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Abstract. The lack of a unique user equilibrium (UE) route flow in traffic assignment has 
posed a significant challenge to many transportation applications. The maximum-entropy 
principle, which advocates for the consistent selection of the most likely solution, is often 
used to address the challenge. Built on a recently proposed day-to-day discrete-time 
dynamical model called cumulative logit (CumLog), this study provides a new behavioral 
underpinning for the maximum-entropy user equilibrium (MEUE) route flow. It has been 
proven that CumLog can reach a UE state without presuming that travelers are perfectly 
rational. Here, we further establish that CumLog always converges to the MEUE route 
flow if (i) travelers have no prior information about routes and thus, are forced to give all 
routes an equal initial choice probability or if (ii) all travelers gather information from the 
same source such that the general proportionality condition is satisfied. Thus, CumLog 
may be used as a practical solution algorithm for the MEUE problem. To put this idea into 
practice, we propose to eliminate the route enumeration requirement of the original Cum
Log model through an iterative route discovery scheme. We also examine the discrete-time 
versions of four popular continuous-time dynamical models and compare them with Cum
Log. The analysis shows that the replicator dynamic is the only one that has the potential 
to reach the MEUE solution with some regularity. The analytical results are confirmed 
through numerical experiments.
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1. Introduction
A fundamental problem in transportation systems 
analysis is predicting the distribution of traffic over 
routes connecting each origin-destination (OD) pair in 
a general congestible network, commonly known as 
traffic assignment (Beckmann, McGuire, and Winsten 
1956). In transportation planning, traffic assignment is 
often framed as a noncooperative routing game in 
which travelers’ selfish route choices drive network- 
wide traffic distribution toward a user equilibrium 
(UE) state (Wardrop 1952, Roughgarden and Tardos 
2002). Generally speaking, neither the set of routes 
used at UE nor the number of travelers selecting these 
routes (called route flow) are unique (Sheffi 1985). 
Indeed, there are potentially infinitely many route 
flows that correspond to a UE state of the routing 
game. Practitioners used to accept any UE route flow 

that emerges from a traffic assignment procedure, elect
ing to ignore this nuance altogether. However, even 
when aggregate assignment results are not affected by 
the lack of uniqueness, this practice may undermine 
any applications that depend on UE route flows (e.g., 
select link analysis) (see Bar-Gera, Boyce, and Nie 
2012). The problem is that using an arbitrary UE route 
flow can be difficult to justify, and more importantly, 
such a flow may vary disproportionately with small 
perturbations in system inputs (Lu and Nie 2010). The 
same problem also affects multiclass traffic assignment 
models, in which travelers are classified into groups 
based on their individual characteristics, such as the 
value of time. In these models, the class-specific link 
flow, in addition to the route flow, is often nonunique 
at UE (Bar-Gera, Boyce, and Nie 2012). This constitutes 
a serious concern for any efforts to understand the 
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distributional effects of certain control and/or manage
ment policies, such as equity analysis (Wang et al. 2023) 
or mixed-autonomy traffic analysis (Bahrami and 
Roorda 2020).

It has been suggested that additional criteria may be 
imposed to rank the UE route flows, and a decision 
maker should stick to the highest-ranked flow to main
tain consistency and stability of the decision process. 
Lu and Nie (2010) showed that such a rank could be 
produced by maximizing a suitable function of UE 
route flows. Yet, this does not solve the issue of justifi
cation because suitable objective functions are count
less, and there seems hardly any good reason to prefer 
one to another. The only exception, to the best of our 
knowledge, is the entropy function (Rossi, McNeil, and 
Hendrickson 1989; Akamatsu 1997; Bell and Iida 1997; 
Bar-Gera and Boyce 1999; Larsson et al. 2001). Selecting 
the UE route flow that maximizes entropy is justified 
by the fact that such flow is the most likely to be 
observed given the prior information (i.e., adherence to 
UE by travelers). This principle, widely used in statisti
cal mechanics and information theory, can also be inter
preted as a claim of maximum ignorance beyond what 
is firmly known by the modeler.

Despite its popularity, the maximum-entropy user 
equilibrium (MEUE) route flow lacks a solid microbe
havioral foundation. It remains an open question what, 
if any, route choice behaviors can consistently lead the 
routing game to such a flow. Bar-Gera and Boyce (1999) 
noted that an MEUE route flow always distributes traf
fic to two paired equal-cost alternative segments by the 
same proportion regardless of travelers’ origin or desti
nation. This observation connects MEUE route flows to 
route choice behaviors and in so doing, provides a scal
able solution method for the MEUE route flow problem 
(Bar-Gera 2006, 2010; Xie and Nie 2019). Using a large 
taxi trajectory data set, Xie, Nie, and Liu (2017) showed 
that proportionality, as it is often referred to in the litera
ture, is approximately satisfied among taxi trips. How
ever, proportionality is an aggregate result of route 
choice that cannot be easily linked to individual beha
viors. It is one thing to observe that travelers obey the 
condition of proportionality collectively, but it is quite 
another to explain why they behave this way individu
ally. Moreover, proportionality between paired alterna
tive segments is a necessary but insufficient condition 
for entropy maximization (Bar-Gera 2006). Sufficiency 
requires high-order proportionality conditions (Borch
ers et al. 2015), but enforcing them weakens not only 
the behavioral interpretation of proportionality but 
also, the scalability of the solution methods derived 
from it.

MEUE may also be viewed as a limit of the stochastic 
user equilibrium (SUE). SUE is a “perturbed” UE where 
travelers, subject to perception errors, elect to choose 
the route “believed” to be the best (Daganzo and Sheffi 

1977) through a random utility model (Ben-Akiva and 
Lerman 1985). A well-known result in transportation is 
that SUE approaches UE when perception errors are 
reduced to zero (Fisk 1980). In game theory, this is 
known as the purification theorem (Harsanyi 1973). 
Moreover, if travelers’ choices are given by the logit 
model (McFadden 1973), the limiting—or “purified”— 
SUE would coincide with MEUE (Larsson et al. 2001; 
Mamun, Xu, and Yin 2011). However, interpreting 
MEUE as a limit of SUE implies that it could be reached 
only if travelers always select the best route—an 
assumption widely contested in the literature (see, e.g., 
Simon 1955). Moreover, that SUE can be steered toward 
MEUE by tweaking its parameters does not mean that 
travelers are likely to behave accordingly. Indeed, it is 
unclear whether, why, and how the perception errors 
should gradually decrease to zero from a behavioral 
point of view.

In this paper, we attempt to provide a new behav
ioral foundation for the MEUE route flow using a day- 
to-day (DTD) dynamical approach. In part, our effort is 
inspired by a recently developed DTD dynamical 
model called cumulative logit (CumLog) (Li, Wang, 
and Nie 2023), which is capable of reaching a UE state 
of the routing game under the presumption that trave
lers are not perfectly rational even at the equilibrium. 
CumLog describes how travelers gradually adjust their 
route valuations and hence, choice probabilities based 
on past experiences. A crucial difference between Cum
Log and the classical DTD models (e.g., Horowitz 1984, 
Cascetta and Cantarella 1993, Watling 1999, Watling 
and Hazelton 2003) is route valuation; whereas classical 
models value routes based on the cost averaged over 
time, CumLog values them based on the cumulative 
cost. As a result, CumLog converges to UE globally 
under mild conditions, whereas other similar DTD 
models converge to SUE (Horowitz 1984, Cascetta and 
Cantarella 1993, Watling 1999). In numerical experi
ments, Li, Wang, and Nie (2023) discovered that Cum
Log can converge to the MEUE route flow when 
starting from an equal-distribution initial route flow 
(obtained by assigning the same choice probability to 
all routes between the same OD pair). This finding is 
intriguing because it indicates that MEUE may be 
obtained from a simple and behaviorally sound DTD 
process, a possibility that, to the best of our knowledge, 
has never been discussed in the literature before. Once 
confirmed, it would not only help explain how the 
MEUE route flow may emerge from the evolution of 
imperfect route choices but also, give a general algo
rithm for finding such a flow. Motivated by this obser
vation, we set out in this study to identify the conditions 
under which the convergence of CumLog to MEUE is 
guaranteed.

Originally, CumLog assumes that travelers actively 
consider all routes or at least a set that covers all UE 
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routes at the beginning. In reality, such a route set may 
be either unknown to the travelers a priori or simply 
too large to be included in the decision process. Xie and 
Nie (2019) discovered a case in which the number of 
UE routes for a single OD pair can be as many as more 
than half a billion. There are also considerable cross- 
OD variations. For example, Bar-Gera and Boyce (2005) 
noted that up to 2,000 routes could be used at UE for 
some OD pairs in the Chicago regional network, 
although travelers from most OD pairs settle for one to 
two UE routes. Hence, we further propose to iteratively 
generate the route set in CumLog, assuming that trave
lers continuously explore the vast route space and 
attempt to strike a balance between exploration (i.e., 
discovering new routes) and exploitation (i.e., making 
the best use of the routes found so far). This concept of 
exploration versus exploitation is central to bandit pro
blems and reinforcement learning problems (Bush and 
Mosteller 1955). It also bears similarities with the use of 
column generation—which generates routes on the 
fly—in traffic assignment (Jayakrishnan et al. 1994). 
Can the convergence of CumLog toward MEUE still be 
secured with route discovery? That is the second ques
tion to be explored in our study.

CumLog is unique not because it converges to UE 
globally but because it does so by allowing explicit 
learning and deviation from perfect rationality. Many 
other dynamical models—the vast majority of which 
are continuous-time models—are known to converge 
to UE. For instance, the Smith dynamic (Smith 1984) 
moves flow between every pair of routes at a rate pro
portional to the product of the flow on the higher-cost 
route and the cost difference. The projection dynamic is 
a continuous-time version of the projection method for 
solving variational inequality (VI) problems (Dupuis 
and Nagurney 1993, Friesz et al. 1994, Zhang and 
Nagurney 1996). Some evolutionary dynamics from 
game theory (Weibull 1997, Sandholm 2010) have also 
been adapted to study routing games (see, e.g., Yang 
and Zhang 2009). What is the relationship between 
MEUE and the equilibrium solutions achieved by these 
models? That is our third question.

1.1. Our Contributions
Our first and foremost result is that the limiting point 
of CumLog minimizes the “distance” from the initial 
solution (corresponding to travelers’ initial route valua
tion) to the set of UE route flows (referred to as the UE 
set hereafter) as measured by the Kullback–Leibler 
(KL) divergence. In other words, running CumLog 
until convergence is equivalent to “KL projecting” the 
initial solution onto the UE set. This result is then used 
to establish several useful properties for CumLog. First, 
if CumLog does converge, it always admits the same 
UE route flow starting from the same initial point. This 
property ensures that the behavioral parameters in 

CumLog, which may affect the trajectory of conver
gence, do not affect the equilibrium state. Second, the 
limiting point of CumLog changes continuously with 
the initial solution, which prevents the dynamical 
model from suffering large prediction errors caused by 
inaccurate information about the initial state. Third, all 
routes that may be used by a UE route flow—called the 
UE routes hereafter—will be used at the limiting point 
of CumLog, provided that they are included in the 
choice set from the beginning. Combining the first two 
properties gives us the existence, uniqueness, and con
tinuity of solutions condition described in Sandholm 
(2005), which is part of the “desiderata” for an ideal 
dynamical model. The third one is a necessary condi
tion for achieving MEUE, sometimes known as “no- 
route-left-behind” policy (Bar-Gera and Boyce 1999).

We also identify and verify the conditions that can 
steer CumLog to MEUE based on the results. We con
firm that starting from the equal-distribution route 
flow is indeed one of them. Intuitively, this does make 
sense; if no one has prior information about the routes, 
then equal distribution is the logical and entropy- 
maximizing outcome. CumLog simply preserves this 
property throughout the KL projection process. Yet, we 
also show that equal distribution is but one of infinitely 
many MEUE-inducing initial conditions. A more gen
eral requirement is that the initial valuation on any 
route is equal to the sum of the valuations on the links 
used by the route, and the link valuations are identical 
for all routes.

Our third result concerns how to enhance CumLog 
with a route discovery module. Integrating route dis
covery with CumLog requires strategies to (i) initialize 
valuation on newly found routes and (ii) encourage tra
velers to explore routes beyond the best ones. For (i), 
we propose to keep a vector of cumulative link valua
tions from which the cumulative valuation on any 
route can be obtained without knowing the details 
about the evolution history. To enhance exploration, 
white noise is added to link valuations whenever trave
lers attempt to search for new routes, which allows 
them to explore a greater portion of the route space and 
consequently, to come across and retain more non-UE 
paths in the choice set. Such redundancy is necessary to 
ensure that no path is left behind. As a by-product, 
CumLog is turned from an instrument for analysis into 
a practical solution algorithm for the MEUE route flow 
problem. Unlike most algorithms proposed for this 
problem (e.g., Bell and Iida 1997, Larsson et al. 2001, 
Bar-Gera 2006, Xie and Nie 2019), the CumLog algo
rithm does not view it as a constrained optimization 
problem. Instead, it simply mimics the evolutionary 
process by which the routing game converges. Cum
Log may not be as efficient—in terms of both memory 
consumption and computation time—as the state-of- 
the-art algorithms, such as the bush-based algorithm of 
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Xie and Nie (2019), but it compensates for this short
coming with simplicity and robustness. Indeed, imple
menting CumLog requires little more than a standard 
shortest-path algorithm plus the ability (and computer 
memory) to manage routes found in the dynamical 
process. It is also designed to find the exact MEUE solu
tion rather than an approximation that may fail to sat
isfy higher-order proportionality conditions. Thus, for 
small to medium applications that need a high-quality 
MEUE route flow, CumLog offers a rather appealing 
alternative.

Last but not least, we examine a group of DTD 
dynamical models that are known to converge to UE 
while focusing on their ability to reach MEUE under 
similar conditions. Well known in their continuous- 
time form, these models are discretized in this study to 
strengthen the behavioral representation (i.e., to reflect 
the fact that route choice is not continuously adjustable 
in time (Watling and Hazelton 2003)). Although only 
numerical findings are available because of analytical 
difficulties, the insights are new and interesting. We 
shall see that the popular replicator dynamic (Taylor 
and Jonker 1978) demonstrates a surprisingly strong 
potential to find a near-MEUE solution. Its perfor
mance tracks that of CumLog closely, despite the fact 
that they are completely different models in appear
ance. On the other hand, the Smith (1984) dynamic is 
incapable of getting close to MEUE. Nor is the projec
tion dynamic (Friesz et al. 1994, Zhang and Nagurney 
1996) or the best-response dynamic (Gilboa and Matsui 
1991).

1.2. Organization
The rest of the paper is organized as follows. Section 2
sets up the problem and discusses related works. In 
Section 3, we prove our main result, which establishes 
that running CumLog until it converges is equivalent 
to performing a KL projection of the initial route choice 
onto the set of UE. Building on this foundation, we then 
conduct an analysis of CumLog and identify specific 
conditions that lead to its convergence at MEUE. Sec
tion 4 addresses the issue of route space exploration, 
and Section 5 examines and compares the discretized 
version of several continuous-time dynamical models 
with CumLog. Results of numerical experiments 
designed to validate the analyses are reported in Sec
tion 6. Section 7 concludes the paper.

1.3. Notation
We use R and R+ to denote, respectively, the set of real 
numbers and nonnegative real numbers, and we use 
R̄ � R ∪ {∞, �∞} to denote the set of extended real 
numbers. For a vector a ∈ Rn, we denote ‖a‖p as its ℓp 
norm, and we denote supp(a) � {i ∈ [n] : ai > 0} ([n] �

{1, : : : , n}) as its support and diag(a) as a square diago
nal matrix with the elements of vector a on the main 

diagonal. For a matrix A ∈ Rn×m, we denote ‖A‖p as its 
matrix norm induced by the vector ℓp norm, denote 
ker(A) � {x ∈ Rm : Ax � 0} as its kernel, and denote 
im(A) � {y ∈ Rm : y � Ax, x ∈ Rn} as its image. For two 
vectors a, b ∈ Rn, their inner product is denoted as 
〈a, b〉. For a finite set A, we write |A | as the number of 
elements in A and 2A as the set of all subsets of A. For a 
real number a ∈ A, we denote [a]+ � max{a, 0}. Given a 
set of vectors a1, : : : , an ∈ Rm, we denote their linear 
span as span(a1, : : : , an) � {

Pn
i�1λi · ai : λi ∈ R, 

i � 1, : : : , n}. Given any set A ⊆ Rm, we define its orthog
onal complement as A⊥ � {x ∈ Rm : 〈x, y〉 � 0, ∀y ∈ A}.

2. Problem Setting and Preliminaries
We model a transportation network as a directed graph 
G(N ,A), where N and A are the set of nodes and links, 
respectively. Let W ⊆ N × N be the set of OD pairs and 
K ⊆ 2A be the set of available routes connecting all OD 
pairs. We use Kw ⊆ K to denote the set of routes con
necting w ∈ W and Ak ⊆ A to denote the set of all links 
on route k ∈ K. Also, denote Σw, k as the OD-route inci
dence, with Σw, k � 1 if the route k ∈ Kw and zero other
wise, and denote Λe, k as the link-route incidence, with 
Λe, k � 1 if e ∈ Ak and zero otherwise. We write L �

(Λe, k)e∈A, k∈K and S � (Σw, k)w∈W, k∈K. Let d � (dw)w∈W be a 
vector with dw denoting the number of travelers 
between w ∈ W. All travelers are identical, and their 
route choice strategy is represented by a vector 
p � (pk)k∈K, where pk is the proportion of travelers select
ing k ∈ Kw. The feasible set for p can be written as 
P � {p ∈ R |K |

+ : Sp � 1}. Let f � (fk)k∈K and x � (xa)a∈A, 
with fk and xa being the flow (i.e., number of travelers) 
on route k and link a, respectively. It follows f �

diag(q)p (where q � STd) and Lf � x. Further, define 
u � (ua)a∈A as a vector of link cost determined by a func
tion u(x) � (ua(x))a∈A. Then, the vector of route cost 
c � LTu. To summarize, the route cost function c : P →

R |K | can be defined as c(p) � LTu � LTu(Lf ) � LTu 
(Ldiag(q)p): For notational simplicity, we also intro
duce the symbol L̄ � Ldiag(q) so that x can be written 
as L̄p.

Throughout the paper, we impose two assumptions on 
the link cost function u(x) whose domain (the set of feasi
ble link flows) is written as X � {x : R |A | : x � L̄p, p ∈ P}.

Assumption 1. The link cost function u(x) is continu
ously differentiable and nonnegative on X .

Assumption 2. The link cost function u(x) is strictly 
monotone on X (i.e., 〈u(x) � u(x′), x � x′〉 > 0 for all 
x, x′ ∈ X such that x ≠ x′).

Travelers are viewed as playing a routing game by 
choosing a mixed strategy p to minimize their own 
travel costs. Those from the same OD pair adopt the 
same mixed strategy, and per the law of large numbers, 
p gives the proportion of the travelers from each OD 
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pair selecting each route connecting that OD pair. We 
define a user equilibrium route choice strategy of the 
routing game (Wardrop 1952) as follows in Definition 1.

Definition 1 (The UE Strategy). A route choice strategy 
p∗ ∈ P is a user equilibrium strategy if ck(p∗) > mink′∈Kw ck′

(p∗) implies that p∗
k � 0 for all w ∈ W and k ∈ Kw.

Proposition 1 (Dafermos 1980). A route choice strategy 
p∗ is a UE strategy if and only if it solves the following var
iational inequality problem. Find p∗ ∈ P such that

〈c(p∗), p � p∗〉 ≥ 0, ∀p ∈ P: (1) 

Denoting the solution set to the VI problem as P∗, the 
following two propositions, both established by Dafer
mos (1980), characterize the geometry of P∗.

Proposition 2. If c(p) is strictly monotone on P, then the 
route flow at UE is unique (i.e., P∗ is a singleton).

Proposition 3. If u(x) is strictly monotone on X , then the 
link flow at UE is unique (i.e., X ∗ � {x∗ � L̄p∗ : p∗ ∈ P∗} is 
a singleton). Moreover, P∗ can be represented as a polyhe
dron {p∗ ∈ P : L̄p∗ � x∗}, where x∗ is the unique UE link 
flow.

When the function u(x) is strictly monotone, the strict 
monotonicity of c(p) can be guaranteed if L has a full 
column rank. This condition, however, is rarely satis
fied in the networks of practical interest. Hence, the UE 
strategy p∗ (hence, the UE route flow f ∗) is usually not 
unique.

In what follows, Section 2.1 introduces the MEUE 
problem, including the formulation, the basic proper
ties, and the relationship with the logit-based stochastic 
user equilibrium model. In Section 2.2, we present the 
CumLog model that was developed in Li, Wang, and 
Nie (2023), and we contrast it with the classical DTD 
model (Horowitz 1984).

2.1. The MEUE Problem
To consistently select a unique UE strategy from P, one 
may define another function of p ∈ P that admits a 
unique extreme value (Lu and Nie 2010). The most 
widely used function is the negative entropy function. 
Rossi, McNeil, and Hendrickson (1989) defined the 
negative entropy of any p ∈ P as

φ(p) � 〈diag(q)p, log(p)〉, (2) 

which measures the number of different ways that tra
velers can be arranged to produce the route flow corre
sponding to p (see Online Appendix A for a detailed 
explanation). The lower the value of φ(p), the more 
likely to occur the route flow associated with p is. Thus, 
maximizing entropy or minimizing φ(p) is expected to 
produce the most likely outcome.

Definition 2 (Maximum-Entropy User Equilibrium). A route 
choice strategy p̄∗ ∈ P corresponds to the MEUE route 
flow or the most likely route flow if and only if it 
solves the following MEUE problem:

min φ(p∗),
s:t: p∗ ∈ P∗:

(3) 

Problem (3) admits a unique solution because its 
objective function is strictly convex and because its 
feasible region is a compact convex set, as indicated 
by Proposition 3.

2.1.1. Proportionality. Bar-Gera and Boyce (1999) found 
that MEUE always satisfies the so-called proportionality 
condition, which dictates that “the same proportions 
occur for all travelers facing a choice between a pair of 
alternative segments, regardless of their origins and 
destinations.” For an illustrative example, consider 
the three-node, four-link (3N4L) network shown in 
Figure 1, which has four routes connecting the origin 
(node 1) and the destination (node 3). Route 1 uses 
links 1 and 3, route 2 uses links 2 and 4, route 3 uses 
links 1 and 4, and route 4 uses links 2 and 3. In this net
work, a strategy p � [p1, p2, p3, p4] ∈ P satisfies the pro
portionality condition if p1=p3 � p4=p2, which implies 
that the travelers’ choice between the paired alterna
tive segments (link 3 versus link 4) is irrelevant to their 
other choices (e.g., link 1 versus link 2). Bar-Gera 
(2006) pointed out that the proportionality condition 
may be used to solve the MEUE problem. This obser
vation has led to the development of highly efficient 
primal algorithms for the MEUE problem (Bar-Gera 
2010, Xie and Nie 2019). Despite their success, how
ever, these algorithms are incapable of solving the 
MEUE problem exactly. This is because satisfying the 
proportionality condition identified is not sufficient to 
find the MEUE route flow (Bar-Gera 2006). In fact, pro
portionality between paired alternative segments is 
but one of many similar conditions that the MEUE 
route flow must obey. As those higher-order condi
tions involve complex topology that is much more 
tedious to identify, Borchers et al. (2015) proposed an 
alternative condition, which we shall call the general 
proportionality condition in this paper.

Definition 3 (General Proportionality Condition). We say 
that a route choice strategy p ∈ P satisfies the general 
proportionality condition if and only if

〈e, log(p)〉 � 0, ∀e ∈ ker(S) ∩ ker(L): (4) 

Figure 1. A Three-Node, Four-Link Network 
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To enforce the general proportionality condition, it 
suffices to identify the basis of ker(S) ∩ ker(L), which 
consists of a set of vector em (m � 1, : : : , M) that spans 
the kernel (i.e., ker(S) ∩ ker(L) � span(e1, : : : , eM)), and 
to make sure that 〈em, log(p)〉 � 0 holds for every 
m � 1, : : : , M. In the literature, 〈em, log(p)〉 � 0 may be 
referred to as the mth-order proportionality condition. 
In the 3N4L network, for example, ker(S) ∩ ker(L) �

span([1, 1, �1, �1]
T
) (i.e., the kernel space can be 

spanned by a single vector [1, 1, �1, �1]
T). Because the 

kernel space is one dimensional, the general propor
tionality condition is reduced to the first-order propor
tionality condition identified by Bar-Gera and Boyce 
(1999): that is,

log(p1) + log(p2) � log(p3) � log(p4) � 0

or equivalently, p1=p3 � p4=p2:
(5) 

Proposition 4 (Borchers et al. 2015, Theorem 3.3). Under 
Assumption 2, a UE strategy p̄∗ ∈ P∗ is the solution to the 
MEUE Problem (3) if and only if it satisfies the general pro
portionality condition (4).

Although this result is a significant step forward, 
operationalizing the general proportionality condition 
in an MEUE solution algorithm remains elusive. The 
challenge is to obtain the basis of the kernel for a sparse 
matrix in a computationally viable manner, especially 
when the matrix contains hundreds of millions of col
umns. Moreover, it is worth emphasizing that Proposi
tion 4 requires strict monotonicity. In fact, it can fail 
even for a monotone (but not strictly monotone) u(x). 
Section 3.2 provides such an example.

2.1.2. MEUE and Logit-Based Stochastic User Equilib
rium. Stochastic user equilibrium may be viewed as 
the equilibrium of a “perturbed” routing game in 
which travelers no longer have access to perfect infor
mation. To describe such information in more general 
terms, let s ∈ R | K | be the valuation of routes, which 
depends on the route cost. In the perturbed game, tra
velers receive a route valuation littered with a random 
error ɛ, which is typically attributed to their imperfect 
perception. Subject to this error, the system reaches 
SUE when every traveler “believes” that their route 
choice is the best (Daganzo and Sheffi 1977). Further
more, when ɛ is sampled from a Gumbel distribution, 
travelers’ best response toward route valuation can be 
described by a logit model (McFadden 1973). Given a 
scalar r > 0, the logit model is a map qr : R̄ |K | → P from 
travelers’ route valuation s to the corresponding route 
choice strategy p, defined as

pk �
exp(�r · sk)

P
k′∈Kw

exp(�r · sk′ )
, ∀k ∈ K: (6) 

A strategy p̂ ∈ P is then defined as a logit-based SUE 
strategy if it coincides with travelers’ choice in response 

to c(p) given by the logit model (i.e., p̂ � qr(c(p̂))) 
(Daganzo and Sheffi 1977). It is well known (see, e.g., 
Larsson et al. 2001; Mamun, Xu, and Yin 2011) that 
logit-based SUE converges to MEUE when r → ∞. To 
interpret this result, we note that a logit-based SUE 
with a positive dispersion parameter r has a higher 
entropy than all UE solutions as long as r > 0 (see 
Mamun, Xu, and Yin 2011 for a proof). This result is 
intuitive; the entropy of a route choice pattern is posi
tively related to the number of routes with positive 
flows. As UE uses a subset of routes, whereas SUE uses 
all possible routes, it makes sense that SUE should have 
a larger entropy. This relationship, together with the 
well-known result that SUE converges to UE when r → ∞

(Fisk 1980), indicates that the UE reached by SUE when 
r → ∞ must be the UE with the highest entropy.

In theory, this result means that one can obtain a 
solution arbitrarily close to MEUE by solving a logit- 
based SUE problem with a proper r. In practice, how
ever, few have attempted to solve the MEUE problem 
this way. The lack of interest may stem from two main 
challenges. First, solving the logit-based SUE problem 
precisely requires enumerating all routes, even those 
with loops, because technically, every route should be 
used at SUE, however small the probability may be. 
This is a daunting task on large networks. Second, it is 
difficult to determine ex ante the value of r that guaran
tees the desired quality of the approximation achieved 
by this method. In fact, even measuring the quality of 
this approximation does not seem straightforward. 
How do we know that an SUE route flow is close 
enough to the MEUE route flow unless we know how 
to solve the MEUE problem or at least know how to 
obtain a tight lower bound?

Finally, viewing the MEUE route flow as the limit of 
the SUE flow implies that to achieve MEUE, travelers 
must have perfect information because r → ∞ ⇒ ɛ → 0 
according to the standard explanation. Such behavioral 
perfectionism has been widely criticized in the litera
ture (Simon 1955, Arrow 1966). Moreover, the interpre
tation tells us little about how the MEUE route flow 
might emerge from the evolution of the routing game.

Therefore, we turn to day-to-day dynamical models 
for a better behavioral foundation.

2.2. The CumLog Model
The cumulative logit model (Li, Wang, and Nie 2023) is 
a day-to-day dynamical model of the routing game. At 
its core, CumLog consists of two modules: a learning 
module that updates the route valuation st ∈ R | K | on 
each day t and a choice module that maps st to the 
route choice strategy pt. Before the routing game is 
played, travelers may have a preference for routes, 
represented by the route valuation s0. Those who have 
no prior information on the routes may simply set s0

k �

0 for all k ∈ K. CumLog assumes that the travelers 
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incorporate the newly learned route cost c(pt�1) into 
the route valuation st through a weighted cumulative 
dynamic as follows:

st � st�1 + ηt · c(pt�1), (7) 

where the weight ηt measures the impact of the cost 
received on day t � 1 on the travelers’ valuation on day 
t. Mathematically, the parameter controls how fast the 
route valuation accrues with the route cost. Behavior
ally, it captures how quickly travelers become disposed 
to ignore the latest information and “settle down.” 
Thus, ηt is referred to as the proactivity measure; the 
larger the ηt is, the more proactive the travelers are.

On each day, a new route choice strategy pt � qr(st) is 
obtained from the latest route valuation, according to 
the logit model (6). The parameter r in the logit model 
(6), referred to as the exploration parameter in CumLog, 
measures the trade-off between exploration and exploi
tation; the larger the parameter r, the more exploitative 
the travelers (meaning that they are less likely to 
explore suboptimal routes). In the CumLog model, the 
parameter r is fixed at a constant value. One may inter
pret this setting as travelers’ propensity for accepting 
suboptimal routes, or their desired balance between 
exploration and exploitation is time invariant. The fol
lowing result establishes the global stability (GS) of the 
CumLog model—that is, the convergence to a UE strat
egy regardless of the initial solution—under mild 
requirements for ηt. Worth noting here is that the 
weaker of the two conditions only requires ηt to be suf
ficiently small rather than reaching zero at the limit.

Proposition 5 (Li, Wang, and Nie 2023, Theorem 5.4). 
Under Assumptions 1 and 2, suppose that s0 < ∞; then, pt 

in the CumLog model (7) converges to a fixed point p∗ ∈ P∗, 
the solution set to the VI Problem (1), if either of the follow
ing two conditions is satisfied: (i) limt→∞ηt � 0 and 
limt→∞

Pt
i�0 η

i � ∞ or (ii) ηt � η < 1=2rL for all t ≥ 0, 
where L is the Lipschitz constant of c(p) (mathematically, 
any L ≥ maxp∈P‖∇c(p)‖2 can be used to fulfill the 
requirement).

In this study, we will further explore the relationship 
between the limiting point of CumLog and the initial 
solution. As we shall see, this relation is the key to 
unlocking the conditions that ensure the convergence 
of CumLog to the MEUE strategy.

Remark 1 (Relation with Classical DTD Models). A reader 
familiar with the DTD literature, upon noticing the 
seemingly striking similarities between CumLog and 
the classical discrete-time DTD models (e.g., Horowitz 
1984), may question why CumLog converges to UE 
when other similar models converge to SUE. This 
question is addressed at length in Li, Wang, and Nie 
(2023). A brief discussion is provided here for the con
venience of the reader. Let us first consider the DTD 

model of Horowitz (1984), which updates st as a 
weighted average of st�1 and c(pt�1): that is,

st � (1 � η) · st�1 + η · c(pt�1): (8) 

Variants of the model have been extensively studied 
in the literature (e.g., Cascetta and Cantarella 1993, 
Watling 1999), although a fundamental feature remains 
the same; st is a weighted average of route costs learned 
over time. Because st is a weighted average, when 
(pt, st) converges to a fixed point (p̂, ŝ), we have ŝ �

c(p̂) and p̂ � qr(ŝ). This leads to p̂ � qr(c(p̂)), which 
implies that p̂ is a logit-based SUE, with the route valu
ation at the limit being equal to the route cost. With a 
finite exploitation parameter r, this model cannot reach 
UE because if it does, the travelers would find all UE 
routes to be equally good and thus, choose them with 
equal probabilities (not necessarily a UE strategy). In 
game theory, this is known as the Harsanyi instability 
problem (Harsanyi 1973). In the DTD context, the issue 
was noted in Watling and Hazelton (2003, section 3). 
Once CumLog converges to a UE, however, it will be 
free of this curse. This is because the cumulative route 
costs explain why travelers prefer some routes more 
than others as prescribed by the mixed strategy at UE, 
even though the present route costs predict indifference. 
More specifically, after reaching UE, travelers may 
have a higher propensity to choose one UE route over 
another if the former delivers a lower accumulated 
cost, which may happen when it has a better perfor
mance in the past. We refer the readers to Li, Wang, 
and Nie (2023, section 4.3) for an illustrative example.

3. MEUE Affirmation Conditions
In this section, we present the main theoretical results 
concerning the conditions that guarantee the conver
gence of CumLog to the MEUE strategy of the routing 
game. These conditions will be referred to as the MEUE 
affirmation conditions. Throughout this section, we 
assume that the following conditions always hold. 

• Assumptions 1 and 2.
• The CumLog model starts from some initial point 

s0 < ∞ with a fixed and finite exploration parameter r 
and proactivity parameters ηt that satisfy either of the 
two convergence conditions given in Proposition 5.

We begin by presenting a crucial property of the 
CumLog model.

Lemma 1. Starting from any s0 ∈ R | K | , the CumLog 
model produces a sequence {pt}∞

t�0 that satisfies 〈e, log(pt)〉

� �r · 〈e, s0〉 for all e ∈ ker(S) ∩ ker(L).

Proof. See Online Appendix B.1 for a detailed proof. w

Lemma 1 implies that for any vector e in the basis of 
ker(S) ∩ ker(L), the CumLog model preserves the 
value of 〈e, log(pt)〉 as a constant dependent only on the 
initial solution. As we shall see, this property is a 
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cornerstone of the results presented in this section. In 
what follows, Section 3.1 explores the relationship 
between running CumLog and performing KL projec
tion, and Section 3.2 gives the conditions under which 
CumLog is guaranteed to reach MEUE.

3.1. CumLog and KL Projection
Given any two p, p′ ∈ P, the KL divergence between p 
and p′ can be defined as

D(p, p′) � 〈diag(q)p, log(p) � log(p′)〉: (9) 

Definition 4 (The KL Projection Problem). Given any 
p0 ∈ P, the KL projection of p0 on P∗ is defined as

p̄∗ � arg min
p∗∈P∗

D(p∗, p0): (10) 

The KL projection Problem (10) is a natural generali
zation of the MEUE Problem (3). Indeed, it reduces to 
the MEUE problem when p0 � 1=STS1, the equal- 
distribution route choice that dictates that all available 
routes between each OD pair have an equal probabil
ity of being selected. To understand this assertion, it 
suffices to note that the KL divergence of any p ∈ P 

against the equal-distribution route choice p0 reads

D(p, p0) � 〈diag(q)p, log(p) � log(p0)〉

� φ(p) � 〈diag(q)p, log(p0)〉

� φ(p) +
X

w∈W

dw · log( |Kw | ), (11) 

which equals the negative entropy function φ(p) plus a 
constant (the second term). The relation is well known 
in the information theory literature (Jaynes 1957, Kull
back 1959).

The following lemma enables us to check whether a 
p̄∗ ∈ P∗ is the solution to the KL projection problem 
corresponding to an initial solution p0.

Lemma 2. A UE strategy p̄∗ ∈ P∗ is the KL projection of 
p0 on P∗ if 〈e, log(p̄∗) � log(p0)〉 � 0 for all e ∈ ker(S) ∩

ker(L).

Proof. See Online Appendix B.2 for a detailed proof. w

We are now ready to present the main result linking 
the limiting point of CumLog to the KL projection of its 
initial strategy.

Theorem 1. Let p0 be an initial strategy and p∗ be the lim
iting point of the CumLog model corresponding to p0. 
Then, p∗ is the KL projection of p0 on P∗.

Proof. See Online Appendix B.3 for a detailed proof. w

Theorem 1 may be used to establish several useful 
properties of the CumLog model.

Corollary 1. The limiting point of the CumLog model is 
solely determined by the initial strategy p0.

This property asserts that once the initial point is set, 
the CumLog model will always converge to the same 
UE strategy if it does converge. This property ensures 
the behavioral parameters in CumLog—the explora
tion parameter r and the proactivity parameter ηt— 
may not affect the limiting point, even though they 
clearly have an impact on the evolution path of the 
dynamical system. With this property, there exists a 
stable, one-to-one mapping between the initial and ter
minal strategies. Otherwise, predicting the terminal 
strategy would require careful calibration of the behav
ioral parameters.

Corollary 2. The limiting point of the CumLog model is 
continuous with respect to p0.

This result follows from Nagurney (2013, theorem 
1.19) by recalling that the KL projection Problem (10) is 
a strictly convex program. It guarantees that a small 
fluctuation in p0 will not result in a large variation in 
the limiting point. If we only have limited or inaccurate 
knowledge of p0, the property of continuity means that 
limitation would not be a great concern because it 
would not cause disproportionately large errors in the 
predicted outcome of the routing game.

Combining the two properties with the general 
convergence condition given in Proposition 5 yields the 
existence, uniqueness, and continuity of solutions con
dition described in Sandholm (2005), which is part of 
what he called the “desiderata” for an ideal dynamical 
model needed for equilibrium selection.

To present the third property, let us first denote the 
set of all routes that may be used by a UE strategy as 
K∗ � ∪p∗∈P∗ supp(p∗).

Corollary 3. Suppose p0 > 0 (i.e., every available route is 
used by someone at the beginning). Then, the limiting point 
p̄∗ of the CumLog model satisfies supp(p̄∗) � K∗.

Proof. See Online Appendix B.4 for a detailed proof. w

Corollary 3 guarantees that the CumLog model 
never excludes a UE route from the set of routes used 
by the terminal strategy reached at the limit, provided 
that all routes are initially used. Thus, the CumLog 
model satisfies the “no-route-left-behind” policy (Bar- 
Gera and Boyce 1999), which is a necessary condition 
for achieving MEUE.

3.2. Two MEUE Affirmation Conditions
With the results given in the previous section, we are 
ready to give two conditions that can ensure that the 
limiting point of CumLog is MEUE.

3.2.1. Condition (A). The first condition follows from 
Theorem 1, which links the limiting point of CumLog to 
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the KL projection, and Equation (11), which asserts that 
minimizing the KL divergence is equivalent to maximiz
ing entropy against the equal-distribution route choice.

Proposition 6. If the initial route valuation s0 � 0 (hence, 
p0 � 1=STS1), then the limiting point of the CumLog 
model is the MEUE strategy.

The initial valuation s0 � 0 means that the travelers 
have “zero information” about the routes initially; hence, 
no preference on any routes can be formed. This leads to 
an equal-distribution strategy p0 � 1=STS1. Interest
ingly, the equal-distribution strategy is the one with 
the maximum entropy among all p ∈ P. Hence, when 
starting from an equal-distribution strategy, CumLog 
essentially maps arg minp∈Pφ(p)—the maximum-entropy 
strategy—to arg minp∗∈P∗φ(p∗)—the MEUE strategy.

3.2.2. Condition (B). The following result delineates a 
much larger set of initial strategies that ensure conver
gence to MEUE.

Proposition 7. If the initial route valuation is formed 
based on the valuation at the link level (i.e., s0 � LTv0 for 
some v0 ∈ R |A | ), then the limiting point p̄ of the CumLog 
model is the MEUE strategy.

Proof. See Online Appendix B.5 for a detailed proof. w

Thus, as long as all travelers share the same source of 
initial link valuations and form their initial route valuation 
s0 (hence, the initial strategy) based on that source, the 
CumLog model always converges to the MEUE strategy.

One is inclined to view Condition (B) as more general 
than Condition (A) because the former depicts a set 
containing infinitely many strategies, whereas the latter 
defines a singleton. However, it is worth noting that 
Proposition 7 relies on Proposition 4, which in turn, 
requires the link cost function u(x) to be strictly mono
tone (Assumption 2). The problem is that strict monoto
nicity is often violated in real-world applications. For 
example, if a link has a flow-independent constant cost, 
then u(x) is monotone but not strictly monotone. In this 
case, the condition given in Proposition 7 may fail to 
secure convergence to MEUE for the CumLog model, 
as illustrated in the following counterexample.

3.2.3. Counterexample. Consider a network consisting 
of three parallel routes with constant costs of one, one, 
and two, respectively. The set of UE strategies is readily 
described as follows:

P∗ � {[p∗
1, p∗

2, p∗
3] ∈ R3

+ : p∗
1 + p∗

2 � 1, p∗
3 � 0}:

Because the network is parallel, it is easy to verify that 
ker(L) ∩ ker(S) is an empty set. As a result, any UE strat
egy p∗ ∈ P∗ would satisfy the general proportionality 
condition. Thus, no matter how we set the initial link val
uation v0 � [v0

1, v0
2, v0

3]
T, Proposition 7 asserts that forming 

p0 based on v0 will lead the CumLog model to the MEUE 
strategy; this must be true because in this case, any UE 
strategy would be considered the MEUE strategy per 
Proposition 4. However, this is reductio ad absurdum 
because one can easily verify that the only MEUE strat
egy is p̄∗ � [1=2, 1=2, 0]. The problem here is that both 
Propositions 4 and 7 fail to hold because of the lack of 
strict monotonicity. Importantly, Theorem 1 remains 
valid in this case, and so does Proposition 6. We leave it 
to the reader to verify that if started from s0 � [0, 0, 0]

T (so 
that p0 � [1=3, 1=3, 1=3]

T), the CumLog model will con
verge to [1=2, 1= 2, 0]

T, the MEUE strategy.

4. Exploration of Route Space
Up to this point, we have required that all routes be used 
in the initial strategy to ensure the convergence of 
CumLog—not only to the MEUE strategy but also, to any 
UE solution (see Proposition 5). However, this require
ment is impractical as enumerating all routes is an 
unbearable computational burden, even for networks of 
modest size. Nor is it necessary. In fact, starting from any 
set that “covers” the UE route set (covering a set means 
containing it as a subset) would suffice to secure conver
gence. Intuitively, if CumLog can reduce an initial strat
egy using all routes to a strategy only using UE routes, it 
must be capable of doing the same for an initial strategy 
using any “cover” of all UE routes. In this section, we 
shall show that even predetermining such a cover is 
unnecessary. Instead, the cover can be “constructed” iter
atively in the evolution of the routing game. This route 
generation process may be interpreted as the result of the 
travelers’ exploration of the route space.

We assume that travelers start the routing game with 
a subset of all available routes, and on each day t, we 
attempt to add to that set the “best” route discovered 
on day t � 1, provided that the route is not already in 
the set. In Section 4.1, we prove that CumLog equipped 
with this simple route exploration scheme always con
verges to a UE strategy. Yet, the convergence to the 
MEUE strategy is uncertain because of two complica
tions. First, because the initial strategy no longer 
encompasses all routes, neither of the two conditions 
given in Section 3.2 seem applicable. Second, the explo
ration process may not uncover all UE routes. In Sec
tion 4.2, we propose a revised route exploration scheme 
that promises to resolve these issues. Although the the
oretical guarantee can only be partially established, 
numerical experiments indicate that the scheme is an 
effective heuristic for solving the MEUE problem.

4.1. Convergence to UE
We use Kt

+ ⊆ K to represent the set of routes that the 
travelers actively evaluate on each day and use st

+ ∈

R |Kt
+ | for the corresponding route valuation. At the end 

of each day, the travelers between each OD pair w 
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“discover” the shortest route given the link cost u(xt)

observed on that day, say k∗. If k∗ ∉Kt
+, it is added to 

Kt+1
+ for possible exploration on the next day. Travelers 

need to initialize the valuation for the new route. This 
may be done based on past experience; for example,

st+1
k∗ � min

k∈Kw∩K+

{st
k} (12) 

if route k∗ is believed to be as good as any route found 
so far. It is worth noting that this initial valuation has 
little impact on the convergence as long as it is finite.

Algorithm 1 describes the revised CumLog model, 
with the route exploration process described detailed 
on lines 8–14. On line 6 in Algorithm 1, we updated the 
valuation of active routes assuming the proactivity 
parameter ηt � 1, which is but one of many possible 
choices that can ensure convergence.
Algorithm 1 (CumLog with Route Exploration and Cumu
lative Route Valuation) 

1: Set K0
+ ⊆ K as a subset of routes such that K0

+ ∩

Kw ≠ ∅ for all w ∈ W and s0 � 0 (a zero vector 
with length |K+ |).

2: for t � 0, 1, : : : do
3: Set Lt

+ and St
+ route-link and route-demand 

incidence matrices corresponding to Kt
+.

4: Set pt
+ � yt

+=(St
+)

TSt
+yt

+, where yt
+ � exp(�r ·

(Lt
+)

Tvt).
5: Set xt � Lt

+diag(qt
+)pt

+ and ut � u(xt), where 
qt

+ � (St
+)

Td.
6: Update st+1

+ � st
+ + ct

+.
7: Set Kt+1

+ � Kt
+.

8: for all w ∈ W do
9: Find the shortest route k∗ based on ut.

10: if k∗ ∉Kt
+ then

11: Add k∗ into Kt+1
+ .

12: Initialize st+1
k∗ < ∞ (e.g., following the scheme 

(12)), and add it to st+1
+ as a new element.

13: end if
14: end for
15: end for

The next result establishes the convergence of Algo
rithm 1 to a UE strategy of the original routing game.
Proposition 8. By setting the exploration parameter r as a 
sufficiently small constant in Algorithm 1, the active route 
set Kt

+ will converge to a fixed K̄+ ⊆ K, and the route choice 
strategy pt

+ will converge to a fixed point p̄+ ∈ P̄+ �

{p+ ∈ R | K̄+ |
+ : S̄+p+ � 1}, where S̄+ is the route-demand 

incidence matrices corresponding to K̄+. Furthermore, p̄ �

[p̄+; 0] ∈ P∗ (by p̄ � [p̄+; 0], we mean a vector in P such 
that (pk)k∈K̄+

� p̄+ and (pk)k∈K\K̄+
� 0).

Proof. See Online Appendix C.1 for a detailed proof. w

Although Algorithm 1 always converges to a UE 
strategy, its convergence to the MEUE strategy is not 

guaranteed. In part, the problem is caused by the fact 
that the initial valuation of newly added routes may 
not always adhere to the general proportionality condi
tion. We address this issue in the next section.

4.2. Convergence to MEUE
As discussed in Section 3, the convergence to MEUE 
may be ensured if (i) the routes under travelers’ consid
eration cover all UE routes and if (ii) the route valua
tions are obtained from shared link valuations (see 
Condition (B) and Proposition 6). In this section, we 
discuss how these conditions may be satisfied in the 
context of route exploration.

Instead of evaluating the newly discovered route in an 
ad hoc manner, travelers should rely on their past experi
ence of link usage to conform to Condition (B). That is, 
they anticipate their route experience based on the expe
rience they had on links used by that route. In order for 
this initialization scheme to work, the cost accumulation 
in CumLog should occur at the link level. More specifi
cally, we assume that the travelers keep a record of valua
tions on links as a vector vt ∈ R |A | (t � 0, 1, : : : ) and 
update it using a cumulative scheme similar to (7) (i.e.,

vt � vt�1 + ηt · u(xt�1), (13) 

starting from some v0 ∈ R |A | ). Based on vt, all routes in 
Kt

+ can be evaluated—whether a route is new or old— 
as st

+ � (Lt
+)

Tvt.
The new scheme gives rise to Algorithm 2. On line 6 

in Algorithm 2, we set the proactivity parameter ηt � 1, 
similar to Algorithm 1. The route exploration process, 
described on lines 8–13 in Algorithm 2, requires no ini
tial valuation of the new route because all route evalua
tions are performed on line 4 in Algorithm 2.

Algorithm 2 (CumLog with Route Exploration and Cumu
lative Link Valuations) 

1: Set K0
+ ⊆ K as a subset of routes such that K0

+ ∩

Kw ≠ ∅ for all w ∈ W and v0 � 0 (a zero vector 
with length |A |).

2: for t � 0, 1, : : : do
3: Set Lt

+ and St
+ route-link and route-demand 

incidence matrices corresponding to Kt
+.

4: Set pt
+ � yt

+=(St
+)

TSt
+yt

+, where st
+ � (Lt

+)
Tvt 

and yt
+ � exp(�r · st

+).
5: Set xt � Lt

+diag(qt
+)pt

+ and ut � u(xt), where 
qt

+ � (St
+)

Td.
6: Update vt+1 � vt + ut.
7: Set Kt+1

+ � Kt
+.

8: for all w ∈ W do
9: Find the shortest route k∗ based on ut.

10: if k∗ ∉Kt
+ then

11: Add k∗ into Kt+1
+ .

12: end if
13: end for
14: end for
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If Algorithm 2 is initialized from K0
+ � K (hence, 

Lt
+ � L for all t ≥ 0), we have

st � LTvt � LT v0 +
Xt�1

i�0
u(xi)

 !

� LTv0 +
Xt�1

i�0
LTu(xi)

� LTv0 +
Xt�1

i�0
c(pi), (14) 

which is the accumulated route cost. Because the valid
ity of Proposition 8 does not rely on the initial valuation 
of newly added routes (as long as it is finite), the con
vergence to a UE strategy by Algorithm 2 can be simi
larly established. We next discuss the conditions under 
which Algorithm 2 converges to the MEUE strategy.

Proposition 9. Suppose that Algorithm 2 converges to a 
fixed active route set K̄+ and a fixed strategy p̄+. If K̄+ ⊇

∪p∗ supp(p∗), then p̄ � [p̄+; 0] ∈ P∗ must be the MEUE 
strategy.

Proof. See Online Appendix C.2 for a detailed proof. w

In practice, Algorithm 2 cannot always discover a 
cover of all UE routes, although as we have seen, it can 
find a cover for the routes used by at least one UE strat
egy. A potential remedy is to add some random noises 
to the current route costs to encourage route explora
tion. For example, we may rewrite line 6 in Algorithm 2
as

vt+1 � vt + u(xt) + �t, (15) 

where �t ∈ RA is a vector of random noises. The vari
ance of �t may vary with t, typically starting at a rela
tively large value (in favor of more aggressive 
exploration) but gradually decreasing as time proceeds. 
Of course, it is difficult to establish any theoretical guar
antee for such heuristics, and its performance may vary 
with problems and parameters. However, the numeri
cal experiments reported in Section 6 will provide pre
liminary evidence about its effectiveness.

We close this section by noting that Algorithm 2, in 
addition to being a behavioral instrument to the proof 
of convergence, may also be used as a viable alternative 
to existing specialized algorithms for solving the 
MEUE problem. Implementing Algorithm 2 is simple 
as it requires little more than solving the standard 
shortest-route problem and managing the routes dis
covered in the dynamical process. Moreover, it is a 
strict zeroth-order algorithm, meaning that all that is 
needed to feed into the algorithm is link costs. Without 
the need to exploit special problem structures or 
manipulate complicated graph objects, Algorithm 2 can 
be quickly implemented to find an approximate solu
tion to the MEUE problem as well as other nonstandard 
UE routing problems.

5. Comparison with Other 
Dynamical Models

In Sections 3.1 and 3.2, we have shown that the Cum
Log model possesses the following properties. 

• Global stability. The dynamical process converges 
to a UE strategy regardless of the initial point. A 
dynamical process must possess this property to qual
ify as a behavioral model of UE (i.e., explaining why 
UE can be reached by reasonable users).

• Trajectory stability (TS). The limiting point of the 
dynamical process is uniquely determined by its initial 
point, independent of other parameters integral to the 
process. By ensuring that the outcome of the dynamical 
process is not affected by any behavioral contents, TS 
enhances its robustness.

• Route conservation (RC). If the initial point of the 
dynamical process uses all routes, so does the limiting 
point. RC means that no route is left behind through
out the dynamical process, a necessary condition of 
entropy maximization.

• Proportionality conservation (PC). If the initial point 
of the dynamical process satisfies the general proportion
ality condition, so does the limiting point. PC is related to 
RC. The difference is that the general proportionality con
dition is a sufficient condition for entropy maximization.

In the literature, there is a group of continuous-time 
dynamical models of the routing game that are globally 
stable under Assumptions 1 and 2. Given the immen
sity of the literature on this topic, we shall limit our 
attention to some of the most well-known models, 
namely the best-response dynamic (Gilboa and Matsui 
1991), the projection dynamic (Friesz et al. 1994, Zhang 
and Nagurney 1996), the Smith dynamic (Smith 1984), 
and the replicator dynamic (Taylor and Jonker 1978). A 
key difference between these models and a discrete- 
time model like CumLog is how the time between two 
consecutive decision epochs is treated. In continuous- 
time models, this time shrinks to zero, which means 
that travelers’ route choice is viewed as “continuously” 
adjustable, and as a result, the potential impact of the 
rate of this adjustment on convergence is ignored 
(Watling 1999). However, whether the model is 
employed to justify a certain equilibrium as the reason
able outcome of the routing game or to develop a solu
tion algorithm for finding such equilibrium, the rate of 
adjustment cannot be arbitrarily small. In other words, 
a continuous model can be “operationalized” only 
when it is discretized. Hence, in this section, we discre
tize these continuous-time models and compare their 
discrete-time versions with the CumLog model in 
terms of their conformity to the four properties.

To reveal the mechanism of discretization, let us 
first present the continuous-time version of the Cum
Log model. If both the decision epoch and the proac
tivity parameter η shrink to zero, the CumLog model 
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can be written as the following differential equation 
system:

ṡ � c(p),
p � qr(s),

�

(16) 

in which s increases continuously in time at the rate of 
c(p). Accordingly, the original model—which updates 
st+1 � st + ηt · c(pt)—may be viewed as a numerical solu
tion algorithm for the differential Equation (16) based on 
the Euler method (see, e.g., Butcher 2016 for an introduc
tion), in which ηt may be interpreted as a step size. As we 
shall see, discretizing other continuous-time models may 
involve parameters playing a similar role as ηt. For sim
plicity, we shall use the same symbol ηt (or η if the 
parameter is a constant) to represent such parameters in 
the remaining of this section.

5.1. Best-Response Dynamic
5.1.1. Description and Discretization. The best-response 
dynamic (Gilboa and Matsui 1991) assumes that travelers 
“receive revision opportunities at a unit rate, and use 
these opportunities to switch to a current best response” 
(Sandholm 2015). Given a route choice p ∈ P, we define 
B(p) � arg minp′∈P〈p′, c(p)〉 as the best response of the 
travelers given the cost received on the previous day. The 
best-response dynamic may be written as

ṗ ∈ B(p) � p, (17) 

which is a differential inclusion rather than a differen
tial equation as the best response may not be unique 
(e.g., multiple minimum cost routes). The best-response 
dynamic is often used to explain why the Nash equilib
rium may be reached in finite games (e.g., rock-paper- 
scissors) (Sandholm 2015, section 13.5.2). Discretizing 
Equation (17) using the Euler method gives rise to

pt+1 � pt ∈ ηt · (B(pt) � pt), (18) 

where ηt is the step size. To ensure pt+1 ∈ P, the param
eter ηt must be less than one.

5.1.2. Properties 
5.1.2.1. GS. Applying the discrete model (18) equals 
solving the routing game with the celebrated Frank–Wolfe 
algorithm (Frank and Wolfe 1956). It is well known the 
convergence of that algorithm can be ensured only if the 
step size decreases progressively at a proper pace (e.g., set
ting ηt � 1=(t + 1), as in the so-called method of successive 
average) (Nocedal and Wright 1999).

5.1.2.2. TS, RC, and PC. The model does not satisfy 
TS even in its continuous-time version. Take the coun
terexample raised in Section 3.2, where the first two 
routes have a constant cost of one, lower than the con
stant cost of the third route. Hence, if the travelers are 
initially assigned to route 3, they may end up switching 
to route 1 or route 2 on the next day as both give the 

best response, which means that TS is not guaranteed. 
Moreover, because the limiting point of the model can
not be determined by the initial point, there would be 
no definitive answers on the adherence to RC and 
PC either.

5.2. Projection Dynamic
5.2.1. Description and Discretization. In the evolution
ary game literature, the model of Friesz et al. (1994) and 
the model of Zhang and Nagurney (1996) are often 
referred to as the target projection dynamic and the 
projection dynamic, respectively; see Sandholm (2005, 
section 5) for an in-depth discussion. Both models were 
motivated by the projection method for solving routing 
games (Bertsekas and Gafni 1982, Dafermos 1983). 
According to this method, the travelers’ route choice 
strategy is updated by

pt+1 � fη(pt),

where fη(p) � arg min
p′∈P

‖p′ � (p � η · c(p))‖2:
(19) 

The target projection dynamic and the projection 
dynamic are both derived from Equation (19), although 
they are in different manners. The former fixes η > 0. 
Then, it sets

ṗ � fη(p) � p � lim
ɛ→0

pɛ � p
ɛ

,

where pɛ � (1 � ɛ) · p + ɛ · fη(p),
(20) 

whereas the latter directly lets η→ 0 in Equation (19), 
which gives rise to

p: � lim
η→0

fη(p) � p
η

: (21) 

Therefore, rather than discretizing the two models sep
arately, it may be more natural to directly employ 
Equation (19) as the discrete-time version of these two 
projection dynamics.

5.2.2. Properties 
5.2.2.1. GS. To ensure the convergence of model (19), 
the step size η may be simply fixed as a sufficiently 
small constant. As shown by Marcotte and Wu (1995, 
theorem 2.1), a sufficiently small η can always ensure 
the convergence of pt to UE whenever the route cost 
function c(p) is cocoercive, a condition slightly stronger 
than monotonicity. In particular, when ∇c(p) is sym
metric, c(p) is cocoercive as long as it is monotone; see 
Marcotte and Wu (1995, proposition 2.1).

5.2.2.2. TS. Although we are unable to construct a rig
orous proof, we postulate that the discrete model (19) is 
likely to satisfy TS. Specifically, our conjecture is that 
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given p0 ∈ P, the limiting point of the model, denoted 
as p̄∗ ∈ P∗, would satisfy

p̄∗ � arg min
p∗∈P∗

‖p∗ � p0‖2 (22) 

(i.e., the dynamic will reach a UE strategy in P∗ that 
minimizes the Euclidean distance from p0). Obviously, 
the convergence is true if only one iteration is needed 
before the model converges. We shall test this hypothe
sis with numerical experiments but leave a rigorous 
analysis to a future study.

5.2.2.3. RC and PC. Our reading of the literature does 
not provide any affirmative answer about these proper
ties. Intuitively, the project dynamic is unlikely to have 
them because Euclidean projection (as used in the dis
crete model (19)), unlike KL projection, tends to pro
duce sparse solutions (Chen and Ye 2011).

5.3. Smith Dynamic and Replicator Dynamic
5.3.1. Description and Discretization. We put the Smith 
dynamic (Smith 1984) and the replicator dynamic (Tay
lor and Jonker 1978) together because they are closely 
related. We first describe the models before turning to 
the behavioral interpretation.

The Smith dynamic is defined by the following dif
ferential equation:

pk
:

�
X

k′≠k, k′∈Kw

pk′ · [ck′ (p) � ck(p)]+ � pk

·
X

k′≠k, k′∈Kw

[ck(p) � ck′ (p)]+: (23) 

By applying the Euler method to Equation (23), we 
obtain a difference equation that reads

pt+1
k � pt

k �
X

k′≠k,k′∈Kw

pt
k′ ·πt

k′,k � pt
k ·

X

k′≠k,k′∈Kw

πt
k,k′ , (24) 

where πt
k, k′ � η · [ck(pt) � ck′ (pt)]+ (η > 0 is the step size).

The replicator dynamic has many equivalent forms 
(see, e.g., Sandholm 2015, example 13.6); one of them 
reads

pk
:

�
X

k′≠k, k′∈Kw

pk′ · pk · [ck′ (p) � ck(p)]+

� pk ·
X

k′≠k, k′∈Kw

pk′ · [ck(p) � ck′ (p)]+: (25) 

First suggested by Schlag (1998), Equation (25) is also 
known as the proportional pairwise comparison 
dynamics. By applying the Euler method to Equation 
(25), we readily obtain a difference equation

pt+1
k � pt

k �
X

k′≠k, k′∈Kw

pt
k′ · γt

k′, k � pt
k ·

X

k′≠k, k′∈Kw

γt
k, k′ , (26) 

where γt
k, k′ � η · pt

k′ · [ck(pt) � ck′ (pt)]+ (η is the step size).

5.3.1.1. Behavior Interpretation. On each day t, if the 
probability of a traveler switching from their current 
route k ∈ Kw to a different route k′ ∈ Kw is set as πt

k, k′ , 
then the first term and the second term in Equation (24) 
represent, respectively, the proportion of travelers 
switching from other routes to route k and that from 
route k to other routes. The same interpretation applies 
to Equation (26) by replacing πt

k, k′ with γt
k, k′ . In both 

interpretations, the probability of the traveler sticking to 
the original choice k is one less the total probabilities of 
changing to other routes (i.e., πt

k, k :� 1 � η ·
P

k′≠k, k′∈Kw 
[ck(pt) � ck′ (pt)]+ for the Smith dynamic and γt

k, k :�

1 � η ·
P

k′≠k, k′∈Kw
pt

k′ · [ck(pt) � ck′ (pt)]+ for the replica
tor dynamic).

To ensure that these probabilities are nonnegative, 
η must be sufficiently small. Here, we note that 
continuous-time models implicitly assume that η � 0, 
and hence, the feasibility constraint can always be 
secured. Behaviorally, the smaller the value of η, the 
less willing the traveler is to explore new routes.

5.3.1.2. Comparison. The two models are almost 
identical, except for the factor pt

k′ added before 
[ck(pt) � ck′ (pt)]+ by the replicator dynamic to scale the 
switching probability. Schlag (1998) explains the scalar 
as follows. Suppose that the travelers can only observe 
the cost of the route they take but are allowed to gather 
route information from a randomly picked fellow trav
eler. Then, the scalar pt

k′ may be interpreted as the prob
ability of the random traveler taking route k′. To 
understand how the scalar makes a difference, consider 
the probability that a traveler currently on route k 
switches to a new route k′ on day t, which nobody 
selected on that day (hence, pt

k′ � 0). Under the Smith 
dynamic, the switching probability would be 
η · [ck(pt) � ck′ (pt)]+, which is positive as long as the 
cost of route k′ is strictly lower than that of route k. In 
contrast, the switching probability given by the replica
tor dynamic is η · pt

k′ · [ck(pt) � ck′ (pt)]+ � 0. The ratio
nale behind the replicator dynamic is that as the 
traveler has nowhere to learn about the better route k′, 
the traveler would have no chance to take it. On the 
other hand, the Smith dynamic would better fit the situ
ation where every traveler has access to full informa
tion all the time.

5.3.2. Properties 
5.3.2.1. GS. It is straightforward to show that the dis
crete version of either model converges to UE when η is 
fixed as a sufficiently small constant.

5.3.2.2. TS, RC, and PC. We shall show that the 
replicator dynamic and CumLog are equivalent in 
continuous time, which might shed light on the prop
erties of the former. Indeed, differentiating the second 
line p � qr(s) in Equation (16) with respect to time 
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yields
ṗk

r
� �

exp(�r · sk)
P

k′∈Kw
exp(�r · sk′ )

· ṡk �
X

k′∈Kw

exp(�r · sk′ )
P

k′∈Kw
exp(�r · sk′ )

· ṡk′

 !

� �pk · ṡk �
X

k′∈Kw

pk′ · ṡk′

 !

� �pk · ck(p) �
X

k′∈Kw

pk′ · ck′ (p)

 !

� �pk ·
X

k′∈Kw

pk′ · (ck(p) � ck′ (p))

� pk ·
X

k′≠k, k′∈Kw

pk′ · [ck′ (p) � ck(p)]+

� pk ·
X

k′≠k,k′∈Kw

pk′ · [ck(p) � ck′ (p)]+: (27) 

The reader can verify that Equation (27) and Equation 
(25) are identical, except for a rescaling of time by r. 
This revelation is surprising as the two DTD models 
have distinct behavior mechanisms in their respective 
discrete forms—one based on the logit model, whereas 
the other based on pairwise route switching—and have 
not been previously connected with each other. Yet, the 
analysis indicates that they are closely related when the 
decision epoch shrinks to zero.

Based on the finding, we postulate that the behavior 
of the discrete replicator dynamic (26) may be similar 
to that of CumLog if a sufficiently small step size η is 
adopted. Numerical experiments presented in the next 
section will show that the model tends to (i) satisfy RC 
if η is sufficiently small and (ii) satisfy PC approxi
mately when η→ 0 but uncovers no evidence confirm
ing its compliance with TC. A thorough theoretical 
investigation of this model and other discrete models 
discussed in this section is left to a future study.

6. Numerical Results
To validate the analysis results presented in the previ
ous sections, numerical experiments are performed on 
two networks: the 3N4L, as shown earlier in Figure 1, 
and the Sioux–Falls network (Leblanc 1975), which has 
24 nodes, 76 links, and 528 OD pairs. For a route choice 
strategy p, we use the relative gap of its corresponding 
link flow x ∈ X � {x : x � L̄p, p ∈ P}, denoted as δ(x), to 
measure its distance from UE. The relative gap is com
puted by

δ(x) � �
〈u(x), x′ � x〉

〈u(x), x〉
, x′ ∈ arg min

x′′∈X

〈u(x), x′′〉: (28) 

A solution is accepted as a UE solution whenever δ is 
smaller than a predefined value, taking a default of 
10�5 in this study. Unless otherwise stated, we also fix 

the proactivity parameter ηt in the CumLog model at 
one in all experiments. We next provide some details of 
the two networks.

6.1. 3N4L
The number of travelers from node 1 to node 4 is 10. 
Given the flow xa on link a, we model its costs as 
ua � ha + wa · x4

a , where [h1, h2, h3, h4]
T

� [4, 20, 1, 30]
T and 

[w1, w2, w3, w4]
T

� [1, 5, 30, 1]
T. Under this setting, the set 

of UE strategies can be written as

P∗ � {p∗ : p∗ � [0:3 �λ, 0:4 �λ, 0:3 +λ,λ]
T, λ ∈ [0, 0:3]}:

(29) 

It can be verified that p̄∗ � [0:18, 0:28, 0:42, 0:12]
T is the 

MEUE strategy, which corresponds to λ � 0:12. In our 
experiments, once a UE strategy p∗ ∈ P∗ is found, the 
corresponding λ(p∗) is computed as follows:
λ(p∗) � [(0:3 � p∗

1) + (0:4 � p∗
2) + (p∗

3 � 0:3) + p∗
4]=4:

(30) 

6.2. Sioux–Falls
We refer the readers to Leblanc (1975) for the topology, 
travel demand, and cost function of the Sioux–Falls net
work. A highly sophisticated MEUE algorithm devel
oped by Feng et al. (2024)—which promises to obtain a 
solution with close-to-float precision—is employed to 
produce the benchmarks. The MEUE route flow for the 
Sioux–Falls network found by their algorithm contains 
770 routes, with an entropy of 59,235.10.

6.3. Convergence of CumLog Toward MEUE
In Section 6.3.1, we run CumLog with randomly gener
ated initial points and examine the distribution of the 
limiting points. We then compare the entropy values of 
initial and limiting points (Section 6.3.2). Finally, Sec
tion 6.3.3 tests a CumLog-based algorithm equipped 
with route discovery.

6.3.1. Distribution of CumLog’s Limiting Points. In 
this experiment, a set of initial points is randomly 
selected for the 3N4L network to run the CumLog 
model. Two strategies are employed to generate the ini
tial points. In the first strategy, we sample p0 from a 
uniform distribution and rescale p0 to fit the flow con
servation condition. We then choose s0 � �log(p0)=r 
such that p0 would be reproduced from the route 
choice function qr(s0). This strategy guarantees that all 
p0 ∈ P have an equal chance to be selected. Rather than 
sampling p0 directly, the second strategy samples s0 

from a normal distribution centered at 0. Thus, the 
initial points around s0 � 0 would have a greater 
chance to be selected. In both cases, the sample size is 
set to 5,000, and the equal-distribution initial point, 
s0 � [0, 0, 0, 0]

T, p0 � [1=4, 1=4, 1=4, 1=4]
T, is employed as 
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a benchmark. For each initial point, we run CumLog 
until convergence, and then, we invoke Equation (30) 
to obtain the corresponding λ.

Figure 2 plots for each initialization strategy the his
togram of λ values corresponding to the 5,000 UE strat
egies. As expected, when p0 is sampled from a uniform 
distribution, λ spreads over the entire theoretical range 
([0, 0:3]), whereas it concentrates around the MEUE 
strategy (λ � 0:12) when a normal distribution is used 
to sample s0.

Per Proposition 6, CumLog is guaranteed to reach the 
MEUE strategy if started from the equal-distribution ini
tial point. Our results confirm that this is indeed the 
case; the vertical dashed lines in Figure 2 are the solution 
found by CumLog when s0 � [0, 0, 0, 0]

T. A more inter
esting finding, however, is that the MEUE strategy 
aligns perfectly with the peak of the histogram in both 
cases, despite the vastly different sampling methods. 
The result provides an interesting confirmation that the 
MEUE strategy is indeed the most likely outcome of the 
routing game, no matter how we choose to initialize it.

6.3.2. Relation Between Initial and Limiting Entropy. We 
proceed to compare �φ(p0), the entropy at the initial 
point, with �φ(p∗), the entropy at p̄∗ � limt→∞pt. Recall 
that CumLog always guides the initial strategy with 

the highest entropy (equal-distribution strategy) to the 
MEUE strategy, which implies that the entropy of p0 

and that of p̄∗ may be positively correlated. However, 
because UE is a more “orderly” state compared with a 
nonequilibrium state, we expect the entropy of p̄∗ to be 
lower than that of p0.

To validate our hypotheses, we run experiments in 
the 3N4L network by initializing s0 with two strategies. 
The first strategy directly generates s0 from a normal 
distribution, rather like the second strategy in Section 
6.3.1. The second strategy first randomly generates 
v0—travelers’ initial valuation of all available links— 
and sets s0 � LTv0. This way, p0 always satisfies the 
general proportionality condition. For each initializa
tion strategy, the sample size is set as 250.

The scatterplots of all samples (the coordinates of a 
point are (�φ(p0), �φ(p∗)) for a given sample) are 
reported in Figure 3. First and foremost, the star marker 
is always located at the upper right corner in panels (a) 
and (b) of Figure 3, which validates Proposition 6; start
ing from the maximum-entropy strategy, CumLog con
verges to the MEUE strategy. When s0 is directly 
generated from a normal distribution (Figure 3(a)), 
there is a clear positive correlation between the limiting 
entropy and the initial entropy. Also, most points 
(about 83.2%) lie beneath the 45◦ line, indicating that 

Figure 2. (Color online) Distribution of λ Corresponding to UE Strategies of the 3N4L Network Obtained from 5,000 Different 
Initial Points by CumLog 

(a) (b)

Notes. The dashed lines highlight the λ value corresponding to the equal-distribution initial point. (a) p0 sampled from a uniform distribution. 
(b) s0 sampled from a normal distribution.

Figure 3. (Color online) Initial Entropy vs. Limiting Entropy for 250 Samples of the 3N4L Network 

(a) (b)

Notes. The star markers highlight the pair corresponding to the equal-distribution initial point (i.e., s0 � 0). The dashed lines indicate the 45◦ line. 
(a) s0 randomly generated from a normal distribution. (b) v0 randomly generated from a normal distribution.
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entropy tends to decrease in the equilibrium-finding 
process. Both observations are well aligned with the 
expectation from our analysis. When s0 is obtained 
from randomly generated v0, the limiting entropy of all 
initial points should reach the maximum possible 
value, as established in Proposition 7. Figure 3(b) con
firms this theoretical prediction. Interestingly, the vast 
majority of the data pairs, 80.4%, are now located above 
the 45◦ line. Thus, in this case, the entropy tends to 
increase in the equilibrium-finding process. A possible 
explanation is that the second initialization strategy 
drew initial solutions disproportionately from the 
regions associated with lower entropy values. We leave 
an in-depth look into this phenomenon to future 
studies.

6.3.3. Route Discovery Strategies. We run Algorithms 1
and 2 on the Sioux–Falls network to test the perfor
mance of different route discovery strategies. Four sce
narios, labeled Scenario (A), Scenario (B), Scenario (C), 
and Scenario (D), are examined. Scenario (A) is the 
benchmark, which employs a predetermined route set 
containing 1,238 routes, including all 770 UE routes 
found using the aforementioned algorithm (Feng et al. 
2024). In this scenario, no route exploration is needed, 
and the standard CumLog algorithm is executed. In the 
other three scenarios, the route set is initially populated 
with the shortest route for each OD pair (with the link 
cost set to zero). Scenario (B) tests Algorithm 1, in which 

the valuation of a new route is initialized using Equation 
(12). Scenario (C) and Scenario (D) both test Algorithm 
2. The difference is that Scenario (D) enhances the explo
ration by adding random noise to link costs (as 
described in Equation (15)). In the implementation, we 
also gradually reduce the variance of the error term ɛt at 
a rate of O(1=t). We stop adding noises into link costs 
when no new routes are found in a sufficiently 
long time,

Figure 4 compares the convergence patterns of the 
CumLog dynamical process in the four scenarios. As 
anticipated by our analysis results, CumLog converges 
smoothly to the MEUE strategy in Scenario (A) in terms 
of both the entropy value and the UE route set. Com
pared with specialized traffic assignment algorithms, 
such as the traffic assignment by paired alternative seg
ments (TAPAS) algorithm (Bar-Gera 2010) and bush- 
based algorithms (Nie 2010), its convergence is rela
tively slow; the relative gap remains above 10�9 after 
3,000days (more than eight years). However, to reach a 
relative gap of about 10�5, CumLog only requires about 
1–2 months.

Neither Scenario (B) nor Scenario (C) are able to con
verge to the MEUE strategy. In both cases, the route 
exploration process ended up missing a small number 
of UE routes and as a result, produced solutions with 
entropy values markedly lower than the benchmark. It 
is worth noting that they had no problem converging 
to a UE strategy, although their convergence path is not 

Figure 4. (Color online) Convergence Patterns of CumLog for the Sioux–Falls Network in Four Scenarios 

Notes. Scenario (A): CumLog with predetermined routes. Scenario (B): Algorithm 1. Scenario (C): Algorithm 2. Scenario (D): Algorithm 2 with 
exploration noises. Panel (a) reports the relative equilibrium gap, panel (b) reports the difference in entropy between the CumLog solution and 
the baseline solution normalized by the number of OD pairs and plotted in symmetric-log scale (where the dotted lines correspond to a gap of 
zero), and panel (c) reports the number of routes actively used by travelers (where the dashed lines correspond to the number of routes contained 
in the benchmark solution).
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as smooth as in Scenario (A). With the help of explora
tion noises, Scenario (D) successfully discovered all 
routes contained in the benchmark solution and 
obtained a high-quality approximation to the MEUE 
strategy. However, the “randomized” route discovery 
process slowed down convergence, a price one has to 
pay in order to increase the likelihood of identifying all 
UE routes. Also, although the strategy succeeded in 
finding all UE routes for this problem, there is no guar
antee that it will for other problems.

6.4. Comparison with Other Dynamical Models
In this section, we numerically investigate the proper
ties of the four DTD models discussed in Section 5 (best 
response, projection, replicator, and Smith) and com
pare them with CumLog. We begin with the 3N4L net
work (Section 6.4.1) and turn to the Sioux–Falls 
network in Section 6.4.2.

6.4.1. 3N4L Network. Our focus is on the effect of the 
step size on the limiting point of each model. Based on 
trial and error, we set the range of the step size η in our 
experiments as follows. 

• CumLog. Set r � 1, fix ηt as a constant η in Equa
tion (7), and test η � 0:05, 0:10, : : : , 1.

• Best response. Set ηt � η=(1 + t) in Equation (18), 
and test η � 0:05, 0:10, : : : , 0:95.

• Projection. Set η � 0:02, 0:04, : : : , 0:2 in Equation (19).
• Smith. Set η � 0:005, 0:0010, : : : , 0:13 in Equation (24).
• Replicator. Set η � 0:02, 0:04, : : : , 0:4 in Equation (26).

Thus, for all models listed, their performance is dic
tated by η. In all runs, the initial point is fixed as 
p0 � [0:25, 0:25, 0:25, 0:25]

T. We terminate the CumLog, 
Smith, and replicator models when the equilibrium gap 
reaches δ � 10�10. For the best-response and projection 
models, the convergence criterion is relaxed to δ � 10�5 

because aiming for a higher precision would be too 

time consuming for these two dynamics. Figure 5
reports the results, including the value of λ corresponding 
to the UE strategy reached by the model, calculated based 
on Equation (30) (panel (a) of Figure 5) and the number of 
iterations required to achieve a satisfactory convergence 
(panel (b) of Figure 5).

First, with the exception of the best-response 
dynamic, a larger η always accelerates convergence in 
the tested range. For the best-response dynamic, the 
opposite is true; as η increases, the number of iterations 
required for convergence generally trends up, although 
the relationship is not monotonic. CumLog, as guaran
teed by Corollary 1, always reaches the MEUE strategy 
(with λ equal to 0.12) regardless of the value of η. The 
projection dynamic is the only other model whose lim
iting point is not affected by η, hinting compliance with 
TS. Upon close examination, we also confirmed that its 
limiting point is indeed the Euclidean projection of the 
initial point onto the equilibrium set. The other three 
models fail to meet TS as their limiting points all 
change with η. The limiting point of the best-response 
dynamic oscillates abruptly around the MEUE strategy. 
For the Smith dynamic and the replicator dynamics, 
their limiting points seem to always stay on one side of 
the MEUE strategy (i.e., λ ≤ 0:12) and vary much more 
smoothly with η. The result also appears to confirm our 
conjecture that the replicator dynamic tends to con
verge to the MEUE strategy when η→ 0.

Could the replicator dynamic be used as an MEUE 
problem solver? The answer is probably yes if one is 
willing to tolerate the slow convergence associated 
with the use of a very small step size. When η � 0:02, 
the replicator dynamic finds a high-quality MEUE 
approximation after more than 1,000 iterations. For 
η � 0:4, the convergence takes only 44 iterations, but 
the limiting point drifts far away from the MEUE strat
egy. CumLog does not face this dilemma, thanks to the 

Figure 5. (Color online) The Relationship Between the Limiting Points of Different Models with Respect to Their Step Sizes 

Notes. Panel (a) reports the value of λ corresponding to the UE strategy reached by the model (the dashed lines highlight the corresponding 
value of the MEUE). Panel (b) reports the number of iterations required for convergence.
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theoretical guarantee. When η � 1, it converges in 30 
iterations, and the limiting point is still the MEUE 
strategy.

To recapitulate, our numerical results show (i) that 
all models satisfy GS with a properly selected step size, 
(ii) that no models other than CumLog and the projec
tion dynamic may satisfy TS, and (iii) that no models 
other than CumLog and the replicator dynamic may 
satisfy PC. Here, we note that other models sometimes 
produce solutions close to MEUE, but we tend to 
believe that these occurrences as coincidental rather 
than a consistent pattern. We next turn to these models’ 
adherence to RC, for which we need to use the 
Sioux–Falls network.

6.4.2. Sioux–Falls Network. In the experiment, we run 
the models from an equal-distribution initial strategy 
using all 770 UE routes and check their convergence 
patterns, particularly whether any of the routes will be 
eliminated when a UE strategy is reached. A route is 
considered “eliminated” (i.e., not used by anyone) if 
the proportion of the travelers selecting it is less than τ. 
We test two values of τ: 10�4 and 10�6. The step size for 
each model is appropriately tuned such that the relative 

gap gradually converges to zero as fast as possible. We 
set the convergence criterion δ � 10�6 in this experi
ment. The results are reported in Figure 6, including 
the detailed convergence pattern for the relative gap 
δ(pt) (panel (a) of Figure 6), the entropy φ(pt) (panel (b) 
of Figure 6), the number of used routes (i.e., the size of 
the set {k : pt

k > τ}) (panel (c) of Figure 6), and the viola
tion of the first-order proportionality condition and the 
second-order proportionality condition measured by 
〈ei, log(pt)〉 (i � 1, 2), where e1 and e2 are the first basis 
and the second basis of ker(L) ∪ ker(S), respectively 
(panel (d) of Figure 6).

Panel (a) of Figure 6 concerns global stability. It con
firms that all models satisfy GS (i.e., they converge to a 
satisfactory UE solution). To reach the convergence 
threshold, CumLog requires the least number of itera
tions (about 800) followed by the projection dynamic 
and the replicator dynamic, both taking roughly twice 
as many iterations to converge as needed by CumLog. 
The slowest is the best-response dynamic, which needs 
30,000 iterations to reach 10�6, at least an order of mag
nitude slower than any other models. This is hardly sur
prising if one recalls that the Frank–Wolfe algorithm— 
notorious for its painfully slow convergence because of 

Figure 6. (Color online) Convergence Patterns of the Five Models 

Notes. Panel (a) reports the relative gap. Panel (b) reports entropy (the dashed lines highlight the corresponding value of the MEUE). Panel (c) reports 
the number of used routes (the dashed lines highlight the number of routes used by the MEUE; the solid lines and the dash-dotted lines correspond 
to the number of routes used by more than 10�4 and 10�2 percent of the travelers, respectively). Panel (d) reports the violation of the first- and sec
ond-order proportionality conditions (the solid lines and the dash-dotted lines correspond to the values of 〈e1, log(pt)〉 and 〈e2, log(pt)〉 respectively).
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zigzagging behavior—is, in fact, a variant of the best- 
response dynamic. The Smith dynamic fares far better 
than the best-response dynamic but falls behind the other 
three.

Panel (c) of Figure 6 examines route conservation. As 
seen from panel (c) of Figure 6, both CumLog and the 
replicator dynamic left no UE routes behind (all 770 
routes are still used when equilibrium is reached) for 
both tolerance values (τ). The best-response dynamic 
kept all 770 routes when τ is 10�6 but left a few out if 
τ � 10�4. The Smith dynamic kept only 750 routes even 
with the looser tolerance standard (τ � 10�4), but the 
projection dynamic is the worst in this regard; it elimi
nated almost 40 routes from the UE set. To be sure, it is 
possible that a route considered eliminated even by the 
more stringent standard may still be a used route, albeit 
by an extremely small minority of travelers. However, 
it is fair to conclude that these two dynamics are much 
less likely to satisfy RC than the other three.

Panels (b) and (d) of Figure 6 deal with proportional
ity conservation. From panel (d) of Figure 6, we can see 
that CumLog perfectly conformed to PC as predicted 
by the theory. The projection dynamic and the Smith 
dynamic failed to conserve proportionality as they both 
severely violated the first-order proportionality condi
tion and the second-order proportionality condition. Of 
the two, the projection dynamic performed worse. The 
best-response dynamic outperformed these two, although 
its deviation from the two proportionality conditions is 
still substantial. The solution obtained by the replicator 
dynamic does not exactly satisfy the two proportionality 
conditions, but the violations are barely detectable from 
panel (d) of Figure 6. This behavior is expected given that 
the continuous version of the replicator dynamic is closely 
related to CumLog. From panel (b) of Figure 6, we observe 
that both CumLog and the replicator dynamic are capable 
of approaching the benchmark entropy value (the precise 
entropy value associated with the MEUE strategy). All of 
the other three models achieve an entropy value markedly 
lower than the benchmark; the worst is the projection 
dynamic, followed by the best response and the Smith 
dynamic.

6.4.3. Summary. From what we saw in this section, it 
is safe to conclude that none of the four models dis
cussed in Section 5 satisfy all of the four properties, 
even though they are globally stable under the assump
tions adopted in this study. Specifically, the evidence 
strongly suggests that the best-response dynamic vio
lates TS and PC, that the projection dynamic violates 
RC and PC, that the replicator dynamic violates TS, and 
that the Smith dynamic violates all three.

Two dynamics are worth a final remark. First, like 
CumLog, the replicator dynamic can be used to solve 
the MEUE problem approximately. However, the qual
ity of the approximation degrades as the step size 

increases. This is a computational disadvantage 
because small step sizes lead to slow convergence. 
CumLog does not suffer from this disability thanks to a 
superior convergence guarantee. Second, it is some
what surprising to see that the best-response dynamic, 
despite the poor convergence performance, can obtain 
a solution more closely resembling the MEUE strategy 
than the projection and the Smith dynamics. This 
empirical finding appears to confirm the conjecture put 
forth by Florian and Morosan (2014), who argued that 
the Frank–Wolfe algorithm can yield UE solutions that 
approximately obey the condition of proportionality.

7. Conclusions
The lack of a unique user equilibrium route flow in traf
fic assignment has posed a significant challenge to 
many transportation applications. A common remedy 
to this long-standing problem is the maximum-entropy 
principle, which advocates consistently choosing the 
most likely UE route flow as the representative of the 
countless candidates. This study provided a new 
behavioral underpinning for this principle. Our theory 
is built on a recently proposed day-to-day dynamical 
model called CumLog, which can reach a UE state 
without presuming that travelers are perfectly rational. 
We proved that CumLog always selects (or converges 
to) the MEUE route flow given a proper initial condi
tion. We further identified two such conditions. (i) Tra
velers have no prior information about routes, and 
thus, they are forced to give all routes an equal initial 
choice probability. (ii) All travelers gather information 
from the same source such that the so-called general 
proportionality condition is satisfied. Thus, the MEUE 
route flow may result from a routing game in which 
boundedly rational travelers continuously learn about 
and refine their valuation of the routes and adjust their 
routing strategy accordingly. The revelation suggests 
that CumLog may be used as a solution algorithm for 
the MEUE route flow problem. To operationalize this 
idea, we proposed to bypass the route enumeration 
required in the original CumLog model through an 
iterative route discovery scheme. We devised two 
schemes. The first guarantees convergence to UE but 
not MEUE. The second strives not to miss any UE 
route, a prerequisite for maximizing entropy. Although 
no theoretical assurance was provided, initial numeri
cal results confirmed the effectiveness of the heuristic.

Having demonstrated the capability of CumLog in 
solving the MEUE problems, we turned to address a 
natural question. Do the other DTD models known to 
converge to a UE solution have a similar capability? To 
answer this question, we first established the four prop
erties underlying CumLog’s success, namely (i) global 
stability, (ii) trajectory stability, (iii) route conservation, 
and (iv) proportionality conversation. Of the four 
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popular DTD models that we examined, the replicator 
dynamic is the only one that has the potential to attain 
the MEUE solution with some regularity. However, the 
replicator dynamic satisfies PC approximately only 
when it is discretized with a very small step size, which 
tends to slow the overall convergence. The convergence 
of the best-response dynamic is the slowest and most dis
orderly, but it seems to adhere to the MEUE solution bet
ter than the projection dynamic and the Smith dynamic.

There are a few directions that future research can 
pursue. First, the current MEUE affirmation conditions 
are established for the standard routing game. It would 
be useful to extend them to more general games, such 
as those with heterogeneous users and nonseparable 
cost functions. To the best of our knowledge, few have 
considered the MEUE problem in these general routing 
games, and unlike the standard game, no specialized 
MEUE algorithm has ever been developed. Because of 
its simplicity and flexibility, CumLog can easily fill this 
gap if the results given by this paper can be general
ized. Another interesting question is whether we can 
design a route discovery scheme that can find all UE 
routes. It is possible that Algorithm 2 already possesses 
this capability if we set the noise term properly and 
simply let the process run indefinitely. Either way, a 
more rigorous theoretical investigation is warranted. 
Our analysis of the continuous dynamical models left 
many questions unanswered. A few of these questions 
are as follows. Why does the projection dynamic 
appear to satisfy TS? Can the limiting point of the dis
crete version of the replicator dynamic always make a 
close approximation of MEUE? If so, under what condi
tions? How do we explain the vastly different behavior 
between the Smith dynamic and the replicator dynamic 
given that they resemble each other so strikingly? 
Finally, MEUE bears intriguing similarities with some 
network design problems, especially the entropy-based 
estimation of origin-destination matrix (e.g., Van Zuy
len and Willumsen 1980), in that they all involve select
ing an equilibrium to optimize an entropy function. By 
this analogy, the initial state in our model plays the role 
of the prior (or historical) matrix in OD estimation. A 
future study may exploit this connection for the pur
pose of solving certain network design problems 
through a DTD dynamical process.
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