eter 7' must be less than one.

5.1.2. Properties

5.1.2.1. GS. Applying the discrete model (18) equals
solving the routing game with the celebrated Frank-Wolfe
algorithm (Frank and Wolfe 1956). It is well known the
convergence of that algorithm can be ensured only if the
step size decreases progressively at a proper pace (e.g., set-
ting ' = 1/(t + 1), as in the so-called method of successive
average) (Nocedal and Wright 1999).

5.1.2.2. TS, RC, and PC. The model does not satisfy
TS even in its continuous-time version. Take the coun-
terexample raised in Section 3.2, where the first two
routes have a constant cost of one, lower than the con-
stant cost of the third route. Hence, if the travelers are
initially assigned to route 3, they may end up switching
to route 1 or route 2 on the next day as both give the

best response, which means that TS is not guaranteed.
Moreover, because the limiting point of the model can-
not be determined by the initial point, there would be
no definitive answers on the adherence to RC and
PC either.

5.2. Projection Dynamic

5.2.1. Description and Discretization. In the evolution-
ary game literature, the model of Friesz et al. (1994) and
the model of Zhang and Nagurney (1996) are often
referred to as the target projection dynamic and the
projection dynamic, respectively; see Sandholm (2005,
section 5) for an in-depth discussion. Both models were
motivated by the projection method for solving routing
games (Bertsekas and Gafni 1982, Dafermos 1983).
According to this method, the travelers’ route choice
strategy is updated by

pt+1 :fn(Pt)/

where f,(p) = arg min|jp" — (p — - c(p))|l>-
p'eP

(19)

The target projection dynamic and the projection
dynamic are both derived from Equation (19), although
they are in different manners. The former fixes 1> 0.
Then, it sets
) = —p=limPe—P
p=filp) —p=lm=—=, 20)
wherep_=(1—¢)-p+e-f(p),

whereas the latter directly lets 7 — 0 in Equation (19),
which gives rise to

p.= lim;’(p) —P'

21
n—0 n ( )

Therefore, rather than discretizing the two models sep-
arately, it may be more natural to directly employ
Equation (19) as the discrete-time version of these two
projection dynamics.

5.2.2. Properties

5.2.2.1. GS. To ensure the convergence of model (19),
the step size 1 may be simply fixed as a sufficiently
small constant. As shown by Marcotte and Wu (1995,
theorem 2.1), a sufficiently small 7 can always ensure
the convergence of p' to UE whenever the route cost
function c(p) is cocoercive, a condition slightly stronger
than monotonicity. In particular, when Vc(p) is sym-
metric, c(p) is cocoercive as long as it is monotone; see
Marcotte and Wu (1995, proposition 2.1).

5.2.2.2. TS. Although we are unable to construct a rig-
orous proof, we postulate that the discrete model (19) is
likely to satisfy TS. Specifically, our conjecture is that
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given p® € P, the limiting point of the model, denoted
asp* € P*, would satisfy

p" =arg min||p” —py|l, (22)

peP”

(i.e., the dynamic will reach a UE strategy in P that
minimizes the Euclidean distance from po). Obviously,
the convergence is true if only one iteration is needed
before the model converges. We shall test this hypothe-
sis with numerical experiments but leave a rigorous
analysis to a future study.

5.2.2.3. RC and PC. Our reading of the literature does
not provide any affirmative answer about these proper-
ties. Intuitively, the project dynamic is unlikely to have
them because Euclidean projection (as used in the dis-
crete model (19)), unlike KL projection, tends to pro-
duce sparse solutions (Chen and Ye 2011).

5.3. Smith Dynamic and Replicator Dynamic
5.3.1. Description and Discretization. We put the Smith
dynamic (Smith 1984) and the replicator dynamic (Tay-
lor and Jonker 1978) together because they are closely
related. We first describe the models before turning to
the behavioral interpretation.

The Smith dynamic is defined by the following dif-
ferential equation:

7 e lee@) — )]y — pr

Kk, K €Ky

> lalp) =), (23)

Kk, K ek

By applying the Euler method to Equation (23), we
obtain a difference equation that reads

pit = Z Pl o Z T, (24)
K £k, K €Ky k’;&k,k’elcw
where 71}, = 1 [er(p) — cv (p")], (n > 0 is the step size).
The replicator dynamic has many equivalent forms
(see, e.g., Sandholm 2015, example 13.6); one of them
reads

pe= Y P

Kk, kel

- Y pe-lap) —aw@l. (25

ke £k, K ey

k- lew () — ar(p)]s

First suggested by Schlag (1998), Equation (25) is also
known as the proportional pairwise comparison
dynamics. By applying the Euler method to Equation
(25), we readily obtain a difference equation

b Ver—P D, Vie (26)

K #k, K ey, k' #k, k' eky

t+1 t
Pr —Pr=

where v . =1, - [e(p’) — cr (p)]. (nis the step size).

5.3.1.1. Behavior Interpretation. On each day ¢, if the
probability of a traveler switching from their current
route k € KC;, to a different route k' € ICy, is set as n,ﬂ,k,,
then the first term and the second term in Equation (24)
represent, respectively, the proportion of travelers
switching from other routes to route k and that from
route k to other routes. The same interpretation applies
to Equation (26) by replacing 1 ,, with y; ;.. In both
interpretations, the probability of the traveler sticking to
the original choice k is one less the total probabilities of
changing to other routes (i.e., m , :==1—1n-3 Kok
[ek(p') — ek (p)], for the Smith dynamic and ka =
1= ks wer, P - lx(p') —ce(p))], for the replica-
tor dynamic).

To ensure that these probabilities are nonnegative,
n must be sufficiently small. Here, we note that
continuous-time models implicitly assume that n = 0,
and hence, the feasibility constraint can always be
secured. Behaviorally, the smaller the value of 7, the
less willing the traveler is to explore new routes.

5.3.1.2. Comparison. The two models are almost
identical, except for the factor pj, added before
[ek(p') — cr (p")], by the replicator dynamic to scale the
switching probability. Schlag (1998) explains the scalar
as follows. Suppose that the travelers can only observe
the cost of the route they take but are allowed to gather
route information from a randomly picked fellow trav-
eler. Then, the scalar pj, may be interpreted as the prob-
ability of the random traveler taking route k. To
understand how the scalar makes a difference, consider
the probability that a traveler currently on route k
switches to a new route k' on day t, which nobody
selected on that day (hence, pj, =0). Under the Smith
dynamic, the switching probability would be
n-lek(p') — e (p')],, which is positive as long as the
cost of route k’ is strictly lower than that of route k. In
contrast, the switching probability given by the replica-
tor dynamic is n-pi, - [ck(p") — e (p')], = 0. The ratio-
nale behind the replicator dynamic is that as the
traveler has nowhere to learn about the better route k/,
the traveler would have no chance to take it. On the
other hand, the Smith dynamic would better fit the situ-
ation where every traveler has access to full informa-
tion all the time.

5.3.2. Properties

5.3.2.1. GS. lt is straightforward to show that the dis-
crete version of either model converges to UE when 1) is
fixed as a sufficiently small constant.

5.3.2.2. TS, RC, and PC. We shall show that the
replicator dynamic and CumLog are equivalent in
continuous time, which might shed light on the prop-
erties of the former. Indeed, differentiating the second
line p =4,(s) in Equation (16) with respect to time
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yields
Pk _ exp(—r-si)

r Zk,e,cwexp(fr -Sp)

exp(—r-s)

sk S
( ‘ kezic > ker, eXP(=T k) k)
= —px- <ék > e sk>

k' ey

=—pr <ck(p) - Z Pr ‘Oc’(P))

k' ey

= —Pr- Z pr - (ck(p) — e (p)

kK ey,

=pc- > pe-laep)—ap)l.

Kk, ke

— P Z pr - lek(p) — e ()] (27)

K £k, K ey

The reader can verify that Equation (27) and Equation
(25) are identical, except for a rescaling of time by r.
This revelation is surprising as the two DTD models
have distinct behavior mechanisms in their respective
discrete forms—one based on the logit model, whereas
the other based on pairwise route switching—and have
not been previously connected with each other. Yet, the
analysis indicates that they are closely related when the
decision epoch shrinks to zero.

Based on the finding, we postulate that the behavior
of the discrete replicator dynamic (26) may be similar
to that of CumLog if a sufficiently small step size 7 is
adopted. Numerical experiments presented in the next
section will show that the model tends to (i) satisfy RC
if 1 is sufficiently small and (ii) satisfy PC approxi-
mately when n — 0 but uncovers no evidence confirm-
ing its compliance with TC. A thorough theoretical
investigation of this model and other discrete models
discussed in this section is left to a future study.

6. Numerical Results
To validate the analysis results presented in the previ-
ous sections, numerical experiments are performed on
two networks: the 3N4L, as shown earlier in Figure 1,
and the Sioux—Falls network (Leblanc 1975), which has
24 nodes, 76 links, and 528 OD pairs. For a route choice
strategy p, we use the relative gap of its corresponding
link flowxe X ={x:x= /_\p, p € P}, denoted as 6(x), to
measure its distance from UE. The relative gap is com-
puted by
o(x) =

<M(X), X' — x> ’ . 7
——————=  x’earg min(u(x),x”). (28)
(u(x), ) Yer
A solution is accepted as a UE solution whenever 6 is
smaller than a predefined value, taking a default of
107" in this study. Unless otherwise stated, we also fix

the proactivity parameter n' in the CumLog model at
one in all experiments. We next provide some details of
the two networks.

6.1. 3N4L

The number of travelers from node 1 to node 4 is 10.
Given the flow x, on link 4, we model its costs as
Uy = hy + w, - X3, where [h1,h2, h3,ha]" =[4,20,1,30]" and
[wl,wz,w3,w4]T =[1,5,30, 1]T. Under this setting, the set
of UE strategies can be written as

P ={p":p'=[03-1,04-103+A7]",A€[0,0.3]}.
(29)

It can be verified that p* = [0.18,0.28,0.42,0.12]" is the
MEUE strategy, which corresponds to A =0.12. In our
experiments, once a UE strategy p* € P* is found, the
corresponding A(p*) is computed as follows:

Mp") =[(0.3 = p}) +(0.4 —p5) + (p5 — 0.3) + p3] /4.
(30)

6.2. Sioux—Falls

We refer the readers to Leblanc (1975) for the topology,
travel demand, and cost function of the Sioux—Falls net-
work. A highly sophisticated MEUE algorithm devel-
oped by Feng et al. (2024)—which promises to obtain a
solution with close-to-float precision—is employed to
produce the benchmarks. The MEUE route flow for the
Sioux-Falls network found by their algorithm contains
770 routes, with an entropy of 59,235.10.

6.3. Convergence of CumLog Toward MEUE

In Section 6.3.1, we run CumLog with randomly gener-
ated initial points and examine the distribution of the
limiting points. We then compare the entropy values of
initial and limiting points (Section 6.3.2). Finally, Sec-
tion 6.3.3 tests a CumLog-based algorithm equipped
with route discovery.

6.3.1. Distribution of CumLog’s Limiting Points. In
this experiment, a set of initial points is randomly
selected for the 3N4L network to run the CumLog
model. Two strategies are employed to generate the ini-
tial points. In the first strategy, we sample p° from a
uniform distribution and rescale p° to fit the flow con-
servation condition. We then choose s° = —log(p®)/r
such that p° would be reproduced from the route
choice function g,(s°). This strategy guarantees that all
p° € P have an equal chance to be selected. Rather than
sampling p° directly, the second strategy samples s°
from a normal distribution centered at 0. Thus, the
initial points around s’=0 would have a greater
chance to be selected. In both cases, the sample size is
set to 5,000, and the equal-distribution initial point,
s9=10,0,0,0]",p° =[1/4,1/4,1/4,1/4]", is employed as
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Figure 2. (Color online) Distribution of A Corresponding to UE Strategies of the 3N4L Network Obtained from 5,000 Different

Initial Points by CumLog
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Notes. The dashed lines highlight the A value corresponding to the equal-distribution initial point. (a) p° sampled from a uniform distribution.

(b) s° sampled from a normal distribution.

a benchmark. For each initial point, we run CumLog
until convergence, and then, we invoke Equation (30)
to obtain the corresponding A.

Figure 2 plots for each initialization strategy the his-
togram of A values corresponding to the 5,000 UE strat-
egies. As expected, when pY is sampled from a uniform
distribution, A spreads over the entire theoretical range
([0,0.3]), whereas it concentrates around the MEUE
strategy (A = 0.12) when a normal distribution is used
to sample s°.

Per Proposition 6, CumLog is guaranteed to reach the
MEUE strategy if started from the equal-distribution ini-
tial point. Our results confirm that this is indeed the
case; the vertical dashed lines in Figure 2 are the solution
found by CumLog when s° =[0,0,0,0]". A more inter-
esting finding, however, is that the MEUE strategy
aligns perfectly with the peak of the histogram in both
cases, despite the vastly different sampling methods.
The result provides an interesting confirmation that the
MEUE strategy is indeed the most likely outcome of the
routing game, no matter how we choose to initialize it.

6.3.2. Relation Between Initial and Limiting Entropy. We
proceed to compare —¢(p°), the entropy at the initial
point, with —¢(p*), the entropy at p* = lim;_,p'. Recall
that CumLog always guides the initial strategy with

the highest entropy (equal-distribution strategy) to the
MEUE strategy, which implies that the entropy of p°
and that of p* may be positively correlated. However,
because UE is a more “orderly” state compared with a
nonequilibrium state, we expect the entropy of p* to be
lower than that of p°.

To validate our hypotheses, we run experiments in
the 3N4L network by initializing s’ with two strategies.
The first strategy directly generates s’ from a normal
distribution, rather like the second strategy in Section
6.3.1. The second strategy first randomly generates
v’—travelers’ initial valuation of all available links—
and sets s = ATo°. This way, p° always satisfies the
general proportionality condition. For each initializa-
tion strategy, the sample size is set as 250.

The scatterplots of all samples (the coordinates of a
point are (—¢(p°), — p(p*)) for a given sample) are
reported in Figure 3. First and foremost, the star marker
is always located at the upper right corner in panels (a)
and (b) of Figure 3, which validates Proposition 6; start-
ing from the maximume-entropy strategy, CumLog con-
verges to the MEUE strategy. When s° is directly
generated from a normal distribution (Figure 3(a)),
there is a clear positive correlation between the limiting
entropy and the initial entropy. Also, most points
(about 83.2%) lie beneath the 45° line, indicating that

Figure 3. (Color online) Initial Entropy vs. Limiting Entropy for 250 Samples of the 3N4L Network
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(a) s” randomly generated from a normal distribution. (b) v° randomly generated from a normal distribution.
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entropy tends to decrease in the equilibrium-finding
process. Both observations are well aligned with the
expectation from our analysis. When s° is obtained
from randomly generated ©°, the limiting entropy of all
initial points should reach the maximum possible
value, as established in Proposition 7. Figure 3(b) con-
firms this theoretical prediction. Interestingly, the vast
majority of the data pairs, 80.4%, are now located above
the 45° line. Thus, in this case, the entropy tends to
increase in the equilibrium-finding process. A possible
explanation is that the second initialization strategy
drew initial solutions disproportionately from the
regions associated with lower entropy values. We leave
an in-depth look into this phenomenon to future
studies.

6.3.3. Route Discovery Strategies. We run Algorithms 1
and 2 on the Sioux-Falls network to test the perfor-
mance of different route discovery strategies. Four sce-
narios, labeled Scenario (A), Scenario (B), Scenario (C),
and Scenario (D), are examined. Scenario (A) is the
benchmark, which employs a predetermined route set
containing 1,238 routes, including all 770 UE routes
found using the aforementioned algorithm (Feng et al.
2024). In this scenario, no route exploration is needed,
and the standard CumLog algorithm is executed. In the
other three scenarios, the route set is initially populated
with the shortest route for each OD pair (with the link
cost set to zero). Scenario (B) tests Algorithm 1, in which

the valuation of a new route is initialized using Equation
(12). Scenario (C) and Scenario (D) both test Algorithm
2. The difference is that Scenario (D) enhances the explo-
ration by adding random noise to link costs (as
described in Equation (15)). In the implementation, we
also gradually reduce the variance of the error term ¢; at
a rate of O(1/t). We stop adding noises into link costs
when no new routes are found in a sufficiently
long time,

Figure 4 compares the convergence patterns of the
CumLog dynamical process in the four scenarios. As
anticipated by our analysis results, CumLog converges
smoothly to the MEUE strategy in Scenario (A) in terms
of both the entropy value and the UE route set. Com-
pared with specialized traffic assignment algorithms,
such as the traffic assignment by paired alternative seg-
ments (TAPAS) algorithm (Bar-Gera 2010) and bush-
based algorithms (Nie 2010), its convergence is rela-
tively slow; the relative gap remains above 10~ after
3,000days (more than eight years). However, to reach a
relative gap of about 10, CumLog only requires about
1-2 months.

Neither Scenario (B) nor Scenario (C) are able to con-
verge to the MEUE strategy. In both cases, the route
exploration process ended up missing a small number
of UE routes and as a result, produced solutions with
entropy values markedly lower than the benchmark. It
is worth noting that they had no problem converging
to a UE strategy, although their convergence path is not

Figure 4. (Color online) Convergence Patterns of CumLog for the Sioux—Falls Network in Four Scenarios
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as smooth as in Scenario (A). With the help of explora-
tion noises, Scenario (D) successfully discovered all
routes contained in the benchmark solution and
obtained a high-quality approximation to the MEUE
strategy. However, the “randomized” route discovery
process slowed down convergence, a price one has to
pay in order to increase the likelihood of identifying all
UE routes. Also, although the strategy succeeded in
finding all UE routes for this problem, there is no guar-
antee that it will for other problems.

6.4. Comparison with Other Dynamical Models

In this section, we numerically investigate the proper-
ties of the four DTD models discussed in Section 5 (best
response, projection, replicator, and Smith) and com-
pare them with CumLog. We begin with the 3N4L net-
work (Section 6.4.1) and turn to the Sioux—Falls
network in Section 6.4.2.

6.4.1. 3N4L Network. Our focus is on the effect of the
step size on the limiting point of each model. Based on
trial and error, we set the range of the step size 7 in our
experiments as follows.

e CumlLog. Set r = 1, fix 1’ as a constant 17 in Equa-
tion (7), and test n = 0.05,0.10, ..., 1.

e Best response. Set ' =7/(1+t) in Equation (18),
and test n =0.05,0.10,...,0.95.

e Projection. Set 1 =0.02,0.04, .. .,0.2 in Equation (19).

e Smith. Set 7 = 0.005,0.0010, .. .,0.13 in Equation (24).

e Replicator. Set) = 0.02,0.04, .. .,0.4 in Equation (26).
Thus, for all models listed, their performance is dic-
tated by 7. In all runs, the initial point is fixed as
p° =10.25,0.25,0.25,0.25]". We terminate the CumLog,
Smith, and replicator models when the equilibrium gap
reaches 6 = 10", For the best-response and projection
models, the convergence criterion is relaxed to 6 = 10~
because aiming for a higher precision would be too

time consuming for these two dynamics. Figure 5
reports the results, including the value of A corresponding
to the UE strategy reached by the model, calculated based
on Equation (30) (panel (a) of Figure 5) and the number of
iterations required to achieve a satisfactory convergence
(panel (b) of Figure 5).

First, with the exception of the best-response
dynamic, a larger 1 always accelerates convergence in
the tested range. For the best-response dynamic, the
opposite is true; as 1 increases, the number of iterations
required for convergence generally trends up, although
the relationship is not monotonic. CumLog, as guaran-
teed by Corollary 1, always reaches the MEUE strategy
(with A equal to 0.12) regardless of the value of 7. The
projection dynamic is the only other model whose lim-
iting point is not affected by 7, hinting compliance with
TS. Upon close examination, we also confirmed that its
limiting point is indeed the Euclidean projection of the
initial point onto the equilibrium set. The other three
models fail to meet TS as their limiting points all
change with 7. The limiting point of the best-response
dynamic oscillates abruptly around the MEUE strategy.
For the Smith dynamic and the replicator dynamics,
their limiting points seem to always stay on one side of
the MEUE strategy (i.e,, A < 0.12) and vary much more
smoothly with 1. The result also appears to confirm our
conjecture that the replicator dynamic tends to con-
verge to the MEUE strategy when 7 — 0.

Could the replicator dynamic be used as an MEUE
problem solver? The answer is probably yes if one is
willing to tolerate the slow convergence associated
with the use of a very small step size. When 1 =0.02,
the replicator dynamic finds a high-quality MEUE
approximation after more than 1,000 iterations. For
n=0.4, the convergence takes only 44 iterations, but
the limiting point drifts far away from the MEUE strat-
egy. CumLog does not face this dilemma, thanks to the

Figure 5. (Color online) The Relationship Between the Limiting Points of Different Models with Respect to Their Step Sizes
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theoretical guarantee. When 1 = 1, it converges in 30
iterations, and the limiting point is still the MEUE
strategy.

To recapitulate, our numerical results show (i) that
all models satisfy GS with a properly selected step size,
(if) that no models other than CumLog and the projec-
tion dynamic may satisfy TS, and (iii) that no models
other than CumlLog and the replicator dynamic may
satisfy PC. Here, we note that other models sometimes
produce solutions close to MEUE, but we tend to
believe that these occurrences as coincidental rather
than a consistent pattern. We next turn to these models’
adherence to RC, for which we need to use the
Sioux-Falls network.

6.4.2. Sioux—Falls Network. In the experiment, we run
the models from an equal-distribution initial strategy
using all 770 UE routes and check their convergence
patterns, particularly whether any of the routes will be
eliminated when a UE strategy is reached. A route is
considered “eliminated” (i.e., not used by anyone) if
the proportion of the travelers selecting it is less than 7.
We test two values of 7: 10~* and 10~°. The step size for
each model is appropriately tuned such that the relative

Figure 6. (Color online) Convergence Patterns of the Five Models

gap gradually converges to zero as fast as possible. We
set the convergence criterion 0 = 107° in this experi-
ment. The results are reported in Figure 6, including
the detailed convergence pattern for the relative gap
5(p") (panel (a) of Figure 6), the entropy ¢(p') (panel (b)
of Figure 6), the number of used routes (i.e., the size of
the set {k : p} > 1}) (panel (c) of Figure 6), and the viola-
tion of the first-order proportionality condition and the
second-order proportionality condition measured by
(ei, log(p")) (i = 1, 2), where e; and e, are the first basis
and the second basis of ker(A) U ker(X), respectively
(panel (d) of Figure 6).

Panel (a) of Figure 6 concerns global stability. It con-
firms that all models satisfy GS (i.e., they converge to a
satisfactory UE solution). To reach the convergence
threshold, CumLog requires the least number of itera-
tions (about 800) followed by the projection dynamic
and the replicator dynamic, both taking roughly twice
as many iterations to converge as needed by CumLog.
The slowest is the best-response dynamic, which needs
30,000 iterations to reach 10_6, at least an order of mag-
nitude slower than any other models. This is hardly sur-
prising if one recalls that the Frank-Wolfe algorithm—
notorious for its painfully slow convergence because of
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to the number of routes used by more than 10~* and 10~ percent of the travelers, respectively). Panel (d) reports the violation of the first- and sec-
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zigzagging behavior—is, in fact, a variant of the best-
response dynamic. The Smith dynamic fares far better
than the best-response dynamic but falls behind the other
three.

Panel (c) of Figure 6 examines route conservation. As
seen from panel (c) of Figure 6, both CumLog and the
replicator dynamic left no UE routes behind (all 770
routes are still used when equilibrium is reached) for
both tolerance values (7). The best-response dynamic
kept all 770 routes when 7 is 10~ but left a few out if
7 =10"*. The Smith dynamic kept only 750 routes even
with the looser tolerance standard (7 = 107%), but the
projection dynamic is the worst in this regard; it elimi-
nated almost 40 routes from the UE set. To be sure, it is
possible that a route considered eliminated even by the
more stringent standard may still be a used route, albeit
by an extremely small minority of travelers. However,
it is fair to conclude that these two dynamics are much
less likely to satisfy RC than the other three.

Panels (b) and (d) of Figure 6 deal with proportional-
ity conservation. From panel (d) of Figure 6, we can see
that CumLog perfectly conformed to PC as predicted
by the theory. The projection dynamic and the Smith
dynamic failed to conserve proportionality as they both
severely violated the first-order proportionality condi-
tion and the second-order proportionality condition. Of
the two, the projection dynamic performed worse. The
best-response dynamic outperformed these two, although
its deviation from the two proportionality conditions is
still substantial. The solution obtained by the replicator
dynamic does not exactly satisfy the two proportionality
conditions, but the violations are barely detectable from
panel (d) of Figure 6. This behavior is expected given that
the continuous version of the replicator dynamic is closely
related to CumLog. From panel (b) of Figure 6, we observe
that both CumLog and the replicator dynamic are capable
of approaching the benchmark entropy value (the precise
entropy value associated with the MEUE strategy). All of
the other three models achieve an entropy value markedly
lower than the benchmark; the worst is the projection
dynamic, followed by the best response and the Smith
dynamic.

6.4.3. Summary. From what we saw in this section, it
is safe to conclude that none of the four models dis-
cussed in Section 5 satisfy all of the four properties,
even though they are globally stable under the assump-
tions adopted in this study. Specifically, the evidence
strongly suggests that the best-response dynamic vio-
lates TS and PC, that the projection dynamic violates
RC and PC, that the replicator dynamic violates TS, and
that the Smith dynamic violates all three.

Two dynamics are worth a final remark. First, like
CumLog, the replicator dynamic can be used to solve
the MEUE problem approximately. However, the qual-
ity of the approximation degrades as the step size

increases. This is a computational disadvantage
because small step sizes lead to slow convergence.
CumlLog does not suffer from this disability thanks to a
superior convergence guarantee. Second, it is some-
what surprising to see that the best-response dynamic,
despite the poor convergence performance, can obtain
a solution more closely resembling the MEUE strategy
than the projection and the Smith dynamics. This
empirical finding appears to confirm the conjecture put
forth by Florian and Morosan (2014), who argued that
the Frank-Wolfe algorithm can yield UE solutions that
approximately obey the condition of proportionality.

7. Conclusions
The lack of a unique user equilibrium route flow in traf-
fic assignment has posed a significant challenge to
many transportation applications. A common remedy
to this long-standing problem is the maximum-entropy
principle, which advocates consistently choosing the
most likely UE route flow as the representative of the
countless candidates. This study provided a new
behavioral underpinning for this principle. Our theory
is built on a recently proposed day-to-day dynamical
model called CumLog, which can reach a UE state
without presuming that travelers are perfectly rational.
We proved that CumLog always selects (or converges
to) the MEUE route flow given a proper initial condi-
tion. We further identified two such conditions. (i) Tra-
velers have no prior information about routes, and
thus, they are forced to give all routes an equal initial
choice probability. (ii) All travelers gather information
from the same source such that the so-called general
proportionality condition is satisfied. Thus, the MEUE
route flow may result from a routing game in which
boundedly rational travelers continuously learn about
and refine their valuation of the routes and adjust their
routing strategy accordingly. The revelation suggests
that CumLog may be used as a solution algorithm for
the MEUE route flow problem. To operationalize this
idea, we proposed to bypass the route enumeration
required in the original CumLog model through an
iterative route discovery scheme. We devised two
schemes. The first guarantees convergence to UE but
not MEUE. The second strives not to miss any UE
route, a prerequisite for maximizing entropy. Although
no theoretical assurance was provided, initial numeri-
cal results confirmed the effectiveness of the heuristic.
Having demonstrated the capability of CumLog in
solving the MEUE problems, we turned to address a
natural question. Do the other DTD models known to
converge to a UE solution have a similar capability? To
answer this question, we first established the four prop-
erties underlying CumLog’s success, namely (i) global
stability, (ii) trajectory stability, (iii) route conservation,
and (iv) proportionality conversation. Of the four
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popular DTD models that we examined, the replicator
dynamic is the only one that has the potential to attain
the MEUE solution with some regularity. However, the
replicator dynamic satisfies PC approximately only
when it is discretized with a very small step size, which
tends to slow the overall convergence. The convergence
of the best-response dynamic is the slowest and most dis-
orderly, but it seems to adhere to the MEUE solution bet-
ter than the projection dynamic and the Smith dynamic.

There are a few directions that future research can
pursue. First, the current MEUE affirmation conditions
are established for the standard routing game. It would
be useful to extend them to more general games, such
as those with heterogeneous users and nonseparable
cost functions. To the best of our knowledge, few have
considered the MEUE problem in these general routing
games, and unlike the standard game, no specialized
MEUE algorithm has ever been developed. Because of
its simplicity and flexibility, CumLog can easily fill this
gap if the results given by this paper can be general-
ized. Another interesting question is whether we can
design a route discovery scheme that can find all UE
routes. It is possible that Algorithm 2 already possesses
this capability if we set the noise term properly and
simply let the process run indefinitely. Either way, a
more rigorous theoretical investigation is warranted.
Our analysis of the continuous dynamical models left
many questions unanswered. A few of these questions
are as follows. Why does the projection dynamic
appear to satisfy TS? Can the limiting point of the dis-
crete version of the replicator dynamic always make a
close approximation of MEUE? If so, under what condi-
tions? How do we explain the vastly different behavior
between the Smith dynamic and the replicator dynamic
given that they resemble each other so strikingly?
Finally, MEUE bears intriguing similarities with some
network design problems, especially the entropy-based
estimation of origin-destination matrix (e.g., Van Zuy-
len and Willumsen 1980), in that they all involve select-
ing an equilibrium to optimize an entropy function. By
this analogy, the initial state in our model plays the role
of the prior (or historical) matrix in OD estimation. A
future study may exploit this connection for the pur-
pose of solving certain network design problems
through a DTD dynamical process.
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